第七章 分光光度法
分光度光度法
分光度光度法分光光度法学习资料一、分光光度法的基本概念1. 定义- 分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸收度,对该物质进行定性和定量分析的方法。
它利用物质对光的选择性吸收特性,不同的物质由于其分子结构不同,对不同波长的光有不同程度的吸收。
2. 原理基础- 朗伯 - 比尔定律(Lambert - Beer law)是分光光度法的基本定律。
- 朗伯定律指出:当一束平行单色光垂直通过某一均匀非散射的吸光物质时,其吸光度与光通过的路径长度成正比,即A = k_1b(其中A为吸光度,b为光程长度,k_1为比例常数)。
- 比尔定律指出:当一束平行单色光垂直通过某一均匀非散射的吸光物质时,其吸光度与吸光物质的浓度成正比,即A = k_2c(其中c为吸光物质的浓度,k_2为比例常数)。
- 合并朗伯定律和比尔定律得到朗伯 - 比尔定律:A=varepsilon bc,其中varepsilon为摩尔吸光系数,单位为L/(mol· cm),它表示物质对某一特定波长光的吸收能力,varepsilon越大,表明该物质对该波长光的吸收能力越强。
二、分光光度计的结构与组成1. 光源- 提供足够强度和稳定的连续光谱。
在可见光区常用钨灯或卤钨灯,其发射光的波长范围为320 - 2500nm;在紫外光区常用氢灯或氘灯,发射光的波长范围为180 - 375nm。
2. 单色器- 它的作用是将光源发出的复合光分解为单色光。
主要部件包括狭缝、准直镜和色散元件(如棱镜或光栅)。
通过调节狭缝宽度可以控制出射光的带宽和光强。
3. 样品池- 用于盛放被测溶液。
在可见光区可以使用玻璃样品池,而在紫外光区则需使用石英样品池,因为玻璃对紫外光有吸收。
4. 检测器- 检测透过样品池后的光强,并将光信号转换为电信号。
常见的检测器有光电管和光电倍增管等。
光电倍增管具有更高的灵敏度,可检测微弱的光信号。
5. 信号显示与处理系统- 将检测器输出的电信号进行放大、处理,并以吸光度或透光率等形式显示出来。
第七章 可见分光光度法
第七章可见分光光度法7.1 概述7.1.1分类吸光光度法是基于被测物质的分子对光具有选择性吸收的特点而建立起来的分析方法,它包括比色分析法、可见及紫外吸收光度法以及红外光谱法等。
本章着重讨论可见光区的吸光光度法(又称分光光度法,简称光度法)。
定义:基于物质对光的选择性吸收而建立的分析方法称为吸光光度法,包括比色法,可见分光光度法及紫外分光光度法等。
比色分析法:许多物质是有颜色的,例如高锰酸钾在水溶液中呈深紫色,Cu2+在水溶液中呈蓝色。
这些有色溶液颜色的深浅与这些物质的浓度有关。
溶液愈浓,颜色愈深。
因此,可以用比较颜色的深浅来测定物质的浓度,这种测定方法就称为比色分析法。
目前已普遍地使用分光光度计进行比色分析。
应用分光光度计的分析方法称为分光光度法。
这种方法具有灵敏、准确、快速及选择性好等特点。
吸光光度法试液的浓度下限:10-5----10-6mol/L。
吸光光度法测定的相对误差:2%—5%,可以满足微量组分测定对准确度的要求。
7.1.2特点分光光度法同化学分析法中的滴定分析法、重量分析法相比,有以下特点:1. 灵敏度高分光光度法测物质的浓度下限(最低浓度)一般可达10-5~10-6mol/L,相当于含量低于0.001~0.0001%的微量组分。
如果将被测组分加以富集,灵敏度还可提高1~2个数量级。
该方法适用于微量组分的测定。
2. 准确度较高一般分光光度法的相对误差为2~5%。
3. 操作简便,测定速度快分光光度法的仪器设备不复杂,操作也简便。
如果采用灵敏度高,选择性好的显色剂,再采用掩蔽剂消除干扰,可以不经分离直接测定,而且速度快。
4. 应用广泛吸光光度法既可测定绝大多数无机离子,也能测定具有共轭双键的有机化合物。
主要用于测定微量组分,也能测定含量高的组分(用示差光度法或光度滴定)。
还可测定络合物的组成、酸(碱)以及络合物的平衡常数。
7.2 基本原理7.2.1 光的基本特性物质呈现的颜色与光有着密切的关系。
第七章-分光光度法
:
C Cu
2
0.51103 63.55
8.0106 mol l1
e
0.297 8.0106 2.0
1.9104 l mol1
cm1
a
0.297 0.51103
2.0
3.0
102
l
g
1
c m1
e a·M
2. Lambert-Beer定律的偏离
长处测得该溶液吸光度A为0.500,今
取含Mn未知液10.00ml,氧化为 MnO4-后,定容至50.00ml,在相同条件 下测得A=0.300.求未知液Mn的浓度.
c 解: 0.500/0.300=0.100/ x
cx=0.0600 mg/ml c未=0.0600×50.00/10.00
=0.300 mg/ml
4. 在吸光光度法中,影响显色反应的因素有哪些?
解:溶液酸度、显色剂的用量、显色反应时 间、显色反应温度、溶剂和干扰物质。
5. 测量吸光度时,应如何选择参比溶液?
解:(1)当试液及显色剂均无色时,可用蒸馏水作 参比溶液;(2)显色剂为无色,而被测试液中存在 其他有色离子,可用不加显色剂的被测试液作参比溶 液;(3)显色剂有颜色,可选择不加试样溶液的试 剂空白作参比溶液;(4)显色剂和试剂均有颜色, 可将一份试液加入适当掩蔽剂,将被测组分掩蔽起来, 使之不再与显色剂作用,而显色剂及其他试剂均按试 液测定方法加入,以此作为参比溶液,这样就可以消 除显色剂和一些共存组分的干扰;(5)改变加入试 剂的顺序,使被测组分不发生显色反应,可以此溶液 作为参比溶液消除干扰。
为1cm时溶液的吸光度.
e 值越大,溶液的吸光能力越强,
第七章分光光度法
第七章分光光度法第七章分光光度法分光光度法是基于物质对光的选择性吸收而建立起来的分析方法。
(在选定波长下,被测定溶液对光的吸收程度与溶液中吸光组分的浓度有简单的定量关系)。
根据被利用的光波长范围可分为可见、紫外、红外光谱法。
利用可见光进行分光光度分析时,通常将被测定组分通过化学反应转变成有色化合物,然后进行吸光度的测量。
因此分光光度法在一定意义上使用着比色法,吸光光度法等名词,本章重点讨论可见分光光度法。
一、分光光度法(一)光的基本性质光是电磁波。
其波长范围很广,如果以波长或频率为序排列可得到如下电磁波谱图。
光谱名称波长范围跃迁类型分析方法X—射线远紫外光近紫外光可见光近紫外光中红外光远红外光微波无线电波0.1—10nm10—200nm200—400nm400—760nm0.76—2.5μm2.5—5.0μm500—1000μm0.1—100cm1—1000mK.L层电子中层电子价电子分子振动分子振动和低位转动分子振动X—射线光谱法真空紫外光度法紫外可见光度法比色可见光度法近红外光谱法中红外光谱法远红外光谱法微波光谱法核磁共振光谱法光有微粒二象性,波动性是指光按波的形式传播。
如光的折射、衍射、偏振和干涉等,光的波长λ,频率γ与速度c的关系为:λγ=c式中λ以cm表示,γ以Hz表示,c为光速2.7979×1010cm/s (真空中)光同时又具有粒子性,如电效应就明显地表现其粒子性。
光是由“光微粒子”(光量子或光子)组成的,光量子的能量可表示为γhE=h为普朗克常数6.6262×10-34J.S可见上式把光的波粒两相性用h统一起来了。
结论:不同波长(或频率)的光,其能量不同,短波的能量大,长波的能量小。
(二)物质对光的吸收吸收光谱有原子吸收光谱和分子吸收光谱。
原子吸收光谱是由原子外层电子选择性地吸收某些波长的电磁波而引起的。
原子吸收分光光度法就是根据原子的这种性质所引起来的。
分子吸收光谱比较复杂。
第七章--药物含量测定-幻灯片
×100%
供试品重量(g)×(1-水分或干燥失重百分数)
制剂含量=
实测的供试品量 供试品的标示量
×100%
标 示 量
含量测定的基本规则
1、所用器具均应校正后使用;所用试液均应按药典规定配 制;
2、称取或量取药品的量应符合规定要求; 3、称量挥发性或吸湿性的物质,必须用密封性好的容器进
行称量操作 4、测定必须排除干扰(专属性); 5、结果起码要平行测定两次,合格,其结果应在允许的相
例:丙酸倍氯米松的百分含量
M样=12.60mg A样=4487 C内标=0.1223mg/ml A内标’=2042
M对=12.50mg A对=4346 C内标=0.1223mg/ml A内标=2027
97.0-103.0%
取样量:0.3003g; 滴定液浓度:0.1005mol/L;
99.1%
用量:9.33ml;
空白试验用量:0.10ml;T:32.09mg/ml
滴定法测含量
❖ 1,直接滴定(水杨酸的含量测定) ❖ 2,需做空白的直接滴定(盐酸异丙嗪的含量测定) ❖ 3,片剂的含量滴定(布洛芬片的含量测定) ❖ 4,注射剂的含量滴定(安乃近注射液的含量测定) ❖ 5,剩余滴定法(氯贝丁酯的含量测定)
引入——阿司匹林的[含量测定]项
标准用的什么方法? 如何计算
内容
1
概述
2
容量分析法
3 紫外可见分光光度法
4 高效液相色谱法
概述
解决以下四个问题?
1、含量测定的重要性? 2、常用的含量测定方法? 3、含量的表示方法? 4、含量测定的基本规则?
概述——含量表示方法
中药
含量计算公式
实测的供试品量(g) 原料药含量=
原子吸收光谱法
半宽度受原子性质和 外界因素的影响
原子吸收光谱轮廓图
基本原理
Basic principle
谱线变宽因素
自然宽度
Doppler变宽
压力变宽 自吸效应 场致变宽
基本原理
Basic principle 自然宽度(△nN) :无外界因素影响时谱线具有的宽度,与激
发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。根据量子力 学的测不准原理,粒子能级能量和跃迁时刻不可能同时测准,其能量的 不确定度△E和其跃迁时刻的不确定度△t间有如下关系
其中Kv为吸收系数
基本原理
Basic principle
• 吸收线轮廓
In I0
中心频率n0最大吸收系数 所对应的频率或波长,由 原子能级决定
不同元素原子吸收不同频率的 光,由图可见,在频率为v0处
透过光强度最小,也就是吸收
最大。原子群从基态跃迁到激
发态所吸收的谱线并不是绝对
单色,而是具有一定的宽度,
第七章 原子吸收分光光度法
Atomic Absorption Spectrometry
( AAS)
专业:环境工程 姓名:韩朝丽
原子吸收光谱法
Atomic Absorption Spectrometry
概 述 基本原理
本章内容
仪 器
干扰及其 消除办法
分析应用
原子吸收光谱法概述
Atomic Absorption Spectrometry
原子吸收光谱法——仪器
(Atomic Absorption Spectrometry)
原子吸收分 光光度计
光源
原子化系统
光学系统
检测系统
第七章 分光光度法
点
分光光度法测定物质的浓度下限(最低
浓度)一般可达1~10-3 %的微量组分。对固体
试样一般可测到10-4 ~ 10-5 %的痕量组分。如 果对被测组分事先加以富集,灵敏度还可以 提高1-2个数量级。
(二) 准确度较高
• 一般分光光度法的相对误差为2~5%,若 使用精密仪器,相对误差可降至1~2%,其准
• (2) 吸光物质为均匀非散射体系。
• (3) 吸光质点之间无相互作用。
• (4) 辐射与物质之间的作用仅限于光吸收, 无荧光和光化学现象发生。
6.吸光度的加和性
• 当介质溶液中含有多种吸光组分时,
只要各组分间不存在着相互作用,则在某
一波长下介质的总吸光度是各组分在该波
长下吸光度的加和。
• 即:A
第二节 光吸收的基本定律
一、朗伯-比耳定律
• (1) 布格(Bouguer)和朗伯(Lambert)先后在 1729年和1760年阐明了物质对光的吸收程度 与吸收层厚度之间的关系; • (2) 比耳(beer)与1852年又提出光的吸收程度 与吸光物质浓度之间也有类似的关系;
• (3) 二者结合起来就得到了朗伯--比耳定律。
•
当入射光的强度 I0 一定时,如果 Ia 越大, It 就越小,即透过光的强度越小, 表明有色溶液对光的吸收程度就越大。 I0= Ia+It
实验证明
•
实践证明,有色溶液对光的吸收
程度,与该溶液的浓度、液层的厚度 以及入射光的强度等因素有关。如果 保持入射光的强度不变,则光吸收程 度与溶液的浓度和液层的厚度有关。
例
如:CuSO4溶液
CuSO4
透过蓝光
白光→
人眼
吸收黄光
分光光度法
A = lg(1/T)= -lgT = lg(I0/I) = kbc 实验发现:溶液的浓度c愈大,液层厚度b愈厚,入射光 愈强,则光吸收得愈多,且满足
A = lg(1/T)= -lgT = lg(I0/I) = kbc 式中:A为吸光度;T为透光度,T=I/I0;I0为入射光强度,I 为透射光强度;k为比例系数,k与吸光物质的性质、入射光 波长及温度等有关;c为吸光物质浓度;b为吸收层厚度。上 式就被称为朗伯-比尔定律。
cx
c
标准曲线
第七章 分光光度法
分光光度法:也叫吸光光度法,是基于物质对光的选择 性吸收而建立起来的分析方法,包括比色法、可见及紫外分 光光度法及红外光谱法等。本章重点讨论可见光区的吸光光 度法。
一、概述
1、光的基本性质 (1)光具有二象性:波动性和粒子性
光是一种电磁波,按照波长或频率排列可得到下表所示 的电磁波谱表:
第七章 分光光度法
3、比色法与分光光度法的特点 比色法和分光光度法主要应用于测定试样中微量组分的
含量,它们的特点是: ①灵敏度高。常用于测定试样中1-10-3%的微量组分; ②准确度较高。比色法的相对误差为5-10%,分光光 度法为2-5%; ③应用广泛。大多无机离子和许多有机化合物都可以直 接或间接地用比色法或分光光度法进行测定; ④操作简便、快速。
分光光度法ppt课件
A
0.7 0.2
3.显色剂
显色剂的选择
• 灵敏度高,ε值大于104 • 选择性好 • 有色物组成确定且稳定 • 显色剂在测定波长处无明显吸收 显色条件的选择 •酸度 •显色剂用量
•显色时间和温度
(1)溶液的酸度 M+HR===MR+H+
* 影响显色剂的平衡浓度和颜色 * 影响被测金属离子的存在状态 * 影响络合物的组成 * pH与吸光度关系曲线确定pH范围。
B
电子能级
转动能级
振动能级
A
分子中电子能级、振动能级和转动能级示意图
由于光子的能量也是量子化的,所以 分子对光的吸收也是量子化的,即分 子只选择吸收能量与其能级间隔一致 的光子而不是对各种能量的光子普遍 吸收。
分子吸收光能后引起运动状态的变化称 为跃迁,跃迁产生吸收光谱
以吸收光强度为纵坐标,以波长为横 坐标作图,所得曲线即吸收光谱曲线
解:Cd的原子量为112.4,则
140×10-6
C Cd2+ = 112.4
=1.24×10-6mol·L-
A=εbc
ε =A/bc
0.220
ε=
=8.87×104 L·mol-1cm-1
2×1.24×10-6
朗伯-比尔定律的适用条件
1. 单色光
应选用max处或肩峰处测定
2. 吸光质点形式不变 离解、络合、缔合会破坏线性关系 应控制条件(酸度、浓度、介质等)
λ
电磁波谱
Hale Waihona Puke 二、物质对光的选择性吸收溶液呈现不同的颜色是由于它对不同 波长的光具有选择性吸收而引起的.用 白光照射某有色溶液,呈现出的是透射 光颜色.吸收的色光和透过光称为互补 色光.
紫外-可见分光光度法
根据待测物质(原子或分子)发射或吸收的电磁辐 射,以及待测物质与电磁辐射的相互作用而建立起 来的定性、定量和结构分析方法,统称为光学分析 法。 利用光谱进行定性、定量和结构分析的方法称为光 谱分析法,简称光谱法。
第一节 概述
紫外-可见分光光度法:研究物质在紫外-可见光区(200~760 nm)分子吸收光谱的光谱分析法 波长范围: 紫外区 200-400nm 可见光区 400-760nm
准确度高
精密度好
选择性好
易于普及
应用广泛
仪器简单
操作简便
价格低廉
测定快速
第一节 概述
课堂活动
1.紫外-可见光的波长范围是
A.200~400nm
C.200~760nm 2.下列叙述错误的是
B.400~760nm
D.360~800nm
A.光的能量与其波长成反比 B.有色溶液越浓,对光的吸收也越强烈
C.物质对光的吸收有选择性
光的吸收定律
A=- lg T=lg(I0/It) =kcl A:吸光度 T:透光率,T=It/I0
l:液层厚度(光程长度) c:溶液的浓度
k:吸光系数
1.Lamber-Beer定律的适用条件(前提) 入射光为单色光 溶液是稀溶液
A=-lg T= k l c
吸收光谱法的基本定律, 是定量测定的依据 A与c为简单的正比关系; T与c是指数关系 A具加合性 设共存物为a、b、c, 则:A= ka l ca + kb l cb + kc l cc
点滴积累 1 .光的本质是电磁波;物质对光的吸收具有 选择性。 2.吸光度与透光率的关系是 : 3 .吸收曲线是溶液在一定条件下的吸光度随 入射光波长变化而变化的曲线。
第七章 紫外-可见分光光度法
仪器简单
操作简便
价格低廉
测定快速
第一节 概述
课堂活动
1.紫外-可见光的波长范围是
A.200~400nm
B.400~760nm
C.200~760nm
D.360~800nm
2.下列叙述错误的是
A.光的能量与其波长成反比
B.有色溶液越浓,对光的吸收也越强烈
C.物质对光的吸收有选择性
D.光的能量与其频率成反比
测定二者的吸光度值为As、Ax ,依据朗伯-比尔
定律得:
As=csL
Ax=cxL
则:
cx
AXcS AS
第五节 定性定量方法
3.吸光系数法:
吸光系数法直接利用朗伯-比尔定律的数
学表达式A=KcL进行计算的定量分析方法。
在手册中查出待测物质在最大吸收波长max 处
的吸光系数
或
E1% 1cm
,并在相同条件下测量
第三节 紫外-可见分光光度计
二、紫外-可见分光光度计的光学性能
1.测光方式 3.狭缝或光谱带宽 5.波长准确度 7.波长重复性 9.光度重复性
2.波长范围 4.杂散光 6.吸光度范围 8.测光准确度 10.分辨率
第三节 紫外-可见分光光度计
三、紫外-可见分光光度计的类型 1.可见分光光度计 721型
第三节 紫外-可见分光光度计
三、紫外-可见分光光度计的类型 1.可见分光光度计
722型
第三节 紫外-可见分光光度计
三、紫外-可见分光光度计的类型 2.紫外-可见分光光度计
(1)单波长分光光度计 单光束分光光度计 双光束分光光度计
第三节 紫外-可见分光光度计
第三节 紫外-可见分光光度计
分光光度法讲义
分光光度法云南先锋化工有限公司质量监测中心1、分光光度法引言(1)概念:分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸收度,对该物质进行定性和定量分析的方法。
(是利用物质所特有的吸收光谱来鉴别物质或测定其含量的一项技术。
)(2)阐述概念:在分光光度计中,将不同波长的光连续地照射到一定浓度的样品溶液时,便可得到不同波长相对应的吸收强度。
如以波长(λ)为横坐标,吸收强度(A)为纵坐标,就可绘出该物质的吸收光谱曲线。
利用该曲线进行物质定性、定量的分析方法,称为分光光度法,也称为吸收光谱法。
用紫外光源测定无色物质的方法,称为紫外分光光度法;用可见光光源测定有色物质的方法,称为可见光光度法。
它们与比色法一样,都以Beer-Lambert定律为基础。
上述的紫外光区与可见光区是常用的。
但分光光度法的应用光区包括紫外光区,可见光区,红外光区。
(3)特点:灵敏度高、精确度高、操作简便、快速。
对于复杂的组分系统,无须分离即可检测出其中所含的微量组分的特点。
(4)波长范围(1)200~400nm的紫外光区,(2)400~760nm的可见光区,(3)2.5~25μm(按波数计为4000cm<-1>~400cm<-1>)的红外光区。
2、分光光度法的原理• Lambert 定律:一束单色光在通过透明溶液时,由于溶液吸收一部分光能,使光的强度减弱,若溶液浓度不变,则溶液的厚度越大,光线强度的减弱也越显著,即光吸收的量与溶液的厚度成比例关系。
若以I 0表示入射光强度,I 表示透过光强度,L 表示溶液的厚度,而I/ I 0表示光线透过溶液的程度,称为透光率,用T 表示,则T= I/I 0。
K 为消光系数,在入射波长、溶液种类和温度一定的条件下,K是一个定值。
• Beer 定律:一束单色光在通过透明溶液时,若溶液的厚度不变,则溶液浓度愈高,光线强度的减弱也愈显著,即溶液对光的吸收与溶液的浓度成比例关系。
水分析化学-第7章--分光光度法全篇
7.5 分光光度法在水质分析中的应用
7.5.4 水中氰化物的测定 预处理:将水样在酸性介质中进行蒸馏,把能形成氰化氢
的氰化物(全部简单氰化物和部分络合氰化物)蒸出,使之 与干扰组分分离。 异烟酸一吡唑啉酮分光光度法:
介质:中性 异烟酸—巴比妥酸分光光度法:
介质:弱酸性
7.5 分光光度法在水质分析中的应用
和10.00mL铵标准使用液(0.010 mg NH4+-N/mL)于50mL 比色管中,用无氨水稀释至标线,加1.0mL酒石酸钾钠溶 液,混匀。加1.5mL纳氏试剂,混匀。放置10min,在波 长420nm处,用光程2cm比色皿,以无氨水为参比,测量 吸光度。经空白校正后,绘制标准曲线。
7.4 光度测量误差和测量条件的选择
入射光波长、温度等有关。
L:吸光液层的厚度,光程,cm。 c:吸光物质的浓度,g/L或 mol/L。
7.1.2 溶液的吸光定律
3.朗伯比尔定律的局限性 定律本身的局限性:只适于稀溶液<0.01mol/L 化学偏离:被分析物质与溶剂发生缔合、离解、溶剂化反应,
产生不同的吸收光谱 仪器偏离:单色光不纯引起
7.1.2 溶液的吸光定律
4.朗伯比尔定律的适用条件
1)单色光:应选用max处或肩峰处测定,此时干扰组分、溶
剂等不吸收或有很弱的吸收 2)吸光质点形式不变 离解、络合、缔合会破坏线性关系,应控制条件(酸度、浓
度、介质等)。 3)稀溶液:浓度增大,分子之间作用增强
7.1.2 溶液的吸光定律
7.2 比色法和分光光度法
7.2.1目视比色法
用眼睛直接比较标准溶液
和待测溶液颜色的深浅,
来确定被测物质含量的方
法叫目视比色法,常用的 方法标准色阶法。
分光光度法
吸收 外观有颜色的药物在可见光区有特征吸收 都可用紫外-可见分光光度法进行分析。
仪器
可见分光光度计
721型分光光度计
仪器
紫外-可见分光光度计
一、基本组成
光源
单色器
样品室
检测器
显示器
1. 光源
在整个紫外光区或可见光谱区可以发射连续光
把分子吸收能量随波长变化的情况记录下来所得 的图谱为吸收光谱。
利用物质的吸收光谱进行定性、定量及结构分析 的方法称为吸收光谱法, 简称光谱法。
三、光的吸收定律
(一)百分透光率(T)和吸收度(A) 入射光 I0 → 吸收Ia → 透射It
I0 = Ia + It 透光率(描述入射光透过溶液的程度)
一、光的性质与波长范围
光的性质
光是一种电磁波,具有波粒二象性,即波动性和 粒子性。
光在传播时表现了光的波动性
一定的光波具有一定的波长 、频率 、光速c等 参数来描述:
c=
续前:
波长: 相邻两波峰或波谷之间的距离,波长的单位 可用纳米(nm),微米(um)表示:
1nm=10-3um=10-6mm=10-7cm=10-9m 频率( ): 是每秒内光波的振动次数,单位是
A=-lgT=ECL 朗伯-比尔定律适用于无色溶液、有色溶液及气
体和固体的非散射均匀体系。
(三)吸收系数
吸光物质在单位浓度、单位液层厚度时的吸收度。 A
E= CL
当溶液的浓度C的单位不同时,吸收系数的意义和表 示方法也不同,常用的表示方法有两种:
1、摩尔吸收系数:是指在一定波长下,溶液浓度为 1mol/L,液层厚度为1cm时的吸收度,用ε表示。
第七章 紫外分光光度法
3)吸收池(样品池)(Cell,Container):
吸收池放置各种类型的吸收池(比色皿)和相应的池 架附件。吸收池主要有石英池和玻璃池两种。 在紫外区须采用石英比色皿,可见区一般用石英比色 皿和玻璃池比色皿。
4)检测器
利用光电效应将透过吸收池的光信号变成可测的电 信号,常用的有硒光电池、光电管或光电倍增管。
式中:
E为光的能量;
γ为频率;
λ为波长;
h为普朗克常数,6.6256×10-27尔格· 秒;
c为光速。
§2 紫外-可见光分光光度法
基于物质的分子对可见和紫外区域辐射的吸收
而进行分析的方法,广泛用于无机物和有机化合物
的定性、定量分析。
紫外-可见吸收光谱波长范围
(1)远紫外光区(真空紫外区): (2)近紫外光区: (3)可见光区:
取代基 -SR 红移距离 45(nm) -NR2 40(nm) -OR 30(nm) -Cl 5(nm) CH3 5(nm)
3. 共轭双烯
在不饱和烃类分子中,当有两个以上的双键 共轭时,随着共轭系统的延长, *跃迁的吸收
带 将明显向长波方向移动,吸收强度也随之增强
。共轭双键愈多,红移愈显著,甚至产生颜色。
短移:使吸收峰向短波长移动的现象称为短移或蓝移 (blue shift),引起蓝移效应的基团称为向蓝基 团。
2.4 分子结构与紫外吸收光谱
1. 饱和烃化合物
饱和烃类化合物只含有单键(σ键),只能产 生σ→σ* 跃迁,由于电子由σ被跃迁至σ*反键所 需的能量高,吸收带位于真空紫外区,如甲烷和乙 烷的吸收带分别在125nm和135nm。
定义:不饱和度是指分子结构中达到饱和所缺一价元素的“对”数。 如:乙烯变成饱和烷烃需要两个氢原子,不饱和度为1。 计算:若分子中仅含一,二,三,四价元素(H,O,N,C),则可 按下式进行不饱和度的计算:
第七章分光光度法
第七章分光光度法【基本要求】1.1 掌握分光光度法基本原理—Lambert-Beer定律,能熟练运用Lambert-Beer 公式进行有关计算。
1.1 掌握吸光度、透光率、吸光系数、摩尔吸光系数的概念。
1.2 明确溶液颜色与光吸收的关系。
1.3 了解物质对光的选择性吸收及吸收光谱。
1.4 了解分光光度计的基本构造;提高测量灵敏度和准确度的方法。
1.5 了解紫外分光光度法进行物质定性分析和定量测定的基本原理。
【重点难点】2.1 重点分光光度法原理-Lambert-Beer定律。
紫外分光光度计的使用2.2 难点提高测量灵敏度和准确度的方法。
【讲授学时】4学时4.1 第一节概述一、比色分析法比色分析法:利用比较溶液颜色深浅的方法来确定溶液中有色物质的含量。
有色物质溶液颜色越深,浓度越大;颜色越浅,浓度越小。
二、比色分析法测定步骤①选择适当显色剂,使被测组分转变成有色物质,称为显色阶段。
测定无色溶液时要进行显色阶段。
②选择最佳条件测定溶液的深浅度,称为比色阶段。
三、发展过程:目视比色法→光电比色法→分光光度计(吸光光度法)四、比色与分光光度法的特点比色和分光光度法主要用于测定微量组分。
1、灵敏度高:测定试样中微量组分(1~0.001%)常用方法,甚至可测定10-4 ~ 10-5%的痕量组分。
2、准确度高:一般比色法相对误差为5~10%,分光光度法为2~5%,其准确度虽比重量法和滴定法低,但对微量组分的测定已完全满足要求。
如采用精密蓝450-480紫400-450红650-750青蓝480-490青490-500绿500-580黄580-600橙600-650白光分光度计,误差将减少至1~2%。
3、应用广泛:几乎所有的无机离子和许多有机化合物都可以直接或间接地用比色法和分光光度法进行测定。
4、操作简便、快速,仪器设备也不复杂。
例如:试样中含Cu 量为0.001%,即在100mg 试样中含Cu 0.001mg ,用比色法可以测出。
原子吸收光谱教案
第七章原子吸收分光光度法第一节原子吸收分光光度法的基本原理第二节原子吸收分光光度计第三节干扰及其消除第四节原子吸收光谱法的几种常用的定量方法浙江师范大学仪器分析第一节原子吸收分光光度法的基本原理一、概述¾原子吸收分光光度法又称原子吸收光谱法,是上世纪五十年代提出,最近几十年才发展起来的一种新的仪器分析方法。
它是通过测定某一具有特定波长的光通过试样原子蒸气后被吸收的多少来测定被测元素的含量的一种方法。
¾在原子发射光谱分析中,我们曾提到过光源的自吸现象,即光源中内层原子发射的光被外层基态原子吸收,其实,这就是原子吸收。
如果我们把中间层作为一个光源,使之发出的光通过试样原子蒸气,测定吸收了多少,这就实现了原子吸收分析。
浙江师范大学仪器分析对原子吸收现象的认识是19世纪初的事。
¾1802年,渥拉斯通(W.H.Wollaston)发现太阳光的连续光谱中有几条黑线。
¾1860年,由柯希霍夫(G.Kirchoff)解释了产生黑线的原因,他认为这是由于比太阳温度低的气体吸收了从太阳发出的光。
¾1955年,澳大利亚物理学家瓦尔士(A.Walsh)首先提出利用原子吸收进行化学分析的可能性,随后,人们在实践和理论上不断总结和研究。
¾原子吸收分光光度法广泛应用于冶金、地质、石油、化工、医学、环保等行业,目前这种方法能分析70多种元素,如果利用间接分析法,还可测定非金属元素。
浙江师范大学仪器分析二、原子吸收分光光度法的特征选择性高灵敏度高准确度高操作方便浙江师范大学仪器分析1.选择性高因各原子均具有自己的固有能级,每个元素的气态基态原子只对某些具有特定波长的光有吸收。
所以,原子吸收分光光度法的选择性很高,在无机分析中,不必经任何分离即可进行测定。
2.灵敏度高火焰原子吸收法,其绝对灵敏度可达10-10g,而近年来发展的非火焰原子吸收法使绝对灵敏度达到了10-14g,而原子发射法的灵敏度通常在10-10g左右;相对灵敏度可达到ppb、ppt级。
7 分光光度法
精密度更高 。
紫外与可见分光法的区别
2、测量仪器
可见分光光度法 以可见光作光源, 如钨灯; 可用玻璃比色皿。 紫外分光光度法 以紫外光作光源, 如氘灯; 只能用石英比色皿。
紫外与可见分光法的区别
3、应用
可见分光光度法 紫外分光光度法
定性、定量分析
定性、定量分析、纯度
鉴定、结构测定
紫外分光光度法的应用
物质对光的选择性吸收
光的互补关系图
二、物质的吸收光谱
将不同波长的单色光依次通过某一固定浓度的 有色溶液,测量吸光度A,以A~作图,即得吸 收光谱(absorption spectrum)。
二、物质的吸收光谱
吸收光谱体现了物质的特性,是进行定性、定 量分析的基础。
若在最大吸收波长max处测定吸光度,则灵敏
pH 与 吸 光 度 的 关 系 曲 线
4、适当的参比溶液
溶剂参比:当显色剂及制备试液的其它试剂
均无色,且溶液中除被测物外无其它有色物质 干扰时,可用溶剂作空白溶液。
试剂参比: 若显色剂有色,试样溶液在测定
条件下无吸收或吸收很小时,可用试剂空白 (不加试样溶液)进行校正。
4、选择适当的参比溶液
度最高。(定性分析的依据)
溶液浓度愈大,吸收光谱的峰值愈高,两者成
正比关系。(定量分析的依据)
5.00mg· -1 Fe2+ L
3.00mg· -1 Fe2+ L
1.50mg· -1 Fe2+ L
0.75mg· -1 Fe2+ L
三(邻二氮菲)合铁(II)配离子的吸收曲线
三、透光率和吸光度
Io= Ir + Ia + It 透光率
Lambert-Beer定律:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(c KMnO4 :a<b<c<d )
精品课件
结论
• 1.某物质的吸收光谱表明了该物质对不同波长的光的吸收能力 的分布情况。
• 2.C↑、A↑,即光的吸收程度越大
• 3.最大吸收处只有一个,称为最大吸收波长。
•
即:同一物质,只有一个最大吸收峰,即最大吸收波长是
精品课件
一、朗伯-比耳定律
• (1) 布格(Bouguer)和朗伯(Lambert)先后在 1729年和1760年阐明了物质对光的吸收程度 与吸收层厚度之间的关系;
• (2) 比耳(beer)与1852年又提出光的吸收程 度与吸光物质浓度之间也有类似的关系;
• (3) 二者结合起来就得到了朗伯--比耳定律 。
第七章
分光光度法
精品课件
分光光度法(Absorption Photometry)
•
分光光度法是一种基于物质对光的选择
性吸收而建立起来的一种分析方法,是生命科学
中最常用的分析技术之一。
•包括:
•(1) 可见分光光度法
•(2) 紫外-可见分光光度法(主要)
•(3) 红外光谱法等
精品课件
特点
(一) 灵敏度高
固定不变的,该峰对应的波长叫λmax。
•
KMnO4溶液的λmax=525 nm。
•
定量测定时,必须用λmax的光照射。
•
不同物质,其内部结构不同,则吸收曲线不同,λmax不同
。
• λmax只与物质的种类有关,而与浓度无关。
•
任何可见光区内、溶液精的品课颜件 色主要是由λmax决定。
第二节 光吸收的基本定律
0.005~0.17 nm 中子活化分析,莫斯鲍尔谱法
0.1~10 nm
X射线光谱法
10~200 nm
真空紫外光谱法
200~400 nm
紫外光谱法
400~750 nm 比色法,可见吸光光度法(光度法)
0.75~2.5 m
红外光谱法
2.5~50 m
红外光谱法
50~1000 m
红外光谱法
1~1000 mm
黄 580~600nm
绿 500~580nm
青 490~500nm
橙 600~650nm
白光
青蓝 480~490nm
红 650~750nm
紫 400~450nm
精品课件
蓝 450~480nm
二、物质对光的选择性吸收
如果我们把具有不同颜色的 各种物体放置在黑暗处,则什么颜色也 看不到。可见物质呈现的颜色与光有着 密切的关系,一种物质呈现何种颜色, 是与光的组成和物质本身的结构有关的 。
精品课件
(一)物质对光产生选择性吸收的原因
• 当光通过透明物体时,光子是否被物质吸收。
• 取决于:①光子所具有的能量
•
②物质的内部结构
价电子从E 基 1) 态 跃 迁 ( 激发态 E2) (
EAE2
E1
hc
A
由于不同物质的分子其结构和组成不同,它们所 具有的特征能级也不同,故能级差也不同。
∴物质对光的吸收具有选择性。 精品课件
微波光谱法
1~1000 m 精品课件 核磁共振光谱法
4. 可见光和互补光
• (1)可见光:指人的眼睛所能感觉到的 光,波长范围为(400~750nm)的电磁波 。
• (2)互补光:将两中适当颜色的光按一 定的强度比例混合,如果能形成白光 ,这两种光称为互补光。
精品课件
图10-1 光的互补色示意图(/nm)
准确度虽不如滴定分析法及重量法,但对微
量成分来说,还是比较满意的,因为在这种
情况下,滴定分析法和重量法准确度更差,
甚至无法进行测定。
精品课件
(三)操作简便,测定速度快
(四) 应用广泛
几乎所有的无机离子和有机化合物
都可直接或间接地用分光光度法进行测定。
不仅用于定量分析,也可用于某些有机物的
定性分析,还可用于某些物理化学常数及络
例 如:CuSO4溶液
白光→
CuSO4
人眼
透过蓝光
吸收黄光
实验证明: CuSO4溶液浓度越高,对黄色光的吸收越 多,表现为透过的蓝色越强,溶液的蓝色也越深。
精品课件
(三)吸收曲线
•1. 用不同波长(400-720nm)的光,照射某 一吸光物质的溶液; •2. 测吸光度(A) •3. 以—A作图,得一曲线 •直观地表示出物质对光的吸收特征。
合物组成的测定。
精品课件
第一节
物质对光的选择性吸收
精品课件
一、光的基本性质
• 1. 光的基本性质
• 光是一种电磁波,具有波粒二象性。 • 其波长、频率与速度之间的关系为:
c
普朗克方程
Ehc
h:普朗克常数,其值为6.63×10-34J·s
• 普朗克方程表示光的波动性与粒子性之间的关系。
• 波长越长,能量越低;波长越短,能量越高。
精品课件
2. 单色光和复合光
(1) 单色光:指波长处于某一范围的光 。
(2) 复合光:由不同单色光组成的光。
例如:阳光和白炽灯发出的光均为复合光
精品课件
3. 电磁波谱
表10-1 电磁波谱(1m=106m=109nm=1010Å )
波谱名称 波长范围
分析方法
射线 X 射线 远紫外 近紫外 可见光 近红外 中红外 远红外 微波 射频
波长的光则不被吸收而透过溶液。 精品课件
溶液的颜色由透过光的波长所决定
• (1)如果物质把各种波长的光完全都吸收,则呈现黑 色;
• (2)如果完全反射,则呈现白色; • (3)如果透过所有的光,则为无色透明溶液; • (4)如果对各种波长的光吸收程度差不多,则呈现灰
色; • (5)如果物质选择性地吸精收品课某件 些波长的光,那么,这
• (4)该定律奠定了分光精品光课件度分析法的理论基础
(一) 朗伯-比耳定律的推导
•
当一束平行单色光照射到任何均匀、非散射的
分光光度法测定物质的浓度下限
(最低浓度)一般可达1~10-3 %的微量组分。
对固体试样一般可测到10-4 ~ 10-5 %的痕量组
分。如果对被测组分事先加以富集,灵敏度
还可以提高1-2个数量级。
精品课件
(二) 准确度较高
•
一般分光光度法的相对误差为2~5%,
若使用精密仪器,相对误差可降至1~2%,其
(二) 物质的颜色与光吸收的关系
•
在可见光区,不同波长的光具有不同的颜色
。当一束阳光(白光)通过棱镜后就色散成红、橙、黄
、绿……等颜色的光,这些光具有不同的波长。
•
所以不同颜色光,其波长不同,物质的颜色
正是由于他们对不同波长的光具有选择性吸收而产生
的。
•
当一束白光通过某一物质或溶液时,由于物
质对光的选择性吸收,某些波长的光被吸收,另一些