沈阳市2020年中考数学模拟试题(I)卷

合集下载

原创2023学年中考数学预测模拟考试卷 (含答案)

原创2023学年中考数学预测模拟考试卷 (含答案)

第I卷(选择题共30分)一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题3分,共30分)1. 4的算术平方根是A. 2B. -2C. ±2D. 162. 据统计部门报告,我市去年国民生产总值为238 770 000 000元,那么这个数据用科学记数法表示为A. 2. 3877×10 12元B. 2. 3877×10 11元C. 2 3877×10 7元D. 2387. 7×10 8元3.若一个三角形三个内角度数的比为2︰7︰4,那么这个三角形是A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形4.把代数式322-+分解因式,结果正确的是x x y xy363A.(3)(3)+-B.22x x y x yx x xy y-+3(2)C.2x x y-3()-D.2(3)x x y5.已知⊙O1与⊙O2相切,⊙O1的半径为9 cm,⊙O2的半径为2 cm,则O1O2的长是A.1 cm B.5 cm C.1 cm或5 cm D.0.5cm 或2.5cm6.若0(12=)3yx,则y+y+-+x-的值为A .1B .-1C .7D .-77.如图,是张老师出门散步时离家的距离y 与时间x 之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是8.如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是A. 3个B. 4个C. 5个D. 6个9.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 A .6cmB .35cm C .8cmD .53cm10. 在一次夏令营活动中,小霞同学从营地A 点出发,要到距离A 点1000m 的C 地去,先沿北偏东70︒方向到达B 地,然后再沿北偏西20︒方向走了500m 到达目••••ABCDyxO(第7题)(第8题)ABC北东(第10题)(第9题)剪去的地C ,此时小霞在营地A 的A. 北偏东20︒方向上B. 北偏东30︒方向上C. 北偏东40︒方向上D.北偏西30︒方向上☆绝密级 试卷类型A济宁市二○一一年高中阶段学校招生考试数 学 试 题第Ⅱ卷(非选择题 共70分)二、填空题(每小题3分,共15分;只要求填写最后结果)11.在函数4y x =+中, 自变量x 的取值范围是 .12.若代数式26x x b -+可化为2()1x a --,则b a -的值是. 13. 如图,PQR ∆是ABC ∆经过某种变换后得到的图形.如果ABC ∆中任意一点M 的坐标为(a ,b ),那么它的对应点N 的坐标为.得分 评卷人(第13题)14.某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是.15.如图,是一张宽m 的矩形台球桌ABCD ,一球从点M(点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为.三、解答题(共55分,解答应写出文字说明、证明过程或推演步骤) 16.(5分)计算:084sin 45(3)4-︒+-π+-17.(5分)上海世博会自2010年5月1日到10月31日,历时184天.预测参观人数达7000万人次.如图是此次盛会在5月中旬入园人数的统计情况.(1)请根据统计图完成下表.众数 中位数 极差 入园人数得分 评卷人得分 评卷人A BCD· ·MNα(第15题)/万(2)推算世博会期间参观总人数与预测人数相差多少? 18.(6分)观察下面的变形规律:211⨯=1-12; 321⨯=12-31;431⨯=31-41;……解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ; (2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯. 19.(6分)如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD .得分 评卷人得分 评卷人(1) 求证:BD CD =;(2) 请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.20.(7分)如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.得分 评卷人yABCEFD(第19题)得评卷21.(8分)分人某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.22.(8分)数学课上,李老师出示了这样一道题目:如图1,正方形ABCD 的边长为12,P 为边BC 延长线上的一点,E 为DP 的中点,DP 的垂直平分线交边DC 于M ,交边AB 的延长线于N .当6CP =时,EM 与EN 的比值是多少?经过思考,小明展示了一种正确的解题思路:过E 作直线平行于BC 交DC ,AB 分别于F ,G ,如图2,则可得:DF DEFC EP=,因为DE EP =,所以DF FC =.可求出EF 和EG 的值,进而可求得EM 与EN 的比值.(1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了DP MN =的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.得分 评卷人(第22题)23.(10分)如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.得分 评卷人Axy B OCD数学试题参考答案及评分标准说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数. 一、选择题题号 12 3 4 5 6 7 8 9 10答案 A B B D C C D B BC二、填空题11.4x ≥-; 12.5; 13.(a -,b -); 14.16; 15.tan tan m n αα-⋅.三、解答题16.解:原式2224142=-⨯++ ··························································· 4分 5= ··············································································································· 5分 17.(1)24,24,16 ············································································ 3分 (2)解:17000184(2182232426293034)10-⨯⨯⨯++⨯++++ 700018.4249=-⨯70004581.62418.4=-=(万)答:世博会期间参观总人数与预测人数相差2418.4万 · 5分18.(1)111nn -+······················································································ 1分(2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n n n n +-+=)1(1+n n . ···· 3分(3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ················································································· 5分 19.(1)证明:∵AD 为直径,AD BC ⊥,∴BD CD =.∴BD CD =. ················································· 3分(2)答:B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. 4分理由:由(1)知:BD CD =,∴BAD CBD ∠=∠.∵DBE CBD CBE ∠=∠+∠,DEB BAD ABE ∠=∠+∠,CBE ABE ∠=∠, ∴DBE DEB ∠=∠.∴DB DE =.······················································ 6分 由(1)知:BD CD =.∴DB DE DC ==.∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. ···· 7分20.解:(1)设A 点的坐标为(a ,b ),则k b a=.∴ab k =.∵112ab =,∴112k =.∴2k =.∴反比例函数的解析式为2y x=.······································· 3分(2) 由212y x y x ⎧=⎪⎪⎨⎪=⎪⎩得2,1.x y =⎧⎨=⎩∴A 为(2,1). ····························· 4分 设A 点关于x 轴的对称点为C ,则C 点的坐标为(2,1-). 令直线BC 的解析式为y mx n =+. ∵B 为(1,2)∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴BC 的解析式为35y x =-+. ·············································· 6分 当0y =时,53x =.∴P 点为(53,0). ··························· 7分21.(1)解:设甲工程队每天能铺设x 米,则乙工程队每天能铺设(20x -)米.根据题意得:35025020x x =-. ·············································· 2分 解得70x =.检验:70x =是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米. ············· 4分 (2)解:设分配给甲工程队y 米,则分配给乙工程队(1000y -)米.由题意,得10,70100010.50yy ⎧≤⎪⎪⎨-⎪≤⎪⎩解得500700y ≤≤. ···················· 6分所以分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米; 方案二:分配给甲工程队600米,分配给乙工程队400米; 方案三:分配给甲工程队700米,分配给乙工程队300米. 8分22.(1)解:过E 作直线平行于BC 交DC ,AB 分别于点F ,G ,则DF DE FC EP =,EM EF EN EG=,12GF BC ==.∵DE EP =,∴DF FC =. ······················································ 2分∴116322EF CP ==⨯=,12315EG GF EF =+=+=. ∴31155EM EF EN EG ===. ··························································· 4分(2)证明:作MH ∥BC 交AB 于点H , ········································· 5分则MH CB CD ==,90MHN ∠=︒. ∵1809090DCP ∠=︒-︒=︒, ∴DCP MHN ∠=∠.∵90MNH CMN DME CDP ∠=∠=∠=︒-∠,90DPC CDP ∠=︒-∠,∴DPC MNH ∠=∠.∴DPC MNH ∆≅∆. ································· 7分 ∴DP MN =. ····································································· 8分23.(1)解:设抛物线为2(4)1y a x =--.∵抛物线经过点A (0,3),∴23(04)1a =--.∴14a =.∴抛物线为2211(4)12344y x x x =--=-+. ……………………………3分(2) 答:l 与⊙C 相交.…………………………………………………………………4分证明:当21(4)104x --=时,12x =,26x =.∴B 为(2,0),C 为(6,0).∴223213AB =+=.设⊙C 与BD 相切于点E ,连接CE ,则90BEC AOB ∠=︒=∠. ∵90ABD ∠=︒,∴90CBE ABO ∠=︒-∠.又∵90BAO ABO ∠=︒-∠,∴BAO CBE ∠=∠.∴AOB ∆∽BEC ∆. ∴CE BCOB AB =.∴62213CE -=.∴8213CE =>.…………………………6分 ∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2.∴抛物线的对称轴l 与⊙C 相交.……………………………………………7分(3) 解:如图,过点P 作平行于y 轴的直线交AC 于点Q .(第22题)HBCDEMNA PAxyBOCD(第23题)EPQ可求出AC 的解析式为132y x =-+.…………………………………………8分 设P 点的坐标为(m ,21234m m -+),则Q 点的坐标为(m ,132m -+).∴2211133(23)2442PQ m m m m m =-+--+=-+.∵22113327()6(3)24244PAC PAQ PCQ S S S m m m ∆∆∆=+=⨯-+⨯=--+,∴当3m =时,PAC ∆的面积最大为274.此时,P 点的坐标为(3,34-).…………………………………………10分。

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。

A。

$\sqrt{2}$。

B。

$-2$。

C。

$\dfrac{1}{2}$。

D。

$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。

A。

菱形。

B。

等边三角形。

C。

平行四边形。

D。

等腰梯形3.(3分)图中立体图形的主视图是()。

A。

B。

C。

D。

4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。

A。

$10\%x=330$。

B。

$(1-10\%)x=330$。

C。

$(1-10\%)2x=330$。

D。

$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。

A。

平均数。

B。

中位数。

C。

众数。

D。

方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。

A。

B与C。

B。

C与D。

C。

E与F。

D。

7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。

A。

$x\geq1$。

B。

$x\geq2$。

C。

$x>1$。

D。

$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。

A。

B。

C。

D。

9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。

A。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。

B。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。

2020年辽宁省沈阳市沈河区中考数学一模试卷(含解析答案)

2020年辽宁省沈阳市沈河区中考数学一模试卷(含解析答案)

2020年辽宁省沈阳市沈河区中考数学一模试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的。

每小题2分,共20分)1.(2分)﹣2020的倒数是()A.2020B.±12020C.﹣12020D.120202.(2分)2020年初全球处于新型冠状病毒引起的巨变之中,中国有2万名以上的医护人员在短时间就集结完毕,他们是我们心中的“最美逆行者”!其中数据2万用科学记数法表示为()A.2×103B.2×104C.0.2×105D.20×1033.(2分)如图,一个几何体由5个大小相同的正方体搭成,则这个立体图形的俯视图是()A.B.C.D.4.(2分)“2019武汉军运会”部分体育项目的示意图中是轴对称图形的是()A.B.C.D.5.(2分)不等式组23451020aa+>⎧⎨+<⎩的解集为()A.B.C.D.6.(2分)如图,将一张矩形纸片折叠,若∠1=78°,则∠2的度数是()A.51°B.56°C.61°D.78°7.(2分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图我们可以表述为()A.2114327x yx y+=⎧⎨+=⎩B.2114322x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩8.(2分)为了解某班学生每天使用零花钱的情况,小明随机调查了15名同学,结果如表:每天使用零花钱(单位:元)02345人数14532关于这15名同学每天使用零花钱的情况,下列说法正确的是()A.中位数是3元B.众数是5元C.平均数是2.5元D.方差是49.(2分)如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角α,它们重叠部分(图中阴影部分)的面积是32,那么sinα的值为()A.12B.23C.34D.4510.(2分)使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x (单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度可能为()A.18°B.37°C.54°D.58°二、填空题(每小题3分,共18分)11.(3分)分解因式:9ax2﹣ay2=.12.(3分)若一个圆内接正六边形的边长是4cm,则这个正六边形的边心距=.13.(3分)关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是.14.(3分)如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数3yx的图象上,则菱形的面积为.15.(3分)某服装商预测一种应季衬衫能畅销市场,就用4000元购进一批衬衫,面市后果然供不应求,该服装商又用9000元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了5元.则该服装商第一批进货的单价是元.16.(3分)如图,在网格纸中,每个小正方形的边长都是1个单位长度,每个小正方形的顶点叫做格点,点A,B,C,D均落在格点上,点E是AB的中点,过点E作EF∥AD,交BC于点F,作AG⊥EF,交FE延长线于点G,则线段EG的长度是.三、解答题(第17小题6分,18、19小题各8分,共22分)17.(62|﹣2×cos30°+(12)﹣1.18.(8分)某商场开业,为了活跃气氛,用红、黄、蓝三色均分的转盘设计了两种抽奖方案,凡来商场消费的顾客都可以选择一种抽奖方案进行抽奖(若指针恰好停在分割线上则重转).方案一:转动转盘一次,指针落在红色区域可领取一份奖品;方案二:转动转盘两次,指针落在不同颜色区域可领取一份奖品.(1)若选择方案一,则可领取一份奖品的概率是;(2)选择哪个方案可以使领取一份奖品的可能性更大?请用列表法或画树状图法说明理由.19.(8分)我校为了了解九年级学生身体素质测试情况,随机抽取了本校九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如图不完整的统计图,请你结合图表所给信息解答下列问题:(1)请在答题卡上直接将条形统计图补充完整;(2)扇形统计图中“B”部分所对应的圆心角的度数是°;(3)若我校九年级共有1500名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数.四、(每小题8分,共16分)20.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=12,AD=13,则线段OE的长度是.21.(8分)如图,国庆节期间,小明一家自驾到某景区C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达景区C,小明发现景区C恰好在A地的正北方向,求A,C两地相距多少千米?(结果保留根号)五、(本题10分)22.(10分)如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.(1)求证:AF⊥EF;(2)若cos∠DAB=34,BE=1,则线段AD的长是.六、(本题10分)23.(10分)如图,在平面直角坐标系中,矩形OABC边OA,OC分别在x轴,y的正半轴上,且OA=8,OC=6,连接AC,点D为AC中点,点E从点C出发以每秒1个单位长度运动到点O停止,设运动时间为t秒(0<t<6),连接DE,作DF⊥DE交OA于点F,连接EF.(1)当t的值为时,四边形DEOF是矩形;(2)用含t的代数式表示线段OF的长度,并说明理由;(3)当△OEF面积为132时,请直接写出直线DE的解析式.七、(本题12分)24.(12分)思维探索:在正方形ABCD中,AB=4,∠EAF的两边分别交射线CB,DC于点E,F,∠EAF=45°.(1)如图1,当点E,F分别在线段BC,CD上时,△CEF的周长是;(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求△CEF的周长;拓展提升:如图3,在Rt△ABC中,∠ACB=90°,CA=CB,过点B作BD⊥BC,连接AD,在BC的延长线上取一点E,使∠EDA=30°,连接AE,当BD=2,∠EAD=45°时,请直接写出线段CE的长度八、(本题12分)25.(12分)在平面直角坐标系中,抛物线y=ax2+bx+与x轴分别交于点A(﹣1,0),2B(3,0),点C是顶点.(1)求抛物线的解析式;(2)如图1,线段DE是射线AC上的一条动线段(点D在点E的下方),且DE=2,点D从点A出发沿着射线AC的方向以每秒2个单位长度的速度运动,以DE为一边在AC上方作等腰Rt△DEF,其中∠EDF=90°,设运动时间为t秒.①点D的坐标是(用含t的代数式表示);②当直线BC与△DEF有交点时,请求出t的取值范围;(3)如图2,点P是△ABC内一动点,BP=52,点M,N分别是AB,BC边上的两个动点,当△PMN的周长最小时,请直接写出四边形PNBM面积的最大值.2020年辽宁省沈阳市沈河区中考数学一模试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的。

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。

2024年辽宁省沈阳市皇姑区中考数学调研试卷+答案解析

2024年辽宁省沈阳市皇姑区中考数学调研试卷+答案解析

2024年辽宁省沈阳市皇姑区中考数学调研试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若有意义,则a的值可以是( )A. B. 0 C. 2 D. 62.下列水平放置的几何体中,主视图是圆形的是( )A. B.C. D.3.古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是( )A. B. C. D.4.下列计算正确的是( )A. B. C. D.5.如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是( )A.B.C.D.6.已知,则的值是( )A. 6B.C.D. 47.在同一平面直角坐标系中,一次函数与的图象如图所示,则下列结论错误的是( )A. 随x的增大而减小B.C. 当时,D. 关于x,y的方程组的解为8.元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A. B.C. D.9.如图,在平面直角坐标系中,点A的坐标为,点C的坐标为,以OA,OC为边作矩形动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,的值为( )A. B. C. 15 D. 3010.如图,中,,将逆时针旋转,得到,DE交AC于当时,点D恰好落在BC上,此时等于( )A.B.C.D.二、填空题:本题共5小题,每小题3分,共15分。

11.因式分解:______.12.方程有两个相等的实数根,则m的值为______.13.如图是平面直角坐标系中的一组直线,按此规律推断,第5条直线与x轴交点的横坐标是______.14.如图,在直线l:上方的双曲线上有一个动点P,过点P作x轴的垂线,交直线l于点Q,连接OP,OQ,则面积的最大值是______.15.如图,将菱形纸片ABCD沿过点C的直线折叠,使点D落在射线CA上的点E处,折痕CP交AD于点若,,则线段CA的长等于______.三、解答题:本题共8小题,共75分。

2023年辽宁省沈阳市私立联合体中考数学一模试卷及答案解析

2023年辽宁省沈阳市私立联合体中考数学一模试卷及答案解析

2023年辽宁省沈阳市私立联合体中考数学一模试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每题2分,共20分)1.(2分)﹣2023的倒数是()A.﹣2023B.2023C.D.2.(2分)北京时间2022年12月4日11时01分,神舟十四号载人飞船与空间站组合体成功分离.航天员陈冬、刘洋、蔡旭哲在空间站出差了183天返回家园,数据183用科学记数法表示为()A.0.183×103B.1.83×103C.18.3×102D.1.83×102 3.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2分)下列运算中,正确的是()A.a5+a5=a10B.(a﹣b)2=a2﹣b2C.(a2)3=a5D.(﹣a)2•(﹣a)=﹣a35.(2分)下列说法正确的是()A.检查神舟十五号载人飞船零件的质量采用抽样调查B.调查“浑河水库”水质问题采用抽样调查C.打开电视机正在播放世界杯决赛是必然事件D.掷一枚质地均匀的硬币落地时正面朝上是必然事件6.(2分)已知两点P1(x1,y1)、P2(x2,y2)在反比例函数y=的图象上,当x1>x2>0时,下列结论正确的是()A.y2<y1<0B.y1<y2<0C.0<y2<y1D.0<y1<y2 7.(2分)如图,在▱ABCD中,过点C作CE⊥AB,交BA的延长线于点E,若∠EAD=48°,则∠BCE的度数为()A.48°B.45°C.42°D.132°8.(2分)国务院联防联控机制公布进一步优化疫情防控的二十条措施后,国民增强了自我防控意识,一段时间N95口罩需求量增大,某工厂6个生产车间日生产量(万只)如图所示.因任务需要,现决定再组建一个生产车间,若新车间的日生产量为4500万只,则下列关于现在7个生产车间的日生产量的平均数和方差的说法中,正确的是()A.平均数不变,方差变大B.平均数不变,方差变小C.平均数不变,方差不变D.平均数变小,方差不变9.(2分)直线l1和l2在直角坐标系中的位置如图所示,则直线l1和l2与x轴围成的图形的面积为()A.4B.3C.2D.110.(2分)如图,在△ABC中,分别以AC,BC为边向外作等边三角形ACD和等边三角形BCE.连接AE,BD交于点O,则图中的角等于60°的个数为()A.6B.8C.9D.10二、填空题(每题3分,共18分)11.(3分)分解因式:2m3﹣8m=.12.(3分)如图,CA⊥BE于点A,AD⊥BF于点D,则图中与α互补的角是.13.(3分)小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.14.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为.15.(3分)在平面直角坐标系中,已知点A(﹣6,0),B(2,0),若点C在一次函数的图象上,且△ABC为直角三角形,则满足条件的C点的个数有个.16.(3分)如图,四边形OABC是矩形,OC在x轴上,OA在y轴上,函数y=x的图象与AB交于点D(3,3),点E是射线BC上一点,沿DE折叠点B恰好落在函数y=x的图象上,且BE=2CE,则点B的坐标为.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.(6分)计算:.18.(8分)沈阳市教育局为了丰富九年级学生线上教学内容,开展了沈阳“名师在线”公益活动,深受广大学生和家长的赞誉.首先开展的是语文、数学和物理三个学科,学生可以自愿参加.(1)李亮随机选择一个学科,则他选择的是数学学科的概率是;(2)张军和李亮各随机从三个学科中选择一个学科,用画树状图或列表的方法,求两个人选择的是不同学科的概率.19.(8分)如图,等腰三角形ABC中,AB=BC,将△ABC沿着BA的方向平移,使点A,B,C对应点分别为点E,A,D,连接DC.(1)求证:四边形ABCD是菱形;(2)若DE=8,,求四边形EBCD的面积.四、(每小题8分,共16分)20.(8分)国务院联防联控机制综合组2022年11月11日公布《关于进一步优化新冠肺炎疫情防控措施科学精准做好防控工作的通知》,即防控工作的二十条.又于2022年12月7日公布的新十条措施,明确要求,各地各部门要不折不扣把各项优化措施落实到位.为了使学生在新形势下提高防控意识,某校将“1,正确佩戴N95口罩:2.勤洗手,勤漱口;3.不去人多的公共场所聚集;4.熟知几种中药对预防新冠的用途.”几个问题,对学生进行防疫知识教育.并随机抽取部分学生的防范意识进行测试,测试结果分为A:非常优秀,B:优秀,C:良好,D:一般四个等级,并依据测试成绩绘制了如两幅尚不完整的统计图.(1)这次抽样调查的学生人数是人,并补全条形统计图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中C等级所对应的圆心角为°;(3)该校学生有1800人,请你估计其中A等级的学生人数.21.(8分)为营造绿色、优美、生态、宜居的城市环境,2022年沈阳市政府有关部门继续积极推进“口袋公园”规划建设工作,“口袋公园”如玉珠般散落在沈阳市的大街小巷,成为一张靓丽的城市名片.在中央广电总局“中国美好生活大调查”中,沈阳市名列第2名,公园城市建设取得了里程碑式的成绩.某区的一个“口袋公园”工程中,甲队单独施工50天可以完成该项工程,若甲队施工23天之后乙队加入,两队还需同时施工12天,才能完成该项工程.(1)若乙队单独施工,则需要多少天才能完成该项工程;(2)由于甲队有其他任务,所以参与该项工程施工的时间不超过15天,则乙队至少施工多少天才能完成该项工程.五、(本题10分)22.(10分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,D是⊙O上一点,过D作DE⊥CB交CB的延长线于点E,连接DB,且∠DBE=∠DBA.(1)求证:DE是⊙O的切线;(2)若DE=3,,求图中阴影部分的面积.六、(本题10分)23.(10分)如图,直线y=kx+b(k≠0)经过点A(﹣2,3)与x轴交于点B(4,0),C是线段AB的中点,连接OC.(1)求直线y=kx+b(k≠0)的函数表达式;(2)将线段OC绕着点C顺时针旋转,点O的对应点D落在y轴的正半轴上,点Q在射线BO上,连接AD、CQ,若以B、C、Q为顶点的三角形与△ADC相似,则点Q的坐标为,并求出它们的相似比;(3)在(2)的条件下,若点P在直线OC上,连接AP、DP,当AP+DP的值最小时,则点P的坐标为.七、(本题12分)24.(12分)如图,正方形ABCD的边长为3,现将正方形ABCD绕点C顺时针旋转α得正方形CB′A′D′.A,B,C,D的对应点分别为A′,B′,C′,D′.(1)如图,当正方形CB′A′D′的对角线CA'落在CD的延长线时,B′A′与AD相交于点E,连接AB′,则旋转角α=;△AB′E的周长=;(2)当旋转角α=60°,B′A′与AD相交于点E,B′A′,D′A′的延长线分别与CD的延长线相交于点F,H.求的值;转角α的正切值;(4)当旋转角α=90°,点P在直线DD′上,点Q在射线CD上,点K在与直线CD的距离为2的直线上时,若以点D,P,Q,K四点为顶点的四边形是菱形,直接写出菱形的周长.八、(本题12分)25.(12分)如图,△ABC的三个顶点坐标分别为A(﹣1,0),,C(3,0),抛物线y=ax2+bx+c(a≠0)经过△ABC的三个顶点.(1)求抛物线y=ax2+bx+c(a≠0)的函数表达式;(2)点M是抛物线在第一象限上一点.①连接AM与BC相交于点E,即将△ABC分为两个三角形,若这两个三角形的面积之比为1:2时,则点M的坐标为,直线AM的函数表达式为;②将△ABO沿着x轴正方向平移,当点B与点M重合时停止,点A的对应点为A',点O的对应点为点O'.求出△A'MO'与△BOC重合部分的图形的周长;(3)在抛物线y=ax2+bx+c(a≠0)的对称轴上取一点K,连接CK,使∠ACK+∠BAO =90°,延长CK交抛物线于点P,连接AK.动点Q从C点出发,沿射线CA以每秒1个单位长度的速度运动,是否存在某一时刻,使∠AQP=∠AKP?若存在,请直接写出此时t的值;若不存在,请说明理由.2023年辽宁省沈阳市私立联合体中考数学一模试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每题2分,共20分)1.【分析】根据相乘等于1的两个数互为倒数,即可求解.【解答】解:﹣2023的倒数是.故选:C.【点评】本题考查了倒数,掌握倒数的定义是解题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:183=1.83×102.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A.原图既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.原图既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.原图既是轴对称图形又是中心对称图形,故此选项符合题意;D.原图是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.【分析】根据整式的乘法,幂的乘方运算、完全平方公式以及合并同类项法则即可求出答案.【解答】解:A、原式=2a5,故A不符合题意.B、原式=a2﹣2ab+b2,故B不符合题意.C、原式=a6,故C不符合题意.D、原式=﹣a3,故D符合题意.故选:D.【点评】本题考查整式的乘法,幂的乘方运算、完全平方公式以及合并同类项法则,本题属于基础题型.5.【分析】根据“全面调查与抽样调查的特点,事情发生可能性大小”逐一判断即可解答.【解答】解:A、检测“神舟十五号”载人飞船零件的质量,适宜采用全面调查的方式,故本选项不符合题意;B、调查“浑河水库”水质问题采用抽样调查,故本选项符合题意;C、打开电视机正在播放世界杯决赛是随机事件,故本选项不符合题意;D、掷一枚质地均匀的硬币落地时正面朝上是随机事件,故本选项不符合题意;故选:B.【点评】本题主要考查了全面调查和抽样调查,必然事件,确定事件,熟练掌握它们的定义和特点是解答本题的关键.6.【分析】根据反比例函数的性质判断即可.【解答】解:∵k=3>0,∴当x1>x2>0时,y随x的增大而减小,∴0<y1<y2,故选:D.【点评】本题考查的是反比例函数图象上点的坐标特征,掌握反比例函数的性质、反比例函数的增减性只指在同一象限内是解题的关键.7.【分析】由四边形ABCD是平行四边形,可得AD∥BC,继而求得∠B=∠EAD=48°,然后由CE⊥AB,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B=∠EAD=48°,∵CE⊥AB,∴∠E=90°,∴∠BCE=90°﹣∠B=42°.故选:C.【点评】此题考查了平行四边形的性质以及平行线的性质.此题难度不大,注意掌握数形结合思想的应用.8.【分析】根据平均数和方差的定义分别计算出原数据和新数据的平均数与方差,从而得出答案.【解答】解:原数据的平均数为×(4000×2+4500×2+5000×2)=4500,方差为×[2×(4000﹣4500)2+2×(4500﹣4500)2+2×(5000﹣4500)2]=,新数据的平均数为=4500,新数据的方差为×[2×(4000﹣4500)2+3×(4500﹣4500)2+2×(5000﹣4500)2]=,所以新数据的平均数不变,方差变小,故选:B.【点评】本题主要考查方差和平均数,解题的关键是掌握平均数和方差的定义.9.【分析】利用待定系数法求得两直线的解析式,进一步求得两直线的交点,然后利用三角形面积公式即可求解.【解答】解:设直线l1的解析式为y=k1x+b,∵直线l1经过点(2,0)和(0,2),∴,解得,∴直线l1的解析式为y=﹣x+2;设直线l2的解析式为y=k2x,∵直线l2经过点(﹣2,1),∴1=﹣2k2,解得k2=﹣,∴直线l2的解析式为y=﹣x,解得,∴两直线的交点为(4,﹣2),∴直线l1和l2与x轴围成的图形的面积为:=4,故选:A.【点评】本题是两条直线的相交或平行问题,考查了待定系数法求函数的解析式,一次函数图象上点的坐标特征,三角形的面积,求得交点坐标是解题的关键.10.【分析】由“SAS”可证△DCB≌△ACE,再利用三角形内角和定理可求∠AOH=∠DCH =60°,即可解决问题.【解答】解:如图:AC与BD交于点H.∵△ACD,△BCE都是等边三角形,∴CD=CA,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS),∴∠CAE=∠CDB,∵∠DCH+∠CHD+∠BDC=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠OHA,∴∠AOH=∠DCH=60°,∴∠AOH=∠BOE=60°,∵两个等边三角形有6个60°角,∴一共有8个60°角.故选:B.【点评】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形,学会利用三角形内角和定理证明角相等,属于中考常考题型.二、填空题(每题3分,共18分)11.【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.【分析】根据垂直定义可得∠CAB=∠ADC=∠ADB=90°,从而可得∠B+∠ACD=90°,α+∠B=90°,根据同角的余角相等可得α=∠ACD,再根据平角定义可得结论.【解答】解:∵CA⊥BE,AD⊥BF,∴∠CAB=∠ADB=90°,∴α+∠B=90°,∠B+∠ACD=90°,∴α=∠ACD,∵α+∠EAD=180°,∴α与∠EAD互补,∵∠ACD+∠ACF=180°,∠ACD=α,∴α与∠ACF互补,∴图中与α互补的角是∠EAD和∠ACF.故答案为:∠EAD和∠ACF.【点评】本题考查了垂线,余角和补角,根据题目的已知条件并结合图形分析是解题的关键.13.【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.【解答】解:∵由图可知,共有5块瓷砖,白色的有3块,∴它停在白色地砖上的概率=.故答案为:.【点评】本题考查的是几何概率,熟记概率公式是解答此题的关键.14.【分析】根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为(﹣1,0),由此求出a﹣b+c的值.【解答】解:∵抛物线y=ax2+bx+c经过点A(3,0),对称轴是直线x=1,∴y=ax2+bx+c与x轴的另一交点为(﹣1,0),∴a﹣b+c=0.故答案为:0.【点评】本题考查了二次函数的性质,根据二次函数的对称性求出抛物线y=ax2+bx+c 与x轴的另一交点为(﹣1,0)是解题的关键.15.【分析】根据已知可求得直线与两轴的交点,①分别过点A、点B作垂线,可得出符合题意的点C,②利用圆周角定理,可得出符合条件的两个点C.【解答】解:由题意知,直线y=﹣x+1与x轴的交点为(2,0),与y轴的交点为(0,1),∴直线y=﹣x+1过点B,如图,过点A作垂线与直线的交点C(﹣6,4),过AB中点E(﹣2,0),作垂线与直线的交点为F(﹣2,2),则EF=2<4,所以以4为半径,以点E为圆心的圆与直线必有1个交点∴共有2个点能与点A,点B组成直角三角形.故答案为:2.【点评】本题考查了一次函数图象上点的坐标特征,圆周角定理,利用了直角三角形的性质和直线与圆的位置求解.16.【分析】设沿DE折叠点B落在函数y=x的图象上的点为B′,连接B′E,作B′M⊥AB于M,EN⊥B′M于N,如图,则EN=BM,BE=MN,设B′(m,m),BM=DM =3﹣m,NE=B′N=2﹣(3﹣m)=m﹣1或NE=B′N=6﹣(3﹣m)=m+3,由勾股定理得BN2+NE2=B′E2,即可得到2(m﹣1)2=22或2(m+3)2=62,解得m的值,即可求得OC的长,从而求得点B的坐标.【解答】解:设沿DE折叠点B落在函数y=x的图象上的点为B′,连接B′E,作B′M⊥AB于M,EN⊥B′M于N,如图,则EN=BM,BE=MN,∵点D(3,3),∴BC=3,∵BE=2CE,∴BE=2或6,∴B′E=2或6,设B′(m,m),∴BM=DM=3﹣m,NE=B′N=2﹣(3﹣m)=m﹣1或NE=B′N=6﹣(3﹣m)=m+3,∵BN2+NE2=B′E2,′∴2(m﹣1)2=22或2(m+3)2=62,解得m=1+或m=3﹣3,∴NE=或3,∴OC=1+2或6﹣3,∴B(1+2,3)或(6﹣3,3).故答案为:(1+2,3)或(6﹣3,3).【点评】本题考查了一次函数图象上点的坐标特征,矩形的性质,折叠的性质,勾股定理的应用,表示出线段的长度是解题的关键.三、解答题(第17小题6分,第18、19小题各8分,共22分)17.【分析】先计算零次幂、负整数指数幂和特殊角的三角函数值,再计算乘法,最后计算加减.【解答】解:=5﹣3+×+1=5﹣3++1=3+.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.18.【分析】(1)直接利用概率公式计算即可.(2)画树状图得出所有等可能的结果数和两个人选择的是不同学科的结果数,再利用概率公式可得出答案.【解答】解:(1)∵有语文、数学和物理三个学科,∴他选择的是数学学科的概率是.故答案为:.(2)画树状图如下:共有9种等可能的结果,其中两个人选择的是不同学科的结果有:(语文,数学),(语文,物理),(数学,语文),(数学,物理),(物理,语文),(物理,数学),共6种,∴两个人选择的是不同学科的概率为=.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.19.【分析】(1)根据平移的性质得到AD=BC,AD∥BC,根据菱形的判定定理即可得到结论;(2)过A作AH⊥DE于H,设AH=3x,EH=4x,根据平移的性质得到AE=AB,AD=BC,根据菱形的性质得到S△ABC=S△ACD,于是得到结论.【解答】(1)证明:∵将△ABC沿着BA的方向平移,使点A,B,C对应点分别为点E,A,D,∴AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形;(2)解:过A作AH⊥DE于H,∵,∴设AH=3x,EH=4x,∵将△ABC沿着BA的方向平移,使点A,B,C对应点分别为点E,A,D,∴AE=AB,AD=BC,∵AB=BC,∴AE=AD,∴DH=EH=DE==4,∴x=1,∵四边形ABCD是菱形,=S△ACD,∴S△ABC=3×=36.∴四边形EBCD的面积=3S△ADE【点评】本题考查了菱形的判定和性质,平行的性质,三角函数的定义,正确地作出辅助线是解题的关键.四、(每小题8分,共16分)20.【分析】(1)用A等级学生人数和已知百分比求出总人数,计算B等级的频数即可补全条形统计图;(2)用D等级学生人数除以样本容量可得D等级学生人数占被调查人数的百分比;用360°乘以C等级所占的比例可得在扇形统计图中C等级所对应的圆心角度数;(3)利用样本估计总体的思想解决问题即可.【解答】解:(1)这次抽样调查的学生人数是:26÷32.5=80(人),B等级人数为:80﹣26﹣4﹣20=30;补全条形统计图如下:故答案为:80;(2)D等级学生人数占被调查人数的百分比为=5%;在扇形统计图中C等级所对应的圆心角为360°×=90°.故答案为:5%;90;(3)1800×=585(人),答:估计其中A等级的学生人数大约为585人.【点评】本题考查条形统计图,样本估计总体,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【分析】(1)设乙队单独施工x天可以完成该项工程,利用甲队完成的工程量+乙队完成的工程量=总工程量,可得出关于x的分式方程,解之经检验后,即可得出结论;(2)设乙队需施工y天才能完成该项工程,利用甲队完成的工程量+乙队完成的工程量=总工程量,结合甲队参与该项工程施工的时间不超过15天,可得出关于y的一元一次不等式,解之取其中的最小值,即可得出结论.【解答】解:(1)设乙队单独施工x天可以完成该项工程,根据题意得:+=1,解得:x=40,经检验,x=40是所列方程的解,且符合题意.答:乙队单独施工40天可以完成该项工程;(2)设乙队需施工y天才能完成该项工程,根据题意得:+≥1,解得:y≥28,∴y的最小值为28.答:乙队至少施工28天才能完成该项工程.【点评】本题考查了一元一次不等式的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.五、(本题10分)22.【分析】(1)连接OD,根据等腰三角形的性质结合题意推出∠DBE=∠ODB,根据直角三角形的性质推出∠EDB+∠DBE=90°,则∠EDB+∠ODB=90°,根据切线的判定定理求解即可;(2)连接OC,解直角三角形求出BD=2,∠EDB=30°,∠DBE=∠DBA=60°,进而推出△OBD是等边三角形,根据含30°角的直角三角形的性质求出BC=AB=2,再图中阴影部分的面积=S扇形OBC﹣S△OBC求解即可.【解答】(1)证明:如图,连接OD,∵OB=OD,∴∠DBA=∠ODB,∵∠DBE=∠DBA,∴∠DBE=∠ODB,∵DE⊥CB交CB的延长线于点E,∴∠E=90°,∴∠EDB+∠DBE=90°,∴∠EDB+∠ODB=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)如图,连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵DE=3,=,∠E=90°,∴tan∠EDB==,BD==2,∴∠EDB=30°,∴∠DBE=∠DBA=60°,∴∠ABC=180°﹣60°﹣60°=60°,∵OB=OD,∠DBA=60°,∴△OBD是等边三角形,∴OB=OD=BD=2,∴AB=4,∵∠ABC=60°,∠ACB=90°,∴∠A=30°,∴BC=AB=2,∴图中阴影部分的面积﹣S△OBC=S扇形OBC=﹣×2×3=2π﹣3.【点评】此题考查了切线的判定与性质,熟记切线的判定与性质、扇形面积计算公式是解题的关键.六、(本题10分)23.【分析】(1)用待定系数法即可求解;(2)当以B、C、Q为顶点的三角形与△ADC相似时,存在△BCQ∽△ACD和△BCQ∽△ADC,①当△BCQ∽△ADC时,则,解得:BQ=,即可求解;②△BCQ ∽△ACD时,同理可解;(3)作点D关于直线OC的对称点R,连接AR交直线OC于点P,则点P为所求点,进而求解.【解答】解:(1)由题意得:,解得:,故直线y=kx+b(k≠0)的函数表达式为:y=﹣x+2;(2)将线段OC绕着点C顺时针旋转,点O的对应点D落在y轴的正半轴上,则点D (0,3),∵点A、D的纵坐标相同,则AD∥x轴,∴∠DAC=∠CBO,当以B、C、Q为顶点的三角形与△ADC相似时,存在△BCQ∽△ACD和△BCQ∽△ADC,由点A、C、D的坐标得,BC==AC,AD=2,①当△BCQ∽△ADC时,则,即,解得:BQ=,则点Q(﹣,0),△BCQ和△ADC相似比为:=3:4;②△BCQ∽△ACD时,则,解得:BQ=2,即点Q(2,0);②△BCQ和△ACD相似比为:1:1;综上,点Q的坐标为:(﹣,0)或(2,0);相似比为:3:4或1:1,故答案为:(﹣,0)或(2,0);(3)作点D关于直线OC的对称点R,连接AR交直线OC于点P,则点P为所求点,理由:根据点的对称性,PR=PD,则AP+DP=AP+PR=AR为最小.由点C的坐标得,直线OC的表达式为:y=x①,则直线DR的表达式为:y=﹣x+3,联立上述两式得:﹣x+3=x,解得:x=,即PR和OC的交点坐标为(,),则点(,)是RD的中点,由中点坐标公式得,点R(,),由点R、A的坐标得,直线AR的表达式为:y=﹣(x+2)+3②,联立①②得:﹣(x+2)+3=x,解得:x=,即点P(,).【点评】本题考查了一次函数综合应用,涉及到三角形相似、一次函数的性质、点的对称性等,有一定的综合性,其中(2),分类求解是本题解题的关键.七、(本题12分)24.【分析】(1)利用旋转变换的性质,正方形的性质,解直角三角形求出AB′,EB′,AE即可;(2)证明△FA′H∽△FDE,推出=,求出FH,EF,可得结论;(3)如图3中,延长CD交A′B′于点J,连接CE.设DJ=x,EJ=y,利用相似三角形的性质,勾股定理,构建方程组求解;(4)分DQ是菱形的边或对角线,分别画出图形求解即可.【解答】解:(1)如图1中,∵四边形ABCD是正方形,∴AB=BC=3,∠B=∠BAD=90°,∠CAD=∠CAB=∠ACB=∠ACD=45°,∴AC===3,由旋转变换的性质可知CB=CB′=3,∠A′B′C=90°,∴∠AB′E=90°,∴∠AEB′=∠CAE=45°,∴AB′=B′E=3﹣3,∴AE=AB′=6﹣3,∴△AEB′的周长=2(3﹣3)+6﹣3=3.故答案为:45°,3;(2)如图2中,由旋转变换的性质可知∠BCB′=∠HCD′=60°,∵∠BCD=∠B′=∠D=90°,∴∠DCB′=30°,∴CF==2,∴DF=CF﹣CD=2﹣3,∵CH=CD′•cos60°=6,∴FH=CH﹣CF=6﹣2,∵∠EDF=90°,∠DFE=60°,∴EF==4﹣6,∵∠A′FH=∠EFD,∠FA′H=∠EDF=90°,∴△FA′H∽△FDE,∴===+1;(3)如图3中,延长CD交A′B′于点J,连接CE.∵∠B′=∠CE=90°,CE=CE,CD=CB′,∴Rt△CEB′≌Rt△CED(HL),∴DE=EB′,由题意2××DE×CD=3,∴DE=EB′=1,设DJ=x,EJ=y,∵∠EJD=∠CJB,∠EDJ=∠CB′J=90°,∴△EDJ∽△CB′J,∴=,∴=,∴x=3y﹣3,∵y2=x2+1,∴y2=9y2﹣18y+9+1,∴y=或1(舍弃),∴x=,∵CD′∥A′B′,∴∠DJE=∠DCD′=α,∴tanα===;(4)如图当DQ是菱形的边时,菱形DQKP,菱形DQK′P′的周长都是8.菱形DK1P′Q″的周长为8,当DQ′是菱形的对角线时,菱形DP′Q′K″的周长为8.综上所述,满足条件的菱形的周长为8或8..【点评】本题属于四边形综合题,考查了正方形的性质,旋转变换,菱形的判定和性质解直角三角形等知识,解题的关键是理解题意,学会利用参数构建方程解决问题.八、(本题12分)25.【分析】(1)利用待定系数法即可求得答案;(2)①运用待定系数法可得直线BC的解析式为y=﹣x+,根据题意可得点E为线段BC的三等分点,即E1(1,1),E2(2,),分别运用待定系数法求出直线AM的解析式,联立方程组即可求得点M的坐标;②由题意得△ABO沿着x轴正方向平移2个单位,即A′(1,0),O′(2,0),利用勾股定理可得AB=,CB=,再由△CFO′∽△CBO,可求得FO′=,CF =,由△CGA′∽△CBA,可得CG=,A′G=,即可求得答案;(3)设K(1,m),分两种情况:①如图3,当点K在x轴下方时,过点P作PH⊥x 轴于点H,设抛物线对称轴交x轴于点L,则L(1,0),由△CKL∽△BAO,可得K(1,﹣),运用待定系数法可得直线CK的解析式为y=x﹣2,联立方程组可求得P(﹣,﹣),由题意得Q(3﹣t,0),根据∠AQP=∠AKP,可推出PQ=CQ=t,利用勾股定理建立方程求解即可求得t的值;②当点K在x轴的上方时,如图4,过点P作PH ⊥x轴于点H,同①的方法即可求得t的值.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),,C(3,0)三点,∴,解得:,∴该抛物线的函数表达式为y=﹣x2+x+;(2)①设直线BC的解析式为y=kx+d,∵,C(3,0),∴,解得:,∴直线BC的解析式为y=﹣x+,∵直线AM将△ABC分为两个三角形的面积之比为1:2,∴点E为线段BC的三等分点,∵OC=3,∴点E的横坐标分别为1或2,如图1,取线段BC的三等分点E1、E2,当x=1时,y=﹣×1+=1,当x=2时,y=﹣×2+=,∴E1(1,1),E2(2,),设直线AM的解析式为y=mx+n,把A(﹣1,0),E1(1,1)分别代入y=mx+n,得:,解得:,∴直线AM的解析式为y=x+,联立方程组,得:,解得:(舍去),,∴M1(2,);把A(﹣1,0),E2(2,)分别代入y=mx+n,得:,解得:,∴直线AM的解析式为y=x+,联立方程组,得:,解得:(舍去),,∴M2(,);综上所述,点M的坐标为M1(2,)、M2(,),直线AM的函数表达式为y=x+或y=x+;故答案为:M1(2,)、M2(,),y=x+或y=x+;②将△ABO沿着x轴正方向平移,当点B与点M重合时停止,∵B(0,),M1(2,),∴△ABO沿着x轴正方向平移2个单位,∴A′(1,0),O′(2,0),在Rt△ABO中,OA=1,OB=,∠AOB=90°,∴AB===,在Rt△CBO中,OC=3,OB=,∠COB=90°,∴CB===,又CA=4,CO′=1,CA′=2,∵O′B′∥OB,∴△CFO′∽△CBO,∴==,即==,∴FO′=,CF=,∵A′B′∥AB,∴△CGA′∽△CBA,∴==,即==,∴CG=,A′G=,∴FG=CG﹣CF=﹣=,A′O′=2﹣1=1,∴四边形A′GFO′的周长=A′O′+FO′+FG+A′G=1+++=,故△A'MO'与△BOC重合部分的图形的周长为;(3)存在.∵y=﹣x2+x+=﹣(x﹣1)2+2,∴抛物线对称轴为直线x=1,设K(1,m),①如图3,当点K在x轴下方时,过点P作PH⊥x轴于点H,设抛物线对称轴交x轴于点L,则L(1,0),∴CL=2,LK=﹣m,∵∠ACK+∠BAO=90°,∠ABO+∠BAO=90°,∴∠ACK=∠ABO,∵∠CLK=∠BOA=90°,∴△CKL∽△BAO,∴=,即=,解得:m=﹣,∴K(1,﹣),设直线CK的解析式为y=k′x+b′,则,解得:,∴直线CK的解析式为y=x﹣2,联立方程组得:,解得:(舍去),,∴P(﹣,﹣),H(﹣,0),由题意得Q(3﹣t,0),∴CQ=t,∵A、C关于对称轴对称,∴∠ACK=∠CAK,∵∠AKP=∠ACK+∠CAK,∴∠AKP=2∠ACK,∵∠AQP=∠AKP,∴∠AQP=2∠ACK,当点Q位于点A的右侧时,∠AQ1P=∠ACK+∠Q1PC,∴∠ACK=∠Q1PC,∴PQ1=CQ1=t,∴Q1H=3﹣t﹣(﹣)=﹣t,PH=,∵Q1H2+PH2=Q1P2,∴(﹣t)2+()2=t2,解得:t=,∴Q1(﹣,0),当点Q在点A的左侧时,∠AQ2P=∠AQ1P,∴Q2P=Q1P,∵PH⊥Q1Q2,∴Q2H=Q1H=﹣﹣(﹣)=,∴Q2(﹣,0),∴3﹣t=﹣,解得:t=;②当点K在x轴的上方时,如图4,过点P作PH⊥x轴于点H,由(3)①知∠ACK=∠ABO,△CKL∽△BAO,∴=,即=,解得:m=,∴K(1,),设直线CK的解析式为y=k″x+b″,则,解得:,∴直线CK的解析式为y=﹣x+2,联立方程组得:,解得:(舍去),,∴P(,),H(,0),∵∠AQP=∠AKP,∴∠AQP=2∠ACK=∠ACK+∠CPQ,∴∠ACK=∠CPQ,∴PQ=CQ=t,∵HQ=﹣t,PH=,∴(﹣t)2+()2=t2,解得:t=;综上所述,t的值为或或.【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,直线与抛物线的交点,三角形面积,平移变换的性质,勾股定理,相似三角形的判定和性质,本题综合性很强,难度较大,解题关键是运用方程思想和分类讨论思想思考解决问题。

2020年北师大版数学中考专题演练—几何证明(I卷)

2020年北师大版数学中考专题演练—几何证明(I卷)

2020春北师大版本数学中考专题演练—几何证明(I卷)全卷满分100分考试时间100分钟第一部分(共30分)一、选择题(本大题共10小题,每小题3分,共30分。

在给出四个选项中,只有一项是符合题目要求的)1.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A .﹣1B .+1C .﹣1D .+12.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB 于G,连接EF,则线段EF的长为()A .B.1 C .D.73.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.2B .C.2D .4.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A .B.2C .D.10﹣5第4题第5题第6题第7题5.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°6.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A .B .C .D .7.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A .B .C .D .8.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°第8题第9题第10题9.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD 于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个B.2个C.3个D.4个10.如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC中点D,AC中点N,连接DN、DE、DF.下列结论:①EM=DN;②S△CDN =S四边形ABDN;③DE=DF;④DE⊥DF.其中正确的结论的个数是()A.1个B.2个C.3个D.4个第二部分(共70分)二、填空题(共4个选择题,每题3分,共12分)11.如图,直线a∥b,三角板的直角顶点A落在直线a上,两边分别交直线b于B、C两点.若∠1=42°,则∠2的度数是.12.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.第12题第13题第14题13.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.14.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.三、解答题(一共9题,共58分)15.(6分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.16.(6分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.17.(6分)如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.18.(6分)如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.19.(6分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.20. (6分)如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.(1)当△CDQ≌△CPQ时,求AQ的长;(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.21.(8分)如图,在Rt△ABC中,∠B=90°,AC=60,AB=30.D是AC上的动点,过D作DF⊥BC于F,过F作FE∥AC,交AB于E.设CD=x,DF=y.(1)求y与x的函数关系式;(2)当四边形AEFD为菱形时,求x的值;(3)当△DEF是直角三角形时,求x的值.22.(6分)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.23.(8分)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.2020春北师大版本数学中考专题演练—几何证明(I卷)参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 D A C B C D C C D D4.【解析】如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB 2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG ≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.7.【解析】∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.10.【解析】∵D是BC中点,N是AC中点,∴DN是△ABC的中位线,∴DN ∥AB ,且DN=;∵三角形ABE是等腰直角三角形,EM平分∠AEB交AB于点M,∴M是AB的中点,∴EM=,又∵DN=,∴EM=DN,∴结论①正确;∵DN∥AB,∴△CDN∽ABC,∵DN=,∴S△CDN =S△ABC,∴S△CDN=S四边形ABDN,∴结论②正确;如图1,连接MD、FN,,∵D是BC中点,M是AB中点,∴DM是△ABC的中位线,∴DM∥AC,且DM=;∵三角形ACF是等腰直角三角形,N是AC的中点,∴FN=,又∵DM=,∴DM=FN,∵DM∥AC,DN∥AB,∴四边形AMDN是平行四边形,∴∠AMD=∠AND,又∵∠EMA=∠FNA=90°,∴∠EMD=∠DNF,在△EMD和△DNF中,,∴△EMD≌△DNF,∴DE=DF,∴结论③正确;如图2,连接MD,EF,NF,,∵三角形ABE是等腰直角三角形,EM平分∠AEB,∴M是AB的中点,EM⊥AB,∴EM=MA,∠EMA=90°,∠AEM=∠EAM=45°,∴,∵D是BC中点,M是AB中点,∴DM是△ABC的中位线,∴DM∥AC,且DM=;∵三角形ACF是等腰直角三角形,N是AC的中点,∴FN=,∠FNA=90°,∠FAN=∠AFN=45°,又∵DM=,∴DM=FN=FA,∵∠EMD=∠EMA+∠AMD=90°+∠AMD,∠EAF=360°﹣∠EAM﹣∠FAN﹣∠BAC=360°﹣45°﹣45°﹣(180°﹣∠AMD)=90°+∠AMD; ∴∠EMD=∠EAF,在△EMD和△∠EAF 中,∴△EMD∽△∠EAF,∴∠MED=∠AEF,∵∠MED+∠AED=45°,∴∠AED+∠AEF=45°,即∠DEF=45°,又∵DE=DF,∴∠DFE=45°,∴∠EDF=180°﹣45°﹣45°=90°,∴DE⊥DF,∴结论④正确.∴正确的结论有4个:①②③④.故选:D.二、填空题(每题3分,共12分)11.48°12. 6 13.16或414.13.【解析】(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC 上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F 与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.14.【解析】连接BD交AC于O,∵四边形ABCD、AGFE 是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.三、解答题(共50分)15.(6分)【解析】(1)证明略;(2)解:DC=EF=.16.(6分)【解析】(1)证明:△AEB≌△CFB(SAS),AE=CF.(2)∠EGC=∠EBG+∠BEF=45°+35°=80°.17.(6分)【解析】证明:(1)△ACE≌△DCB(SAS),∴AE=BD;(2)证明略18.(6分)【解析】(1)证明:过点O作OM⊥AB,∵BD是∠ABC的一条角平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∴AO是∠BAC的角平分线,即点O在∠BAC的平分线上;(2)解:∵在Rt△ABC中,AC=5,BC=12,∴AB===13,设CE=CF=x,BE=BM=y,AM=AF=z,∴,解得:,∴CE=2,∴OE=2.19. (6分)【解析】(1)证明:△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.20.(6分)【解析】(1)∵△CDQ≌△CPQ,∴DQ=PQ,PC=DC,∵AB=DC=5,AD=BC=3,∴PC=5,在Rt△PBC中,PB==4,∴PA=AB﹣PB=5﹣4=1,设AQ=x,则DQ=PQ=3﹣x,在Rt△PAQ中,(3﹣x)2=x2+12,解得x=,∴AQ=.(2)如图2,过M作EF⊥CD于F,则EF⊥AB,∵MD⊥MP,∴∠PMD=90°,∴∠PME+∠DMF=90°,∵∠FDM+∠DMF=90°,∴∠MDF=∠PME,∵M是QC的中点,∴DM=QC,PM=QC,∴DM=PM,在△MDF和△PME 中,,∴△MDF≌△PME(AAS),∴ME=DF,PE=MF,∵EF⊥CD,AD⊥CD,∴EF∥AD,∵QM=MC,∴DF=CF=DC=,∴ME=,∵ME是梯形ABCQ的中位线,∴2ME=AQ+BC,即5=AQ+3,∴AQ=2.21.(8分)【解析】(1)∵在Rt△ABC中,∠B=90°,AC=60,AB=30,∴∠C=30°,∵CD=x,DF=y.∴y=x;(2)∵四边形AEFD为菱形,∴AD=DF,∴y=60﹣x ∴方程组,解得x=40,∴当x=40时,四边形AEFD为菱形;(3)①当∠EDF=90°,∵∠FDE=90°,FE∥AC,∴∠EFB=∠C=30°,∵DF⊥BC,∴∠DEF+∠DFE=∠EFB+∠DFE,∴∠DEF=∠EFB=30°,∴EF=2DF,∴60﹣x=2y,与y=x ,组成方程组,得解得x=30.②当∠DEF=90°时,Rt△ADE中,AD=60﹣x,∠AED=90°﹣∠FEB=90°﹣∠A=30°,AE=2AD=120﹣2x,在Rt△EFB中,EF=AD=60﹣x,∠EFB=30°,∴EB=EF=30﹣x,∵AE+EB=30,∴120﹣2x+30﹣x=30,∴x=48.综上所述,当△DEF是直角三角形时,x的值为30或48.22.(6分)【解析】(1)证明:Rt△ABD≌Rt△ACD,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:略(3)解:∵AD是直径,AD⊥BC,BE=CE,∴CE2=DE•AE,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.23.(8分)【解析】解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,证明略;(3)S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG =×2×3+×3×4.5﹣=.。

2023年辽宁省沈阳市铁西区中考三模数学试题

2023年辽宁省沈阳市铁西区中考三模数学试题

2023年初中学业水平模拟练习(二)数学满分120分,时间120分钟。

注意事项:1.同学们须用0.5mm 黑色字迹的签字笔在本练习题规定位置填写自己的班级、姓名及练习号;2.须在答题卡上作答;3.本练习题包括8道大题,25道小题,共6页。

一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.-6的相反数是()A .16-B .-0.6C .16D .62.如图,是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A .B .C .D .3.下列运算正确的是()A .235347m m m+=B .()237mm m ⋅=C .()()2322394m m m +-=-D .()22224n m n m+=+4.一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是()A .正方形B .正六边形C .正八边形D .正十边形5.为了解某小区居民的用水情况,随机抽查了若干户家庭的某月用水量,统计结果如下表所示:月用水量(吨)3456户数4682关于这若干户家庭的该月用水量的数据统计分析,下列说法正确的是()A .平均数是7B .中位数是5C .众数是5D .方差是16.化简21639a a ---的结果是()A .13a +B .a -3C .a +3D .13a -7.如图,菱形OABC 的顶点C 的坐标为(-3,4),顶点A 在x 轴的负半轴上,反比例函数()0ky x x=<的图象经过顶点B ,则k 的值为()A .-12B .-20C .-24D .-328.下列命题为假命题的是()A .对角线相等的平行四边形是矩形B .对角线互相垂直的平行四边形是菱形C .有一组邻边相等的矩形是正方形D .有一个内角是直角的平行四边形是正方形9.如图,在△ABC 中,AB =AC ,M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是()A .AN =AB B .∠AMN =∠ACNC .NC AB∥D .MN ⊥AC10.已知点()11,x y ,()22,x y ,()33,x y 在下列某一函数图象上,当1230x x x <<<时,312y y y <<,那么这个函数是()A .y =-3xB .23y x=C .3y x=-D .y =3x +1二、填空题(每小题3分,共18分)11.因式分解:22344xy x y y --=______.12.不等式组()38,216x x x >--⎧⎨-≤⎩的解集为______.13.如图,圆内接△ABC ,∠A =52°,点I 是内心,则∠BIC 的度数为______.14.在一个不透明的袋子里有若干个白球.为估计白球个数,小东向其中投入8个黑球(与白球除颜色外均相同),搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复这一过程,共摸球100次,发现有20次摸到黑球.请你估计这个袋中有______个白球.15.如图,正方形ABCD 的边长为4,点E ,F 分别是边AD ,CD 的中点,在BF 上取点G ,使∠EGF =45°,则EG 的长为______.16.如图,在△ABC 中,AB =,BC =6,3tan 2ABC ∠=,点P ,Q 分别是边AC ,BC 上的点,且CQ =3CP ,射线AM BC ∥,当点C 关于直线PQ 的对称点D 在AM 上时,CP 的长为______.三、解答题(第17小题6分,第18,19小题各8分,共22分)17.计算:()2137cos305π-⎛⎫--+︒+ ⎪⎝⎭.18.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文收藏了“二十四节气”主题邮票,现在他要将“立春”“雨水”“惊蛰”“春分”四张邮票中的两张送给同学小明.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小明从中随机抽取一张(不放回),再从中随机抽取一张,用画树状图或列表的方法求小明抽到的两张邮票恰好是“雨水”和“惊蛰”的概率.19.如图,在△ABC 中,AD ⊥BC 于点D ,E ,F 分别是AC ,AB 的中点,O 是DF 的中点,EO 的延长线交线段BD 于点G ,连接DE ,EF ,FG .(1)求证:四边形DEFG 是平行四边形;∠=______.(2)当AD=10,FG=时,则tan EDC四、(每小题8分,共16分)20.为进一步提升学生数学核心素养,某校拟开展初中数学实践作业成果展示活动,作业项目包括:测量、七巧板、调查活动、无字证明、数学园地设计(分别用字母A,B,C,D,E依次表示这五项作业).为了解学生上交的作业项目,现随机调查了若干名学生(每位同学只上交一种作业),并将调查结果绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了______名学生;(2)请根据以上信息直接..补全条形统计图;(3)扇形统计图中作业D“无字证明”的圆心角的度数是______度;(4)若参加成果展示活动的学生共有600人,请你估计上交A“测量”作业的学生人数.21.某超市预购进一种今年新上市的产品,为了调查这种新产品的销路,该超市进行了试销售,得知该产品每天销量y(件)与每件售价x(元/件)之间满足如下关系:y=kx+b;且当售价为40元/件时,每天可售出120件,若每件售价上涨1元,每天销量将减少2件.据测算,每件平均成本20元,物价局要求售价每件不低于30元,不高于55元.解答下列问题:(1)每天销量y(件)与售价x(元/件)之间的函数关系式为______,自变量x的取值范围是______;(2)当售价定为多少元时,每天所获利润最大?最大利润是多少?五、(本题10分)∥,分别交AC,⊙O于点E,F,连接CD,22.如图,AB是⊙O的直径,BC是⊙O的弦,过点O作OD BC满足∠ODC=∠A.(1)求证:CD是⊙O的切线;CF围成的图形的面积为______(结果保留π和(2)若F是OD的中点,⊙O的半径为3,则线段CD,FD与根号).六、(本题10分)23.如图,在平面直角坐标系中,O为坐标原点,一次函数142y x=+与x轴交于点A,与y轴交于点B,点C在AO上,且∠CBA=∠CAB.动点P从点A出发,以每秒2个单位长度的速度沿边AO向终点O匀速运动,过点P作PQ垂直x轴交直线AB于点Q.设点P的运动时间为t(t>0)秒.(1)求点C的坐标;(2)若△BCQ是直角三角形,求运动时间t的值;(3)在点P运动过程中,若△PQC和△ABC重叠部分的面积为56,请直接..写出运动时间t的值.七、(本题12分)24.【问题提出】(1)如图1,△ABC和△ECD是等边三角形,点B,C,D在同一条直线上,连接AD,BE,线段AD与BE 的数量关系是______;【问题探究】(2)如图2,点B,C,D不在同一条直线上,且BE⊥AC于点F,若BC=6,CD=,求BD的长;【问题拓展】(3)如图3,△ABC是等腰直角三角形,∠BAC=90°,点P为△ABC外一点,若∠APC=75°,AP=,CP=3,请直接..写出2BP的值;(4)在四边形ABCD中,∠ABC=90°,AB=2BC,AD=2,CD=3,当BD取最大值时,请直接..写出AC的长.八、(本题12分)25.如图,在平面直角坐标系中,O 为坐标原点,抛物线()2302y ax x c a =++≠经过点C (4,3)与x 轴交于点A ,B (6,0)(点A 在点B 的左侧),过点B 作x 轴的垂线交直线OC 于点D .(1)求抛物线的表达式;(2)点P 为直线OC 上方抛物线上一点,连接OP ,CP ,若13OPC OBD S S =△△,求点P 的坐标;(3)在(2)的条件下,当PC x ∥轴时,取直线OP 上一点M ,过点M 作MN ⊥x 轴于点N ,交OC 于E ,点F 在NB 上,延长MF 交直线y =x -6于点G ,HG ⊥OG 交BD 于点H ,过点G 作x 轴平行线交HR (点R 为直线y =x -6与y 轴的交点)于点T .①请直接..写出MEON的值;②若∠EFN =∠NMF ,HT GT =+,请直接..写出直线MG 的表达式.2023年初中学业水平模拟练习(二)数学答案一㊁1.D㊀ 2.C㊀ 3.B㊀ 4.C㊀ 5.C㊀ 6.A㊀7.D㊀8.D㊀9.B㊀10.C二㊁11.-y(y-2x)2㊀12.-2<xɤ4㊀13.116㊀14.32㊀15.6105㊀16.2815三㊁17.解:原式=1-23+7ˑ32+254分=26+3326分18.解:根据题意列表得:(A:立春,B:雨水,C:惊蛰,D:春分)第二张A B C D第一张㊀㊀A(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)㊀4分由列表可知共有12种结果,且每种结果出现的可能性相同,其中两张邮票恰好是 雨水 和 惊蛰 的结果有2种,ʑP(小明抽到的两张邮票恰好是 雨水 和 惊 蛰 )=212=16.8分19.(1)证明:ȵE,F分别是AC,AB的中点,ʑEF是әABC的中位线,1分第1㊀页(共6页)第2㊀页(共6页)ʑEF ʊBC ,2分ʑøFEO =øOGD ,øEFO =øODG ,3分ȵO 是DF 的中点,ʑFO =DO ,ʑәFEO ɸәDGO ,4分 ʑEF =GD ,5分ʑ四边形DEFG 是平行四边形;6分(2)52.8分四㊁20.解:(1)120;2分 (2)补全条形统计图如下图所示:4分(3)36;6分 (4)600ˑ30120=150(人),答:估计上交A 测量 作业的学生为150人.8分21.解:(1)y =-2x +200,30ɤx ɤ55;2分 (2)设每天获得的利润为W 元,根据题意得W =(x -20)y=(x -20)(-2x +200)第3㊀页(共6页)=-2x 2+240x -40004分 =-2(x -60)2+32005分ȵ-2<0,ʑ当x <60,W 随x 的增大而增大.6分ȵ30ɤx ɤ55,ʑ当x =55时,W 有最大值,最大值为-2(55-60)2+3200=3150(元),ʑ当售价定为55元时,每天获得的利润最大,最大利润是3150元.8分 五㊁22.(1)证明:连接OC ,1分ȵOA =OC ,ʑøA =øOCA ,2分ȵøODC =øA ,ʑøOCA =øODC ,3分 ȵAB 是☉O 的直径,ʑøACB =90ʎ,4分 ȵOD ʊBC ,ʑøDEC =90ʎ,5分 ʑøODC +øECD =90ʎ,6分 ʑøOCA +øECD =90ʎ,即øOCD =90ʎ,7分 ʑOC ʅCD ,ȵOC 是半径,ʑCD 是☉O 的切线;8分(2)93-3π2.10分六㊁23.解:(1)由y=12x+4得A的坐标为(-8,0),点B的坐标为(0,4),1分 ȵøCBA=øCAB,ʑBC=AC,设点C的坐标为(a,0),在RtәBOC中,由勾股定理得a2+42=(8+a)2,ʑa=-3,ʑ点C的坐标为(-3,0).2分(2)①若øBCQ=90ʎ,则әCPQʐәBOC,3分ʑPC OB=PQ OC,即5-2t4=t3,解得t=32.4分②若øCQB=90ʎ,则AQ=BQ=12AB,5分ʑAP=OP=12AO,ʑt=2.综上,t的值为32或2.6分(3)15ʃ10512或3或72.10分七㊁24.解:(1)AD=BE;2分(2)连接AD,3分ȵәABC是等边三角形,BEʅAC于点F,ʑøEBC=30ʎ,CF=12BC=3,BF=33,4分第4㊀页(共6页)在RtәECF 中,EF =CE 2-CF 2=(21)2-32=23,ʑBE =33+23=53,5分 ȵәABC 和әECD 是等边三角形,ʑAB =BC =AC ,øBCA =øBAC =øECD =60ʎ,CE =CD ,ʑøBCE =øACD ,ʑәBCE ɸәACD ,6分 ʑAD =BE =53,øEBC =øDAC =30ʎ,ʑøBAD =90ʎ,7分 ʑBD =AB 2+AD 2=62+(53)2=111;8分(3)21+63;10分(4)13.12分 八㊁25.解:(1)ȵ抛物线经过点B (6,0),C (4,3),ʑ36a +32ˑ6+c =0,16a +32ˑ4+c =3,ìîíïïïïïï1分 解得a =-310,c =95,ìîíïïïïïï2分 ʑ抛物线的表达式为y =-310x 2+32x +95;3分 (2)由点C (4,3)得直线OC 为y =34x ,当x =6时,y =92,ʑS әOBD =12ˑ6ˑ92=272,4分设点P 点的坐标为m ,-310m 2+32m +95(),ȵS әOPC =13S әOBD ,ʑ12ˑ-310m 2+32m +95-34m ()ˑ4=13ˑ272,6分 解得m 1=1,m 2=32.当m =1时,-310m 2+32m +95=3;当m =32时,-310m 2+32m +95=278.ʑ点P 的坐标是(1,3)或32,278();8分 (3)①94;10分②y =-2x +6.12分。

【中考专题】2022年中考数学第三次模拟试题(含详解)

【中考专题】2022年中考数学第三次模拟试题(含详解)

2022年中考数学第三次模拟试题 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( ) A .16 B .19 C .24 D .362、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程1y (米),2y (米)与运动时间x (分)之间的函数关系如图所示,下列结论中错误的是( ) A .两人前行过程中的速度为180米/分 B .m 的值是15,n 的值是2700·线○封○密○外C .爸爸返回时的速度为90米/分D .运动18分钟或31分钟时,两人相距810米 3、若23m a b +和()31n a b -是同类项,且它们的和为0,则mn 的值是( )A .-4B .-2C .2D .44、点()4,9-关于x 轴的对称点是( )A .()4,9--B .()4,9-C .()4,9-D .()4,95、下列宣传图案中,既中心对称图形又是轴对称图形的是( )A .B .C .D .6、若分式1x x-有意义,则x 的值为( ) A .1x =B .1x ≠C .0x =D .0x ≠ 7、如图,E 、F 分别是正方形ABCD 的边CD 、BC 上的点,且CE BF =,AF 、BE 相交于点G ,下列结论中正确的是( )①AF BE =;②AF BE ⊥;③AG GE =;④ABG CEGF S S =四边形△.A .①②③B .①②④C .①③④D .②③④8、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ).A .28B .54C .65D .759、把方程2x 2﹣3x +1=0变形为(x +a )2=b 的形式,正确的变形是( )A .(x ﹣32)2=16 B .(x ﹣34)2=116C .2(x ﹣34)2=116D .2(x ﹣32)2=1610、下列图形是全等图形的是( )A .B .C .D . 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形 ABCD 边长为 2,CE BD BE BD =∥,,则 CE =_____________ ·线○封○密○外2、如图,在面积为48的等腰ABC 中,10AB AC ==,12BC =,P 是BC 边上的动点,点P 关于直线AB 、AC 的对称点外别为M 、N ,则线段MN 的最大值为______.3、如图,小明用一张等腰直角三角形纸片做折纸实验,其中∠C =90°,AC =BC =10,AB ,点C 关于折痕AD 的对应点E 恰好落在AB 边上,小明在折痕AD 上任取一点P ,则△PEB 周长的最小值是___________.4、两个人玩“石头、剪刀、布”游戏,在保证游戏公平的情况下,随机出手一次,两人手势不相同的概率是___________.5、在平行四边形ABCD 中,对角线AC 长为8cm ,30BAC ∠=︒,5cm AB =,则它的面积为______cm 2.三、解答题(5小题,每小题10分,共计50分)1、某中学有一块长30m ,宽20m 的长方形空地,计划在这块空地上划分出部分区域种花,小明同学设计方案如图,设花带的宽度为x 米.(1)请用含x 的式子表示空白部分长方形的面积;(要化简) (2)当花带宽2米时,空白部分长方形面积能超过400m 2吗?请说明理由. 2、计算:(﹣310)2021×(313)2020×(﹣1)2022. 3、如图,在等腰ABC 中,AB AC =,点D 是边BC 上的中点,过点C 作CE BC ⊥,交BA 的延长线于点E ,过点B 作BH AC ⊥,交AD 于点F ,交AC 于点H ,交CE 于点G . 求证:(1)BC BH CH EC ⋅=⋅;(2)24BC DF DA =⋅.4、如图,平面内有两个点A ,B .应用量角器、圆规和带刻度的直尺完成下列画图或测量: (1)经过A ,B 两点画直线,写出你发现的基本事实;·线○封○密·○外(2)利用量角器在直线AB 一侧画40ABC ∠=︒;(3)在射线BC 上用圆规截取BD =AB (保留作图痕迹);(4)连接AD ,取AD 中点E ,连接BE ;(5)通过作图我们知道.AB BD AE DE ==,,观察并测量图形中的角,写出一组你发现的两个角之间可能存在的数量关系.5、如图,D 、E 、F 分别是△ABC 各边的中点,连接DE 、DF 、CD .(1)若CD 平分∠ACB ,求证:四边形DECF 为菱形;(2)连接EF 交CD 于点O ,在线段BE 上取一点M ,连接OM 交DE 于点N .已知CE =a ,CF =b ,EM =c ,求EN 的值.-参考答案-一、单选题1、C【解析】【分析】分别求出各视图的面积,故可求出表面积.【详解】由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5故表面积为2×(4+3+5)=24故选C .【点睛】此题主要考查三视图的求解与表面积。

2024年辽宁省沈阳市铁西区中考数学零模试卷及参考答案

2024年辽宁省沈阳市铁西区中考数学零模试卷及参考答案

2024年辽宁省沈阳市铁西区中考数学零模试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如果气温升高2°C时气温变化记作+2°C,那么气温下降4°C时气温变化记作()A.+4°C B.﹣4°C C.+6°C D.﹣6°C2.(3分)如图所示几何体的左视图是()A.B.C.D.3.(3分)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.4.(3分)下列运算结果正确的是()A.x4+x4=2x8B.(﹣2x2)3=﹣6x6C.x6÷x3=x3D.x2•x3=x65.(3分)光线在不同介质中的传播速度是不同的,因此光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=120°,则∠3+∠4=()A.165°B.155°C.105°D.90°6.(3分)计算﹣的结果是()A.3B.3a+3b C.1D.7.(3分)若一次函数y=(k+3)x﹣1的函数值y随x的增大而减小,则k值可能是()A.2B.C.D.﹣48.(3分)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=2429.(3分)如图,在等腰△ABC中,∠A=40°,分别以点A、点B为圆心,大于AB为半径画弧,两弧分别交于点M和点N,连接MN,直线MN与AC交于点D,连接BD,则∠DBC的度数是()A.20°B.30°C.40°D.50°10.(3分)如图1,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP长与运动时间t(单位:s)的关系如图2,则AC的长为()A.B.C.17D.5二、填空题(本题共5小题,每小题3分,共15分)11.(3分)若a,b为两个连续整数,且a<<b,则a+b=.12.(3分)如图,点A,B,C为正方形网格中的3个格点,则tan∠ACB=.13.(3分)一个不透明的布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n=.14.(3分)如图,在平面直角坐标系中,矩形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=(k≠0,x<0)的图象上,点A,D在x轴上,点C在y轴上,点B 的坐标为(﹣2,4),则点E的坐标为.15.(3分)如图,在矩形ABCD中,AB=4,AD=4,点E是AD边的中点,连接AC,BE交于点F,∠CAD的平分线AG交CD边于点G,点A关于过点E的某条直线的对称点H恰好在AG上,且点H不与点A重合,连接FH,则FH的长为.三、解答题(本题共8小题,共75分.解答题应写出文字说明、演算步骤或推理过程)16.(10分)计算:(1);(2)(a+2)(a﹣2)+a(1﹣a).17.(8分)某工厂计划下个月生产甲,乙两种产品共900件,甲、乙两种产品的相关信息如下表:产品每件利润(元/件)成品率甲10090%乙8095%(成品率=每月生产产品合格可销售的件数÷每月生产产品总的件数×100%)若该工厂下个月生产甲种产品x件,销售甲、乙两种产品的总利润为y元.(1)求y与x之间的函数关系式(不必写自变量的取值范围);(2)若该工厂下个月计划生产的甲、乙两种产品的总成品率不低于92%,且销售利润最大,求此时的最大利润是多少元?18.(9分)小王计划下周日租一辆电动汽车去海边游玩一天,往返行程为210km.他到某租车公司了解到,该公司有若干辆A,B两种型号电动汽车出租,A,B两种型号每辆车每天费用分别为400元,500元.为了选择合适的型号,小王通过调查,了解到该公司这两种型号电动汽车各有20辆,每辆电动汽车充满电后行驶里程的部分数据,如下面的表格和统计图所示.型号平均里程(km)中位数(km)众数(km)A m215nB227.5227.5(1)表格中,m的值为,n的值为;(2)已知B种型号电动汽车充满电后能行驶里程可分成如图2所示的五种情况,请直接补全B种型号电动汽车充满电后能行驶里程条形统计图;(3)如果你是小王,你会选择用哪种型号的电动汽车?请说明理由.19.(8分)甲、乙两地相距200千米,货车从甲地出发,行驶1小时后在途中的丙地出现故障,技术人员乘轿车以100千米/小时的速度从甲地赶来维修(沟通时间忽略不计).到达丙地修好车后以原速原路返回,同时货车改变速度前往乙地.两车距乙地的路程y(千米)与货车驶时间x(小时)之间的函数关系如图所示,请结合图象回答下列问题.(1)求货车出现故障前的速度;(2)求点C的坐标;(3)货车修好后,货车与轿车相距40千米时,求x的值.20.(8分)某零件的剖面示意图如图所示,AB∥CD∥HE,点F,G在线段HE上,且四边形CDGF是正方形,AH⊥HE,垂足为点H,∠BCD=126°,∠E=68°,AB=BC=CD =10cm,求HE的长.(结果精确到1cm,参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)21.(8分)如图,点C在⊙O的直径AB的延长线上,CD是⊙O的切线,点D是切点,AE ⊥CD于点E,AE交⊙O于点F,且BC=1,AB=3.(1)求CE的长;(2)求AF的长.22.(12分)【基础应用】(1)如图1,在平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(2,0),点D的坐标为(4,0),点B在第一象限,且AC⊥BC,BD⊥x轴,求点B的坐标;【变式应用一】(2)如图2,在平面直角坐标系中,点A在函数y=(x>0)的图象上,点B在第二象限,连接OA,OB,AB,∠AOB=90°,∠BAO=60°,点B恰好在反比例函数y=(x<0)的图象上,则k的值为;【变式应用二】(3)如图3,在平面直角坐标系中,二次函数y=﹣x2+3x+4的图象与x轴交于点A和点B,点B在点A的右侧,点C在y轴的正半轴上,连接BC,在第一象限作矩形BCDE,点D在二次函数y=﹣x2+3x+4的图象的对称轴上,连接CE,若tan∠CED=,求点D 的坐标.23.(12分)【方法归纳】(1)在△ABC中,点D在AB边上,DE∥BC交AC于点E,将△ADE绕点A逆时针旋转α(0°<α<90°),得到△AFG,其中点D的对应点是点F,点E的对应点是点G,连接BF,CG.①如图1,如果AD:AE=6:5,求BF:CG的值;②如图2,如果∠BAC=30°,AB=AC,BF的延长线与线段CG交于点H,求∠BHC的度数;【方法应用】(2)如图3,在四边形ABCD中,AB=4,BC=6,连接AC,BD,AC=AD,且∠CAD =90°.则四边形ABCD的对角线BD的长度最大值为.2024年辽宁省沈阳市铁西区中考数学零模试卷参考答案一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.B;2.D;3.D;4.C;5.C;6.A;7.D;8.A;9.B;10.C 二、填空题(本题共5小题,每小题3分,共15分)11.3;12.2;13.9;14.(﹣4,2);15.三、解答题(本题共8小题,共75分.解答题应写出文字说明、演算步骤或推理过程)16.(1)3;(2)a﹣4.;17.(1)y=14x+68400;(2)最大利润是75960元.;18.216;220;19.(1)货车出现故障前的速度是50千米/小时;(2)C(2.5,150);(3)货车修好后,货车与轿车相距40千米时,x的值为2.75小时.;20.HE的长约为30cm.;21.(1);(2).;22.﹣6;23.4+6。

2020年中考模拟检测《数学试题》附答案解析

2020年中考模拟检测《数学试题》附答案解析

中考考前综合模拟测试数 学 试 卷(时间:xx 分钟 总分:xx 分)学校________ 班级________ 姓名________ 座号________一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·长沙)下列个数中,比-3小的数是( )A .﹣5B .﹣1C .0D .12.(2019·株洲)下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y - 3.(2019·淄博)下列几何体中,其主视图、左视图和俯视图完全相同的是( )A.B. C. D.4.(2019·山西)五台山景区空气清爽,景色宜人."五一"小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,"五一"小长假期间五台山景区进山门票总收入用科学记数法表示为( ) A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元5.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=- 6.(2019·天津) 若点A(-3,y 1),B(-2,y 2),C(1,y 3)都在反比例函数xy 12-=的图像上,则y 1,y 2,y 3的大小关系是A. y 2<y 1<y 3B. y 3 <y 1 <y 2C. y 1 <y 2<y 3D. y 3 <y 2<y 17. (2019·泰安)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为A.15B.25C.35D.458.(2019·衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路,某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( ) A. 9(1-2x )=1 B. 9(1-x )2=1 C. 9(1+2x )=1 D. 9(1+x )2=19.(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是 A .2(4)6y x =-- B .2(1)3y x =-- C .2(2)2y x =--D .2(4)2y x =--10.(2019·广元)如图,在正方形ABCD 的对角线AC 上取一点E.使得∠CDE =15°,连接BE 并延长 BE 到F,使CF =CB,BF 与CD 相交于点H,若AB =1,有下列结论:①BE =DE;②CE+DE =EF;③S △DEC =14-④1DH HC =.则其中正确的结论有( ) A.①②③B.①②③ ④C.①②④D.①③④二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 11.(2019·德州)|x ﹣3|=3﹣x ,则x 的取值范围是 . 12.(2019 · 柳州)如图,在△ABC 中,sin B =,tan C =,AB =3,则AC 的长为 .13.(2019•广安)在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为__________米.14.(2019·宁波)如图,Rt △ABC 中,∠C =90°,AC =12 ,点D 在边BC 上,CD =5,BD =13.点P 是线段AD 上一动点,当半径为6的e P 与△ABC 的一边相切时,AP 的长为________.三、简答题 (本题共2小题,每题8分,共16分) 15.(2019·凉山)计算:tan45° + (3-2)0-(-21)-2+ ︱3-2︱. 16.(2019·无锡)解方程:0522=--x x 四(本题共2小题,每题8分,共16分) 17.(2019·安徽)观察以下等式:第1个等式:211=111+, 第2个等式:311=226+,第3个等式:211=5315+,第4个等式:211 =7428+,第5个等式:211=9545+,……按照以上规律,解决下列问题:(1)写出第6个等式:__________;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.(2019•武汉)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.五、(本题共2小题,每题10分,共20分)19.(2019·衡阳)如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D处测得楼房顶部A 的仰角为30°,沿坡面向下走到坡脚C处,然后向楼房方向继续行走10米到达E处,测得楼房顶部A的仰角为60°,已知坡面CD=10米,山坡的坡度i=13(坡度i是指坡面的铅直高度与水平宽度的比),求楼房AB高度.(结果精确到0.1米)32≈1041)30°60°楼房i=1:3ADE20.(2019·南充)如图,在ABC∆中,以AC为直径的Oe交AB于点D,连接CD,BCD A∠=∠.(1)求证:BC是Oe的切线;(2)若5BC=,3BD=,求点O到CD的距离.六.(本题满分12分)21.(2019 ·荆州)体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:组别个数段频数频率1 0≤x<10 5 0.12 10≤x<20 21 0.423 20≤x<30 a4 30≤x<40 b(1)表中的数a=,b=;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.七、(本题满分12分)22.(2019浙江省杭州市)设二次函数y=(x-x1)(x-x2)( x1,x2是实数)(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=12时,y=-12.若甲求得的结果都正确·你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值.(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时.求证: 0<mn<1 16.八、(本题满分14分)23、(2019·海南)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A,D不重合),射线PE 与BC 的延长线交于点Q. (1)求证:△PDE ≌△QCE;(2)过点E 作EF ∥BC 交PB 于点F,连接AF,当PB =PQ 时,①求证:四边形AFEP 是平行四边形;②请判断四边形AFEP 是否为菱形,并说明理由.答案与解析一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·长沙)下列个数中,比-3小的数是( )A .﹣5B .﹣1C .0D .1 【答案】A【解析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.-5<-3<-1<0<1,所以比-3小的数是-5,故本题选:A .2.(2019·株洲)下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y - 【答案】C【解析】根据同类项的定义可知,含有相同的字母,并且相同字母的指数也分别相同,故选C 。

辽宁省沈阳市2024届中考数学全真模拟试题含解析

辽宁省沈阳市2024届中考数学全真模拟试题含解析

辽宁省沈阳市2024届中考数学全真模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D2.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是()A.0 B.1 C.2 D.33.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取()A.10cm的木棒B.40cm的木棒C.50cm的木棒D.60cm的木棒4.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位5.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为()A.3×109B.3×108C.30×108D.0.3×10106.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米7.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.8.下列各数中,为无理数的是()A.38B.4C.13D.29.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A.1600x+4000(120%)x+=18 B.1600x40001600(120%)x-++=18C.1600x+4000160020%x-=18 D.4000x40001600(120%)x-++=1810.如图是某零件的示意图,它的俯视图是()A.B.C.D.11.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-12.如图,PA 、PB 是O 的切线,点D 在AB 上运动,且不与A ,B 重合,AC 是O 直径.62P ∠=︒,当//BD AC时,C ∠的度数是( )A .30B .31︒C .32︒D .33︒二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简:4= .14.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B ,点 B 的坐标为(﹣3,0),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是_____.15.比较大小: .(填“>”,“<”或“=”)16.一元二次方程x 2+mx+3=0的一个根为- 1,则另一个根为 .17.方程x+1=25x +的解是_____.18.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AC 是⊙O 的直径,PA 切⊙O 于点A ,点B 是⊙O 上的一点,且∠BAC =30°,∠APB =60°. (1)求证:PB 是⊙O 的切线;(2)若⊙O 的半径为2,求弦AB 及PA ,PB 的长.20.(6分)张老师在黑板上布置了一道题:计算:2(x+1)2﹣(4x ﹣5),求当x =12和x =﹣12时的值.小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由.21.(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.(8分)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为( )A.40°B.55°C.65°D.75°23.(8分)计算:(﹣4)×(﹣12)+2﹣1﹣(π﹣1)03624.(10分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.25.(10分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方3C出发,沿斜面坡度3i的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)26.(12分)如图所示,一艘轮船位于灯塔P 的北偏东60︒方向与灯塔Р的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.求此时轮船所在的B 处与灯塔Р的距离.(结果保留根号)27.(12分)有这样一个问题:探究函数y =316x ﹣2x 的图象与性质. 小东根据学习函数的经验,对函数y =316x ﹣2x 的图象与性质进行了探究. 下面是小东的探究过程,请补充完整:(1)函数y =316x ﹣2x 的自变量x 的取值范围是_______; (2)如表是y 与x 的几组对应值 x … ﹣4 ﹣3.5 ﹣3 ﹣2 ﹣1 0 1 2 3 3.5 4 …y … ﹣83 ﹣748 32 83 116 0 ﹣116 ﹣83 m 748 83 …则m 的值为_______;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象; (4)观察图象,写出该函数的两条性质________.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】-≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.3 1.732【题目详解】-≈-,3 1.732()---≈,1.7323 1.268()---≈,1.73220.268()1.73210.732---≈,因为0.268<0.732<1.268,所以3表示的点与点B最接近,故选B.2、D【解题分析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.【题目详解】∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①选项正确;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②选项正确;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分线上的点到角的两边距离相等),∴点E到AB的距离等于CE的长,故③选项正确,故正确的有3个.故选D.【题目点拨】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.3、B【解题分析】设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.【题目详解】设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故选B.【题目点拨】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.4、D【解题分析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.5、A【解题分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【题目详解】将数据30亿用科学记数法表示为9310⨯,故选A .【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6、D【解题分析】根据图中信息以及路程、速度、时间之间的关系一一判断即可.【题目详解】甲的速度=4206=70米/分,故A 正确,不符合题意; 设乙的速度为x 米/分.则有,660+24x-70×24=420, 解得x=60,故B 正确,本选项不符合题意,70×30=2100,故选项C 正确,不符合题意,24×60=1440米,乙距离景点1440米,故D 错误,故选D .【题目点拨】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.7、D【解题分析】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求.故选B .8、D【解题分析】A ,是有理数;B =2,是有理数;C .13,是有理数;D ,是无理数, 故选D.9、B【解题分析】根据前后的时间和是18天,可以列出方程.【题目详解】 若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x-+=+%. 故选B【题目点拨】 本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.10、C【解题分析】物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.【题目详解】从上面看是一个正六边形,里面是一个没有圆心的圆.故答案选C.【题目点拨】本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.11、C【解题分析】解:因为设小明打字速度为x 个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等, 可列方程得1201806x x =+, 故选C .【题目点拨】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.12、B【解题分析】连接OB ,由切线的性质可得90∠=∠=︒PAO PBO ,由邻补角相等和四边形的内角和可得62∠=∠=︒BOC P ,再由圆周角定理求得D ∠,然后由平行线的性质即可求得C ∠.【题目详解】解,连结OB ,∵PA 、PB 是O 的切线,∴PA OA ⊥,PB OB ⊥,则90∠=∠=︒PAO PBO ,∵四边形APBO 的内角和为360°,即++360∠∠∠+∠=︒PAO PBO P AOB ,∴180∠+∠=︒P AOB ,又∵62P ∠=︒,180∠+∠=︒BOC AOB ,∴62∠=∠=︒BOC P ,∵BC BC =, ∴1312∠=∠=︒D BOC , ∵//BD AC ,∴31∠=∠=︒C D ,故选:B .【题目点拨】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解题分析】根据算术平方根的定义,求数a 的算术平方根,也就是求一个正数x ,使得x 2=a ,则x 就是a 的算术平方根, 特别地,规定0的算术平方根是0.【题目详解】∵22=4,∴4=2.【题目点拨】本题考查求算术平方根,熟记定义是关键.14、(32,12)【解题分析】连接AB,OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO以及∠BCO的度数,在Rt△COD中,解直角三角形即可解决问题;【题目详解】连接AB,OC,∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C作CD⊥OB于D,则OD=12OB,∠DCB=∠DCO=60°,∵B(30),∴3在Rt△COD中.CD=OD•tan30°=12,∴C(312),故答案为C(-32,12).【题目点拨】本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键.15、>【解题分析】试题分析:根据二次根式的性质可知,被开方数越大,所对应的二次根式就越大,因此可判断与=1的大小为>1.考点:二次根式的大小比较16、-1.【解题分析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.【题目详解】∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,由根与系数关系:-1•x1=1,解得x1=-1.故答案为-1.17、x=1【解题分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.【题目详解】两边平方得:(x+1)1=1x+5,即x1=4,开方得:x=1或x=-1,经检验x=-1是增根,无理方程的解为x=1.故答案为x=118、11【解题分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【题目详解】∵a<28<b,a、b为两个连续的整数,∴252836<<,∴a=5,b=6,∴a+b=11.故答案为11.【题目点拨】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)2【解题分析】试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果.(1)连接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°.∵四边形的内角和为360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵点B是⊙O上的一点,∴PB是⊙O的切线.(2)连接OP,∵PA、PB是⊙O的切线,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.20、小亮说的对,理由见解析【解题分析】先根据完全平方公式和去括号法则计算,再合并同类项,最后代入计算即可求解.【题目详解】2(x+1)2﹣(4x﹣5)=2x2+4x+2﹣4x+5,=2x2+7,当x=12时,原式=12+7=712;当x=﹣12时,原式=12+7=712.故小亮说的对.【题目点拨】本题考查完全平方公式和去括号,解题的关键是明确完全平方公式和去括号的计算方法.21、(1)袋子中白球有2个;(2)见解析,59.【解题分析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:213xx=+,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【题目详解】解:(1)设袋子中白球有x个,根据题意得:213xx=+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.【题目点拨】此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.22、C.【解题分析】试题分析:由作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选C.考点:作图—基本作图.23、1 7. 2【解题分析】分析:按照实数的运算顺序进行运算即可.详解:原式11 416,22=⨯+-+1216,2=+-+17.2=点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.24、绳索长为20尺,竿长为15尺.【解题分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【题目详解】设绳索长、竿长分别为x尺,y尺,依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【题目点拨】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 25、33+3.5【解题分析】延长ED 交BC 延长线于点F ,则∠CFD=90°,Rt △CDF 中求得CF=CDcos ∠DCF=23、DF=CD=2,作EG ⊥AB ,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan ∠AEG=43•tan37°可得答案.【题目详解】如图,延长ED 交BC 延长线于点F ,则∠CFD=90°,∵tan ∠1333, ∴∠DCF=30°,∵CD=4,∴DF=12CD=2,CF=CDcos ∠DCF=4×323, ∴333过点E 作EG ⊥AB 于点G ,则3,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan ∠AEG=43•tan37°, 则AB=AG+BG=43•tan37°+3.5=33+3.5,故旗杆AB 的高度为(33+3.5)米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题26、406海里【解题分析】过点P 作PC AB ⊥,则在Rt △APC 中易得PC 的长,再在直角△BPC 中求出PB . 【题目详解】解:如图,过点P 作PC AB ⊥,垂足为点C .∴30APC ︒∠=,45BPC ︒∠=,80AP =海里.在Rt APC ∆中,cos PC APC AP∠=, ∴3cos 80403PC AP APC =⋅∠≡=. 在Rt PCB ∆中,cos PC BPC PB∠=, ∴4036cos PC PB BPC ===∠. ∴此时轮船所在的B 处与灯塔P 的距离是6海里.【题目点拨】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.27、(1)任意实数;(2)32-;(3)见解析;(4)①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【解题分析】(1)没有限定要求,所以x 为任意实数,(2)把x =3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【题目详解】解:(1)函数y =316x ﹣2x 的自变量x 的取值范围是任意实数; 故答案为任意实数; (2)把x =3代入y =316x ﹣2x 得,y =﹣32; 故答案为﹣32; (3)如图所示;(4)根据图象得,①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.故答案为①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【题目点拨】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.。

沈阳市2023年中考数学试卷

沈阳市2023年中考数学试卷

沈阳市2023年中考数学试卷全文共四篇示例,供读者参考第一篇示例:2023年中考数学试卷-沈阳市一、选择题(每小题2分,共40分)1. 下列是一个等差数列的是()A. 3,6,12,24B. 2,4,8,16C. 1,3,6,10D. 4,7,11,161. 化简:2/3+5/6=2. 已知△ABC中,AB=8cm,BC=6cm,则∠B的补角为_______°。

3. 式子(2x-3)(x+4)的展开结果是__________。

4. 直角三角形三边长度分别为3cm、4cm,斜边长______cm。

5. 设函数y=3x+2,当x=-1时,y的值是_________。

1. 计算:120÷5+30×2=4. 有一个等腰三角形,底边长为10cm,两底边夹角为60°,求等腰三角形的面积。

5. 计算:若(x+3)/2 = 6,求x的值。

以上是2023年沈阳市中考数学试卷的部分题目,希望同学们认真答题,取得好成绩。

祝各位考生顺利通过考试!第二篇示例:沈阳市2023年中考数学试卷一、选择题1. 下列各组数中,互质的是()A. 8和12B. 15和28C. 9和27D. 17和292. 若点A坐标为(3,4),点B坐标为(-1,2),则线段AB的长度为()A. 4B. 5C. 6D. 74. 一个正方体的体积为8cm³,其表面积为()A. 6cm²B. 12cm²C. 24cm²D. 48cm²6. 已知两条直线的斜率分别为2和1/2,则这两条直线的夹角为()A. 30°B. 45°C. 60°D. 90°7. 一张矩形纸的长为25cm,宽为15cm,将其对角线对折,对折后纸的长、宽分别为()A. 15cm、25cmB. 15cm、15cmC. 30cm、25cmD.30cm、15cm二、填空题11. 一组数据18,24,28,32,36中的中位数是_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沈阳市2020年中考数学模拟试题(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 在平面直角坐标系中,点P(3,﹣2)在()
A.第一象限B.第二象限C.第三象限D.第四象限
2 . 如图,点A、B在双曲线(x<0)上,连接OA、AB,以OA、AB为边作▱OABC.若点C恰落在双曲线
(x>0)上,此时▱OABC的面积为().
A.B.C.D.4
3 . 观察图中正方形四个顶点所标的数字规律,可知数2019应标在()
A.第505个正方形的左上角B.第505个正方形的右下角
C.第504个正方形的左上角D.第504个正方形的右下角
4 . 方程x(x﹣1)=x的根是()
A.x=2B.x1=﹣2,x2=0C.x=﹣2D.x1=2,x2=0
5 . 将一副直角三角板按图叠放,则△AOB与△DOC的面积之比等于().
A.B.C.D.
6 . 甲乙两车从A地驶向B地,甲车比乙车早出发2h,并且甲车在途中休息了0.5h,甲、乙两车离A地的距离y(km)与甲车行驶时间x(h)之间的函数图象如图所示.根据图象提供的信息,下列说法:
①乙车速度比甲车慢;②a=40;③乙车比甲车早1.75小时到达B地.
其中正确的有()
A.0个B.2个C.1个D.3个
7 . 若,则的值是()
A.B.C.D.
8 . 如图,在中,,AB=5,BC=4,点D为边AC上的动点,作菱形DEFG,使点E、F在边AB上,点G在边BC上.若这样的菱形能作出两个,则AD的取值范围是()
A.B.
C.D.
二、填空题
9 . 请运用你喜欢的方法求tan75°=.
10 . 如图所示,水平放置的长方体的底面是边长为2和4的长方形,从左面看它得到的图形的面积为6,则长
方体的体积等于__________.
11 . 已知扇形的半径为3cm,面积为3πcm2,扇形的弧长是_____cm(结果保留π)
12 . 如图,把等腰直角放在直角坐标系内,其中,点、的坐标分别为,将等腰直角沿轴向右平移,当点落在直线上时,则线段扫过的面积为
________.
13 . 若分式方程有增根,则的值为__________.
14 . 如图,在△ABC中,∠C=90°,AC=BC,AB=2,点O为AB的中点,以点O为圆心作半圆与边AC相切于点
A.则图中阴影部分的面积为__.
15 . 一辆匀速行驶的汽车在 10:30 距离A 地50千米,要在
12:00之前驶过A 地,车速v (单位:km/h)应满足的条件是___________.(请列一元一次不等式)
16 . 分解因式:9x2y ﹣6xy+y =_____.
三、解答题
17 . 先化简,再求值:,其中.
18 . 如图,在以点O 为中心的正方形ABCD 中,AD=4,连接AC ,动点E 从点O 出发沿O→C 以每秒1个单位长度的速度匀速运动,到达点C 停止.在运动过程中,△ADE 的外接圆交AB 于点F ,连接DF 交AC 于点G ,连接EF ,将△EFG 沿EF 翻折,得到△EFH.
(1)求证:△DEF 是等腰直角三角形;
(2)当点H 恰好落在线段BC 上时,求EH 的长;
(3)设点E 运动的时间为t 秒,△EFG 的面积为S ,求S 关于时间t 的关系式. 19 . 如图,正方形ABCD 中,AB =4,点E 是对角线AC 上的一点,连接D
A .过点E 作EF⊥ED,交A
B 于点F ,以DE 、EF 为邻边作
矩 形DEFG ,连接A
B .
(1)求证:矩形DEFG 是正方形;
(2)求AG+AE 的值;
(3)若F恰为AB中点,连接DF交AC于点M,求ME的长.
20 . 在平面直角坐标系中,一次函数()的图象与反比例函数(k≠0)的图象交
于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).求:
(1)反比例函数和一次函数的解析式;
(2)写出当反比例函数的值大于一次函数的值时的取值范围.
21 . 图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.
(1)求x的取值范围;
(2)若∠CPN=60°,求x的值;
(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留
π).
22 . 如图,在热气球上A处测得一栋大楼顶部B的俯角为23°,测得这栋大楼底部C的俯角为45°.已知热气球A处距地面的高度为180m,求这栋大楼的高度(精确到1m).(参考数据:sin23°=0.39,cos23°=0.92,
tan23°=0.42)
23 . 某校开展了“文明城市”活动周,活动周设置了“:文明礼仪,:生态环境,:交通安全,:卫生保洁”四个主题活动,每个学生限选一个主题参与,为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下图所示的不完整的条形统计图和扇形统计图.
(1)本次随机调查的学生人数是_______人;
(2)补全条形统计图;
(3)在扇形统计图中,“”主题对应扇形的圆心角为________度.
24 . 如图,动直线 y=kx+2(k>0)与 y 轴交于点 F,与抛物线 y=相交于A,B 两点,过点 A,
B 分别作x 轴的垂线,垂足分别为点C,D,连接CF,DF,请你判断△CDF 的形状,并说明理
由.
25 . 如图,在中,,,.现在有动点从点出发,沿线段
向终点运动,动点从点出发,沿折线向终点运动.如果点的速度是秒,点的速度是秒.它们同时出发,当有一点到达终点时,另一点也停止运动.设运动的时间为秒.
如图,在上,当为多少秒时,以点、、为顶点的三角形与相似?
如图,在上,是否存着某时刻,使得以点、、为顶点的三角形与相似?若存在,求出的值;若不存在,请说明理由.。

相关文档
最新文档