(完整版)诱导公式总结大全

合集下载

高一数学诱导公式汇总

高一数学诱导公式汇总

高一数学诱导公式汇总学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。

下面是店铺为大家整理的高一数学诱导公式大全,希望对大家有所帮助!高一数学诱导公式总结诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα诱导公式公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα诱导公式公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα诱导公式公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα诱导公式公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα诱导公式公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)。

诱导公式总结大全

诱导公式总结大全

v1.0 可编辑可修改诱导公式1诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

常用的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号看象限。

“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。

(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

诱导公式全集

诱导公式全集

公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
万能公式
万能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
万能公式推导
附推导: ቤተ መጻሕፍቲ ባይዱ
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
[_好好学习_天天向上]高中数学诱导公式全集。 2010-03-13 12:45 | (分类:默认分类)
诱导公式
常用的诱导公式有以下几组:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
cos(π/2-α)=sinα
tan(π/2-α)=cotα

数学的诱导公式

数学的诱导公式

数学的诱导公式诱导公式在三角函数这一章中具有重要意义,如何有效记忆三角函数的诱导公式是学习的难点,下面店铺给你分享数学的诱导公式,欢迎阅读。

数学的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotαk∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα数学的诱导公式推算3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα数学的诱导公式口诀1.数学的诱导公式记忆“奇变偶不变,符号看象限”。

诱导公式总结大全

诱导公式总结大全
上下同除以cosA3(a,得:
tan3am(3tan—tan八3(a))/(1-3ta门八2(a))
sin3 om sin(2(+a msin2acos+cos2asina
m2sinacosA2(+)1—2sin八2(a))sina
m2sina—2si门八3(a+sin—2sin八3(a)
=3sina—4si门八3(a)
tan( a+ B)=(tan+tanB)/(1—tana •tanB)
tan( a— B) =(tan—tanB)/(1+tana •tanB)
二倍角的正弦、余弦和正切公式
sin2a2sinacosa
cos2aCOSA2(a—SinA2(a¥2COSA2(a—1a1—2sinA2(a)
tan2a2tana/(1—tan八2(a))
变”是指正弦变余弦,正切变余切。(反之亦然成立)符号看象限”的含
义是:把角a看做锐角,不考虑a角所在象限,看n•(n/2)是第几象限角, 从而得到等式右边是正号还是负号。一全正;二正弦;三两切;四余弦
这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都
是+”第二象限内只有正弦是+”其余全部是第三象限内只有
sin—sin#2cos((r B)/2)•sin((帥/2)
cosa+cosB=2cos((rB)/2)•cos— B)/2) cosa—cosB=—2sin((+B)/2)•sin— B)/2)
三角函数的积化和差公式
sina・cosBsin(+ B +sin(— B)]
cosa・si牛Bsin(+ B —sin(— B)]

完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结三角函数诱导公式与同角的三角函数知识点1】诱导公式及其应用诱导公式是指通过一些特定的公式,将三角函数中的某些角度转化为其他角度,从而简化计算。

以下是常用的诱导公式:公式一:sin(-α) = -sinα;cos(-α) = cosα;tan(-α) = -tanα公式二:sin(π+α) = -sinα;cos(π+α) = -cosα;tan(π+α) =tanα公式三:sin(π-α) = sinα;cos(π-α) = -cosα;tan(π-α) = -tanα公式四:sin(2π-α) = -sinα;cos(2π-α) = cosα;tan(2π-α) = -tanα公式五:sin(π/2-α) = cosα;cos(π/2-α) = sinα公式六:sin(π/2+α) = cosα;cos(π/2+α) = -sinα公式七:sin(-π/2-α) = -cosα;cos(-π/2-α) = -sinα公式八:sin(-π/2+α) = -cosα;cos(-π/2+α) = sinα公式九:sin(α+2kπ) = sinα;cos(α+2kπ) = cosα;tan(α+2kπ) = tanα(其中k∈Z)。

以上公式可以总结为两条规律:1.前四组诱导公式可以概括为:函数名不变,符号看象限。

2.公式五到公式八总结为一句话:函数名改变,符号看象限(原函数所在象限)。

另外,还有一个规律是:奇变偶不变,符号看象限。

也就是说,将三角函数的角度全部化成kπ/2+α或是kπ/2-α的形式,如果k是奇数,那么符号要改变;如果k是偶数,符号不变。

例1、求值:(1)cos(2916π)= ________;(2)tan(-855)= ________;(3)sin(-π)= ________。

例2、已知tan(π+α)=3,求:(2cos(-α)-3sin(π+α))/(4cos(-α)+sin(2π-α))的值。

三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导

三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导

三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导一、三角函数诱导公式1、万能公式a sin(A+B) = a sinAcosB + a cosAsinBa cos(A+B) = a cosAcosB - a sinAsinB2、差化积公式sinAcosB - cosAsinB = sin(A-B)cosAcosB + sinAsinB = cos(A-B)3、倍角公式sin2A = 2sinAcosAcos2A = cos2A - sin2A = 2cos2A - 1 = 1 - 2sin2A4、和差公式sin(A±B) = sinAcosB±cosAsinBcos(A±B) = cosAcosB∓sinAsinB二、推导1、万能公式推导过程设定A+B=C,则有:a sin(A + B)= a sinC左右两侧同时乘以cosB:a sin(A + B)cosB = a sinCcosB左右两侧同时乘以sinB:a sin(A + B)sinB = a sinCsinB将上式整合即可得:a sin(A + B)= a sinAcosB + a cosAsinB同理,可推导出:a cos(A + B) = a cosAcosB - a sinAsinB2、差化积公式推导过程设定A=B,则有:sinAcosB - cosAsinB = sinAcosA - cosAcosA 经过整合可得:sinAcosB - cosAsinB = sinA -cosA将A=B替换为A-B,即可得sinAcosB - cosAsinB = sin(A-B)同理:cosAcosB + sinAsinB = cosAcosA + sinAsinA 经过整合可得:cosAcosB +sinAsinB = cosA +sinA将A=B替换为A-B,即可得cosAcosB +sinAsinB = cos(A-B)3、倍角公式的推导过程由于A为任意角度,对其两侧两边可以分别进行乘以cosA及sinA,得到:sinAcosA + sinAcosA = cosA*sinA + cosA*sinA经过整合可得:sin2A = 2sinAcosAcos2A = cosAcosA - sinAcosA经过整合可得:cos2A = 2cos2A - 1再把上式中的cos2A代入:2cos2A - 1 = 1 - 2sin2A4、和差公式推导过程设定A+B=C,则有:sin(A + B)= sinC将左右两侧分别乘以cosB及sinB:。

【三角函数诱导公式】诱导公式

【三角函数诱导公式】诱导公式

【三角函数诱导公式】诱导公式考试前快用试题来测试知识的掌握情况吧,下面是范文网在线网xxxx小编为大家带来的诱导公式,希望能帮助到大家! 诱导公式(1) 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)=-cosαtan(π+α)= tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)= cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinαtan(π/2+α)=-cotαtan(π/2-α)=cotαcot(π/2+α)=-tanαcot(π/2-α)=tanα推算公式:3π/2 ± α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαsin(3π/2-α)=-cosαcos(3π/2+α)=sinαcos(3π/2-α)=-sinαtan(3π/2+α)=-cotαtan(3π/2-α)=cotαcot(3π/2+α)=-tanαcot(3π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”。

诱导公式

诱导公式

高考数学公式总结:诱导公式常用的诱导公式有以下几组: 公式一: 设 α 为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ +α )=sinα (k∈Z) cos(2kπ +α )=cosα (k∈Z) tan(2kπ +α )=tanα (k∈Z) cot(2kπ +α )=cotα (k∈Z) 公式二: 设 α 为任意角,π +α 的三角函数值与 α 的三角函数值之间的关系: sin(π +α )=-sinα cos(π +α )=-cosα tan(π +α )=tanα cot(π +α )=cotα 公式三: 任意角 α 与 -α 的三角函数值之间的关系: sin(-α )=-sinα cos(-α )=cosαtan(-α )=-tanα cot(-α )=-cotα 公式四: 利用公式二和公式三可以得到 π -α 与 α 的三角函数值之间的关系: sin(π -α )=sinα cos(π -α )=-cosα tan(π -α )=-tanα cot(π -α )=-cotα 公式五: 利用公式一和公式三可以得到 2π -α 与 α 的三角函数值之间的关系: sin(2π -α )=-sinα cos(2π -α )=cosα tan(2π -α )=-tanα cot(2π -α )=-cotα 公式六: π /2±α 及 3π /2±α 与 α 的三角函数值之间的关系: sin(π /2+α )=cosα cos(π /2+α )=-sinα tan(π /2+α )=-cotα cot(π /2+α )=-tanα sin(π /2-α )=cosαcos(π /2-α )=sinα tan(π /2-α )=cotα cot(π /2-α )=tanα sin(3π /2+α )=-cosα cos(3π /2+α )=sinα tan(3π /2+α )=-cotα cot(3π /2+α )=-tanα sin(3π /2-α )=-cosα cos(3π /2-α )=-sinα tan(3π /2-α )=cotα cot(3π /2-α )=tanα (以上 k∈Z) 注意:在做题时,将 a 看成锐角来做会比较好做。

12个诱导公式

12个诱导公式

12个诱导公式
诱导公式是三角函数中一个重要的部分,用于将任意角的三角函数转化为已知的锐角三角函数。

以下是12个常用的诱导公式:
1. 公式一:sin(π + α) = -sinα
2. 公式二:cos(π + α) = -cosα
3. 公式三:tan(π + α) = tanα
4. 公式四:sin(π/2 + α) = cosα
5. 公式五:cos(π/2 + α) = -sinα
6. 公式六:tan(π/2 + α) = -cotα
7. 公式七:sin(π - α) = sinα
8. 公式八:cos(π - α) = -cosα
9. 公式九:tan(π - α) = -tanα
10. 公式十:sin(3π/2 - α) = -cosα
11. 公式十一:cos(3π/2 - α) = sinα
12. 公式十二:tan(3π/2 - α) = -cotα
这些公式可以通过三角函数的周期性和对称性进行推导,是解决三角函数问题的重要工具。

在解题时,可以根据需要选择合适的诱导公式进行转化。

例如,可以将角度转换为锐角,或将正弦、余弦、正切函数进行互化。

除了这12个诱导公式外,还有一些其他常用的三角函数公式,如两角和与差公式、倍角公式等。

这些公式可以进一步扩展和深化三角函数的知识体系,为解决复杂的三角函数问题提供更多工具。

考研数学备考:诱导公式汇总

考研数学备考:诱导公式汇总

考研数学备考:诱导公式汇总一、常用诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀:上面这些诱导公式可以概括为:对于π/2*k±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

三角函数诱导公式一览表

三角函数诱导公式一览表

三角函数诱导公式一览表公式一:设α为任意角,终边相同的角的同一三角函数的值相等:1、sin(2kπ+α)=sinα 2、cos(2kπ+α)=cosα3、tan(2kπ+α)=tanα 4、cot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:1、sin(π+α)=-sinα2、cos(π+α)=-cosα3、tan(π+α)=tanα4、cot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:1、sin(-α)=-sinα2、cos(-α)=cosα3、tan(-α)=-tanα4、cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:1、sin(π-α)=sinα2、cos(π-α)=-cosα3、tan(π-α)=-tanα4、cot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:1、sin(2π-α)=-sinα2、cos(2π-α)=cosα3、tan(2π-α)=-tanα4、cot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:1、sin(π/2+α)=cosα2、cos(π/2+α)=-sinα3、tan(π/2+α)=-cotα4、cot(π/2+α)=-tanα5、sin(π/2-α)=cosα6、cos(π/2-α)=sinα7、tan(π/2-α)=cotα8、cot(π/2-α)=tanα公式七:3π/2±α与α的三角函数值之间的关系:1、sin(3π/2+α)=-cosα2、cos(3π/2+α)=sinα3、tan(3π/2+α)=-cotα4、cot(3π/2+α)=-tanα5、sin(3π/2-α)=-cosα6、cos(3π/2-α)=-sin α7、tan(3π/2-α)=cotα 8、cot(3π/2-α)=tanα诱导公式记忆口诀:“奇变偶不变,符号看象限”。

诱导公式大全

诱导公式大全

诱导公式大全诱导公式是数学中的一个重要概念,它可以帮助我们简化复杂的表达式,解决各种数学问题。

在本文中,我们将为大家详细介绍各种常见的诱导公式,希望能够帮助大家更好地理解和运用这些公式。

一、三角函数的诱导公式。

1. sin(A ± B) = sinAcosB ± cosAsinB。

2. cos(A ± B) = cosAcosB ∓ sinAsinB。

3. tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)。

这些诱导公式可以帮助我们简化三角函数的加减运算,特别是在解决三角函数的复合运算问题时,能够起到很大的作用。

二、指数函数的诱导公式。

1. e^x ± e^(-x) = 2coshx。

2. e^x ∓ e^(-x) = 2sinhx。

3. (e^x + e^(-x)) / 2 = coshx。

4. (e^x e^(-x)) / 2 = sinhx。

这些诱导公式是指数函数的一些常见运算公式,通过这些公式,我们可以将指数函数的运算转化为双曲函数的运算,从而简化计算过程。

三、对数函数的诱导公式。

1. ln(xy) = ln x + ln y。

2. ln(x/y) = ln x ln y。

3. ln(x^n) = nlnx。

对数函数的诱导公式主要是针对对数的乘除运算和指数的换底运算,这些公式在解决对数函数的复合运算问题时非常有用。

四、微积分中的诱导公式。

1. (x^n)' = nx^(n-1)。

2. (e^x)' = e^x。

3. (lnx)' = 1/x。

4. (sinx)' = cosx。

5. (cosx)' = -sinx。

6. (tanx)' = sec^2x。

这些微积分中的诱导公式是我们在求导过程中经常会用到的公式,通过这些公式,我们可以快速求得各种函数的导数,解决各种微积分问题。

诱导公式总结大全

诱导公式总结大全

诱导公式1所谓三角函数诱导公式,就就是将角n·(π/2)±α得三角函数转化为角α得三角函数。

公式一: 设α为任意角,终边相同得角得同一三角函数得值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二: 设α为任意角,π+α得三角函数值与α得三角函数值之间得关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三: 任意角α与 -α得三角函数值之间得关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四: 利用公式二与公式三可以得到π-α与α得三角函数值之间得关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五: 利用公式一与公式三可以得到2π-α与α得三角函数值之间得关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六: π/2±α与α得三角函数值之间得关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号瞧象限。

“奇、偶”指得就是整数n得奇偶,“变与不变”指得就是三角函数得名称得变化:“变”就是指正弦变余弦,正切变余切。

(反之亦然成立)“符号瞧象限”得含义就是:把角α瞧做锐角,不考虑α角所在象限,瞧n·(π/2)±α就是第几象限角,从而得到等式右边就是正号还就是负号。

一全正;二正弦;三两切;四余弦这十二字口诀得意思就就是说: 第一象限内任何一个角得四种三角函数值都就是“+”; 第二象限内只有正弦就是“+”,其余全部就是“-”; 第三象限内只有正切与余切就是“+”,其余全部就是“-”; 第四象限内只有余弦就是“+”,其余全部就是“-”。

六个诱导公式

六个诱导公式

六个诱导公式公式一:sin(2kπ+α)=sinα(k∈Z)。

cos(2kπ+α)=cosα(k∈Z)。

tan(2kπ+α)=tanα(k∈Z)。

公式二:sin(π+α)=-sinα。

cos(π+α)=-cosα。

tan(π+α)=tanα。

公式三:sin(-α)=-sinα。

cos(-α)=cosα。

tan(-α)=-tanα。

公式四:sin(π-α)=sinα。

cos(π-α)=-cosα。

tan(π-α)=-tanα。

公式五:sin(2π-α)=-sinα。

cos(2π-α)=cosα。

tan(2π-α)=-tanα。

公式六:sin(π/2+α)=cosα。

cos(π/2+α)=-sinα。

tan(π/2+α)=-cotα。

诱导公式记忆口诀规律为:对于π/2*k±α(k∈Z)的三角函数值:1、当k是偶数时,得到α的同名函数值,即函数名不改变。

2、当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。

(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα。

上述的记忆口诀是:奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α。

所在象限的原三角函数值的符号可记忆。

诱导公式大全

诱导公式大全

诱导公式大全在数学学科中,诱导公式是一种非常重要的工具,它能够帮助我们简化复杂的数学问题,使得计算更加高效和便捷。

本文将为大家介绍一些常见的诱导公式,希望能够对大家的学习和工作有所帮助。

一、三角函数的诱导公式。

1. 余弦函数的诱导公式。

余弦函数的诱导公式是,$\sin'(x) = \cos(x)$。

这个公式可以帮助我们在求解余弦函数的导数时更加方便快捷。

2. 正弦函数的诱导公式。

正弦函数的诱导公式是,$\cos'(x) = -\sin(x)$。

利用这个公式,我们可以更加轻松地求解正弦函数的导数。

3. 切线函数的诱导公式。

切线函数的诱导公式是,$\tan'(x) = \sec^2(x)$。

这个公式在求解切线函数的导数时非常有用。

二、指数函数的诱导公式。

1. 指数函数的诱导公式。

指数函数的诱导公式是,$(a^x)' = a^x \ln(a)$。

通过这个公式,我们可以更加简单地求解指数函数的导数。

2. 对数函数的诱导公式。

对数函数的诱导公式是,$(\log_a(x))' = \frac{1}{x \ln(a)}$。

这个公式可以帮助我们求解对数函数的导数,提高计算效率。

三、常见函数的诱导公式。

1. 幂函数的诱导公式。

幂函数的诱导公式是,$(x^n)' = nx^{n-1}$。

这个公式可以帮助我们求解幂函数的导数,简化计算过程。

2. 三角函数复合函数的诱导公式。

三角函数复合函数的诱导公式是,$(f(g(x)))' = f'(g(x)) \cdot g'(x)$。

通过这个公式,我们可以更加方便地求解三角函数复合函数的导数。

四、其他常用诱导公式。

1. 反常函数的诱导公式。

反常函数的诱导公式是,$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$。

这个公式在求解反常函数的导数时非常有用。

2. 参数方程的诱导公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e an dAl l t h i ng si nt he i r诱导公式1 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α cot (2k π+α)=cot α 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α cot (π+α)=cot α 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)=-sin α cos (-α)=cos α tan (-α)=-tan α cot (-α)=-cot α 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan αe an dAl l t 同角三角函数的基本关系式 倒数关系  tan α ·cot α=1 sin α ·csc α=1 cos α ·sec α=1 商的关系 sin α/cos α=tan α=sec α/csc α cos α/sin α=cot α=csc α/sec α 平方关系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。

由此,可得商数关系式。

平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/(1-tan^2(α))半角的正弦、余弦和正切公式 sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=(1—cosα)/sinα=sinα/1+cosα万能公式 sinα=2tan(α/2)/(1+tan^2(α/2)) cosα=(1-tan^2(α/2))/(1+tan^2(α/2)) tanα=(2tan(α/2))/(1-tan^2(α/2))三倍角的正弦、余弦和正切公式 sin3α=3sinα-4sin^3(α)  cos3α=4cos^3(α)-3cosα e an dAl l t h i ng si nt he i rb ei 万能公式推导 sin2α=2sin αcos α=2sin αcos α/(cos^2(α)+sin^2(α))......*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tan α/(1+tan^2(α)) 然后用α/2代替α即可。

同理可推导余弦的万能公式。

正切的万能公式可通过正弦比余弦得到。

三倍角公式推导 tan3α=sin3α/cos3α =(sin2αcos α+cos2αsin α)/(cos2αcos α-sin2αsin α) =(2sin αcos^2(α)+cos^2(α)sin α-sin^3(α))/(cos^3(α)-cos αsin^2(α)-2sin^2(α)cos α) 上下同除以cos^3(α),得: tan3α=(3tan α-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcos α+cos2αsin α =2sin αcos^2(α)+(1-2sin^2(α))sin α =2sin α-2sin^3(α)+sin α-2sin^3(α) =3sin α-4sin^3(α) cos3α=cos(2α+α)=cos2αcos α-sin2αsin α =(2cos^2(α)-1)cos α-2cos αsin^2(α) =2cos^3(α)-cos α+(2cos α-2cos^3(α)) =4cos^3(α)-3cos α 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 和差化积公式推导 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)诱导公式2诱导公式是数学三角函数中将角度比较大的三角函数利用角的周期性,转换为角度比较小的三角函数。

目录展开 角度制下的角的表示: sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)=tanα cot(180°+α)=cotα sec(180°+α)=-secα csc(180°+α)=-cscα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sec(-α)=secα csc-α)=-cscα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: 弧度制下的角的表示: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sec(π-α)=-secα csc(π-α)=cscα 角度制下的角的表示: sin(180°-α)=sinα cos(180°-α)=-cosα tan(180°-α)=-tanα cot(180°-α)=-cotα sec(180°-α)=-secα csc(180°-α)=cscα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: 弧度制下的角的表示: sin(2π-α)=-sinα cos(2π-α)=cosα cot(2π-α)=-cotα sec(2π-α)=secα csc(2π-α)=-cscα 角度制下的角的表示: sin(360°-α)=-sinα cos(360°-α)=cosα tan(360°-α)=-tanα cot(360°-α)=-cotα sec(360°-α)=secα csc(360°-α)=-cscα 小结:以上五组公式可简记为:函数名不变,符号看象限. 即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。

公式六: π/2±α及3π/2±α与α的三角函数值之间的关系:(⒈~⒋) ⒈π/2+α与α的三角函数值之间的关系 弧度制下的角的表示: sin(π/2+α)=cosα cos(π/2+α)=—sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα 角度制下的角的表示: sin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα cot(90°+α)=-tanα sec(90°+α)=-cscα csc(90°+α)=secα ⒉π/2-α与α的三角函数值之间的关系 弧度制下的角的表示: sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα csc(π/2-α)=secα 角度制下的角的表示: sin (90°-α)=cosα cos (90°-α)=sinα tan (90°-α)=cotα cot (90°-α)=tanα sec (90°-α)=cscα csc (90°-α)=secα ⒊ 3π/2+α与α的三角函数值之间的关系 弧度制下的角的表示: sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sec(3π/2+α)=cscα csc(3π/2+α)=-secα 角度制下的角的表示: sin(270°+α)=-cosα cos(270°+α)=sinα tan(270°+α)=-cotα cot(270°+α)=-tanα sec(270°+α)=cscα csc(270°+α)=-secα ⒋3π/2-α与α的三角函数值之间的关系 弧度制下的角的表示: sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sec(3π/2-α)=-secα csc(3π/2-α)=-secα 角度制下的角的表示: sin(270°-α)=-cosα cos(270°-α)=-sinα tan(270°-α)=cotα cot(270°-α)=tanα sec(270°-α)=-cscαe an dAl ★记忆方法:谐音、联想 正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”)) 余弦三倍角:4元3角 减 3元(减完之后还有“余”) ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

相关文档
最新文档