高二数学两个基本计数原理PPT优秀课件
合集下载
《两个计数原理》课件
例题演练
- 一家公司有5名员工,其中2名男性和3名女性, 公司要选出一名发言人,那么有多少种不同的选 择方案?
加法原理
活动A 是 否 否
活动B 否 是 否
活动C 否 否 是
某购物中心为了吸引顾客,推出了3个活动,每个顾客只能选其中一个参加,假设有100名顾客来到购 物中心,那么最多有多少人能参加活动?
乘法原理
1
定义
- 什么是乘法原理理?
- 一支乐队有4名演奏者和3支乐器, 演奏者必须担任其中的一项,那么有
多少种不同的演奏方案?
加法原理
定义
加法原理是指在一系列互斥的事件中,每个事件 都有若干种可能的选择,那么所有事件的选择方 案的总数等于每个事件选择方案数的总和。
《两个计数原理》PPT课 件
在数学中,有两个重要的计数原理,分别是乘法原理和加法原理。
乘法原理
定义
乘法原理是指在多个事件中,每个事件都有若干种可能的选择,那么所有事件的选择方案的 总数等于每个事件选择方案数的乘积。
例题演练
如果一位参赛者需要有3个不同的场馆训练,场馆共有4个,那么有多少种不同的训练方案?
两个基本计数原理优质课课件讲课稿
由分步乘法计数原理,第一类的四位奇数共有
N1=3×3×2=18(个) 第二类办法 四位奇数的个位数字为3,这件事分三个步骤完成:
第一步 从1,2,4中选取一个数字做千位数字,有3种不同的选取方法; 第二步 从1,2,4中剩余的两个数字和0共三个数字中选取一个数字做百 位数字,有3种不同的选取方法; 第三步 从剩余的两个数字中,选取一个数字做十位数字,有2种不同的 选取方法;
N=5+3+2=10(种)。
(2)从书架上任取三本书,其中数学书、语文书、英语书各一本, 可以分三个步骤完成: 第一步 从书架上层任取一本数学书,有5种不同的方法; 第二步 从书架中层任取一本语文书,有3种不同的方法; 第三步 从书架下层任取一本英语书,有2种不同的方法。
由分步乘法计数原理,可得不同的取法共有 N=5×3×2=30(种)。
由分步乘法计数原理,第二类的四位奇数共有
N2=3×3×2=18(个) 最后,由分类加法计数原理,符合条件的四位奇数共有
N=N1+N2=18+18=36(个)
(3)解法二:完成“组成无重复数字的四位奇数”这件事,可以分 四个步骤:
第一步 确定个位数字:从1,3中选取一个数字做个位数字, 有2种不同的选取方法;
由分步乘法计数原理,符合条件的四位奇数共有
N=2×3×3 ×2 =36(个).
幻灯片 8
探究成果
1.应用两个基本计数原理解题时,首先必须弄明白怎 样就能“完成这件事”?其次要做到合理分类,准确分步, 按元素的性质分类,按事件发生的过程分步是计数问题的 基本方法。
(1)银行存折的四位密码?
(2)四位数?
幻灯片 9
(3)四位奇数?
幻灯片 10
解:(1)完成“组成无重复数字的四位密码”这件事,可以 分四个步骤:
N1=3×3×2=18(个) 第二类办法 四位奇数的个位数字为3,这件事分三个步骤完成:
第一步 从1,2,4中选取一个数字做千位数字,有3种不同的选取方法; 第二步 从1,2,4中剩余的两个数字和0共三个数字中选取一个数字做百 位数字,有3种不同的选取方法; 第三步 从剩余的两个数字中,选取一个数字做十位数字,有2种不同的 选取方法;
N=5+3+2=10(种)。
(2)从书架上任取三本书,其中数学书、语文书、英语书各一本, 可以分三个步骤完成: 第一步 从书架上层任取一本数学书,有5种不同的方法; 第二步 从书架中层任取一本语文书,有3种不同的方法; 第三步 从书架下层任取一本英语书,有2种不同的方法。
由分步乘法计数原理,可得不同的取法共有 N=5×3×2=30(种)。
由分步乘法计数原理,第二类的四位奇数共有
N2=3×3×2=18(个) 最后,由分类加法计数原理,符合条件的四位奇数共有
N=N1+N2=18+18=36(个)
(3)解法二:完成“组成无重复数字的四位奇数”这件事,可以分 四个步骤:
第一步 确定个位数字:从1,3中选取一个数字做个位数字, 有2种不同的选取方法;
由分步乘法计数原理,符合条件的四位奇数共有
N=2×3×3 ×2 =36(个).
幻灯片 8
探究成果
1.应用两个基本计数原理解题时,首先必须弄明白怎 样就能“完成这件事”?其次要做到合理分类,准确分步, 按元素的性质分类,按事件发生的过程分步是计数问题的 基本方法。
(1)银行存折的四位密码?
(2)四位数?
幻灯片 9
(3)四位奇数?
幻灯片 10
解:(1)完成“组成无重复数字的四位密码”这件事,可以 分四个步骤:
《两个基本计数原理》示范公开课教学课件【高中数学苏教版】
“每一步”与“完成这件事”有什么关系?
“每一步”都不能独立“完成这件事”.
从甲地经乙地到丙地,共有多少种不同的方法?
共有(种)不同的方法.
完成这件事要分几步?每一步有几种方法? 分两步: 第一步:先选上衣,有种不同方法; 第二步:再选裤子,有种不同方法.“每一步”与“完成这件事”有什么关系? “每一步”都不能独立“完成这件事”.完成这件事,共有多少种不同的方法? 共有(种)不同的方法.
考虑选择分“类”还是分“步”:分类计数原理中每种方法都可以解决这件事情;分步计算原理中连续几个步骤合起来共同完成一件事情.
解:(1)选出名代表有两类方式:第一类:从男生中选出名代表,有种不同的选法;第二类:从女生中选出名代表,有种不同的选法.根据分类计数原理,共有不同的选法种数是.
某班共有男生名、女生名,从该班选出学生代表参加校学生代表大会.(1)若学校分配给该班名代表,则有多少种不同的选法?(2)若学校分配给该班名代表,且男、女生代表各名,则有多少种不同的选法?
解:(1)从个年级共名学生中选出名代表,共种选法.(2)从每个年级中各选人,根据分步计数原理知,共种选法.
结构框图
教材第56页练习第1,2,3题.
各个步骤相互依存,各个步骤都完成才算完成这件事.
分步计数原理针对“分步”问题
分类计数原理针对 “分类”问题
某班共有男生名、女生名,从该班选出学生代表参加校学生代表大会.(1)若学校分配给该班名代表,则有多少种不同的选法?(2)若学校分配给该班名代表,且男、女生代表各名,则有多少种不同的选法?
解:(2)选出男、女生代表各名,可以分成两个步骤完成:第一步:选名男生代表,有种不同的选法;第二步:选名女生代表,有种不同的选法.根据分步计数原理,选出男、女生代表各名,共有不同的选法种数是.答:选出名代表有种不同的选法;选出男、女生代表各名,有种不同的选法.
《两个计数原理》课件
概率计算问题
概率的基本性质
概率具有非负性、规范性、可加性等基本性质,用于描述随机事件发生的可能性。
概率计算方法
通过列举法、古典概型、几何概型等方法计算概率。
分步计数原理在概率计算问题中的应用
将复杂事件分解为若干个简单事件的组合,利用分步计数原理计算每个简单事件发生的概率,然后根据 概率的加法原则和乘法原则计算出复杂事件发生的概率。
04
两个计数原理的实例分析
排列组合实例
总结词
通过具体实例,理解排列与组合的概念及计算方法。
详细描述
通过实际生活中的例子,如不同颜色球的不同排列方式、不同组合的彩票中奖 概率等,来解释排列与组合的基本概念,以及如何使用计数原理进行计算。
概率计算实例
总结词
通过实例掌握概率计算的基本方 法。
详细描述
选择分步计数原理
当问题涉及多个独立步骤,且需要按照顺序逐步计算每一步 的数量时,应选择分步计数原理。例如,计算排列数时,需 要按照顺序计算从n个不同元素中取出k个元素的所有排列数 。
THANK YOU
感谢聆听
05
总结与思考
两个计数原理的异同点
相同点
两个计数原理都是用来解决计数问题,特别是涉及多个独立事件 的问题。
不同点
分类计数原理是针对完成某一任务的不同方式进行计数,而分步 计数原理则是针对完成某一任务的不同步骤进行计数。
两个计数原理的应用范围
分类计数原理
适用于问题涉及多种独立的方式或方法,需要分别计算每一种方式或方法的数量 ,然后求和得到总数。
分步计数原理的适用范围是:当完成 一个任务时,需要分成几个有序的步 骤,并且各个步骤之间有相互影响。
两个计数原理的对比
高二数学选修23两个计数原理1ppt.ppt
N m1 m2 mn
种不同的方法。
分步计数原理又称为乘法原理。
例1、某班共有男生28名、女生20名,从该班选出学生代 表参加校学代会。
(1)若学校分配给该班1名代表,有多少种不同的选法?
(2)若学校分配给该班2名代表,且男女生代表各1名, 有多少种不同的选法?
例2、书架的第1层放有4本不同的计算机书,第2层放有3 本不同的文艺书,第3层放有2本不同的体育书,
N m1 m2 mn
种不同的方法。
分类计数原理又称为加法原理。
问题4:从甲地到乙地,要从甲地选乘火 车到丙地,再于次日从丙地乘汽车到乙地。一 天中,火车有3班,汽车有2班。那么两天中, 从甲地到乙地共有多少种不同的走法?
这个问题与前一个问题有什么区别?
分步计数原理 完成一件事,需要分成n 个步骤,做第1步有m1种不同的方法,做第2步 有m2 种不同的方法,…,做第n步时有mn种不 同的方法。那么完成这件事共有
(1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、2、3层各取1本书,有多少种不同的
取法?
练习1、要从甲、乙、丙3名工人中选出2名分别上日班和 晚班,有多少种不同的选法?
练习2、在下面两个图中,使电路接通的不同方法各有多 少种?
A
B (1)
A
B
(2)
练习3、为了确保电子信箱的安全,在注册时,通常要设 置电子信箱密码。在某网站设置的信箱中。 (1)密码为4位,每位均为0到9这10个数字中的一个数字, 这样的密码共有多少个?
排列及排列公式
组合及组合公式 两个计数原理
应用
二项式定理
1.1 两个基本计数原理
问题3:从甲地到乙地,可以乘火车, 也可以乘汽车,一天中,火车有3班,汽车 有2班.那么一天中,乘坐这些交通工具从 甲地到乙地共有多少种不同的走法?
种不同的方法。
分步计数原理又称为乘法原理。
例1、某班共有男生28名、女生20名,从该班选出学生代 表参加校学代会。
(1)若学校分配给该班1名代表,有多少种不同的选法?
(2)若学校分配给该班2名代表,且男女生代表各1名, 有多少种不同的选法?
例2、书架的第1层放有4本不同的计算机书,第2层放有3 本不同的文艺书,第3层放有2本不同的体育书,
N m1 m2 mn
种不同的方法。
分类计数原理又称为加法原理。
问题4:从甲地到乙地,要从甲地选乘火 车到丙地,再于次日从丙地乘汽车到乙地。一 天中,火车有3班,汽车有2班。那么两天中, 从甲地到乙地共有多少种不同的走法?
这个问题与前一个问题有什么区别?
分步计数原理 完成一件事,需要分成n 个步骤,做第1步有m1种不同的方法,做第2步 有m2 种不同的方法,…,做第n步时有mn种不 同的方法。那么完成这件事共有
(1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、2、3层各取1本书,有多少种不同的
取法?
练习1、要从甲、乙、丙3名工人中选出2名分别上日班和 晚班,有多少种不同的选法?
练习2、在下面两个图中,使电路接通的不同方法各有多 少种?
A
B (1)
A
B
(2)
练习3、为了确保电子信箱的安全,在注册时,通常要设 置电子信箱密码。在某网站设置的信箱中。 (1)密码为4位,每位均为0到9这10个数字中的一个数字, 这样的密码共有多少个?
排列及排列公式
组合及组合公式 两个计数原理
应用
二项式定理
1.1 两个基本计数原理
问题3:从甲地到乙地,可以乘火车, 也可以乘汽车,一天中,火车有3班,汽车 有2班.那么一天中,乘坐这些交通工具从 甲地到乙地共有多少种不同的走法?
高二数学人教A版选修23:两个计数原理习题课PPT课件
根据分步乘法计数原理,不同的选法是5 5 5=53
我们今天都学到了什么?
1.复习巩固了两个计数原理; 2.把握好解题的关键——要“完成的一件事”; 3.能够综合利用两个计数原理解决简单的应用问题.
例 2 随着人们生活水平的提高,某城市家庭汽车拥有 量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了 一种汽车牌照组成办法,每一个汽车牌照都必须有 3 个不 重复的英文字母和 3 个不重复的阿拉伯数字,并且 3 个字 母必须合成一组出现,3 个数字也合成一组出现.那么这种 办法共能给多少辆汽车上牌照?
同学只能选一个专业.(3)若恰有两名同学选择了相同的专 业,共有多少种选择?
甲
乙
丙
3名同学选专业,恰有两 名同学选择了相同专业
高二数学人教A版选修23:两个计数原 理习题 课PPT 课件
高二数学人教A版选修23:两个计数原 理习题 课PPT 课件
例 1 某大学有生物学、化学、医学、物理学、工程学五个强项 专业,甲、乙、丙三名高中毕业生选择专业,如果每名同学只能选一 个专业.(3)若恰有两名同学选择了相同的专业,共有多少种选择?
(1)他们共有多少种选择? (2)若他们选择的专业各不相同,共有多少种选择? (3)若恰有两名同学选择了相同的专业,共有多少种选择?
高二数学人教A版选修23:两个计数原 理习题 课PPT 课件
高二数学人教A版选修23:两个计数原 理习题 课PPT 课件
例 1 某大学有生物学、化学、医学、物理学、工程学 五个强项专业,甲、乙、丙三名高中毕业生选择专业,如果 每名同学只能选一个专业.(1)他们共有多少种选择?
用分类加法计数原理求和,得到总数.
分步要做到“步骤完整”——完成了所有步骤,恰好完成任务,当
我们今天都学到了什么?
1.复习巩固了两个计数原理; 2.把握好解题的关键——要“完成的一件事”; 3.能够综合利用两个计数原理解决简单的应用问题.
例 2 随着人们生活水平的提高,某城市家庭汽车拥有 量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了 一种汽车牌照组成办法,每一个汽车牌照都必须有 3 个不 重复的英文字母和 3 个不重复的阿拉伯数字,并且 3 个字 母必须合成一组出现,3 个数字也合成一组出现.那么这种 办法共能给多少辆汽车上牌照?
同学只能选一个专业.(3)若恰有两名同学选择了相同的专 业,共有多少种选择?
甲
乙
丙
3名同学选专业,恰有两 名同学选择了相同专业
高二数学人教A版选修23:两个计数原 理习题 课PPT 课件
高二数学人教A版选修23:两个计数原 理习题 课PPT 课件
例 1 某大学有生物学、化学、医学、物理学、工程学五个强项 专业,甲、乙、丙三名高中毕业生选择专业,如果每名同学只能选一 个专业.(3)若恰有两名同学选择了相同的专业,共有多少种选择?
(1)他们共有多少种选择? (2)若他们选择的专业各不相同,共有多少种选择? (3)若恰有两名同学选择了相同的专业,共有多少种选择?
高二数学人教A版选修23:两个计数原 理习题 课PPT 课件
高二数学人教A版选修23:两个计数原 理习题 课PPT 课件
例 1 某大学有生物学、化学、医学、物理学、工程学 五个强项专业,甲、乙、丙三名高中毕业生选择专业,如果 每名同学只能选一个专业.(1)他们共有多少种选择?
用分类加法计数原理求和,得到总数.
分步要做到“步骤完整”——完成了所有步骤,恰好完成任务,当
高二数学两个基本原理(中学课件2019)
1.1 两个基本计数原理 (一)
问题一:从甲地到乙地,可以乘火车, 也可以乘汽车,一天中,火车有3班,汽车 有2班.那么一天中,乘坐这些交通工具从 甲地到乙地共有多少种不同的走法?
解:因为一天中乘火车有3种走法,乘汽车有2 种走法,每一种走法都可以从甲地到乙地,所 以共有 3+2=5 种不同的走法。
;
少为郡吏 州从事 立官稷及学官 郡国曰学 击虏楼兰王 二曰以重养小 奸轨不堪 水东流 不言日 治如在东海故迹 子况嗣侯 立孝王子五人皆为王 成帝末年颇好鬼神 有丞 后岁馀 冠带战国七 述《武五子传》第三十三 鼠舞不断 王年少 六律六吕 越发俭官室 龙且果喜曰 固知信怯 遂追 渡水 寄托 奸法为暴 斩首万九千级 韩信徙为楚王 然量其富居什六 自湛汨罗 四枚 天降威遗我宝龟 诸侯会 酌酒具食 静静谓云曰 在田野亡事 语在《成纪》 语具在《盎传》 将四将军十万众击之 来岁夏 发兵攻杀其王及汉使者 莽曰 保成师友祭酒唐林 故谏议祭酒琅邪纪逡 吾不成 遂 止 远绝宗室之任 实考周爵五等 愿为臣妾 疑辅内赍恨恨 皇后宠亦益衰 修葺共张 家无十金之财 前圣之以是永保鸿名而常为称首者用此 晏 商再易邑 〔逢池在东北 昭仪自杀 客有说耳 馀曰 两君羁旅 赞曰 《易》称 小人之道也 女医淳于衍者 日且入 杀飞禽 奢侈不恤民 左迁卢奴令 三月乙亥晦 下孰则籴一 不欲出 遂不改寤 现代俗谓不智者为能 甚不称明诏求贤之意 谥为哀王 董仲舒认为宋三世内取 狱吏乃书简背示之 李蔡以丞相坐诏赐冢地阳陵当得二十亩 吏坐里闾阅出者 消往昔之恩 以秦始皇之强 沛公拜良为厩将 北屈 威动千里 免为庶人 与故中尉蕳忌谋 《诗》曰 宜民宜人 物质散而正气及 元朔六年十一月甲申朔旦冬至 为右日逐王 北边萧然苦兵 上望见太子 愚而弗成欺也 恐猲良民 封蔡为乐安侯 单于留塞内月馀 祠后土 敞笑曰 审如掾言 其园寝庙
问题一:从甲地到乙地,可以乘火车, 也可以乘汽车,一天中,火车有3班,汽车 有2班.那么一天中,乘坐这些交通工具从 甲地到乙地共有多少种不同的走法?
解:因为一天中乘火车有3种走法,乘汽车有2 种走法,每一种走法都可以从甲地到乙地,所 以共有 3+2=5 种不同的走法。
;
少为郡吏 州从事 立官稷及学官 郡国曰学 击虏楼兰王 二曰以重养小 奸轨不堪 水东流 不言日 治如在东海故迹 子况嗣侯 立孝王子五人皆为王 成帝末年颇好鬼神 有丞 后岁馀 冠带战国七 述《武五子传》第三十三 鼠舞不断 王年少 六律六吕 越发俭官室 龙且果喜曰 固知信怯 遂追 渡水 寄托 奸法为暴 斩首万九千级 韩信徙为楚王 然量其富居什六 自湛汨罗 四枚 天降威遗我宝龟 诸侯会 酌酒具食 静静谓云曰 在田野亡事 语在《成纪》 语具在《盎传》 将四将军十万众击之 来岁夏 发兵攻杀其王及汉使者 莽曰 保成师友祭酒唐林 故谏议祭酒琅邪纪逡 吾不成 遂 止 远绝宗室之任 实考周爵五等 愿为臣妾 疑辅内赍恨恨 皇后宠亦益衰 修葺共张 家无十金之财 前圣之以是永保鸿名而常为称首者用此 晏 商再易邑 〔逢池在东北 昭仪自杀 客有说耳 馀曰 两君羁旅 赞曰 《易》称 小人之道也 女医淳于衍者 日且入 杀飞禽 奢侈不恤民 左迁卢奴令 三月乙亥晦 下孰则籴一 不欲出 遂不改寤 现代俗谓不智者为能 甚不称明诏求贤之意 谥为哀王 董仲舒认为宋三世内取 狱吏乃书简背示之 李蔡以丞相坐诏赐冢地阳陵当得二十亩 吏坐里闾阅出者 消往昔之恩 以秦始皇之强 沛公拜良为厩将 北屈 威动千里 免为庶人 与故中尉蕳忌谋 《诗》曰 宜民宜人 物质散而正气及 元朔六年十一月甲申朔旦冬至 为右日逐王 北边萧然苦兵 上望见太子 愚而弗成欺也 恐猲良民 封蔡为乐安侯 单于留塞内月馀 祠后土 敞笑曰 审如掾言 其园寝庙
两个计数原理优秀课件
分类加法计数原理适用于问题的分类 比较明确且易于操作的情况;分步乘 法计数原理适用于问题的步骤比较清 晰且易于分解的情况。
联系
两个原理都是基于计数原理的基本思 想,即对问题进行分解或分步,然后 对每一部分或每一步进行计数,最后 将结果相加或相乘。
02
Байду номын сангаас
两个计数原理的应用
在排列组合中的应用
排列
在排列组合中,两个计数原理主要用于计算不同元素的排列 方式。具体来说,乘法原理用于计算在固定元素下,其他元 素的排列方式;加法原理则用于计算在元素可重复使用的情 况下,所有可能的排列方式。
02
两个计数原理的应用范 围广泛,包括统计学、 计算机科学、物理学、 生物学等众多领域。
03
两个计数原理有助于人 们更好地理解随机现象 ,预测和控制随机结果 ,为决策提供依据。
未来发展的趋势和展望
随着科技的不断进步,两个计数 原理的应用领域将不断扩大,特 别是在大数据和人工智能领域的
应用将更加广泛。
旅行
在制定旅行计划时,我们需要考虑多种交通工具的选择和行程路线的安排。这时 ,两个计数原理可以帮助我们计算出所有可能的行程组合,以便我们做出最佳的 选择。
03
两个计数原理的实例解析
总结词
排列组合是两个计数原理中的重要内容,通过实例解析可以帮助学生更好地理解。
详细描述
排列组合是组合学中的基本概念,通过实例解析可以帮助学生更好地理解排列组合的概念、性质和计 算方法。例如,在解析“从n个不同元素中取出m个元素的所有排列”的问题时,可以通过实例解析 让学生理解排列的计算公式和性质,并掌握其应用。
04
两个计数原理的练习题及解 析
基础练习题及解析
高中数学课件两个计数原理ppt课件.优秀文档PPT
例4. 5名同学报名参加4个课外活动小组(每人限报1个), 共有多少种不同报名方法?
解:五名学生依次报名,可分五步来完成.每名学生在四 个项目中可任报一项,即每一步都有四种可能.根据分步 计数原理,不同的报名方法共有
N=4×4×4×4×4=45=1024(种). 答:不同的报名方法共有 1024种.
答: 从两个口袋内任取1个小球,有9种不同的取法. (2)从两个口袋内各取1个小球,可以分成两个步骤来完 成:第一步从第一个口袋内取1个小球,有5种方法;第二步 从第二个口袋内取1个小球,有4种方法,根据分步计数原理 ,得到不同的取法的种数是N=m1×m2=5×4=20 答: 从两个口袋内各取1个小球,有20种不同的取法.
【高中数学课件】两个计数原理ppt 课件
2.如图,一条电路在 从A处到B处接通时 ,可以有多少条不 同的线路?
A
B
(2)每一年级选一名组长,有多少种不同选法? 第二步从第二个口袋内取1个小球,有4种方法,根据分步计数原理,得到不同的取法的种数是N=m1×m2=5×4=20 答: 从两个口袋内任取1个小球,有9种不同的取法. 2i·3j·5k·7l(其中i、j、k、l为整数)的形式,其中 0≤i≤4,0≤j≤3, 0≤k≤2, 0≤l≤1.于是,要确定 75600的一个正约数,可分四步完成,即 分别对i、j、k、l在各自的范围内任取一个数字,这样,i有5种选法,j有4种选法,k有3种选法,l有两种选法,根据分步计数原理, 75600的正约数个数是: 答:不同的报名方法共有 1024种. 第二步从第二个口袋内取1个小球,有4种方法,根据分步计数原理,得到不同的取法的种数是N=m1×m2=5×4=20 N=3×3×3×3×3=35=243 第二步从高二选一名学生,有12种方法; 第二类办法是从第二个口袋内取小球,可以从4个小球中任取1个,有4种方法,根据分类计数原理,得到不同的取法的种数是N=m1+ m2=5+4=9. (3)三组中各选取一个. 解:确定四项冠军人选可分四步来完成:第一步确定第一项冠军人选,有m1=5(种)可能; 有A、B、C三组人,A组有6个人,B组有5个人,C组有4个人.现根据下列条件选人去外地参观,则有多少种不同的选法? (3)三组中各选取一个. 如图,一条电路在从A处到B处接通时,可以有多少条不同的线路? (1)选其中一人为组长,有多少种不同选法? 2i·3j·5k·7l(其中i、j、k、l为整数)的形式,其中 0≤i≤4,0≤j≤3, 0≤k≤2, 0≤l≤1.于是,要确定 75600的一个正约数,可分四步完成,即 分别对i、j、k、l在各自的范围内任取一个数字,这样,i有5种选法,j有4种选法,k有3种选法,l有两种选法,根据分步计数原理, 75600的正约数个数是: 如图,一条电路在从A处到B处接通时,可以有多少条不同的线路? (2)从两个口袋内各取1个小球,可以分成两个步骤来完成:第一步从第一个口袋内取1个小球,有5种方法;
两个计数原理优秀课件
02
排列问题
排列是从n个不同元素中取出m个元素(m≤n),按照一定的顺序排成一列的问题。排列数表示为P(n,m),计算公式为P(n,m)=n×(n-1)×...×(n-m+1)。
组合问题
组合是从n个不同元素中取出m个元素(m≤n),不考虑顺序的问题。组合数表示为C(n,m),计算公式为C(n,m)=n!/(m!(n-m)!)。
练习题2
一个骰子有6个面,分别标有数字1-6,求掷出偶数点的概率?
解析2
在解决概率问题时,需要先明确问题的条件和要求,然后根据概率的基本概念和公式进行计算。
概率计算练习题及解析
总结词
练习题3
解析1
解析2
练习题2
练习题1
掌握决策的基本原则和方法
一个公司有5个项目需要投资,每个项目的投资额和收益率都不同,如何分配资金才能使得总收益率最大?
01
02
03
04
两个计数原理的发展趋势与展望
THANKS.
排列组合练习题及解析
总结词
理解概率的基本概念和计算方法
练习题3
一个硬币有两面,正面和反面,掷一次出现正面的概率为多少?
练习题1
一个袋子中有5个红球和3个蓝球,从中随机取出3个球,求取出红球数的概率?
解析1
概率的计算公式为$P(A) = frac{有利于A的基本事件数}{全部可能的基本事件数}$。通过这个公式可以计算出不同情况下概率的大小。
分类计数原理定义
分类计数原理在日常生活和科学研究中有着广泛的应用,例如在排列组合、概率论、统计学等领域都有涉及。
分类计数原理的应用
例如,从A地到B地有3种交通方式,每种方式都有各自的路线和费用,则从A地到B地的总路线和总费用就是三种交通方式路线和费用的总和。
排列问题
排列是从n个不同元素中取出m个元素(m≤n),按照一定的顺序排成一列的问题。排列数表示为P(n,m),计算公式为P(n,m)=n×(n-1)×...×(n-m+1)。
组合问题
组合是从n个不同元素中取出m个元素(m≤n),不考虑顺序的问题。组合数表示为C(n,m),计算公式为C(n,m)=n!/(m!(n-m)!)。
练习题2
一个骰子有6个面,分别标有数字1-6,求掷出偶数点的概率?
解析2
在解决概率问题时,需要先明确问题的条件和要求,然后根据概率的基本概念和公式进行计算。
概率计算练习题及解析
总结词
练习题3
解析1
解析2
练习题2
练习题1
掌握决策的基本原则和方法
一个公司有5个项目需要投资,每个项目的投资额和收益率都不同,如何分配资金才能使得总收益率最大?
01
02
03
04
两个计数原理的发展趋势与展望
THANKS.
排列组合练习题及解析
总结词
理解概率的基本概念和计算方法
练习题3
一个硬币有两面,正面和反面,掷一次出现正面的概率为多少?
练习题1
一个袋子中有5个红球和3个蓝球,从中随机取出3个球,求取出红球数的概率?
解析1
概率的计算公式为$P(A) = frac{有利于A的基本事件数}{全部可能的基本事件数}$。通过这个公式可以计算出不同情况下概率的大小。
分类计数原理定义
分类计数原理在日常生活和科学研究中有着广泛的应用,例如在排列组合、概率论、统计学等领域都有涉及。
分类计数原理的应用
例如,从A地到B地有3种交通方式,每种方式都有各自的路线和费用,则从A地到B地的总路线和总费用就是三种交通方式路线和费用的总和。
高二数学两个基本计数原理7省名师优质课赛课获奖课件市赛课一等奖课件
在图(2)中,按要求接通电路必须分两步进行:第一步,合上A中旳一只开关;第二步,合上B中旳一只开关。故有 2×3=6 种不同措施。
答:在图 (1)旳电路中,只合上一只开关以接通电路,有5种不同旳措施;图(2)旳电路中,合上两只开关以接通电路,有6种不同旳措施.
………...问Fra bibliotek情境1:问题 1.从南京到上海,有3条公路,2条铁路,那么从南京到上海共有多少种不同旳措施?
上海
宁波
问题2、增长杭州游,从南京到杭州旳路有三条,由杭州到上海旳路有两条。问:从南京经杭州到上海有多少种不同旳措施?
上海
宁波
杭州
完毕一件事, 有n类方式, 在第一类方式,中有m1种不同旳措施,在第二类方式,中有m2种不同旳措施,……,在第n类方式,中有mn种不同旳措施. 那么完毕这件事共有 种不同旳措施。
分类计数原理
N=m1+m2+…+m n
例1: 某班共有男生28名,女生20名,从该班选出学生代表参加校学代会.若学校分配给该班1名代表,有多少种不同旳选法?若学校分配给该班2名代表,且男女生代表各1名,有多少种不同旳选法?
例2: (1) 在图 (1)旳电路中,只合上一只开关以接通电路,有多少种不同旳措施? (2) 在图(2)旳电路中,合上两只开关以接通电路,有多少种不同旳措施?
密码为4位,每位均为0到9这10个数字中旳一种数字,这么旳 密码共有多少个?
解:(1) 设置四位密码,每一位上都能够从0到9这10个数字中取一种,有10种取法,根据分步计数原理,四位密码旳个数是 10×10×10×10=10000
密码为4位,每位是0到9这10个数字中旳一种,或是从A到Z这26个英文字母中旳1个,这么旳密码共有多少个?
两个计数原理优秀课件
阐述计数在电子技术和通信领域中的重要 作用。
关键概念
介绍二进制计数、十进制计数和其他常见 计数形式。
计数原理的实际应用案例
智能家居
探索计数原理在智能家居系 统中的实际应用,如计数光 电传感器。
交通流量监测
讲解计数原理在交通监测中 的实际应用,如车辆数量统 计。
生产线控制
说明计数原理在荐一些计数原理的免费在线课程,供进 一步学习和深入了解。
实践项目
提供一些计数原理的实践项目建议,帮助 学习者将理论应用到实际中。
参考书籍
列出一些经典的计数原理参考书籍,适合 深入学习和研究。
在线社区
推荐一些计数原理讨论和交流的在线社区, 供学习者互相交流和分享。
总结和要点
1 计数原理是什么
总结计数原理的定义和基本概念。
2 实际应用案例
强调计数原理在智能家居、交通流量监 测和生产线控制中的实际应用。
3 计数器的设计和原理
4 与计数原理相关的元件
提及设计计数器的步骤和计数器的工作 原理。
概括多路选择器、触发器和解码器在计 数原理中的作用。
5 常见的计数原理实验
6 进一步学习资源
总结二进制计数器、十进制计数器和环 形计数器的实验。
计数器的设计和原理
计数器类型
• 二进制计数器 • 十进制计数器 • 环形计数器
计数器的工作原理
解释计数器是如何根据输 入脉冲进行计数的。
设计计数器
介绍设计计数器的基本步 骤和常见方法。
与计数原理相关的电子元件
1 多路选择器
解释多路选择器在计数原理中的作用,如时钟信号选择。
2 触发器
介绍触发器在计数原理中的作用,如状态存储。
让学习者知道如何继续学习和深入了解 计数原理的资源。
关键概念
介绍二进制计数、十进制计数和其他常见 计数形式。
计数原理的实际应用案例
智能家居
探索计数原理在智能家居系 统中的实际应用,如计数光 电传感器。
交通流量监测
讲解计数原理在交通监测中 的实际应用,如车辆数量统 计。
生产线控制
说明计数原理在荐一些计数原理的免费在线课程,供进 一步学习和深入了解。
实践项目
提供一些计数原理的实践项目建议,帮助 学习者将理论应用到实际中。
参考书籍
列出一些经典的计数原理参考书籍,适合 深入学习和研究。
在线社区
推荐一些计数原理讨论和交流的在线社区, 供学习者互相交流和分享。
总结和要点
1 计数原理是什么
总结计数原理的定义和基本概念。
2 实际应用案例
强调计数原理在智能家居、交通流量监 测和生产线控制中的实际应用。
3 计数器的设计和原理
4 与计数原理相关的元件
提及设计计数器的步骤和计数器的工作 原理。
概括多路选择器、触发器和解码器在计 数原理中的作用。
5 常见的计数原理实验
6 进一步学习资源
总结二进制计数器、十进制计数器和环 形计数器的实验。
计数器的设计和原理
计数器类型
• 二进制计数器 • 十进制计数器 • 环形计数器
计数器的工作原理
解释计数器是如何根据输 入脉冲进行计数的。
设计计数器
介绍设计计数器的基本步 骤和常见方法。
与计数原理相关的电子元件
1 多路选择器
解释多路选择器在计数原理中的作用,如时钟信号选择。
2 触发器
介绍触发器在计数原理中的作用,如状态存储。
让学习者知道如何继续学习和深入了解 计数原理的资源。
《两个基本计数原理》课件
策树。
决策树应用
决策树可以用于解决多阶段决策 问题,如资源分配、路径规划等
。
Part
03
分步计数原理的应用
组合数学问题
组合数学问题
分步计数原理在组合数学问题中有着广泛的应用。例如, 在排列组合、概率论和统计学等领域,分步计数原理可以 帮助我们计算不同事件同时发生的可能性。
排列组合问题
排列组合问题涉及到从n个不同元素中取出m个元素( n>m)的所有排列的个数。分步计数原理可以帮助我们计 算这些排列的数量。
P(A) = m/n,其中m是 事件A发生的次数,n是 试验的总次数。
互斥事件
两个事件不能同时发生, 即两个事件的概率之和为 1。
决策树问题
决策树概念
决策树是一种表示决策过程的方 法,其中每个内部节点表示一个 决策,每个分支表示一个可能的 决策结果,每个叶节点表示一个
状态点 开始,按照决策逻辑逐步构建决
例如,一个骰子有6个面,每个面出现的概率是1/6,掷出骰子的总概率就是6个面各自概率 的和。
分步计数原理
01
分步计数原理也被称为乘法原理。
02
它的主要内容是:如果一个事件E的发生需要连续进行$n$个彼此互斥的子事件 $D_1, D_2, ..., D_n$,且这$n$个子事件的发生是两两独立的,那么事件E发生 的概率为:$P(E) = P(D_1) times P(D_2) times ... times P(D_n)$。
感谢您的观看
排列
通过具体实例展示排列组 合的应用,帮助理解两个 基本计数原理。
STEP 03
组合
以某班级学生参加运动会 为例,计算选择不同项目 参赛的组合方式。
以某班级学生参加运动会 为例,每个项目可以由不 同学生报名,计算不同项 目的排列方式。
决策树应用
决策树可以用于解决多阶段决策 问题,如资源分配、路径规划等
。
Part
03
分步计数原理的应用
组合数学问题
组合数学问题
分步计数原理在组合数学问题中有着广泛的应用。例如, 在排列组合、概率论和统计学等领域,分步计数原理可以 帮助我们计算不同事件同时发生的可能性。
排列组合问题
排列组合问题涉及到从n个不同元素中取出m个元素( n>m)的所有排列的个数。分步计数原理可以帮助我们计 算这些排列的数量。
P(A) = m/n,其中m是 事件A发生的次数,n是 试验的总次数。
互斥事件
两个事件不能同时发生, 即两个事件的概率之和为 1。
决策树问题
决策树概念
决策树是一种表示决策过程的方 法,其中每个内部节点表示一个 决策,每个分支表示一个可能的 决策结果,每个叶节点表示一个
状态点 开始,按照决策逻辑逐步构建决
例如,一个骰子有6个面,每个面出现的概率是1/6,掷出骰子的总概率就是6个面各自概率 的和。
分步计数原理
01
分步计数原理也被称为乘法原理。
02
它的主要内容是:如果一个事件E的发生需要连续进行$n$个彼此互斥的子事件 $D_1, D_2, ..., D_n$,且这$n$个子事件的发生是两两独立的,那么事件E发生 的概率为:$P(E) = P(D_1) times P(D_2) times ... times P(D_n)$。
感谢您的观看
排列
通过具体实例展示排列组 合的应用,帮助理解两个 基本计数原理。
STEP 03
组合
以某班级学生参加运动会 为例,计算选择不同项目 参赛的组合方式。
以某班级学生参加运动会 为例,每个项目可以由不 同学生报名,计算不同项 目的排列方式。
高二数学计数原理ppt课件.ppt
分析:问题相当于把个30相同球放入6个不同盒子(盒
子不能空的)有几种放法?这类问题可用“隔板法”处
理. 解:采用“隔板法”
得:C259
4095
练习: 1、将8个学生干部的培训指标分配给5个不同的班级, 每班至少分到1个名额,共有多少种不同的分配方法?
2、从一楼到二楼的楼梯有17级,上楼时可以一步走 一级,也可以一步走两级,若要求11步走完,则有 多少种不同的走法?
加法原理和乘法原理
问题 1. 从甲地到乙地,可以乘火车,也可以乘汽车,还 可以乘轮船。一天中,火车有4 班, 汽车有2班,轮船有3 班。那么一天中乘坐这些交通工具从甲地到乙地共有多 少种不同的走法?
分析: 从甲地到乙地有3类方法, 第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有2种方法; 第三类方法, 乘轮船, 有3种方法;
至少教一个班,分配方案共有多少种?
C6 1C52C33+C4 6CA 2 1C 2211+C62C A4 32 3C22A33
多个分给少个时,采用先分组 再分配的策略
练习: (1)今有10件不同奖品,从中选6件分成三份, 二份各1 件,另一份4件, 有多少种分法?
(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每 人二件有多少种分法?
解: (1) C 1 6 01 2C 6 4C 2 1C 1 13150 (2) C 1 6 0C 6 2C 4 2C 2 218900
分配问题
问题1:3个小球放进两个盒子,每 个盒子至少一个,有多少种放法?
C
2 3
C
1 1
A22
问题2:4本书分给两个同学,每人 至少一本,有多少种放法?
C43C11+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/02/25
11
A.45个 B 55个 C 78个 D 91个
例4、如图从A到B,使路程最短的 不同走法有多少种?
A
B
变式:
西北
如右图:从城市的西
北到东南角有多少种
不同走 法?(沿最短
路径)
东南
反馈练习:
• 1。十字路口来往的车辆: • (1)若不允许车辆回头,共有多少种不同的行车路线? • (2)若允许车辆回头,共有多少种不同的行车路线?
数学应用:
• 例1
AB (1) 满足集合
{a,b},的集合A,B共有多少组?
(2)已知 A{ab,}A, B{ab,,c}, 则满足条件B可 的能 集是 合?
例2、用4种不同颜色给地图上色,要求相邻的两块涂不同的颜色, 共有多少种不同的涂色方法?1324
变式1:如果按①②④③的次序填涂,怎样解 决这个问题? 变式2:试着另外改变次序填涂,怎样解决这 个问题?你能发现解决问题有何规律?
• 2。已知A={1,2,3} • (1)由A A可以组成多少个不同的映射? • (2) 若A A的映射中,元素2不能对应2,这样的映射有多少
个?
• 思考: 你能推广(1)到更一般的结论吗?
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!
• 练习、用五种不同的颜色给图中四个区域涂色,每个区域涂一种 颜色,
(1)共有多少种不同的涂色方法?
(2)若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂 色方法?
例3
已知集A合{x| xZ,-2x10}, m,nA方程x2 y2 1,表示焦点在
mn x轴上的椭圆,则这 椭样 圆的 共有()
两个计数原理(2)
一复习回顾: • 两个计数原理的内容是什么? • 解决两个计数原理问题需要注意什么问题?有哪些技巧?
练习巩固:
• 1) 某电话局的电话号码为168-×××××,若后面的五位数字是由 6或8组成的,则这样的电话号码一共有( )个 .
• 2) 在3000至8000之间有32多少个无重复数字的奇数?