理想光学系统练习题

合集下载

前六章工程光学习题及解答

前六章工程光学习题及解答

第一章几何光学基本原理1. 作图分析下列光学元件对波前的作用:(1) 图1.1中(a )、(b )中所示,各向均匀同性介质中的点光源P 发出球面波,P '为其共轭理想像点.假设在相同时间间隔内形成的球面波前间距为d .求该波前入射到折射率大于周围介质的双凸透镜或凹透镜上,波前在透镜内和经透镜折射后的波前传播情况.(2) 图1.1中(c )所示,各向均匀同性介质中的无限远点光源发出平面波,求该波前入射到折射率大于周围介质的棱镜上,波前在棱镜内和经棱镜折射后的波前传播情况.Pd图1.1(b)图1.1(c)P '图1.1(a)解:(1)P d dd 'd 'P 'd(2)2. 当入射角很小时,折射定律可以近似表示为ni=n′i′,求下述条件的结果:(1) 当n =1,n′=1.5时,入射角的变化范围从0~65º.表格列出入射角每增加5º,分别由实际与近似公式得到的折射角,并求出近似折射角的百分比误差.请用表格的形式列出结果.(2) 入射角在什么范围时,近似公式得出的折射角i′的误差分别大于0.1%,1%和10%. 解:(1) 当1n =,1.5n '=时,由折射定律:sin sin n I n I ''=,得:11sin sin sin sin 1.5n I I I n --⎛⎫⎛⎫'==⎪ ⎪'⎝⎭⎝⎭由折射定律近似公式:ni n i ='',得: 1.5ni ii n '==' 入射角在0~65º范围内变化时,折射角和折射角近似值以及近似折射角的百分比误差如下表所示:(2) ()/=0.1%i I I '''-时,=5.7I ︒;()/=1%i I I '''-时,=18.2I ︒=53.3I ︒.3.由一玻璃立方体切下一角制成的棱镜称为三面直角棱镜或立方角锥棱镜,如图1.2所示.用矢量形式的反射定律试证明:从斜面以任意方向入射的光线经其它三面反射后,出射光线总与入射光线平行反向.同时,说明这种棱镜的用途.解:(法一)如下图所示,设光线沿ST 方向入射经T 、Q 、R 点反射后,由RS '方向出射,设1A 、2A 、3A 、4A 分别为ST 、TQ 、QR 和RS 的单位矢量,射向反射面AOB 的入射光线1A 的单位矢量可表示为1=A li mj nk ---,式中l 、m 、n 为光线1A 在x 、y 、z 轴上的方向数,2221l m n ++=,光线1A 经AOB 面反射后,射向反射面BOC ,反射面AOB 的法线单位矢量为1n k =-,则反射光线2A 单位矢量可由矢量反射定律决定,即2112()2[()]A A A k k li mj nk li mj nk k k li mj nk =-=-------=--+反射面BOC 的法线方向单位矢量为2n i =-,光线2A 射向BOC 后的反射光线3A 的单位矢量为3222()2[()]A A A i i li mj nk li mj nk i i li mj nk =-=-------=-+反射面COA 的法线方向单位矢量为3n j =-,光线3A 射向COA 反射后的光线经4A 的单位矢量为4332()2[()]+A A A j j li mj nk li mj nk j j li mj nk =-=-------=+对光线1A 和4A 作点积,得22214()()()1A A li mj nk li mj nk l m n =-++++=-++=-说明入射光线1A 和出射光线4A 在空间上是平行的,而且方向相反,即有180︒夹角.(法二)如下图所示,入射光线从斜面进入棱镜后的折射光线方向为1A ,且1=(,,)A l m n ,然后经过AOB 面的反射后的折射方向为2A ,再依次经过BOC 反射面、COA 反射面后的方向分别为3A 、4A .其中,反射面AOB 、BOC 、COA 的法线单位矢量分别为1=N (0,0,1),2=N (1,0,0),3=N (0,1,0).这样由矢量形式的反射定律,有图 1-21A R)a 3A 4A 2A S '第一次AOB 面反射式,21111=-2()(,,)A A N N A l m n ⋅=- 第二次BOC 面反射式,32222=-2()(,,)A A N N A l m n ⋅=-- 第三次COA 面反射式,433133=-2()(,,)A A N N A l m n A ⋅=---=-说明入射光线1A 和出射光线4A 在空间上是平行的,而且方向相反,即有180︒夹角. 4.已知入射光线cos cos cos A i j k αβγ=++,反射光线cos cos cos A i j k αβγ''''''''++=,求此时平面反射镜法线的方向. 解:反射定律为=-2()''A A N N A ,在上式两边对A 做标积,有212()''=-A A A N , 由此可得12''=-A A A N ,将上式代入反射定律得cos =α=''A N A A) ()5. 发光物点位于一个透明球的后表面,从前表面出射到空气中的光束恰好为平行光如图1.3所示,求此透明材料的折射率的表达式.当出射光线为近轴光线时,求得的折射率是多少? 解:设空气折射率为0n ,透明球的折射率为1n ,则由折射定律01sin sin n i n i '=,得此透明球的折射率表达式为:10sin =sin i n n i'由三角关系有2i i '=,那么上式可以写作10=2cos n n i .近轴成像时,sin sin i i '、分别被i i '、代替,从而可得1022n n == 6.设光纤纤芯折射率1 1.75n =,包层折射率2 1.50n =,试求光纤端面上入射角在何值范围内变化时,可保证光线发生全反射通过光纤.若光纤直径40μm D =,长度为100m ,求光线在光纤内路程的长度和发生全反射的次数. 解:图1.3011sin 0.901464.34n I I ====光线在光纤内路程长度116.7m L '===发生全反射次数21502313()N ==次7.如图1.4所示,一激光管所发出的光束扩散角为7',经等腰直角反射棱镜(=1.5163n ')转折,是否需要在斜面上再镀增加反射率的金属膜? 解:由折射定律得:11sin sin 3.5sin 0.0006714421.5163n i i n ''==='解之得10.03847i '= 而1=90=89.96153i β'- 根据平面几何关系有2==89.9615345=134.961539044.96153i αβγα++=-=而第二面临界角11211sin sin 41.261751.5163m I i n --===<' 所以,不需要镀膜.8.一厚度为200mm 的平行平板玻璃 1.5n =,下面放一直径为1mm 的金属片,如图1.5所示.若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,求纸片的最小直径?解:要使圆形纸片之外都看不到金属片,只有在这些方向上发生全反射.由几何关系可得纸片最小直径1tan 2+=a L d由于发生了全反射,所以有sin 1/1/1.52/3a n ===,tan =sin 2a a =得367.7709mm d =9.折射率为1 1.5n =,12 1.6n n '==,21n '=的三种介质,被两平行分界面分开,试求当光图1.5线在第二种介质中发生全反射时,光线在第一种界面上的入射角1I .解:由折射定律sin sin n I n I ''=,光线从光密进入光疏介质时发生全反射90I '=由题意知221sin /cos m I n n I ''==又知1111sin sin n I n I n ''===11.5sin I =解得156.374I=10.如图1.6所示,有一半径为R 厚度为b 的圆板,由折射率n ,沿径向变化的材料构成,中心处的折射率为n 0,边缘处的折射率为n R ..用物点理想成像的等光程条件推导出圆板的折射率n r 以何种规律变化时,在近轴条件下,平行于主光轴的光线将聚焦?此时的焦距f′又为多少?解:如图1.6所示,离轴r 的光程为r n b A +=即r n b f A +=其中A 为常数,与轴上光线的光程比较,得2201122r R r Rr R n b f A n b f n b f f f='''++=−−−→++=+''故202()R R f n n b '=-或202()r rf n n b'=-220002()2'R r r n n r n n n bf R-=-=- 11.试用费马原理推导光的折射定律解:设任一折射路径的光程为OPL11OPL n OP n PL n '=+=由费马原理1111sin sin 0dOPL OPL n n n i n i dx δ''==-=-= 故1111sin sin n i n i ''= 12. 已知空气中一无限远点光源产生的平行光从左入射到形状未知的凹面镜上,该光束经会图1.6聚后在凹面镜顶点的左方成一理想像点,试用等光程原理确定该凹面镜的形状. 解:如右图所示,以凹面镜的顶点为原点建立(,)z y 坐标系.由等光程原理知,光线①与光线②的光程相等,则22()2 4 4f z f y y fz z f++=⇒=-=-或13. 举例说明正文中图1.4.2中所示四种成像情况的实际光学系统.解:(a )实物成实像:照相机、显微镜的物镜、望远镜的物镜、投影仪、幻灯机 (b )虚物成实像:对着镜子自拍、拍摄水中的鱼(c )实物成虚像:平面镜、眼镜、放大镜、显微镜的目镜、倒车镜(d )虚物成虚像:出现在海市蜃楼(虚像)中的水面上的倒影(虚物)、潜望镜的第二个反射镜对第一个反射镜中的像成像、多光学元件系统.14.如何区分实物空间、虚物空间以及实像空间和虚像空间?是否可按照空间位置来划分物空间和像空间?解:光学系统前面的空间为实物空间.光学系后面的空间为实像空间.光学系统后面的空间为实像空间.光学系统前面的空间为虚像空间.物空间和像空间在空间都是可以无限扩展的,不能只按照空间位置划分.15.假设用如图1.7所示的反射圆锥腔使光束的能量集中到极小的面积上.因为出口可以做到任意小,从而射出的光束能流密度可以任意大.验证这种假设的正确性.解:如图所示,圆锥的截面两母线是不平行的,从入口进入的光线,在逐次反射过程中入射角逐渐减小,必然会在某一点处光线从法线右侧入射,从而使光线返回入口.显然,仅从光的反射定律来分析,欲用反射圆锥腔来聚焦光束能流的设想是不现实的.第二章球面成像系统1. 用近轴光学公式计算的像具有什么实际意义?解:近轴光学是通过光线追迹确定光学系统一阶成像特性和成像系统基本性质的光学.近轴光学公式表示理想光学系统所成像的位置和大小,也作为衡量实际光学系统成像质量的标准.2.有一光学元件,其结构参数如下: (mm)r (mm)t n 1003001.5 ∞(1) 当l =∞时,求像距l '.(2) 在第二个面上刻十字线,其共轭像在何处?(3) 当入射高度10mm y =时,实际光线和光轴的交点在何处?在高斯像面上的高度是多少?该值说明什么问题?解:(1)由近轴折射公式(2.1.8)1100 1.5 300mm 1.51n n n n rn l l l r n n '''-⨯'-=⇒===''-- 2123003000l l t l ''=-=-==(2)由光路可逆,共轭像在无限远处.(3)当10mm y =时:由式(2.1.5),10sin 0.1100y I r ===光线入射角: 5.739170I =︒由式(2.1.2),s i n 10.1si n 0.06671.5n I I n ⨯'==='折射角: 3.822554I '=︒由式(2.1.3),像方孔径角:0 5.739170 3.822554 1.916616U U I I ''=-+=︒-︒+︒=-︒由式(2.1.4),像方截距:sin sin 3.82255411001299.332(mm)sin sin( 1.916616I L r U '⎛⎫︒⎛⎫'=-=-= ⎪ ⎪'-︒)⎝⎭⎝⎭在高斯面上的高度:()299.332300tan(| 1.9166167|)0.022(mm)y '=-⨯-=-,该值说明点物的像是一个弥散斑.3.一个直径为200mm 的玻璃球,折射率为1.53,球内有两个小气泡,看上去一个恰好在球心,另一个从最近的方向看去,好像在表面和球心的中间,求两气泡的实际位置. 解:如右图:A 的像A '在球心,则A 仍在球心. B '在球面和球心中间,/250mm Bl r '==-,则 1 1.531 1.53 60.474mm 50100B B B B n n n n l l l r l ''---=⇒-=⇒=-'--B 离球心39.526mm.4.在一张报纸上放一平凸透镜,眼睛通过透镜看报纸.当平面朝着眼睛时,报纸的虚像在平面下13.3mm 处;当凸面朝着眼睛时,报纸的虚像在凸面下14.6mm 处.若透镜中央厚度为20mm ,求透镜材料的折射率和凸球面的曲率半径.解:如右图(a)(b):对第一面10l =,10l '=.故仅需计算第二面.第一种情况:,20mm,13.3mm,1r l l n ''=∞=-=-=第二种情况:20mm,14.6mm,1l l n ''=-=-=故有:1111 13.32014.620n n n nr---=-=--∞-- 联立求解得:75.282mm 1.504r n =-=所以,透镜材料的折射率为1.504,凸球面的曲率半径为75.282mm.5.一个等曲率的双凸透镜,放在水面上,两球面的曲率半径均为50mm ,中心厚度为70mm ,玻璃的折射率为1.5,透镜下100mm 处有一个物点Q ,如图2.1所示,试计算最后在空气中成的像.解:由光线近轴计算基本公式n n n nl l r''--=' 对于面1,11.5 1.33 1.5 1.3310050l --=-' 解得1151.515mm l '=-对于面2,21 1.51 1.5151.5157050l --='---解得2309.746mml '=,所以最后在空气中成的像在第二面顶点后309.746mm 的位置。

工程光学习题参考答案第二章理想光学系统

工程光学习题参考答案第二章理想光学系统

第二章 理想光学系统1.针对位于空气中的正透镜组()0'>f 及负透镜组()0'<f ,试用作图法分别对以下物距 ∞---∞-,,2/,0,2/,,2,f f f f f ,求像平面的位置。

解:1.0'>f ()-∞=l a()'2f l b -=()f f l c =-=()/f l d -=()0=l e()/f l f =')(f f l g -=='22)(f f l h -==+∞=l i )(2.0'<f -∞=l a )(l b )(=l c =)(/)(f l d -=0 el(=)f=l2/ (f)()fg=l(=h)ll i)(+∞=2. 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点)=x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远的地方。

解: (1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′= (3)x ′= (4)x ′= (5)x ′=(6)x ′=3.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm , 物镜两焦点间距离为1140mm 。

求该物镜焦距,并绘出基点位置图。

解:∵ 系统位于空气中,f f -='10''-===ll y y β 由已知条件:1140)('=+-+x f f7200)('=+-+x l l解得:mm f 600'= mm x 60-=4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大*-4,试求透镜的焦距,并用图解法校核之。

解:方法一:31'11-==l l β ⇒ ()183321'1--=-=l l l ①42'22-==l l β ⇒ 2'24l l -= ② 1821+-=-l l ⇒ 1821-=l l ③ '/1/1/11'1f l l =-'/1/1/12'2f l l =-将①②③代入④中得 mm l 2702-= mm l 1080'2-= ∴ mm f 216'=方法二: 311-=-=x fβ 422-=-=x fβ ⇒ mm f 216-= 1812=-x x方法三: 12)4)(3(21''=--==∆∆=ββαnn x x2161812'-=⨯=∆x''fx -=β143''''2'121=+-=∆=+-=-∴fx fx x ββ mm x f 216''=∆=∴5.一个薄透镜对某一物体成实像,放大率为⨯-1,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动,放大率为原先的3/4倍,求两块透镜的焦距为多少 解:⇒ 2'21'1/1/1/1/1l l l l -=- ④6.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm , 则所得像与物同大小,求该正透镜组的焦距。

03 理想光学系统(1)

03 理想光学系统(1)

f1’= -f1 =50mm, l1 = -100mm
f2’= -f2 = 20mm
物距相同,
l2 = -100mm,
求上述两种情况下的像距 用高斯公式
1 1 1 l l f'
l2’=25mm
解得: l1’=100mm
结论:物距相同而焦距不同时,焦距短的光组对光束会聚的能 力强些。
三、系统的焦距关系及光焦度
200度的近视镜,光焦度为-2D,其焦距为
f ’ =-500mm
三、系统的焦距关系及光焦度
理想光组的拉赫公式 近轴光学的拉赫公式:
nyu nyu
理想光组对宽光束也能成完善像,因此不用将tgu 和 tgu’ 换成 u 和 u’。
即:
nytgu nytgu
因此,近轴光学中的拉赫公式是理想光组拉赫公式在 u 和 u’ 很小时的情况。
(3)平行平板,f ’为+∞, Φ=0,对光束不起会聚或发散作 用。
三、系统的焦距关系及光焦度
光焦度的单位 用 m 1 来表示,它是在空气中焦距为1m 的光学系统的光 焦度。
m 1
也叫屈光度,D。 Φ =1/ f ’=0.5D Φ =1/ f ’ =-5D
例:f ’=2米,
f ’ =-200mm,
y x f y
B y A
Q M -u F h H R R' M'
Q' F' H' -y' B' u' A'
-x -l
-f
f' l'
x'
y y ( f f )tgu ( f f )tgu y y
通分整理后得:
y f tgu y f tgu

(完整)应用光学习题

(完整)应用光学习题

一、填空题1、光学系统中物和像具有共轭关系的原因是 光路可逆 。

2、发生全反射的条件是 光从光密媒质射向光疏媒质,且入射角大于临界角I 0,其中,sinI 0=n 2/n 1 。

3、 光学系统的三种放大率是 垂轴放大率 、 角放大率 、轴向放大率 ,当物像空间的介质的折射率给定后,对于一对给定的共轭面,可提出 一 种放大率的要求.4、 理想光学系统中,与像方焦点共轭的物点是 轴上无穷远的物点 。

5、物镜和目镜焦距分别为mm f 2'=物和mm f 25'=目的显微镜,光学筒长△= 4mm ,则该显微镜的视放大率为 -20 ,物镜的垂轴放大率为 -2 ,目镜的视放大率为 10 。

6、某物点发出的光经理想光学系统后对应的最后出射光束是会聚同心光束,则该物点所成的是实 (填“实”或“虚”)像。

7、人眼的调节包含 视度 调节和 瞳孔 调节。

8、复杂光学系统中设置场镜的目的是 在不影响系统光学特性的的情况下改变成像光束的位置,使后面系统的通光口径不致过大。

9、要使公共垂面内的光线方向改变60度,则双平面镜夹角应为30 度。

10、近轴条件下,折射率为1.4的厚为14mm 的平行玻璃板,其等效空气层厚度为 10 mm. 11、设计反射棱镜时,应使其展开后玻璃板的两个表面平行,目的是 保持系统的共轴性 。

12、有效地提高显微镜分辨率的途径是 提高数值孔径和减小波长 。

13、近轴情况下,在空气中看到水中鱼的表观深度要比实际深度 小 。

14.用垂轴放大率判断物、像虚实关系方法:当β>0时 物像虚实相反β<0时 物像虚实相同。

15.平面反射镜成像的垂轴放大率为 1 ,物像位置关系为 镜像 ,如果反射镜转过α角,则反射光线方向改变 2α 。

二、简答题1、几何光学的基本定律及其内容是什么?答:几何光学的基本定律是直线传播定律、独立传播定律、反射定律和折射定律。

直线传播定律:光线在均匀透明介质中按直线传播.独立传播定律:不同光源的光在通过介质某点时互不影响。

《应用光学》第3章 理想像和理想光学系统

《应用光学》第3章 理想像和理想光学系统

n' n n'n
l' l
上式两边同乘以l l',得
r n'l nl' n'n ll' r
13
上式左边为0,对主点来说,将l'=n'l / n代入右边得
n'n n' l 2 0 rn
由此得到l=0,代入nl'=n'l,又得l'=0。所以球面
的两个主点H、H'与球面顶点重合。
14
ቤተ መጻሕፍቲ ባይዱ、球面焦距公式 按照球面定义像方焦点为无限远
•n1'= n2= 1.5163; •求: lF, lF', lH, lH', f, f'
采用计算机编程(MATLAB 程序)
22
• 已知条件
• r1=10;r2=-50;d1=5;h1=10;n1=1; • 同理可得:
• n1'=1.5163;n2=n1';
• r2=-10;r2=50;d1=5;h1=10;n1=1;
• 焦距是以相应的主点为原点来确定正负的,如果 由主点到相应焦点的方向与规定光线的正方向相同 为正,反之为负。在图3-1中,f<0 , f '>0. 以后将会 知道 f '>0为正系统,f '<0 为负系统。在图3-1中物 像方平行于光轴的光线高度均为 h,其共轭光线与 光轴的夹角为u和u',则有:
学系统的物方焦点。显然,根据光路可逆原理,
物方焦点 F 经系统以后必成像于像方无限远的轴 上点。或者说,物方焦点与像方无限远的轴上点 是一对共轭点。
7
过物方焦点 F 的垂轴平面称为物方焦平面。显然,

应用光学习题解答13年

应用光学习题解答13年

、填空题1、光学系统中物和像具有共辘关系的原因是。

2、发生全反射的条件是3、光学系统的三种放大率是、、,当物像空间的介质的折射率给定后,对于一对给定的共辘面,可提出种放大率的要求。

4、理想光学系统中,与像方焦点共轨的物点是。

5、物镜和目镜焦距分别为f物'2mm和f目'25mm的显微镜,光学筒长厶=4mm,则该显微镜的视放大率为,物镜的垂轴放大率为,目镜的视放大率为。

6、某物点发出的光经理想光学系统后对应的最后出射光束是会聚同心光束,则该物点所成的是(填“实”或“虚”)像。

7、人眼的调节包含调节和调节。

8、复杂光学系统中设置场镜的目的是9、要使公共垂面内的光线方向改变60度,则双平面镜夹角应为度。

10、近轴条件下,折射率为1.4的厚为14mm的平行玻璃板,其等效空气层厚度为mm。

11、设计反射棱镜时,应使其展开后玻璃板的两个表面平行,目的12、有效地提高显微镜分辨率的途径是13、近轴情况下,在空气中看到水中鱼的表观深度要比实际深度。

一、填空题1、光路是可逆的2、光从光密媒质射向光疏媒质,且入射角大于临界角Io,其中,sinlo=n2/ni3、垂轴放大率;角放大率;轴向放大率;一4、轴上无穷远的物点5、一20;— 2; 106、实7、视度瞳孔8、在不影响系统光学特性的的情况下改变成像光束的位置,使后面系统的通光口径不致过大。

9、3010、1011、保持系统的共轴性12、提高数值孔径和减小波长13、小二、简答题1、什么是共轴光学系统、光学系统物空间、像空间?答:光学系统以一条公共轴线通过系统各表面的曲率中心,该轴线称为光轴,这样的系统称为共轴光学系统。

物体所在的空间称为物空间,像所在的空间称为像空间。

2、如何确定光学系统的视场光阑?答:将系统中除孔径光阑以外的所有光阑对其前面所有的光学零件成像到物空间。

这些像中,孔径对入瞳中心张角最小的一个像所对应的光阑即为光学系统的视场光阑。

3、共轴光学系统的像差和色差主要有哪些?答:像差主要有:球差、慧差(子午慧差、弧矢慧差)、像散、场曲、畸变;色差主要有:轴向色差(位置色差)、倍率色差。

第4章理想光学系统

第4章理想光学系统

β与l有关,E点放大率不等于B点放大率 二、已知二光组基点,由物求像或由像求物
三、已知二光组基点,求合成光组的基点
② 主面前移,焦距长,工作距离短
③ 主面后移, 焦距短,工作距离长

§4-5 光学系统的组合 一、两个光组的组合
n1 n1’(n2) n2 ’
H
F
F1
H1 H1’ F1’ F2
H2 H2 ’
hk
位于中间实像面上 的光组对总光焦度 无贡献
此时φ=φ1 二正透镜组合,越 靠近总光焦度越大
d=0, φ=φ1+φ2
例1 一光组到系统像方焦点的距离) L 700 , ' 总焦点位置 lF 400 , 求组成该系统的二光组 焦距及其间隔。
'
已知二薄光组组合 f 1000 ,总长(第
第四章理想光学系统 §4-1 理想光学系统及其原始定义 1. 理想光学系统:任意宽空间内的点以 任意宽的光束完善成像的光学系统。 2.理想光学系统成像特点: (1) 点物成点像。 (2) 线物成线像。 (3) 平面物成平面像。 3.意义 (1) 研究可以视为理想光学系统的系统的成像 (2) 作为非理想系统成像质量的衡量标准
诸放大率的关系不变
f
f1 f 2
f f
' 1 ' 2
f
'
三、视觉放大率 正常眼:能使无穷远物发出的平行光聚 焦于视网膜上。
人对物体主观感觉的大小与视角有关 目视光学仪器用视觉放大率 ' ' W 物体经目视仪器所成 tan W 的像对人眼张角的一半 tan W
F2’
F’
H’
f
-xF -lH

应用光学习题”、“物理光学习题”、“工程光学-练习题

应用光学习题”、“物理光学习题”、“工程光学-练习题

“应用光学习题”、“物理光学习题”、“工程光学+练习题”一、选择题1、几何光学有三大基本定律,它们是是:( D )A、折射与反射定律,费马原理,马吕斯定律;B、直线传播定律,折射与反射定律,费马原理;C、独立传播定律,折射与反射定律,马吕斯定律;D、直线传播定律,独立传播定律,折射与反射定律。

2、对理想光学系统,下列表述正确的是:( C )A、位于光轴上的物点的共轭像点不在光轴上;B、物方焦点与像方焦点共轭;C、基点与基面为:焦点、主点、节点,焦平面、主平面、节平面;D、牛顿物像位置关系,它是以主点为坐标原点。

3、关于光阑,下列表述正确的是:( B )A、孔径光阑经其前面的光学系统所成的像称为入窗;B、若孔径光阑在光学系统的最前面,则孔径光阑本身就是入瞳;C、孔径光阑、入窗、出窗三者是物像关系;D、视场光阑是限制轴上物点孔径角的大小,或者说限制轴上物点成像光束宽度、并有选择轴外物点成像光束位置作用的光阑。

4、关于人眼,下列描述正确的是:( A )A、眼睛自动改变焦距的过程称为眼睛的视度调节;B、近视眼是将其近点矫正到明视距离,可以用负透镜进行校正;C、眼睛可视为由水晶体、视网膜和视神经构成的照相系统。

;D、人眼分辨率与极限分辨角成正比关系。

5、关于典型光学系统,下列表述正确的是:( B )A、增大波长可以提高光学系统的分辨率;B、显微镜的有效放大率,放大率高于1000NA时,称作无效放大率,不能使被观察的物体细节更清晰;C、目视光学仪器,其放大作用可以由横向放大率来表示;D、减小孔径可以提高光学系统的分辨率。

6、关于光的电磁理论,下列表述正确的是:( D )A、两列光波相遇后又分开,每列光波不再保持原有的特性;B、两列光波叠加后其光强为两列光波的强度之和;C、等振幅面传播的速度称为相速度;D、两个振幅相同、振动方向相同、传播方向相同,但频率接近的单色光波叠加形成拍现象。

7、关于光的干涉,下列表述正确的是:( A )A、平行平板的多光束干涉中,随平板反射率的增加,透射光的干涉条纹变得越明锐;B、楔形平板形成的干涉为等倾干涉;C、等倾干涉条纹为同心圆环状条纹,中央条纹级次最低;D、迈克耳逊干涉仪只能产生等厚干涉条纹。

光学第04章答案_理想光学系统

光学第04章答案_理想光学系统

2.单薄透镜成像时,若共轭距(物与像之间的距离)为250mm , 求下列情况下透镜应有的焦距:1)实物,β=-4;2)实物,β=-1/4;3)虚物,β=-4;4)实物,β=4;5)虚物, β=4。

解:由薄透镜的物象位置关系''111fl l =-和l l '=β,共轭距mm l l 250'=-(1) 实物,β=-4。

由mm l l 250'=-和4'-==ll β,解得mm l 200'=,mm l 50-=,代入''111fl l =-得到焦距40'=f mm (2) 实物,β=-1/4。

由mm l l 250'=-和41'-==l l β,解得mm l 50'=,mm l 200-=,代入''111fl l =-得到焦距40'=f mm (3) 虚物,β=-4。

由mm l l 250'=-和4'-==ll β,解得mm l 200'-=,mm l 50=,代入''111fl l =-得到焦距40'-=f mm (4) 实物,β=4。

由mm l l 250'=-和4'==l l β,解得mm l 31000'-=,mm l 3250-=,代入''111fl l =-得到焦距11.111'=f mm (5) 虚物, β=4。

由mm l l 250'=-和4'==l l β,解得mm l 31000'=,mm l 3200=,代入''111fl l =-得到焦距11.111'-=f mm 。

3.一个f '=80mm 的薄透镜当物体位于其前何处时,正好能在1)透镜之前250mm 处;2) 透镜之后250mm 处成像? 解: 由薄透镜的物象位置关系''111fl l =- (1)l’=-250代入'111'l l f -=得l=-60.6061mm(2)l’=250代入'111'l l f -=得l=-117.647mm 4.有一实物被成一实像于薄透镜后300mm 处时,其放大率正好为1倍。

工程光学习题(1)

工程光学习题(1)

一、填空题1.用于制作光学零件的透射材料分为 、 、 。

2.一学生带500度近视眼镜,则该近视镜的焦距为 ,该学生裸眼所能看清的最远距离为 。

3.唯一能成完善像的最简单的光学元件是 。

4.一个右手坐标系的虚物,经一个屋脊棱镜的屋脊反射后,成 坐标系的 像。

5.光波的相干条件为 、 、 。

6.光的干涉现象是光的 的重要特征。

实验证明了光可以发生干涉。

7.影响干涉条纹可见度的主要因素是两相干光束的 、 、 。

8.摄影物镜的三个重要参数分别为 、 、 。

9.摄影物镜的类型主要分为普通摄影物镜、 、 、 和变焦距物镜等。

10.显微镜的照明方法有 、 、 、 。

11.摄影系统由 和 组成。

12.波的叠加原理可以表述为:几个波在相遇点产生的合振动是各个波单独在该点产生振动的 。

波的叠加原理表面了光波传播的 。

13.几何光学的四个基本定律分别为 、 、 、 。

14.反射棱镜的种类繁多,形状各异,大体上可分为 、 、 、 。

15.视场光阑经其前面的光学系统所成的像称为 ,视场光阑经其后面的光学系统所成的像称为 。

16.在理想光学系统中,除了垂轴放大率外,还有 和 两种放大率。

17.产生干涉的光波称为 ,其相应的光源称为 。

18.等厚干涉型的干涉系统称为斐索干涉仪,按测量对象分为 、 。

19.时间相干性好的同义语有 、 、 。

20.孔径光阑经其前面的光学系统所成的像称为 ,孔径光阑经其后面的光学系统所成的像称为 。

二、作图题1.求AB 的像B A ''。

图中C 为球面反射镜的曲率中心。

2.求AB 的像B A ''。

图中C 为球面反射镜的曲率中心。

3.求物AB经理想光学系统所成的像,并注明系统像方的基点位置和焦距。

5.求像方主平面和像方焦点。

1.简述几何光学的四个基本定律的含义。

答:(1)光的直线传播定律,几何光学认为,在各向同性的均匀介质中,光是沿着直线方向传播的。

第1.4讲 理想光学系统的物像关系

第1.4讲  理想光学系统的物像关系

y B -x
F
H
H′ F′ x′
A′
-f K K′ f′
物点位置和大小(x,y) , )
像点位置和大小(x′, y′) )
理想光学系统的物像关系式(高斯公式) 理想光学系统的物像关系式(高斯公式)
以主点为原点 物距l 物距l:以 H 为起点,H 到物点A的距离 为起点, 到物点A 像距l 像距l′:以 H′为起点,H′到像点A′的距离 为起点, 到像点A
f′ f 物 关 式: + =1 像 系 l′ l
y′ f l′ 垂 放 率: β = = − 轴 大 y f ′l
物点位置和大小(l,y) , )
y B
I A F H
I′
B′ y′
H′ F′
A′
-f K K′ f′ -l l′
像点位置和大小(l′, y′) )
理想光学系统的物像关系式(说明) 理想光学系统的物像关系式(说明)
1. 只有知道系统的焦距后,才能使
用牛顿公式或高斯公式; 2. 牛顿公式和高斯公式计算的结果 应该是一致的; 3. 理想光学系统的焦距 任意物平面所对应的像平面的位 置和放大率。
物方焦距和像方焦距的关系
结论:与系统结构无关 f′ n′(像 间 质 折 率 空 介 的 射 ) =− f n(物 间 质 折 率 空 介 的 射 ) 光学系统位于空气中:f 光学系统位于空气中:f ′=-f 牛顿公式:x 牛顿公式:x x′=-f ′2 高斯公式: 1 1 1 l′ − = β= ′ l f′ l l 正透镜: f ′>0 f <0 负透镜: f ′< 0 f >0
第1.4讲 理想光学系统的物像关系 1.4讲 理想像和理想光学系统 用作图法求光学系统的理想像 理想光学系统的物像关系式 物方焦距和像方焦距的关系 例题 作业题

理想光学系统

理想光学系统
这个转面公式的实质就是将前一个系统所成的 像转换成后一个系统的物而进行的坐标变换。
3、入射光为平行光
在利用上式对光路进行计算时,若物体位于物方光轴上无限远 处,这时可认为由物体发出的光束是平行于光轴的平行光束,
即L=-∞,U=0,入射角应按下式计算:
sin I h r
三 、近轴光线的光路计算
结论:
2)垂直于光轴的平面物所成的共轭平面像的几何 形状与物相似;
3)如果已知两对共轭面的位置和放大率,或者已知 一对共轭面的位置和放大率以及光轴上的两对共 轭点的位置,则其它的一切物点的像点都可以根据 这些已知的共轭面和共轭点确定。
2.1 光路计算与近轴光学系统
光路计算的依据:
以理想像成像性质为基础; 沿着任意一条光线的踪迹可以找到其共轭光线。
转面公式:
u2 u`1 l2 l`1d1
作业:
p47: 1
• 问题:u 0的光线是不是近轴光线
常用近轴光学基本公式:
n
U
Aห้องสมุดไป่ตู้
L
IE
n
h
I'
U'
O
C
r
L'
如图中,h满足: l`u` lu h
由近轴光线公式可得: n`u`nu n`n h
r
或者,
n` n n`n l` l r
(2-11) (公式二)
2)当β>0, l′和l同号,表示物和像处于球面的同侧, 物像虚实相反,即:实物成虚像,虚物成实像。
3)当β<0, l′和l异号,表示物和像处于球面的两侧, 物像虚实相同,即:实物成实像,虚物成虚像。
一、基本概念
n
I E
n
h
I'
U
U'

光学习题

光学习题

一、填空题1. 小孔成像可用几何光学中的( )定律来解释。

2. 光学系统中物和像具有共轭关系的原因是( )。

3. 光学系统中像方顶焦距是( ) 。

4. 显微镜中的光学筒长指的是( ` )。

5. 光学系统的物方焦距和像方焦距之比等于 ( )之比。

6. 人眼的调节包含 ( ) 调节和 ( ) 调节。

7. 要使公共垂面内的光线方向改变60度,则双平面镜夹角应为( )。

8. 要求显微镜能分辨的最小间隔为0.5μm ,如果用波长555nm 的光成像,显微镜物镜的数值孔径至少为( )。

9.理想光学系统中,与像方焦点共轭的物点是( )。

10. 望远系统中物镜的相对孔径是( )。

11. 棱镜的转动定理是( )。

12. 设光从玻璃射入空气中,玻璃的折射率为1.52,则发生全反射的临界角为 ( )。

13. 一个人的眼睛的远点距为-500mm ,需带( )度数的眼镜,眼镜的 焦距是( )。

14. 视场光阑是光学系统中对光束的( )起限制作用的光阑,其在系统像 空间的共轭像称作( )。

15. 发生全反射现象的必要前提是( )。

16. 周视照相机可以拍摄大视场景物,其利用的是( )的性质。

17.在望远镜的视度调节中,为适应近视人群,应采取的是:( )A)使物镜远离目镜 B)使目镜远离物镜 C)使目镜靠近物镜 D)应同时调节物镜和 目镜18. 棱镜系统中加入屋脊面,其作用是( )。

19. 光学系统中场镜的作用是( )A)改变成像光束的位置 B)减小目镜的尺寸 C)不改变像的成像性质 D)以上都正确 20. 理想光学系统中,与像方焦点共轭的物点是( )。

21.物镜和目镜焦距分别为mm f 2'=物和mm f 25'=目的显微镜,光学筒长△= 4mm ,则该显微镜的视放大率为( ),物镜的垂轴放大率为( ),目镜的视放大率为( )。

二、问答题1. 什么是理想光学系统?2. 对目视光学仪器的共同要求是什么?3. 如何计算眼睛的视度调节范围?如何校正常见非正常眼?4. 光学系统中可能有哪些光阑?5. 共轴光学系统的像差和色差主要有哪些?6. 显微镜的分辨率与哪些参数有关?通过什么途径可提高显微镜的分辨率?7. 复杂光学系统中设置场镜的目的是什么?8. 平面镜成像是否存在色差?9. 什么叫孔径光阑?它和入瞳和出瞳的关系是什么?10. 什么叫视场光阑?它和入窗和出窗的关系是什么?11. 几何像差主要包括哪几种?12. 什么叫远心光路?其光路特点是什么?13. 角放大倍率和视觉放大倍率的本质区别是什么?望远镜的角放大倍率和视觉放大倍率有何异同?14.场镜的作用是什么?若把一场镜(凸平)放置于望远物镜的像面上,场镜的垂轴放大倍率多大?场镜的初级球差多大?15. 目镜的作用是形成实像还是虚像?是倒立像还是正立像?是放大像还是缩小像?16. 为什么光楔有色散作用?当光楔顶角为θ时,光楔对F光和C光的角色散公式。

光学教程第二版习题答案(一至七章)

光学教程第二版习题答案(一至七章)

另一个气泡像位于表面和中心的中间,球直径为 400mm
∴ l ′ = − 400 × 1 = −100mm
22
代入物象关系式
n′ l′

n l
=
n′
−n r

1 1.52 1 −1.52 −=
−100 l − 200
求得: l = −120.635mm
∴另一个气泡的实际位置离球心的距离为:200-120.635=
代入物象公式
n′ l′

n l
=
n′
−n r

1 − 12

n − 20
=
1− n ∞
A A'
A A
求得:n=1.525
(a)
当凸面朝着眼睛时,只有凸面成像,如图(b)
所示:
l = −20mm, n′ = 1, l ′ = −15mm
代入物象公式:
1
1.525 −
=
1 −1.525.
−15 − 20
=
l

2
= ∞ , r3
=
100mm

n
3
=
1.5

n

3
=1
代入物象关系式得:
l

3
=
−200mm
垂轴放大率 β
= β1β2β3
=
n1l1′ n1′ l1

(

l

2
)

l2
n3l

3
n3′l 3
=
−1
即像和物的大小一致,呈倒像。
第二章 理想光学系统
2-1 作图:

理想光学系统习题

理想光学系统习题

第二章 理想光学系统一:选择题(可以有多选)1.有一个无限远物点,经某一理想光学系统成像,陈述正确的是(B )A.其像点必在理想光学系统的像方焦点处。

B.其像点必在理想光学系统的像方焦平面上。

C.该物点与像点无穷远点共轭。

D.该物点与其像点可作为此理想光学系统的一对基点。

2.有一个置于空气中的理想光学系统,其垂轴放大率β>0,则( AB )A.物像位于系统的同侧。

B.角放大率γ>0。

C.像高大于物高。

D.光学系统的焦距为正。

3.一物体经理想光学系统后放大的实像。

当物体向光学系统方向移动一微小距离,则( AC )A.其像变大。

B.垂轴放大率β的绝对值变小。

C.角放大率γ的绝对值变小。

D.轴放大率α的绝对值变小。

4.理想光学系统的角放大率γ(ABD )A.反映了理想光学系统能够把光束变宽或变窄的能力。

B.角放大率γ的大小取决于物像共轭位置。

C.改变理想光学系统物像方折射率的大小,角放大率γ值不变。

D.垂轴放大率β值越大,角放大率γ越小。

二、填空题1、一双凸透镜两球面的曲率半径都是12cm ,透镜玻璃的折射率为1.5,若将此透镜置于空气中,求透镜的焦距__12_ cm ______。

2、共轴理想光学系统的牛顿公式___ xx ’=ff ’______,高斯公式_1''=+lf l f ________。

3、一个折射率为1.52的双凸薄透镜,其中一个折射面的曲率半径是另一个折射面的2倍,且其焦距为5cm ,则这两个折射面的曲率半径分别为_ 7.8 _____cm 和__-3.9____cm 。

4、长60mm ,折射率为1.5的玻璃棒,在其两端磨成曲率半径为10mm 的凸球面,其焦距为____∞简答题1、共轴光学系统的成像性质有哪些?画出一对共轭面及两对共轭点已知情况下的物点和像点。

1、性质1 位于光轴上的物点对应的共轭像点也必然位于光轴上;位于过光轴的某一个截面内的物点对应的共轭像点必位于该平面的共轭像面内;同时,过光轴的任意截面成像性质都是相同的。

光学第04章答案_理想光学系统

光学第04章答案_理想光学系统
'


代入
,得到 r2=500mm,r1=83.3333mm;

时f
'
1 ,由 5
1
和 1 2 ,得 2 11D ,所以
r1 11 , r2 6
代入
,可得 r1=83.3333mm ,r2=45.4545mm。
21.试回答如何用二个薄透镜或薄透镜组组成如下要求的光学系统。 1)保持物距不变时,可任意改变二镜组的间距而倍率不变; 2)保持二镜组的间距不变时,可任意改变物距而倍率不变。 答:(1)物位于第一透镜的物方焦面 (2)使△=0。 22.一个折反射系统,以任何方向入射并充满透镜的平行光束,经系统后, 出射光束仍为充 满透镜的平行光束;并且当物面与透镜重合时,其像面也与之重合。试问此折反射系统的最 简单的结构在怎样的? 解:
5.用作图方法求解。
6.一透镜对无限远处和物方焦点前 5m 处的物体成像时,二像的轴向间距为 3mm, 求透镜的 焦距。 解:由薄透镜的物象关系
1 1 1 ' ,对于无限远 l ,则 l1 f ' l' l f '
对物方焦点前物体 l=-5+f,
l ' l1 3000 l, f ' f
20.有一 5D 的眼镜片(即光焦度为 5 屈光度),其折射率为 1.5,第一面为 600 度( 即 ,厚度忽略不计,求二面的曲率半径。(分别就 、 计算之)。
解:对薄透镜,有
,f
'
1

1 1 5
(1)当
时,由
和 1 2 ,得 2 D 。所以 r2 6r1 ; f
18.一平面朝前的平凸透镜对垂直入射的平行光束会聚于透镜后 480mm 处。如此透镜的凸面 为镀铝的反射面, 则使平行光束会聚于透镜前 80mm 处。 求透镜的折射率和凸面的曲率半径。 (计算时,透镜的厚度忽略不计)。 解:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档