相似三角形的分类讨论(教学案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的分类讨论(教学案)
一、教学目标:
1.进一步理解三角形相似的判定方法
2.初步领悟分类讨论的数学思想
3.培养学生的合作意识、探究意识。
二、教学重难点:领悟分类讨论的数学思想
三、教学过程:
(一)复习
相似三角形的判定方法有哪些?
你能画出几种常见的相似三角形吗?
(二)新授
A 由于对应边不确定,需要分类讨论。
例1 已知△ABC的三边长分别是4、6、8,△DEF的一条边为24,要使△DEF与△ABC相似,则另两边的长分别是
B 由于对应角不确定,需要分类讨论。
例2 均有一个角为84°的两个等腰三角形一定相似吗?
均有一个角为104°的两个等腰三角形一定相似吗?
C 三角形的形状不确定,需要分类讨论。
例3 在△ABC中∠B=25°,AD是BC边上的高,并且AD2=BD×DC,则∠BCA=
D 由于位置的不确定,需要分类讨论。
例4 在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为时,使得由点B、O、C组成的三角形与△AOB相似。
例5 已知:如图,P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足为B,请在射线BF上找一点M,使以B、M、C为顶点的三角形与△ABP相似。
D A B C
P B
C
例6 已知BD 是矩形ABCD 的对角线,AB=30cm ,BC=40cm ,点P 、Q 同时从A 点出发,分别以2cm/s ,4cm/ s 的速度由A →B →C →D →A 的方向在矩形边上运动,在点Q 回到点A 的整个运动过程中:① PQ 能否与BD 平行?② PQ 能否与BD 垂直?请分别作出判断。如果存在,请分别求出时间t,如果不存在,请说明理由。
E 计数中进行分类讨论。 例7 如图,在有边长为1的25个小正方形组成的正方形网格上有一个△ABC ,在网格上画出与△ABC 相似的三角形(全等的只需画一个,与△ABC 全等的不再画),使它的3个顶点都落在小正方形的顶点上。这样的三角形能画几个,最短的边长分别是多少?
(三) 课堂小结: 分类讨论、有序思考的回顾。
(四)、课后作业:已知Rt △OAB 在直角坐标系中的位置如图,P (3,4)为OB 的中点,点C 为折线OAB 上的动点,线段PC 把Rt △OAB 分成两部分,问点C 在什么位置时,分割得到的三角形与△OAB 相似?画出所有符合要求的线段,写出点C 的坐标。