四川师范大学附属中学数学旋转几何综合专题练习(解析版)

四川师范大学附属中学数学旋转几何综合专题练习(解析版)
四川师范大学附属中学数学旋转几何综合专题练习(解析版)

四川师范大学附属中学数学旋转几何综合专题练习(解析版)

一、初三数学 旋转易错题压轴题(难)

1.如图,在平面直角坐标系中,点O 为坐标原点,抛物线2

y ax bx c =++的顶点是A(1,3),将OA 绕点O 顺时针旋转90?后得到OB ,点B 恰好在抛物线上,OB 与抛物线的对称轴交于点C .

(1)求抛物线的解析式;

(2)P 是线段AC 上一动点,且不与点A ,C 重合,过点P 作平行于x 轴的直线,与

OAB ?的边分别交于M ,N 两点,将AMN ?以直线MN 为对称轴翻折,得到A MN '?. 设点P 的纵坐标为m .

①当A MN '?在OAB ?内部时,求m 的取值范围;

②是否存在点P ,使'

5

6

A MN OA

B S S ?'?=,若存在,求出满足m 的值;若不存在,请说明理

由.

【答案】()2

1y x 22x =-++;(2)①433

m <<;②存在,满足m 的值为619-或

639

-. 【解析】 【分析】

(1)作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,然后证明△AOD ≌△BOE ,则AD=BE ,OD=OE ,即可得到点B 的坐标,然后利用待定系数法,即可求出解析式;

(2)①由点P 为线段AC 上的动点,则讨论动点的位置是解题的突破口,有点P 与点A 重合时;点P 与点C 重合时,两种情况进行分析计算,即可得到答案;

②根据题意,可分为两种情况进行分析:当点M 在线段OA 上,点N 在AB 上时;当点M 在线段OB 上,点N 在AB 上时;先求出直线OA 和直线AB 的解析式,然后利用m 的式子表示出两个三角形的面积,根据等量关系列出方程,解方程即可求出m 的值. 【详解】

解:(1)如图:作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,

∴∠ADO=∠BEO=90°,

∵将OA 绕点O 逆时针旋转90?后得到OB , ∴OA=OB ,∠AOB=90°,

∴∠AOD+∠AOE=∠BOE+∠AOE=90°, ∴∠AOD=∠BOE , ∴△AOD ≌△BOE , ∴AD=BE ,OD=OE , ∵顶点A 为(1,3), ∴AD=BE=1,OD=OE=3, ∴点B 的坐标为(3,1-), 设抛物线的解析式为2

(1)3=-+y a x , 把点B 代入,得

2(31)31a -+=-,

∴1a =-,

∴抛物线的解析式为2

(1)3y x =--+, 即222y x x =-++;

(2)①∵P 是线段AC 上一动点, ∴3m <,

∵当A MN '?在OAB ?内部时, 当点'A 恰好与点C 重合时,如图:

∵点B 为(3,1-), ∴直线OB 的解析式为1

3

y x =-, 令1x =,则13

y =-

, ∴点C 的坐标为(1,13

-),

∴AC=1103()3

3

--=, ∵P 为AC 的中点,

∴AP=1105

233

?

=, ∴54333

m =-

=, ∴m 的取值范围是

4

33

m <<; ②当点M 在线段OA 上,点N 在AB 上时,如图:

∵点P 在线段AC 上,则点P 为(1,m ),

∵点'A 与点A 关于MN 对称,则点'A 的坐标为(1,2m -3), ∴'3A P m =-,18'(23)233

A C m m =-+

=-, 设直接OA 为y ax =,直线AB 为y kx b =+, 分别把点A ,点B 代入计算,得

直接OA 为3y x =;直线AB 为25y x =-+, 令y m =, 则点M 的横坐标为3m

,点N 的横坐标为52

m --, ∴555

2326

m m MN m -=

-=--; ∵2'11555515'()(3)22261224

A MN S MN A P m m m m ?=

?=?-?-=-+; '138

'3(2)34223

OA B S A C m m ?=

??=?-=-; 又∵'5

6A MN OA B

S S ?'?=, ∴

255155

(34)12246

m m m -+=?-, 解得:619m =-或619m =+(舍去); 当点M 在边OB 上,点N 在边AB 上时,如图:

把y m =代入1

3

y x =-,则3x m ,

∴5553222m MN m m -=

+=+-,18

'(23)233A C m m =---=-, ∴2'11555515'()(3)2222424

A MN S MN A P m m m m ?=

?=?+?-=-++, '138

'3(2)43223OA B S A C m m ?=

??=?-=-, ∵'5

6

A MN OA

B S S ?'?=

∴255155

(43)4246

m m m -

++=?-, 解得:6393m -=

或639

3

m +=(舍去); 综合上述,m 的值为:619m =-或639

3

m -=. 【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、图形的旋转、解一元二次方程、全等三角形的判定和性质、三角形的面积公式等,解题的关键是熟练掌握所学的性质,正确得到点P 的位置.注意运用数形结合的思想和分类讨论的思想进行解题.

2.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与

CD 相交于点E .

(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;

(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.

【答案】(1)2452cm ;(2)2233

1624(0)225

88020016(4)3335x x x y x x x ?--+≤

AA B ''△成为等腰三角形的x 的值有:0秒、32669

-. 【解析】 【分析】

(1)先用勾股定理求出BD 的长,再根据旋转的性质得出10B D BD cm ''==,

2CD B D BC cm '=''-=,利用B D A ∠'''的正切值求出CE 的值,利用三角形的面积差即可求阴影部分的面积;

(2)分类讨论,当1605x ≤<

时和当

16

45

x ≤≤时,分别列出函数表达式; (3)分类讨论,当AB A B '=''时;当AA A B '=''时;当AB AA '='时,根据勾股定理列方程即可. 【详解】

解:(1)

6AB cm =,8AD cm =,

10BD cm ∴=,

根据旋转的性质可知10B D BD cm ''==,2CD B D BC cm '=''-=,

tan A B CE

B D A A D CD

'''''∠==''',

682

CE ∴=, 3

2

CE cm ∴=,

()286345

22222

A B CE A B D CED S S S cm ''''''?∴==-?÷=-;

(2)①当1605x ≤<时,22CD x '=+,3

2CE x =,

233

+22CD E S x x '∴=△,

221333

68242222y x x x ∴=??-=--+;

②当1645x ≤≤时,102BC x =-,()4

1023CE x =- ()2

21488020010223333

y x x x ∴=?-=-+.

(3)①如图1,当AB A B '=''时,0x =秒;

②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,24

5

A M N

B '==,

2236AN A N +'=,

22

2418623655x ?

???∴-++= ? ??

???,

解得:x =

秒,(x =舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+

,24

5

A M N

B '==, 2222AB BB AN A N +'=+'

22

2

24183646255x x ?

???∴+=-++ ? ??

???

解得:3

2

x =

秒. 综上所述:使得AA B ''△成为等腰三角形的x 的值有:0秒、

32秒、6695

-.

【点睛】

本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.

3.我们定义:如图1,在△ABC 看,把AB 点绕点A 顺时针旋转α(0°<α<180°)得到AB',把AC 绕点A 逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC 的“旋补三角形”,△AB'C'边B'C'上的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”. 特例感知:

(1)在图2,图3中,△AB'C'是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD= BC ; ②如图3,当∠BAC=90°,BC=8时,则AD 长为 . 猜想论证:

(2)在图1中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用

(3)如图4,在四边形ABCD ,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.

【答案】(1)①

12;②4;(2)AD=1

2

BC ,证明见解析;(3)存在,证明见解析,

39.【解析】【分析】

(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=1

2

AB′即可解决问题;

②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;

(2)结论:AD=1

2

BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证

明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;

(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;

【详解】

解:(1)①如图2中,

∵△ABC是等边三角形,

∴AB=BC=AB=AB′=AC′,

∵DB′=DC′,

∴AD⊥B′C′,

∵∠BAC=60°,∠BAC+∠B′AC′=180°,

∴∠B′AC′=120°,

∴∠B′=∠C′=30°,

∴AD=1

2AB′=

1

2

BC,

故答案为1

2

②如图3中,

∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,

∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,

∵B′D=DC′,

∴AD=1

2B′C′=

1

2

BC=4,

故答案为4.

(2)结论:AD=1

2 BC.

理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M

∵B′D=DC′,AD=DM,

∴四边形AC′MB′是平行四边形,

∴AC′=B′M=AC,

∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,

∴∠BAC=∠MB′A,∵AB=AB′,

∴△BAC≌△AB′M,

∴BC=AM,

∴AD=1

2

BC.

(3)存在.

理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.

连接DF交PC于O.

∵∠ADC=150°,

∴∠MDC=30°,

在Rt△DCM中,∵3,∠DCM=90°,∠MDC=30°,

∴CM=2,DM=4,∠M=60°,

在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,

∴EM=1

BM=7,

2

∴DE=EM﹣DM=3,

∵AD=6,

∴AE=DE,∵BE⊥AD,

∴PA=PD,PB=PC,

在Rt△CDF中,∵CF=6,

∴tan∠

∴∠CDF=60°=∠CPF,

易证△FCP≌△CFD,

∴CD=PF,∵CD∥PF,

∴四边形CDPF是矩形,

∴∠CDP=90°,

∴∠ADP=∠ADC﹣∠CDP=60°,

∴△ADP是等边三角形,

∴∠ADP=60°,∵∠BPF=∠CPF=60°,

∴∠BPC=120°,

∴∠APD+∠BPC=180°,

∴△PDC是△PAB的“旋补三角形”,

在Rt△PDN中,∵∠PDN=90°,PD=AD=6,,

【点睛】

本题考查四边形综合题.

4.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.

(1)求边DA在旋转过程中所扫过的面积;

(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;

(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.

【答案】(1);(2);(3)不变化,证明见解析.

【解析】

试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.

(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.

(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.

∴DA在旋转过程中所扫过的面积为.

(2)∵MN∥AC,∴,.

∴.∴.

又∵,∴.

又∵,∴.

∴.∴.

∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为.

(3)不变化,证明如下:

如图,延长BA交DE轴于H点,则

,,

∴.

又∵.∴.

∴.

又∵, ,∴.

∴.∴.

∴.

∴在旋转正方形ABCD的过程中,值无变化.

考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.

5.如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.

(1)点C的坐标为(,);

(2)若二次函数的图象经过点C.

①求二次函数的关系式;

②当-1≤x≤4时,直接写出函数值y对应的取值范围;Z_X_X_K]

③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理

由.

【答案】(1) ∴点C的坐标为(-3,1) .

(2)①∵二次函数的图象经过点C(-3,1),

∴.解得

∴二次函数的关系式为

②当-1≤x≤4时,≤y≤8;

③过点C作CD⊥x轴,垂足为D,

i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直

角三角形,过点作⊥轴,

∵=,∠=∠,∠=∠=90°,

∴△≌△,∴AE=AD=2,=CD=1,

∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;

ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证

△≌△∴BF=OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上

综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△

是以AB为直角边的等腰直角三角形.

【解析】

(1)根据旋转的性质得出C点坐标;

(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;

③分二种情况进行讨论.

6.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:

(1)求证:EP2+GQ2=PQ2;

(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;

(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).

【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.

【解析】

【分析】

(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到

EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;

(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证

△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.

【详解】

(1)过点E作EH∥FG,连接AH、FH,如图所示:

∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,

∴△EAH≌△GAQ,

∴EH=QG,HA=AQ,

∵FA⊥AD,

∴PQ=PH.

在Rt△EPH中,

∵EP2+EH2=PH2,

∴EP2+GQ2=PQ2;

(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,

∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,

∴△EAH≌△GAQ,

∴EH=QG,HA=AQ,

∵PA⊥AD,

∴PQ=PH.

在Rt△EPH中,

∵EP2+EH2=PH2,

∴EP2+GQ2=PH2.

在Rt△PFQ中,

∵PF2+FQ2=PQ2,

∴PF2+FQ2=EP2+GQ2.

(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.

【点睛】

本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.

7.(1)发现

如图,点A为线段BC外一动点,且BC a=,AB b=.

填空:当点A位于____________时,线段AC的长取得最大值,且最大值为_________.(用含a,b的式子表示)

(2)应用

点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE . ①找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值.

(3)拓展

如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段

AB 外一动点,且2PA =,PM PB =,90BPM ∠=?,求线段AM 长的最大值及此时点P 的坐标.

【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22) 【解析】 【分析】

(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出

△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;

(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论. 【详解】

解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,

∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b ,

故答案为CB的延长线上,a+b;

(2)①CD=BE,

理由:∵△ABD与△ACE是等边三角形,

∴AD=AB,AC=AE,∠BAD=∠CAE=60°,

∴∠BAD+∠BAC=∠CAE+∠BAC,

即∠CAD=∠EAB,

在△CAD与△EAB中,

AD AB

CAD EAB

AC AE

?

?

∠∠

?

?

?

∴△CAD≌△EAB,

∴CD=BE;

②∵线段BE长的最大值=线段CD的最大值,

由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;

(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,

则△APN是等腰直角三角形,

∴PN=PA=2,BN=AM,

∵A的坐标为(2,0),点B的坐标为(5,0),

∴OA=2,OB=5,

∴AB=3,

∴线段AM长的最大值=线段BN长的最大值,

∴当N在线段BA的延长线时,线段BN取得最大值,

最大值=AB+AN,

∵22,

∴最大值为2+3;

如图2,过P作PE⊥x轴于E,

∵△APN是等腰直角三角形,

∴PE=AE=2,

∴OE=BO-AB-AE=5-3-2=2-2,

∴P(2-2,2).

【点睛】

考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.

8.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.

(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;

(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;

(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.

【答案】(1)△FGH是等边三角形;(261

;(3)△FGH的周长最大值为

3

2

(a+b),最小值为3

2

(a﹣b).

【解析】

试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、

(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=3

2

BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:

如图1中,连接BD 、CE ,延长BD 交CE 于M ,设BM 交FH 于点O .

∵△ABC 和△ADE 均为等边三角形,

∴AB =AC ,AD =AE ,∠BAC =∠DAE ,∴∠BAD =∠CAE ,∴△BAD ≌△CAE ,∴BD =CE ,∠ADB =∠AEC ,∵EG =GB ,EF =FD ,∴FG =

12BD ,GF ∥BD ,∵DF =EF ,DH =HC ,∴FH =1

2

EC ,FH ∥EC ,∴FG =FH ,∵∠ADB +∠ADM =180°,∴∠AEC +∠ADM =180°,∴∠DMC +∠DAE =180°,∴∠DME =120°,∴∠BMC =60°

∴∠GFH =∠BOH =∠BMC =60°,∴△GHF 是等边三角形,故答案为:等边三角形. (2)如图2中,连接AF 、EC .

易知AF ⊥DE ,在Rt △AEF 中,AE =2,EF =DF =1,∴AF 2221-3,在Rt △ABF 中,BF 22AB AF -6,∴BD =CE =BF ﹣DF 61,∴FH =12EC 61

-. (3)存在.理由如下.

由(1)可知,△GFH 是等边三角形,GF =

12

BD ,∴△GFH 的周长=3GF =3

2BD ,在△ABD

中,AB =a ,AD =b ,∴BD 的最小值为a ﹣b ,最大值为a +b ,∴△FGH 的周长最大值为

32(a +b ),最小值为3

2

(a ﹣b ). 点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.

9.在矩形ABCD 中,2AB =,1BC =,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为(0180)αα<<,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、

点G .

()1如图①,当点E 落在DC 边上时,直写出线段EC 的长度为______; ()2如图②,当点E 落在线段CF 上时,AE 与DC 相交于点H ,连接AC ,

①求证:ACD ≌CAE ; ②直接写出线段DH 的长度为______.

()3如图③设点P 为边FG 的中点,连接PB ,PE ,在矩形ABCD 旋转过程中,

BEP 的面

积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.

【答案】(1)23;(2)①见解析;3

4

②;(3)存在,PBE 的面积的最大值为21,理由见解析 【解析】 【分析】

()1如图①中,在Rt ADE 中,利用勾股定理即可解决问题; ()2①证明:如图②中,根据HL 即可证明ACD ≌CAE ;

②如图②中,由ACD ≌CAE ,推出ACD CAE ∠∠=,推出AH HC =,设

AH HC m ==,在Rt ADH 中,根据222AD DH AH +=,构建方程即可解决问题; ()3存在.如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M.由题意:PF PC 1==,由AG EF 1==,G F 90∠∠==,推出PA PE 2==PBE

12S

PE BM 22

=

??=,推出当BM 的值最大时,PBE 的面积最大,求出BM 的最大值即可解决问题; 【详解】

()

1四边形ABCD 是矩形,

AB CD 2∴==,BC AD 1==,D 90∠=,

矩形AEFG 是由矩形ABCD 旋转得到,

AE AB 2∴==,

在Rt ADE 中,22DE 213=-=

微专题26解析几何中的最值与范围问题(教学案)

微专题26 解析几何中的最值与范围问题 1. 利用数形结合或三角换元等方法解决直线与圆中的部分范围问题. 2. 构造函数模型研究长度及面积相关的范围与最值问题. 3. 根据条件或几何特征构造不等关系解决与离心率相关的范围问题. 4. 熟悉线段的定比分点、弦长、面积等问题的处理手段,深刻体会数形结合、等价转化的数学思想方法的运用. 考题导航 利用数形结合或三角换元等方法解决直线与圆 2. 已知实数x 、y 满足方程x 2+y 2-4x +1=0.则y x 的最大值为________;y -x 的最小 值为________;x 2+y 2的最小值为________. 1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 1. 已知A 、B 分别是椭圆x 36+y 20=1长轴的左、右端点,F 是椭圆的右焦点,点P 在 椭圆上,且位于x 轴的上方,PA ⊥PF.设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于MB ,则椭圆上的点到点M 的距离d 的最小值为________. 1. 已知双曲线为C :x 24-y 2 =1,P 为双曲线C 上的任意一点.设点A 的坐标为(3,0), 则PA 的最小值为________.

1. 如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PA 2为钝角,则该椭圆离心率的取值范围是________. 1. 椭圆M :x 2 a 2+y 2 b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上的任意一点, 且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2 ,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是_______. 1. 如图,在平面直角坐标系xOy 中,椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点分别 为F 1、F 2,P 为椭圆C 上的一点(在x 轴上方),连结PF 1并延长交椭圆C 于另一点Q ,设PF 1→ =λF 1Q → .若PF 2垂直于x 轴,且椭圆C 的离心率e ∈??? ?12,22,求实数λ的取值范围.

解析几何中的定点和定值问题精编版

解析几何中的定点定值问题 考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。 一、 定点问题 解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 例1、已知A 、B 是抛物线y 2 =2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β= 4 π 时,证明直线AB 恒过定点,并求出该定点的坐标。 解析: 设A ( 121 ,2y p y ),B (222 ,2y p y ),则 2 1 2tan , 2tan y p y p ==βα,代入1)tan(=+βα 得2 21214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则 022222 =+-????=+=pb py ky px y b kx y ∴k p y y k pb y y 2,22121= += ,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p 说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。 例2.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的 圆与直线0x y -相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

四川师范大学成都学院软件工程试题续

一单项选择题 1(A )是为了确保每个开发过程的质量,防止把软件差错传递到下一个过程而进行的工作。 A质量检测B 软件容错C 软件维护D 系统容错 2 “软件危机”是指( C ) A计算机病毒的出现B利用计算机进行经济犯罪活动 C软件开发和维护中出现的一系列问题D人们过分迷恋计算机系统 D3 DFD中的每个加工至少需要( B ) A 一个输入流 B 一个输出流 C 一个输入或输出流 D 一个输入流和一个输出流 4OO方法建模不需要建立以下哪种模型(C )。 A.对象模型B.功能模型C.数据模型D.动态模型 5 UML是软件开发中的一个重要工具,它主要应用于哪种软件开发方法( C )。 A.基于瀑布模型的结构化方法。B.基于需求动态定义的原型化方法。 C.基于对象的面向对象的方法。D.基于数据的数据流开发方法。 6 按照层次来划分,UML的基本构造块包含:视图图和(B)。 A)功能模型B)模型元素C)示例D)视图元素 7测试的关键问题是( D ) A 如何组织对软件的评审 B 如何验证程序的正确 C 如何采用综合策略 D 如何选择测试用例 8 程序的三种基本控制结构的共同特点是(D) A.不能嵌套使用B只能用来写简单程序C.已经用硬件实D.只有一个入口和一个出口12 程序的三种基本控制结构是(C)。 A)数组递推排序B)递归递推迭代C)顺序选择循环D)过程子程序分程序 13 传统的详细设计的工具主要包括(A)。 A)程序流程图B)数据结构设计C)模块和接口D)DFD图 14 从测试阶段角度,测试正确的顺序是(A),同时给出所选择的正确策略含义和被测对象的 什么?①单元测试②集成测试③系统测试④验收测试 A)①②③④B)②①③④C)③②①④D)③①②④ 15 从事物的组成部件及每个部件的属性,功能来认识事物这种方法被称为( A)的方法 A面向对象B面向数据C面向过程D面向属性 16 单元测试的测试对象是(B)A系统B程序模块C模块接口D系统功能 17 对象的三要素是(C)。 A)窗口、事件、消息B)窗口、数据、动作C)属性、方法、事件D)数据、函数 18 对象模型技术是1991年由Jame Rumbaugh等5人提出来的,该方法把分析收集到的信息 构造在对象模型动态模型和功能模型中,将开发过程分为系统分析系统设计(A)和实现4个阶段。A)对象设计B)类的设计C)模块设计D)程序设计 19 对象实现了数据和操作的结合,使数据和操作(C)于对象的统一体中。 A.结合B.隐藏C.封装D.抽象 C20 对象是面向对象开发的基本成分,每个对象可用它的一组(A)和它可以执行的一组操作来定义。A.服务B.参数C.属性D.调用 22 根据用户在软件使用过程中提出的建设性意见而进行的维护活动称为(C ) A纠错性维护B适应性维护C改善性维护D预防性维护 23 黑盒测试侧重于( A )。 A.软件的整体功能B.有关代码的知识C.以上都是D.以上都不是

浙江高考数学复习专题四解析几何第3讲圆锥曲线中的定点、定值、最值与范围问题学案

第3讲 圆锥曲线中的定点、定值、最值与范围问题 高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求. 真 题 感 悟 (2018·北京卷)已知抛物线C :y 2 =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围; (2)设O 为原点,QM →=λQO →,QN →=μQO → ,求证:1λ+1μ 为定值. 解 (1)因为抛物线y 2 =2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2 =4x . 由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0). 由? ????y 2 =4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2 ×1>0, 解得k <0或0

空间解析几何练习题

习题一 空间解析几何 一、填空题 1、过两点(3,-2)和点(-1,0)的直线的参数方程为 。 2、直线2100x y --=方向向量为 。 3、直角坐标系XY 下点在极坐标系中表示为 。 4、平行与()6,3,6a =-的单位向量为 。 5、过点(3,-2,1)和点(-1,0,2)的直线方程为 。 6、过点(2,3)与直线2100x y +-=垂直的直线方程为 。 7、向量(3,-2)和向量(1,-5)的夹角为 。 8、直角坐标系XY 下区域01y x ≤≤≤≤在极坐标系中表示为 。 9、设 (1,2,3),(5,2,1)=-=-a b , 则(3)?a b = 。 10、点(1,2,1)到平面2100x y z -+-=的距离为 。 二、解答题 1、求过点(3,1,1)且与平面375120x y z -+-=平行的平面方程。 2、求过点(4,2,3) 且平行与直线 31215 x y z --==的直线方程。 3、求过点(2,0,-3) 且与直线247035210x y z x y z -+-=??+-+=? 垂直的平面方程。 4、一动点与两定点(2,3,2)和(4,5,6)等距离, 求这动点的方程。

5、求222,01z x y z =+≤≤在XOZ 平面上的投影域。 6、求222 19416 x y z ++=在XOY 平面上的投影域。 7、求2z z =≤≤在XOZ 平面上的投影域。 8、求曲线222251x y z x z ?++=?+=? 在XOY 平面上的投影曲线。 9、求曲线 22249361x y z x z ?++=?-=? 在XOY 平面上的投影曲线。 10、求由曲面22z x y =+与曲面2222x y z ++=所围成的区域在柱面坐标系下的表示。

解析几何最值问题

解析几何最值问题的赏析 丹阳市珥陵高级中学数学组:李维春 教学目标:1.掌握解析几何中图形的处理方法和解析几何中变量的选择; 2.掌握利用基本不等式和函数的思想处理最值问题. 重点难点:图形的处理和变量的选择及最值的处理. 问题提出: 已知椭圆方程:14 32 2=+y x ,A ,B 分别为椭圆的上顶点和右顶点。过原点作一直线与线段AB 交于点G ,并和椭圆交于E 、F 两点,求四边形AEBF 面积的最大值。 问题分析: 1、 图形的处理: 不规则图形转化为规则图形(割补法) ABF ABE AENF S S S ??+= BEF AEF AENF S S S ??+= 2、 变量的选择: (1) 设点:设点),(00y x E 则),(00y x F --,可得到二元表达式; (2) 设动直线的斜率k (可设AF,BF,EF,AE,BE 中任意一条直线的斜率),可得 一元表达式。 3,最值的处理方法: (1) 一元表达式可用基本不等式或函数法处理; (2) 二元表达式可用基本不等式或消元转化为一元表达式。 X

问题解决: 解法一: 由基本不等式得62 24)34(2322 02000==+≤+=y x y x S 时取“=” 当且仅当0032 y x = 解法二: 00000 0(,),(,),(0,0)x y F x y x y -->>设E ,四边形的面积为S (0,2),A B 因为,12 y += 20x +-=即1d =点E 到直线的距离:00( ,)x y 因为E 在直线AB 的上方,0020x ->所以1d =所以2d =点F 到直线的距离:00(,)x y --因为F 在直线的下方2d =所以)(21)(212121d d AB d AB d AB S +=+=002S x =+所以AB =因为00(,)F x y 又因为22134 x y +=在椭圆上22004312x y +=所以max S =所以

解析几何中的定值定点问题

解析几何中的定值定点问题 一、定点问题 【例1】.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的圆 与直线0x y -+=相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点. 解:⑴由题意知c e a ==2222 2234c a b e a a -=== ,即224a b = ,又因为1b ==,所以22 4,1a b ==,故椭圆C 的方程为C :2214 x y +=. ⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ① 联立22 (4)14 y k x x y =-???+=??消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ?=-+->得21210k -<, 又0k =不合题意, 所以直线PN 的斜率的取值范围是0k << 或0k <. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为21 2221 ()y y y y x x x x +-=--, 令0y =,得221221 () y x x x x y y -=- +,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ② 由得①2212122232644 ,4141k k x x x x k k -+== ++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0). 【针对性练习1】 在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨 迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 解:⑴∵点M 到(),0 ,) ,0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x 轴上焦中为的椭圆,其方程为2 214 x y +=.

成都地区主要高校目录表格

成都地区主要高校目录表格 2012年版本成都市区(无规则排名) 四川大学(望江校区)成都体育学院 四川大学(华西校区)成都信息工程学院网络商学院 四川大学华西青羊校区四川管理职业学院(成都校区) 四川大学网络教育学院成都第五冶金职工大学(跳蹬河校区) 西南财经大学(光华校区)成都第五冶金职工大学(水碾河校区) 西南交通大学(九里校区)成都广播电视大学 西南民族大学成都广播电视大学直属郭家桥分院 电子科技大学(沙河校区)成都广播电视大学财经管理学院 电子科技大学九里堤校区成都广播电视大学信息管理学院 西华大学(人南校区)成都广播电视大学信联创学院 四川师范大学(狮子山校区)四川省成都市财贸职业高级中学 四川师范大学电影电视学院(金牛校区)成都交通学校 四川音乐学院(成都校区)成都市文化艺术学校 四川广播电视大学成都市现代职业技术学校 成都工业学院【电子高专】成都市职工大学 成都理工大学成都中山职业技术学校 成都师范学院【教育学院】(人南校区)四川省工贸学校 成都师范学院【教育学院】(白果林校区)四川省人民医院护士学校 成都中医药大学(成都校区)四川省运动技术学院 成都医学院(天回校区)西部信息工程学院 成都职业技术学院(成都校区)成都发动机公司职工大学 成都飞机工业公司职工工学院 温江区(无规则排名) 西南财经大学(柳林校区)四川管理职业学院(温江校区) 四川交通职业技术学院成都东星航空旅游专修学院【四川航空学院】成都中医药大学(温江校区)成都农业科技职业学院 成都师范学院【教育学院】(温江校区)四川商务职业学院 成都嘉华建筑专修学院四川艺术职业学院 成都广播电视大学高级技工学院四川农业大学(成都校区) 成都嘉华建筑专修学院 龙泉驿区(无规则排名) 四川大学职业技术学院成都航空职业技术学院 四川师范大学(成龙校区)四川天一学院 四川师范大学文理学院(东校区)四川国际标榜职业学院 成都大学四川烹饪高等专科学校 四川大学附设华西卫生学校四川财经职业学院 成都中医药大学附属医院针灸学校四川省卫生学院 成都信息工程学院(龙泉校区)四川省卫生学校 成都航天职业技术学校(龙泉校区)西南财经大学天府学院(龙潭校区)

解析几何范围最值问题(教师)详解

第十一讲 解析几何范围最值问题 解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 一、几何法求最值 【例1】 抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足+=(-4,-12). (1)求直线l 和抛物线的方程; (2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. [满分解答] (1)根据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0). 由????? y =kx -2,x 2=-2py , 得x 2+2pkx -4p =0 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 所以+=(-4,-12),所以??? ? ? -2pk =-4,-2pk 2 -4=-12, 解得? ???? p =1,k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y . (2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2). 此时点P 到直线l 的距离d = |2·(-2)-(-2)-2|22+(-1)2 =45=4 5 5. 由? ???? y =2x -2, x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |= 1+k 2· (x 1+x 2)2-4x 1x 2= 1+22·(-4)2-4·(-4)=4 10. 于是,△ABP 面积的最大值为12×4 10×4 55=8 2. 二、函数法求最值 【示例】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的离心率e = 2 3 ,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程; (2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. (1)由e =c a = a 2- b 2 a 2= 23,得a =3 b ,椭圆C :x 23b 2+y 2 b 2=1,即x 2+3y 2=3b 2,

解析几何专题训练理科用

解析几何专项训练 姓名 班级 学号 成绩 (一)填空题 1、若直线m my x m y mx 21=++=+与平行,则m =_-1____. 2、若直线2+=kx y 与抛物线x y 42 =仅有一个公共点,则实数=k 1,02 3、若直线l 的一个法向量为()2,1n =,则直线l 的倾斜角为 arctan2π- (用反三角函数值表示) 4、已知抛物线2 0x my +=上的点到定点(0,4)和到定直线4y =-的距离相等,则 m = -16 5、已知圆C 过双曲线 116 92 2=-y x 的一个顶点和一个焦点,且圆心C 在此双曲线上,则圆心C 到双曲线中心的距离是 16 3 6、已知直线1l :210x y +-=,另一条直线的一个方向向量为(1,3)d =,则直线1l 与2l 的夹角是 4 π 7、已知直线:0l ax by c ++=与圆1:2 2 =+y x O 相交于A 、B 两点,3||=AB , 则OA ·OB = 12 - 8、若直线m 被两平行线1:10l x y -+=与2:30l x y -+=所截得线段的长为22则 直线m 的倾斜角是 0015,75 . 9、若经过点(0,2)P 且以()1,d a =为方向向量的直线l 与双曲线132 2 =-y x 相交于 不同两点A 、B ,则实数a 的取值范围是 2215,3a a <≠ .

10、(理科)设曲线C 定义为到点)1,1(--和)1,1(距离之和为4的动点的轨迹.若将曲线 C 绕坐标原点逆时针旋转 45,则此时曲线C 的方程为__22 142 y x +=___________. 11、等腰ABC ?中,顶点为,A 且一腰上的中线长为3,则 三角形ABC 的面积的最大值 2 12、如图,已知OAP ?的面积为S ,1OA AP ?=. 设||(2)OA c c =≥,3 4 S c =,并且以O 为中心、A 为焦点的椭 圆经过点P .当||OP 取得最小值时,则此椭圆的方程为 22 1106 x y += . (二)选择题 13、“2a =”是“直线210x ay +-=与直线220ax y +-=平行”的( B )条件 (A )充要;(B )充分不必要;(C )必要不充分;(D )既不充分也不必要 14、如果i +2是关于x 的实系数方程02 =++n mx x 的一个根,则圆锥曲线 12 2=+n y m x 的焦点坐标是( D )(A))0,1(±; (B))1,0(±; (C))0,3(± ;(D))3, 0(± 15、已知:圆C 的方程为0),(=y x f ,点),(00y x P 不在圆C 上,也不在圆C 的圆心上, 方程0),(),(:'00=-y x f y x f C ,则下面判断正确的是……( B ) (A) 方程'C 表示的曲线不存在; (B) 方程'C 表示与C 同心且半径不同的圆; (C) 方程'C 表示与C 相交的圆; (D) 当点P 在圆C 外时,方程'C 表示与C 相离的圆。 16、若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线22 2222222 :1(0,0)x y C a b a b -=>>的 焦点相同,且12a a >给出下列四个结论:①2222 1221a a b b -=-; ②1221 a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2121b b a a +>+;其中所有正确的结论 序号是( B )A. ①② B, ①③ C. ②③ D. ①④ y P x o A

高三数学选择填空题压轴专题5.4 解析几何中的定值与定点问题(教师版)

一.方法综述 解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下; (1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性; 一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果; 另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。 (2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 二.解题策略 类型一定值问题 【例1】(2020?青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为() A.B.C.2p D. 【答案】D 【解析】分析:直接利用直线和曲线的位置关系式的应用建立方程组,进一步利用一元二次方程根和系数关系式的应用求出结果. 解:抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),

解析几何中的最值问题.

解析几何中的最值问题 解析几何中的最值问题是很有代表性的一类问题,具有题形多样,涉及知识面广等特点。解决这类问题,需要扎实的基础知识和灵活的解决方法,对培养学生综合解题能力和联想思维能力颇有益处。本文通过实例,就这类问题的解法归纳如下: 一、 转化法 例1、 点Q 在椭圆 22 147 x y +=上,则点Q 到直线32160x y --=的距 离的最大值为 ( ) A B C D 分析:可转化为求已知椭圆平行于已知直线的切线,其中距离已知直线较远的一条切线到该直线的距离即为所求的最大值。 解:设椭圆的切线方程为 3 2 y x b =+,与 22 147 x y +=消去y 得 224370x bx b ++-=由?=01272=+-b 可得4(4)b b ==-舍去,与 32160x y --=平行且距离远的切线方程为3280x y -+= 所以所求最大值为d = = ,故选C 二 、配方法 例2、 在椭圆 22 221x y a b +=的所有内接矩形中,何种矩形面积最大? 分析:可根据题意建立关系式,然后根据配方法求函数的最值。 解:设椭圆内接矩形在第一象限的顶点坐标为A (),x y ,则由椭圆对称性,矩形的长为2x ,宽为2y ,面积为4xy ,与 22 221x y a b +=消去 y 得: 22b S x a =?=

可知当x a = 时,max 2S ab = 三、 基本不等式法 例3、 设21,F F 是椭圆14 22 =+y x 的两个焦点,P 是这个椭圆上任一点,则21PF PF ?的最大值是 解: 124PF PF += 由12PF PF +≥得 44 )(2 2121=+≤ ?PF PF PF PF 即21PF PF ?的最大值是4 。 四、 利用圆锥曲线的统一定义 例4 、设点A (-,P 为椭圆22 11612 x y +=的右焦点,点 M 在椭 圆上,当取2AM PM +最小值时,点M 的坐标为 ( ) A (- B (- C D 解:由已知得椭圆的离心率为1 2 e = , 过M 作右准线L 的垂线,垂足为N ,由圆锥曲线的统一定义得 2MN PM = 2AM PM AM MN ∴+=+ 当点M 运动到过A 垂直于L 的直线上时, AM MN +的值最小,此时点M 的坐标为,故选 C 五、 利用平面几何知识 例5 、平面上有两点(1,0),(1,0)A B -,在圆22 (3)(4)4x y -+-=上取一点 P ,求使22 AP BP +取最小值时点P 的坐标。

四川师范大学成都学院经管系考核制度

四川师范大学成都学院经济与管理系学生干部考核制度一.考核目的: 为了更好地加强对本系学生干部自身的管理,提高学生干部的积极性,发挥更高的工作效率,做到对全系学生干部的管理有明确依据,特根据《四川师范大学成都学院学生管理规定》及《四川师范大学成都学院学生干部考核制度》制定《四川师范大学成都学院经济与管理系学生干部考核制度》。二.考核组组成人员:团总支书记副书记学生会主席副主席团总支学生会组织部。三.考核对象:经济与管理系团总支学生会全体干部各行政班团支部干部班委干部。 四.考核时间:每学期考核一次,在本学期期末进行评分。五.考核等级:65分以下为不合格65分以上为合格85 分以上为优秀。六.考核规则:每位学生干部原始分为75,按以下条例相应加减分数。评分在65 分以下者 为不合格,免去相应学生干部职务,由表现好的同学接任,评分在65 分以上者为合格,可继续担任职务;评分在80 分以上为优秀,可作为评优或升职的重要标准之一。 七.考核标准: (一)思想道德(10 分)采用逐渐法,每位干部干事的满分为10 分,参考以下条例,酌情扣分,扣完为止。 1、有不热爱祖国的行为。(扣2 分) 2、不讲文明、不尊师重教、随意说脏话。(扣2 分) 3、不热爱集体、不关心班级。(扣1 分) 4、不遵守学院规定,穿背心,拖鞋随意进入公共场所。(扣2 分) 5、扰乱课堂秩序。(扣2 分) 6、不爱护公务、随意吐痰、乱扔垃圾。(扣1 分) (二)工作态度(20 分)采用逐减法,每位干部,干事的满分为20 分,参考以下条例,酌情评分,扣完为止。 1. 工作期间能经常向上级领导汇报工作,交流思想。(3 分) 2. 例会制度 (1)每次例会必须认真完成会议记录,以便会后更好的开展工作,且记录内容充实。(2 分) (2)每次例会不得迟到,早退和无故缺席。(迟到或早退两次视作缺席一次)。(迟到或早退一次扣1 分,无故缺席扣5 分。) (3)请假必须以书面形式为准(口头请假无效),3次请假作为1次缺席,3 次缺席作为自动辞退。(4)每次会议记录必须每月上交一次,由组织部及办公室检查。(1 分) (5)会议记录必须内容准确,不可乱写记录。(1 分) 3. 值班制度 (1)值班人员按照值班表认真做好值班工作,担负起责任。(2 分) (2)值班人员必须正确登记值班情况,以便随时检查值班情况。(1 分) 3)值班人员无故不值班,如发现三次作自动辞职处理。 (无故不值班一次扣五分)三)工作计划的考核(15 分) 采用基本分加减法,基本分7 分 1. 每学期无工作计划(扣5 分) 2. 团总支学生会所有干部要在学期开始前针对自己所在部门,职务,根据本部的实际情况制定出可行计 划。(1~5 分) 3. 各干部要求严格按照工作计划开展本学期工作。(1~5 分)(四)工作总结的考核 采用基本分加减法,基本分7 分 1. 每学期无工作总结(扣5 分) 2. 每学期末团总支学生会所有干部必须要在学期结束前针对自己所在部门,职务,根据自己在本部的工作 情况上交一分总结。(1~5 分)

解析几何的范围问题

A .() 1,2 B . ( ) 2,2 C .()1,2 D . ( ) 2,+∞ 2.(2020·湖北高考模拟(理))设椭圆222 14 x y m +=与双曲线22 214x y a -=在第一象限的交点为12,,T F F 为其共同的左右的焦点,且14TF <,若椭圆和双曲线的离心率分别为12,e e ,则22 12e e +的取值范围为 A .262, 9? ? ??? B .527, 9?? ??? C .261, 9?? ??? D .50,9?? +∞ ??? 3.(2020六安市第一中学模拟)点在椭圆上, 的右焦点为,点在圆 上,则 的最小值为( ) A . B . C . D . 类型二 通过建立目标问题的表达式,结合参数或几何性质求范围 【例2】(2020·玉林高级中学高考模拟(理))已知椭圆22 :143 x y C +=的左、右顶点分别为,A B ,F 为椭圆 C 的右焦点,圆22 4x y +=上有一动点P ,P 不同于,A B 两点,直线PA 与椭圆C 交于点Q ,则PB QF k k 的取 值范围是( ) A .33,0,44????-∞- ? ? ????? B .()3,00,4??-∞? ??? C .()(),10,1-∞-? D .()(),00,1-∞ 【举一反三】 1.抛物线上一点 到抛物线准线的距离为 ,点关于轴的对称点为,为坐标原点, 的内切圆与 切于点,点为内切圆上任意一点,则 的取值范围为__________. 2.(2020哈尔滨师大附中模拟)已知直线 与椭圆: 相交于,两点,为坐标原点. 当的面积取得最大值时,( )A . B . C . D . 类型三 利用根的判别式或韦达定理建立不等关系求范围

高等数学 空间解析几何与向量代数练习题与答案

空间解析几何与矢量代数小练习 一 填空题 5’x9=45分 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模_________________, 方向余弦_________________和方向角_________________ 3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 4、方程0242222=++-++z y x z y x 表示______________曲面. 5、方程22x y z +=表示______________曲面. 6、222x y z +=表示______________曲面. 7、 在空间解析几何中2x y =表示______________图形. 二 计算题 11’x5=55分 1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程. 2、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 3、求过点(1,2,3)且平行于直线51 132-=-=z y x 的直线方程. 4、求过点(2,0,-3)且与直线???=+-+=-+-012530 742z y x z y x 垂直的平面方 5、已知:k i 3+=,k j 3+=,求OAB ?的面积。

参考答案 一 填空题 1、?????? -±116,117,116 2、21M M =2,21cos ,22 cos ,21 cos ==-=γβα,3 ,43,32π γπ βπ α=== 3、14)2()3()1(222=++-+-z y x 4、以(1,-2,-1)为球心,半径为6的球面 5、旋转抛物面 6、 圆锥面 7、 抛物柱面 二 计算题 1、04573=-+-z y x 2、029=--z y 3、53 1221-=-=-z y x 4、065111416=---z y x 5 219 ==?S

解析几何题型2——《解析几何中的定值定点问题》

解析几何题型2——《解析几何中的定值定点问题》 题型特点: 定值、定点问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的定点。解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。这类试题考查的是在运动变化过程中寻找不变量的方法。 典例 1 如图,已知双曲线)0(1:222 >=-a y a x C 的右焦点为F ,点A ,B 分别在C 的两条渐近线上,x AF ⊥轴,OB AB ⊥,OA BF //(O 为坐标原点)。 (1)求双曲线C 的方程; (2)过C 上一点),(00y x P 的直线1: 020=-y y a x x l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NF MF 恒为定值,并求此定值。 典例2 已知动圆过定点)0,4(A ,且在y 轴上截得的弦MN 的长为8。 (1)求动圆圆心的轨迹C 的方程; (2)已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。

典例3 已知直线6:+=x y l ,圆5:2 2=+y x O ,椭圆)0(1:2222>>=+b a b x a y E 的离心率33=e ,直线l 被圆O 截得的弦长与椭圆的短轴长相等。 (1)求椭圆E 的方程; (2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值。 典例4 椭圆的两焦点坐标分别为)0,3(1-F 和)0,3(2F ,且椭圆过点)23,1(- 。 (1)求椭圆方程; (2)过点)0,5 6(-作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断MAN ∠的大小是否为定值,并说明理由。

解析几何中的最值问题教案

解析几何中的最值问题 一、教学目标 解析几何中的最值问题以直线或圆锥曲线作为背景,以函数和不等式等知识作为工具,具有较强的综合性,这类问题的解决没有固定的模式,其解法一般灵活多样,且对于解题者有着相当高的能力要求,正基于此,这类问题近年来成为了数学高考中的难关。基本内容:有关距离的最值,角的最值,面积的最值。 二、教学重点 方法的灵活应用。 三、教学程序 1、基础知识 探求解析几何最值的方法有以下几种: (1)函数法(设法将一个较复杂的最值问题,通过引入适当的变量能归为某初等函数(常见)的有二次函数和三角函数)的最值问题,然后通过对该函数单调性和最值的考察使问题得以解决。 (2)不等式法:(常用的不等式法主要有基本不等式等) (3)曲线定义法:利用圆锥曲线的定义刻画了动点与动点(或定直线)距离之间的不变关系,一般来说涉及焦半径、焦点弦的最值问题可以考虑该方法 (4)平面几何法:有些最值问题具有相应的几何意义(如分式最值联想到斜率公式,求平方和最值联想到距离公式等等) (1)函数法 例1、已知P 点在圆()2241x y +-=上移动,Q 点在椭圆2 219 x y +=上移动,试求PQ 的最大值。 分析:两个都是动点,看不出究竟,P 、Q 在什么位置时|PQ|最大 故先让Q 点在椭圆上固定,显然当PQ 通过圆心O 1时|PQ|最大,因此要求|PQ| 的最大值,只要求|OQ|的最大值。 说明:函数法其我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不易忽视。 例2 在平面直角坐标系xOy 中,点(),P x y 是椭圆2 213 x y +=上的一个动点,求S x y =+的最大值 (2)不等式法

解析几何中的范围问题

解析几何中的范围问题 一般解题思路是,首先寻觅出(或直接利用)相关的不等式,进而通过这一不等式的演变解出有关变量的取值范围。 一、“题设条件中的不等式关系” 题设条件中明朗或隐蔽的不等关系,可作为探索或寻觅范围的切入点而提供方便。 例1、(2004全国卷 I )椭圆 的两个焦点是 ,且 椭圆上存在点P 使得直线 垂直.求实数m 的取值范围; 分析:对于(1),要求m 的取值范围,首先需要导出相关的不等式,由题设知,椭圆方程为标准方程,应有 , 便是特设条件 中隐蔽的不等关系. 解:(1)由题设知 设点P 坐标为 ,则有 得① 将①与 联立,解得 ∵m>0,且 ∴m≥1 即所求m 的取值范围为 . 二、“圆锥曲线的有关范围” 椭圆、双曲线和抛物线的“范围”,是它们的第一几何性质。 例2、已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线x y 162 =的焦点P 为其一个焦点,以双曲线19 162 2=-y x 的焦点Q 为顶点。 (1)求椭圆的标准方程; (2)已知点)0,1(),0,1(B A -,且C ,D 分别为椭圆的上顶点和右顶点,点M 是线段CD 上的动点,求BM AM ?的取值范围。 解:(1)抛物线x y 162 =焦点P 为(4,0),双曲线19 162 2=-y x 的焦点Q 为(5,0) ∴可设椭圆的标准方程为122 22=+b y a x (a>b>0),且a=5,c=4

916252 =-=∴b ,∴椭圆的标准方程为 19 252 2=+y x (2)设),(00y x M ,线段CD 方程为135=+y x ,即353+-=x y )50(≤≤x 点M 是线段CD 上,∴35 3 00+-=x y )50(0≤≤x ),1(00y x AM +=,),1(00y x BM -=,12 020-+=?∴y x AM , 将35300+- =x y )50(0≤≤x 代入得BM ?1)35 3(202 0-+-+=x x BM AM ??85 182534020+-= x x 34191 )3445(253420+-=x 500≤≤x , BM AM ?∴的最大值为24,BM AM ?的最小值为34 191 。 BM AM ?∴的范围是]24,34 191 [。 三、“一元二次方程有二不等实根的充要条件” 在直线与曲线相交问题中,直线与某圆锥曲线相交的大前提,往往由“相关一元二次方程有二不等实根”来体现。因此,对于有关一元二次方程的判别式△>0,求某量的值时,它是去伪存真的鉴别依据,求某量的取值范围时,它是导出该量的不等式的原始不等关系。 例3、如图,直角梯形ABCD 中∠DAB =90°,AD ∥BC ,AB =2,AD =23,BC =2 1 .椭圆C 以A 、B 为焦点且经过点D . (1)建立适当坐标系,求椭圆C 的方程; (2)若点E 满足EC 2 1 = AB ,问是否存在不平行AB 的直线l 与椭圆C 交于M 、N 两点且||||NE ME =,若存在,求 出直线l 与AB 夹角的范围,若不存在,说明理由. 解:(1)以AB 所在直线为x 轴,AB 中垂线为y 轴建立直角坐标系,则 A (-1,0),B (1,0) 设椭圆方程为:12222=+b y a x 令c b y C x 2 0=?= ∴?? ?==??????= =322 31 2 b a a b C ∴ 椭圆C 的方程是:13 42 2=+y x 。 (2)1(02EC AB E =?,)2 1 ,l ⊥AB 时不符,设l : y =kx +m (显然k ≠0)

相关文档
最新文档