FDA 铅含量测试方法
食品中铅的测定
23.2.1.4 含酒精性饮料或含二氧化碳饮料:
吸取10. 00 mL或20. 00 mL试样,置于250 mL~500 mL定 氮瓶中,加数粒玻璃珠,先用小火加热除去乙醇或二氧化 碳,再加5 mL-10 mL硝酸,混匀后,
以下,按23.2.1.1自“放置片刻··⋯”起依法操作,但定容 后的溶液每10 mL相当于2 mL试样。
称取05溶于50ml三氯甲烷中如不全溶可用滤纸过滤于250ml分液漏斗中用氨水199提取三次每次100ml将提取液用棉花过滤至500ml分液漏斗中用盐酸11调至酸性将沉淀出的二硫腙用三氯甲烷提取2次每次20ml合并三氯甲烷层用等量水洗涤两次弃去洗涤液在50水浴上蒸去三氯甲烷
食品中铅的测定
GB/T5009.12-2003 目次
21. 14 铅标准使用液: – 吸取1. 0 mL铅标准溶液,置于100 mL容量瓶中,加水 稀释至刻度。 – 此溶液,每毫升相当于10. 0 µg 铅, – 即:质量浓度ρ(Pb)= 10.0 µg/ml。
22 仪器
所用玻璃仪器
– 均用硝酸(10% -20%)浸泡24 h以上,用自来水反复冲 洗,最后用去离子水冲洗干净。
C02比色法概述.ppt
测定步骤
1. 静置分层后,三氯甲烷层(下层)经 脱脂棉滤入1 cm比色杯中,
2. 以纯三氯甲烷调节零点,于波长510 nm处测吸光度A,各点减去零管吸收 值后,绘制标准曲线或计算一元回归 方程,试样与曲线比较。
脱脂棉
721型分光光度计操作图.mht
表格形式
125ml的分液漏斗 0 1 2 3 4 5 样品液
21.9 硝酸(1+99) ;
– 量取1 mL硝酸,加人99 mL水中。
21. 10 二硫腙三氯甲烷溶液(0. 5 g/L)
铅测试方法
种植业产品
项目 方法
类型
前处理方 法
实验流程
仪器设备
称取试样0.2g~3g(精确至0.001g)于
锥形瓶中,加入10mL硝酸和0.5mL高
氯酸,在电热炉上消解。若消化液呈 □电子天平(SP2016—G621)
铅
GB 5009.12-2017 种植业产品 湿法消解 棕褐色,再加少量硝酸,消解至冒白 □石墨炉原子吸收
种植业产品
项目 方法
类型
前处理方 法
实验流程
仪器设备
称取试样0.2g~0.8g(精确至0.001g)
于微波消解罐中,加入5mL硝酸,
1mL过氧化氢,按照微波消解的操作
步骤(①130℃升温5min,恒温
10min②165℃升温5min恒温15min③
180℃升温5min,恒温15min)消解 □电子天平(SP2016—G621)
白烟,消化液呈无色透明或略带黄色,□电热板(SP2017—G1576)
冷却后用水定容至10mL,混匀备用。
同时做试剂空白试验。
计算公式
X=(C*f-C0)*V*1000/m/1000/1000 X:样品结果,mg/kg C:试样消化液中待测元素含量,µg/L C0:空白液中待测元素含量,µg/L V:样品消解液定容体积,mL f:稀释倍数 1000:换算系数
水产品
项目 方法
类型
铅
GB 5009.12-2017 水产品
前处理方 法
实验流程
仪器设备称取试样Leabharlann .2g~0.8g(精确至0.001g)
于微波消解罐中,加入5mL硝酸,
1mL过氧化氢,按照微波消解的操作
步骤(①130℃升温5min,恒温
铅标准储备液 比色法
铅标准储备液比色法是一种测定铅含量的方法,适用于食品、环境、药品等领域。
以下是该方法的步骤:
1. 配制铅标准储备液:准确称取适量的硝酸铅,溶解于适量的硝酸溶液中,转移到100毫升容量瓶中,用去离子水稀释至刻度。
该标准储备液的浓度为100微克/毫升。
2. 配制铅标准使用液:使用时,准确吸取一定量的铅标准储备液,加入适量的稀醋酸溶液,再加入适量的去离子水,制备成不同浓度的铅标准使用液。
3. 样品处理:将样品制备成溶液,进行前处理,以便与标准溶液进行比色测定。
4. 比色测定:在50毫升比色管中,分别加入不同浓度的铅标准使用液和样品溶液,加入适量的显色剂(如硫化钠),摇匀。
然后加入适量的醋酸溶液,再加入去离子水稀释至刻度。
5. 显色与测定:将上述溶液放置一定时间后,用紫外可见分光光度计进行比色测定,记录吸光度值。
6. 计算与分析:根据吸光度值与浓度之间的关系,绘制标准曲线。
通过比较样品溶液的吸光度值与标准曲线的差异,可以计算出样品中铅的含量。
同时,对结果进行误差分析,评估方法的可靠性。
需要注意的是,在实际操作中,要严格按照规定操作,
注意安全事项,避免误差的产生。
同时,为了提高测定的准确性和可靠性,可以进行多次测量和校准。
欧洲药典重金属检测
2.4.8 重金属下述方法需要使用硫代乙酰胺试剂。
作为另一种选择,硫化钠溶液(0.1ml)也常常适用。
由于各论中所述测试是使用硫代乙酰胺试剂研发出来的,如需用硫化钠溶液替代,需要包括方法A、方法B和方法H监测溶液,由测试规定的待测物的量进行配制,其已经加入了制备对照溶液规定量的铅标准溶液。
监测溶液至少要与对照溶液一样深,否则测试是无效的。
方法A供试溶液:12ml待测物水溶液。
对照溶液(标准):10ml规定的标准铅溶液(1ppm or 2ppm Pb)和2ml的待测液混合。
空白溶液:10ml的水和2ml的测试溶液混合。
向每种溶液中,加入2ml pH为3.5的缓冲溶液。
混合后加1.2ml的硫代乙酰胺试液,立即混合。
2分钟后目测。
系统适用性:相较于空白溶液,对照溶液呈浅棕色结果:供试溶液的棕色不深于对照溶液。
若结果难以判断,进行膜过滤(孔径0.45μm)。
使用中等强度且恒定的压力缓慢且均匀地过滤。
比较不同溶液在过滤器上产生的斑点。
方法B供试溶液:用含最少量水的溶剂(例如含15%水的二氧杂环乙烷或含15%水的丙酮)溶解成12ml待测液。
对照溶液(标准):10ml规定的铅标准溶液(1ppm or 2ppm Pb),加入2ml的待测液。
用待测物所用溶剂稀释100ppm Pb的铅标准溶液至1或2ppm Pb。
空白溶液:10ml待测物所用溶剂和2ml的待测溶液混合。
向每种溶液中,加入2ml pH为3.5的缓冲溶液。
混合后加1.2ml的硫代乙酰胺试液,立即混合。
2分钟后目测。
系统适用性:相较于空白溶液,对照溶液呈浅棕色结果:供试溶液的棕色不深于对照溶液。
若结果难以判断,进行膜过滤(孔径0.45μm)。
使用中等强度且恒定的压力缓慢且均匀地过滤。
比较不同溶液在过滤器上产生的斑点。
方法C供试溶液:规定量(不超过2g)的待测物质置于坩埚内,加4ml 250g/l硫酸镁的稀硫酸溶液。
玻璃棒搅拌混和,小心加热。
若混合物仍为液体,则在水浴中蒸发使其干燥。
铅的检测方法
铅的检测方法一、滴定法:原理:将一种已知准确浓度的试剂溶液,滴加到被测物质的溶液中,根据试剂溶液的浓度和用量,计算被测物质的含量。
例1:用盐酸-硝酸混合酸溶解试样,加入一定量的氯化钠防止铅析出,用氯化钠和盐酸稀释液稀释,在微酸性溶液中,用EDTA滴定法测定铅的含量。
例2:使Pb生成PbSO4沉淀与其它元素分离,在pH值5.5~6.0的醋酸-醋酸钠(铵)缓冲液中,使PbSO4转化为Pb(Ac)2,以二甲酚橙为指示剂,用EDTA标准溶液滴定。
(本法泛用于原矿、尾矿、精矿中含量在0.5以上的Pb)二、分光光度法:原理:分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。
基本定律是朗伯比尔定律。
例:以二溴羟基苯基卟啉为显色剂,配合物最大吸收波长为479nm,在最佳实验条件下绘制标准曲线,在0.06~1.00mg/ml范围内呈线性相关,线性回归方程为y=0.894x-0.022,相关系数为0.9994,摩尔吸光系数ε=2.8×105L·mol-1·cm-1,方法检出限为0.02ug/ml。
三、双波长分光光度法:双波长分光光度法是在传统分光光度法的基础上发展起来的,它的理论基础是差吸光度和等吸收波长。
它与传统分光光度法的不同之处,在于它采用了两个不同的波长即测量波长和参比波长同时测定一个样品溶液,以克服单波长测定的缺点,提高了测定结果的精密度和准确度。
四、双硫腙分光光度法:原理:双硫腙分光光度法是以双硫腙为螯合剂,使之与金属离子反应生成带色物质,而后用分光光度法测定该金属离子的方法。
这是环境监测中常用的一种间接、萃取分光光度法,是测定铅的常用方法,是基层单位经常采用的方法。
例:在水质标准中,采用双硫腙分光光度法对铅的测定:在pH为8.5-9.5的氨性柠檬酸盐-氰化物的还原性介质中,铅与双硫腙形成可被氯仿萃取的淡红色双硫腙铅螯合物,在510nm波长处可进行分光光度测定,从而求出铅的含量。
美国食品认证之 FDA测试项
Molecular weight Glass transition points
氯仿可溶提取物-去离子水
Net chloroform soluble extractives in distilled
Water
Net chloroform soluble
氯仿可溶提取物-50%乙醇 extractives in 50%
1680
FDA 21CFR 177.1580
—— US states law/regulation
1680
FDA 21CFR 177.1630
1120
660 *如果为内表面单面涂层必
须是可承装液体,否则需送
双面涂层或空白样品;
*如果外表面为涂层无法盛
装液体,需送送双面涂层或
660
空白样板,
*如果是胶水类样品,需要
序号
类别
测试项目 水提取物
项目英文名 Distilled Water Extractive
1
树脂和聚合物涂层 Organic resin coatings
正庚烷提取物
N-heptane Extractive
8%乙醇提取物
8% Ethanol Extractive
2
纸和纸板 Paper and Paperboard
*如果外表面为涂层无法盛 装液体,需送送双面涂层或
660
空白样板,
*如果是胶水类样品,需要
客户自己做成涂层后送样检
测或提供处理方法。
660
1980
FDA 21CFR 175.300
560
560
560
560
需提供容器总面积,容器水
660
容量,样品为橡胶密封件
铅检测方法
铅检测方法本实验用的全部玻璃器具为硼硅酸玻璃制品或施行了甲基硅氨烷处理的器具(器具内壁用三甲基氯硅烷:吡啶:六甲基二硅氨烷(1:5:3)混合溶液浸湿,10分钟后水洗,干燥)。
另外,本试验中只能用除去铅的水和试剂。
1、试剂除下列试剂外,使用附录2所列试剂。
氨-氰化钾-亚硫酸钠溶液:在392mL氨水中,加入30mL氰化钾溶液和水至1000mL 后,加入1.5g亚硫酸钠溶解。
盐酸羟胺溶液:将20g盐酸羟胺溶于约65mL水中,移入分液漏斗内,加2~3滴麝香草酚蓝试液,加氨水至溶液呈黄色。
再加入10mL4%二乙基二硫代氨基甲酸钠,充分混匀后,静置,每次用10-15mL三氯甲烷提取,在5mL提取液中加入5滴硫酸铜溶液(1→100),振摇混合,不呈黄色时为终点。
然后,在抽提后的水溶液中加入稀盐酸至溶液变红色,再加入15mL三氯甲烷,振摇混匀后,静置,分取水层,加水至100mL。
灰化辅助液:将硝酸镁溶解在水中至饱和。
柠檬酸铵溶液:将250g柠檬酸铵溶于水中至500mL,滴加氨水,调节pH9。
随后,为了除铅,溶液中加入适量提取用双硫腙四氯化碳溶液,反复提取至双硫腙四氯化碳溶液的固有绿色不退为止。
溶液中残留的双硫腙先用氯仿,再用四氯化碳除去。
氰化钾溶液:将50g氰化钾溶于水中至100mL。
随后,为了除铅,溶液中加入适量的提取用双硫腙四氯化碳,反复提取至双硫腙四氯化碳溶液固有的绿色不褪为止。
溶液中残留的双硫腙先用氯仿,再用四氯化碳除去后,加水至500mL。
提取用双硫腙四氯化碳溶液:将40~50mg双硫腙溶于四氯化碳中至1000mL。
必要时,按下述方法配制。
将0.1g双硫腙溶于100mL氯仿中,移入分液漏斗内,加入100mL氨水溶液(1→100),振摇混合后,静置,收集氨提取液,用氨水重复提取2~3次,合并氨提取液,用少量四氯化碳洗涤数次后,加盐酸(1→2)使溶液稍呈酸性。
加入200mL四氯化碳,振摇混合后,静置,收集四氯化碳提取液,用四氯化碳重复提取2~3次,合并四氯化碳提取液,用50ml水洗涤后,加入适量的四氯化碳,调节至1000mL中含40~50mg双硫腙。
玩具产品材料中铅含量测试方法
玩具产品材料中铅含量测试方法一、前言美国总统布什于2008年8月14日签署了《消费品安全改进法案》(Consumer Product Safety Improvement Act of2008,简称CPSIA),该法案规定禁售任何对象为12岁或以下儿童、含铅量超过规定的产品。
法案对玩具产品材料中铅含量做出了明确的要求,因此如何测定玩具产品不同材料中的铅含量,给企业和测试机构提出了新的要求。
本文综述了目前国内外铅含量的主要测试方法,以供参考。
二、试剂除非另有说明,本文所使用的试剂均符合国家标准或行业标准,所使用的水均为去离子水或等同纯度的水(电阻率为18.2MΩ)。
所涉及的试剂及其纯度如下:2.1浓硝酸:优级纯;2.2过氧化氢(30%):分析纯;2.3浓盐酸:优级纯;2.4高氯酸:优级纯;2.5氢氟酸:分析纯;2.6硝酸(1+1,体积比):取1份浓硝酸(2.1)与1份水混合;2.7混合酸1(浓硝酸:高氯酸=4:1,体积比):取4份浓硝酸(2.1)与1份高氯酸(2.4)混合;2.8混合酸2(浓盐酸:浓硝酸:水=2:1:2,体积比):取2份浓盐酸(2.3)、1份浓硝酸(2.1)和2份水混合;2.9混合酸3(浓硝酸:氢氟酸=1:3,体积比):取1份浓硝酸(2.1)与3份氢氟酸(2.5)混合;2.10硝酸(2%):取2份浓硝酸(2.1)与65份水混合;2.11乙酸氨溶液(50%):取500g乙酸氨(NH4C2H3O2)溶于水中,定容至1L;2.12铅标准溶液:有证标准物质,浓度为100mg/L或1000mg/L。
三、设备试验中所用到的设备包括:3.1火焰原子吸收分光光度计(FLAA),配铅空心阴极灯;3.2电感耦合等离子体原子发射光谱仪(ICP-AES);3.3马弗炉;3.4微波消解炉;3.5可调式电热炉;3.6万分位电子分析天平。
四、样品处理目前,常见的样品处理有湿法消解、干法灰化和微波消解三种方法。
干法灰化法操作简便,但在高温下易损失;湿法消解法可以处理多种材料,但耗时长,同时需要使用高浓度的酸,造成的环境污染较严重;微波消解法操作简易,试验周期短,同时由于酸消耗量少,由酸引入的环境污染也大为降低,但同时处理样品的批量小,且仪器成本较高。
fda药物重金属含量标准
fda药物重金属含量标准FDA(美国食品和药物管理局)是负责监管和管理药物安全的重要机构之一。
在药物质量控制中,重金属含量是一个非常重要的标准。
本文将介绍FDA对药物重金属含量的标准以及其重要性。
一、背景介绍重金属是指密度高、刚性大的金属元素,如铅、汞、砷等。
它们具有一定的毒性,在人体内长期积累可能导致严重的健康问题。
因此,在药物生产中,控制药物中重金属的含量非常重要。
二、FDA的药物重金属含量标准根据FDA的规定,药物中重金属的含量必须符合一定的标准。
具体标准如下:1. 铅(Lead):每日剂量不得超过0.5微克。
2. 汞(Mercury):每日剂量不得超过0.3微克。
3. 砷(Arsenic):每日剂量不得超过0.5微克。
这些标准是为了保证药物的安全性和质量,确保人们使用药物时不会受到重金属的危害。
三、重金属含量标准的重要性药物的主要作用是治疗疾病和保护人们的健康。
然而,如果药物中含有过多的重金属,就会对人体产生负面影响,并可能导致中毒。
1. 铅的危害:铅是一种常见的重金属,长期摄入过多的铅可能导致神经系统受损、肾功能异常等问题。
2. 汞的危害:汞对人体的中枢神经系统和免疫系统有毒性影响,长期摄入过多的汞可能导致脑损伤和免疫系统紊乱。
3. 砷的危害:砷是一种高度有毒的重金属,长期摄入过多的砷可能引起多种癌症和其他疾病。
因此,严格控制药物中重金属的含量是保障患者用药安全的重要手段之一。
四、重金属检测方法为了确保药物的质量,需要使用精确、可靠的方法来检测重金属的含量。
常见的重金属检测方法包括原子吸收光谱法、电感耦合等离子体质谱法和感应耦合等离子体质谱法等。
这些方法能够快速、准确地测定药物中的重金属含量,确保药物的质量符合标准要求。
五、国际标准与合规要求除了FDA的标准外,国际上也有许多其他机构和组织对药物中的重金属含量提出了要求。
例如,欧洲药典委员会(European Pharmacopoeia, EP)也制定了类似于FDA标准的重金属含量限制。
中药 铅含量 鉴定
中药铅含量鉴定
中药中的铅含量鉴定是非常重要的,因为铅是一种有毒物质,过量摄入会对人体健康造成严重危害。
铅含量的鉴定通常通过以下几种方法进行:
1. 原子吸收光谱法(AAS),这是一种常用的分析方法,通过测量中药样品中铅的吸收光谱来确定其含量。
该方法准确性高,但需要专业设备和操作技能。
2. 电感耦合等离子体质谱法(ICP-MS),这是一种高灵敏度的分析方法,可以用于测定中药中微量的铅含量,具有较高的准确性和精确度。
3. 火焰原子吸收光谱法(FAAS),这是一种常用的分析方法,适用于测定中药中较高浓度的铅含量,操作简单,但灵敏度相对较低。
除了上述常用的分析方法外,还可以结合其他化学分析方法,如离子色谱法、荧光分析法等进行铅含量的鉴定。
在进行铅含量鉴定时,需要严格按照相关标准操作,并确保实验室环境和设备的清
洁,以避免外部污染对结果的影响。
此外,对于中药中铅含量的鉴定,还应考虑中药的来源、加工工艺、保存方式等因素,以全面评估铅的风险。
同时,建议选择正规的实验室或机构进行检测,以确保结果的可靠性和准确性。
最终的目的是保障中药产品的质量和安全,确保人们服用中药时不会受到铅等有害物质的侵害。
铅的检测方法
铅的检测方法引言铅是一种常见的重金属元素,广泛存在于自然界中。
然而,长期暴露于高浓度的铅环境中会对人体健康造成严重影响,包括神经系统、血液系统和生殖系统等。
因此,对铅的检测方法的研究具有重要意义。
本文将介绍铅的检测方法,包括传统方法和现代方法两个方面。
传统方法主要包括化学分析法和光谱分析法;现代方法主要包括电化学分析法、生物传感器和光电子技术等。
传统方法化学分析法化学分析法是一种经典的铅检测方法。
常用的化学分析法有火焰原子吸收光谱法(FAAS)和原子荧光光谱法(AFS)等。
1.火焰原子吸收光谱法(FAAS) FAAS通过将样品溶解并转化为气态,在特定波长下测量样品中吸收特定元素产生的可见光信号来确定铅含量。
这种方法准确度较高,但需要较长时间进行预处理和操作。
2.原子荧光光谱法(AFS) AFS利用样品中铅原子的荧光特性来测量其含量。
该方法具有高灵敏度和较低的检出限,但对样品预处理要求较高。
光谱分析法光谱分析法是一种非常常用的金属元素检测方法。
常用的光谱分析法有原子吸收光谱法(AAS)和原子发射光谱法(AES)等。
1.原子吸收光谱法(AAS) AAS通过将样品转化为气态,并在特定波长下测量样品中吸收特定元素产生的可见光信号来确定铅含量。
这种方法具有准确度高和选择性好等优点,但需要较长时间进行操作。
2.原子发射光谱法(AES) AES通过将样品转化为气态,并在特定波长下测量样品中发射的特定元素产生的可见光信号来确定铅含量。
该方法具有灵敏度高和分析速度快等优点,但对仪器设备要求较高。
现代方法电化学分析法电化学分析法是一种基于电化学反应原理进行铅检测的方法。
常用的电化学分析法有阳极溶出伏安法(ADSV)、阳极溶出电位法(DPASV)和阳极溶出电流法(DPC)等。
1.阳极溶出伏安法(ADSV) ADSV通过测量样品中铅在阳极上的氧化还原反应来确定其含量。
该方法具有灵敏度高和分析速度快等优点,但对仪器设备要求较高。
美国药典USP32-重金属测试
<231> 重金属本试验系在规定的试验条件下,金属离子与硫化物离子反应显色,通过制备的标准铅溶液目视比较测定,以确证供试品中重金属杂质含量不超过各论项下规定的限度(以供试品中铅的百分比表示,以重量计)。
(见分光光度法和光散射项下测定法目视比较法<851>)[ 注意:对本试验有响应的典型物质有铅、汞、铋、砷、锑、锡、镉、银、铜和钼等]。
除各论另有规定外,按第一法测定重金属。
第一法适用于在规定试验条件下,能产生澄清、无色溶液的物质。
第二法适用于在第一法规定试验条件下不能产生澄清、无色溶液的物质,或者适用于由于性质复杂,易干扰硫化物离子与金属离子形成沉淀的物质,或者是不易挥发的和易挥发的油类物质。
第三法为湿消化法,仅用于第一法、第二法都不适合的情况。
特殊试剂特殊试剂特殊试剂特殊试剂硝酸铅贮备液—取硝酸铅159.8mg,溶于100ml水中,加1ml硝酸,用水稀释至1000ml。
制备和贮存本溶液的玻璃容器应不含可溶性铅。
标准铅溶液—使用当天,取硝酸铅贮备液10.0ml,用水稀释至100.0ml。
每1ml的标准铅溶液含相当于10µg的铅。
按每克供试品取100µl标准铅溶液制备的对照溶液,相当于供试品含百万分之一的铅。
方法方法方法方法IIII pH3.5醋酸盐缓冲液—取醋酸铵25.0g溶于25ml水中,加6N盐酸液38.0ml,必要时,用6N氢氧化铵液或6N盐酸液调节pH至3.5,用水稀释至100ml,混匀。
标准溶液准备—精密量取标准铅溶液2ml,(相当于20µg的Pb),置50ml比色管中,加水稀释至25ml,以精密pH试纸作为外指示剂,用1N醋酸液或6N 氢氧化铵液调节pH至3.0~4.0,用水稀释至40ml,混匀。
供试品溶液制备—取各论项下规定的供试品溶液25ml,置50ml比色管中,或用各论项下规定用量的酸溶解样品,再用水稀释至25ml,供试品以g计,按下式计算: 2.0/(1000L)式中L是重金属限度(%)。
聚合氯化铝中铅含量测定方法
聚合氯化铝中铅含量测定方法
聚合氯化铝是一种净水剂,由于其成分不同,其中可能会含有不同的金属离子,如铅。
以下是一种测定聚合氯化铝中铅含量的方法:
1. 将聚合氯化铝样品加入到500 mL锥形瓶中。
2. 加入25 mL 6 mol/L盐酸溶液,并用玻璃棒搅拌均匀。
3. 在水槽中加入足够的自来水,使锥形瓶的水位上升至瓶口。
4. 用塞子封口,并将锥形瓶放至水浴中加热,直到样品中的聚合氯化铝完全溶解。
5. 取出样品,冷却至室温,并过滤。
6. 取约2 mL滤液,加入10 mL水,加蒸馏酸至酸性,并用异硫氰酸铵溶液滴加至完全沉淀。
7. 过滤,并将沉淀放入燃烧皿中加热至850℃。
8. 冷却后加水,加几滴甲基橙指示剂,滴加亚硝酸钠水溶液至样品颜色变为浅橙色,停滞30秒。
9. 加入硫代硫酸钠,并用压力滤芯滤过,收集滤液。
10. 用原子吸收分光光度计测定滤液中铅含量,计算出样品中的铅含量。
值得注意的是,该方法仅供参考,具体操作步骤应根据实际情况进行调整。
同时,为避免对实验人员及环境造成伤害,操作时应注意安全防护措施。
世界各国陶瓷餐具制品铅、镉溶出量允许极限及检测方法差异..
世界各国陶瓷餐具制品铅、镉溶出量允许极限及检测方法差异国家金属醋酸的浓度(%测试温度时间器物形状铅的极限浓度镉的极限浓度其他重金属浓度参考检验依据巴西陶瓷玻璃器皿包括水晶玻璃铅、镉 4 80 C 2餐具器皿厨具器皿储存器皿>3升0.8毫克/平方分米1.5毫克/升1.5毫克/升0.07毫克/平方分米0.1毫克/升0.1毫克/升18/ 3/9卫生部门27号法令由55/92市场认定陶瓷玻璃及机械与玻璃器皿及玻璃套具SO 4531色釉陶瓷与铅、镉玻璃器皿24士0.5 小食物及扁平器皿食物凹形器皿>3升厨具扁平器皿凹形器皿< 3升罐器皿> 3升用扁平样品测离边20毫米的酒器皿测试0.5毫克/升0.5毫克/升0.5毫克/升0.25毫克/升0.25毫克/升0.25毫克/升创建0.8毫克/平方分米0.07毫克/平方分米8毫克/升007毫克/升ISO4531 —1 :19980.1毫克/平方分米0.07毫克/平方分米测试0.4毫克/升0.07毫克/升ISO4531 —2: 19980.1毫克/平方分米0.07毫克/平方分米创建2毫克/款2毫克/款储存凹形器皿>3升杯及酒杯厨具器皿22士食品相关呆加利亚 扁平套具1.7毫克/平方分米陶瓷及玻璃 22±2C24 小凹形器皿V 1.1升 5毫克/升 器皿 厨具器皿 国家 加拿大 色釉陶瓷与 玻璃器皿铅、镉醋酸的金属铅、镉沸水及冷水大凹形器皿> 1.1升 厨具器皿(容量2/3 )测试温度时间器物形状2.5毫克/升5毫克/升铅的极限浓度浓度(%22± 2C24食物及扁平器皿 3毫克/升 与杯相比的小凹型器皿与水罐相比的大凹型器皿 水罐2毫克/升 1毫克/升 0.5毫克/升1.7毫克/平方分米0.5毫克/升0.25毫克/升0.5毫克/升镉的极限浓度0.5毫克/升0.5毫克/升0.25毫克/升0.25毫克/升其他重金属浓度24 / 17.05.2001 法保加利亚标准BDS235891BDS17244/1 : 91测试 BDS17245/1 : 91测试BDS17243/2 :注册 BDS17243/1 : 91 注参考检验依据危险产品1999法令(危险产品陶瓷玻璃器皿)1998规定国家金属醋酸的浓度(% 测试温度时间器物形状铅的极限浓度镉的极限浓度其他重金属浓度参考检验依据中国陶瓷制品铅、镉 4 22± 2C 24非特殊装饰产品中国检验标准GB3534— 2000测试GB12651—2003(餐具)扁平器皿 5.0毫克/升0.5毫克/升除杯类外的小凹形器皿V 1.1升2.0毫克/升0.3毫克/升杯0.5毫克/升0.25毫克/升杯及小杯离边20毫米的烤花器皿测试0.5毫克/升0.5毫克/升扁平套具小凹形器皿V 1.1升中国22±2C 24 ± 10分大凹形器皿>1.1升骨灰瓷东陶瓷铅、镉室温24包装容器及储存器皿室温24白瓷加烤花扁平套具25毫克/升7毫克/升5毫克/升2.5毫克/升1毫克/升7毫克/升1.7毫克/平方分米1.75毫克/升方分米0.5毫克/升0.5毫克/升ISO7086 —1 : 2000测0.25毫克/升试0.1毫克/升ISO7086 —2: 2000创0.5毫克/升建0.05毫克/平包装储存器皿0.1毫克/升厄瓜多尔铅、镉22 -24C24 餐具器皿7毫克/平方分米醋酸的国家金属测试温度时间器物形状铅的极限浓度芬兰铅、镉陶瓷铬、镍玻璃铅、镉主要为了小孩铅、镉的陶瓷铬、镍玻璃国家金属浓度(%醋酸的室温室温测试温度24242424时间0.5毫克/平方分米镉的极限浓度扁平套具V 25毫米的深度凹形器皿0.8毫克/平方分米0.07 毫克/dm'0.3毫克/升距离口边20毫米的饮用器测4毫克/升0.1毫克/平方0.5毫克/升分米厨具包装物储存器>3升餐具厨具包装储存器皿268/92条例是针对小孩使用陶瓷器皿直接与嘴接触的产品玻璃器皿器物形状1.50.5毫克/升毫克/d m0.05 毫克/d m铅的极限浓度0.1毫克/升0.1毫克/平方分米0.01 毫克/dm^镉的极限浓度其他重金属浓铬2毫克/d镍2毫克/d铬2毫克/d镍2毫克/d im铬0.2毫克/d镍0.2毫克/d铬0.2毫克/d镍0.2毫克/d其他重金属浓厄瓜多尔标准INEN1802 1992 测试INEN 1804 1992INEN 1805 1994参考检验依据539/91 法令267/92条例芬兰标准SFSE 1388-1 : 1996 SFSEM 1388-2 : 1996 依据84/500/欧共体标准539/91条例不权应用于陶瓷条款同时覆盖267/92条例参考检验依据升ELOTEN 1388-2 1995测试依据84/500/欧共体标准冰岛铅、镉室温24 餐具器皿厨具器皿包装储存器皿>3升大凹型器皿印度小凹型器皿土陶器咼温铅、镉炻瓷及玻璃质化陶瓷22士2C22士2C22 ± 10分22 士10分扁平器皿大凹型器皿小凹型器皿0.81.51.5毫克/升毫克/升1.5毫克/升4毫克/升1.7毫克/平方分米1毫克/升2毫克/升0.07 毫克/dm^0.1毫克/升0.1毫克/升20.25毫克/升0.3毫克/升0.17毫克/平方分米0.25毫克/升0.5毫克/升527法令1993冰岛标准1ST EN 1388-11995 测试EN1388-21995测试依据印度标准:IS2857 :1995 ; IS3505 ;1995 ;IS6988 ; 1994IS11475 : 1994 ;IS14705 : 1999国家金属醋酸的浓度(% 测试温度时间器物形状铅的极限浓度镉的极限浓度其他重金属浓度参考检验依据扁平器皿0.08 毫克/d m0.07 毫克/dm^国家金属醋酸的浓度(% 测试温度时间器物形状铅的极限浓度镉的极限浓度其他重金属浓度参考检验依据韩国铅、镉 4 20 - 24C 24 扁平套具V 2.5厘米的深度装置及容器>2.5厘米的深度<1.1升容量装置及容器>2.5厘米的深度<1.1升容量17微克/平方厘米1微克/毫升1微克/毫升1.7微克/平方厘米0.5微克/毫升0.5微克/毫升砷0.05微克/毫升砷0.05微克/毫升卫生组织法令依照进口食品检测条例韩国标准KSL1204.1987卢森堡公国铅、镉 4 22± 2C24± 0.5小时扁平套具W 25毫米的深度0.8毫克/平方分米0.07毫克/平方分米22/2/85法令卢森堡标准ITM-EN 1388-1 :1995 测试1388-2 :1995 测试依据84/500/欧共体标准米米0.25毫克/平方分餐具器皿米小凹形器皿V 1.1升大凹形器皿>1.1升杯水罐2毫克/毫升1毫克/毫升0.5毫克/升0.5毫克/升条例醋酸的浓其他重金属国家金属度(%)斯洛伐克陶瓷玻璃斯洛文尼亚陶瓷铅、镉铅、镉铅、镉测试温度室温22±2C室温时间242424器物形状铅的极限浓度镉的极限浓度0.1毫克/平方餐具包括储存器皿厨具器皿餐具器皿酒具离口边20毫米宽做测试餐具及微波炉器皿酒具离口边20毫米宽浓度参考检验依据1毫克/平方分米0.2毫克/平方分0.8毫克/平方分2毫克/平方分米3毫克/升0.1毫克/升分米0.02毫克/平方分米0.07毫克/平方分米0.2毫克/平方分米0.2毫克/升0.2毫克/升铬1毫克/升钡1毫克/升斯洛伐克标准STN 725510: 1989STN 72 5560 1988STN72 5560 : 1988STN725575对身体无毒的一般条件(SFRJ) NO26/83 61/84玻璃 做测试 包装及储存器皿 酒具离口边 20毫米宽 做测试 结晶玻璃1毫克/平方分米 0.3毫克/升醋酸的国家金属农度(%南非 半玻璃质化 的陶器高温 铅、镉炻瓷 家用或宾馆 22±2C西班牙 铅、镉22± 2C 测试温度时间24 24± 0.5h器物形状铅的极限浓度0.1毫克/平方 分米锑1毫克/升锡1毫克/升镉的极限浓 扁平餐具W 深度25毫米小凹形器皿V 1.1升 大凹形器皿> 1.1升扁平器皿<25毫米深度 1.7毫克/平方分米5毫克/升2.5毫克/升0.8毫克/平方分米 方分米0.5毫克/升0.25毫克/升56/86 850/8918/91 正式公告斯洛文尼亚标准SIST EN 1388-1 1997 测SIST EN 1388-2 1997 测其他重金属浓参考检验依据0.17毫克/平0.07毫克/平 南非标准 SABSSM797: 1982 测试 SABS 1001 : 2000注册 SABS10031974注 册 SABS 1004,1974 注册皇家颁布1043/1990国家金属醋酸的浓度(%测试温度时间器物形状铅的极限浓度镉的极限浓度其他重金属浓度参考检验依据泰国餐具器皿厨具器皿铅、镉铅、镉4422± 2C沸水及冷水24 ± 10 分钟2扁平套具小凹形器皿大凹形器皿厨具器皿1.7毫克/平方分米5毫克/升2.5毫克/升5毫克/升0.17毫克/平方分米0.5毫克/升0.25毫克/升0.5毫克/升TIS 32-2528 1985 注册TIS 601-25291986; TIS 602-25291986土耳其铅、镉 4 22± 2C 24± 0.5h 扁平餐具W深度25毫米凹形餐具厨具包装物储存器0.8毫克/平方分米4毫克/升1.5毫克/升0.07毫克/平方分米0.3毫克/升0.1毫克/升土耳其标准EN1388-1 1999 测试TS EN 1388-2 1999测试英国陶瓷玻璃器铅、镉 4 22± 2C 24± 0.5h扁平餐具W深度25毫米凹形餐具0.8毫克/平方分米4毫克/升0.07毫克/平方分米1988年SI 1647 号文件陶瓷安全条例BS5毫克/升2.5毫克/升方分米陶瓷玻璃器小凹形器皿<1.1升大凹形器皿>1.1升SNS 522/1987 注册0.5毫克/升0.25毫克/升浓度(% 美国铅、镉加州65-199322±2C24扁平套具百万分之0.226 醋酸的国家金属浓度(% 斯里兰卡铅镉孟加拉铅镉测试温度22±2C22±2C时间2424小凹形器皿<1.1升大凹形器皿>1.1升杯及小杯水罐食物器皿器物形状扁平器皿小空心器皿大空心器皿扁平器皿小空心件百万分之0.1百万分之0.1百万分之0.1百万分之0.1百万分之0.1铅的极限浓度1.7mg/dm'5.0mg/L2.5MG/L0.8mg/d m'2.0mg/L百万分之0.5 ,3.164百万分之0.5 ,0.189百万分之0.25 ,0.049镉的极限浓度0.17mg/d m'0.50mg/L0.25MG/L0.07mg/d m'0.5mg/L其他重金属浓度加州65规定,加州25249.5 规定参考检验依据DOPL NO.326(2000年2月29日)斯里兰卡进口管理条例BDS485-2000《陶瓷餐具规大空心件 1.0mg/L 0.5mg/L 储物空心件0.5mg/L 0.5mg/L 杯和牛奶杯0.5mg/L 0.5mg/L 厨具0.5mg/L 0.5mg/L。
铅检查法
铅药品中可能存在的铅要严格控制含量。
有两种检查方法,下文介绍的一种方法需要用双硫腙溶液提取铅。
一般测定重金属含量时,以铅的含量代表重金属含量,见重金属<231>。
选择本检查法需用的试剂,其含量要尽可能地低,并将试剂贮存在硼硅玻璃的容器中。
将所有的玻璃器皿用温的稀硝酸(1:2)冲洗,然后再用水冲洗。
特殊试剂——氰化铵溶液——取氰化钾2g溶于15ml氯化铵溶液中,加水稀释至100ml。
枸橼酸铵溶液——取枸橼酸40g溶于90ml水中,加入2~3滴酚红试液,然后小心地加入氯化铵溶液至溶液呈现淡红色。
多次加入20ml双硫腙提取液(如下)萃取溶液以除去可能存在的铅,至双硫腙溶液保持黄绿色不变。
稀释的标准铅溶液——精密量取一定体积的标准铅溶液(见重金属<231>)[每ml含10µg铅],用9倍体积的稀硝酸(1:100)稀释,使1ml溶液含有1µg铅。
双硫腙提取液——取双硫腙30mg荣誉1000ml氯仿中,加入5ml乙醇。
将溶液贮存在冰箱中。
在使用前取一定体积的双硫腙提取液,加入其体积一半的稀硝酸(1:100)振摇,然后将硝酸舍弃。
盐酸羟胺——取盐酸羟胺20g溶于适量水中,使体积约成65ml。
将溶液转移到分液漏斗中,加入5滴百里酚蓝试液,然后滴加氯化铵至溶液呈现黄色。
加入10ml二乙胺基二硫代甲酸钠溶液(1:25),摇匀,在暗处放置5分钟。
连续用10~15ml氯仿萃取溶液至用硫酸铜试液与5ml氯仿萃取液振摇时不再呈现黄色。
再滴加3N盐酸至溶液呈粉红色(如有必要,再加入1~2滴百里酚蓝试液),然后用水稀释至100ml。
氰化钾溶液——取氰化钾50g用适量水溶解至100ml。
按上述枸橼酸铵溶液操作,用双硫腙提取液分次连续地萃取溶液以除去铅,然后加入氯仿振摇萃取氰化钾溶液中的双硫腙。
最后用适量水稀释氰化钾溶液使每100ml溶液含有10g氰化钾。
标准双硫腙溶液——取双硫腙10mg溶于1000ml氯仿中。
食品添加剂中铅的测定方法
食品添加剂中铅的测定方法中华人民共和国国家标准食品添加剂中铅的测定方法 UDC 6114.3Method for dtrmination of :543.06lad in food additivs :546.815GB 8449-87本标准适用于食品添加剂中铅的限量试验的定量试验。
本标准参照采用1983年联合国粮农组织的世界卫生组织(FAO/WHO) 食品添加剂联合专家委员会发布的有关铅的测定方法。
1原理样品经处理加入柠檬铵、氰化钾和盐酸羟胺等,消除铁、铜、锌等离子干扰,在pH8.5~9.0时,铅离子 与双硫腙生成红色络合物,用三氯甲烷提取,与标准系列,比较做限量试验或定量试验。
2试剂除特别注明外,本标准所用试剂均为去离子水或无铅水。
2.1硝酸(GB 626-78)。
2.2硫酸(GB 625-77)。
2.3氨水(GB 631-77)(1+1):如含铅,须用全玻璃蒸馏器重蒸馏。
2.4盐酸(GB 622-77)。
2.5三氯甲烷(GB 682-78):不应含氧化物。
2.6酚红指示液:0.1%乙醇溶液。
2.7柠檬酸氢二铵(HGB 3294-60):50%溶液。
称取100g柠檬酸氢二铵,溶于100ml水中,加2滴酚红指示液,加氨水(1+1)调节pH8.5~9.0(由黄变红,再多加2滴),用双硫腙三氯甲烷溶液提取数次,每次10~20ml,至三氯甲烷层绿色不变为止,弃去三氯甲烷洗涤二次,每次5ml,弃去三氯甲烷层,加水稀释至200ml。
2.8盐酸羟胺(HG 3-967-76):20%溶液。
称取20g盐酸羟胺,加40ml水溶解,加2滴酚红指示液,加氨水(1+1)调节pH至8.5~9.0(由黄变红,再多加2滴),用双硫腙三氯甲烷溶液提取数次,每次10~20ml,至三氯甲烷层绿色不变为止,再用三氯甲烷洗二次,每次5ml,弃去三氯甲烷层加盐酸(1+1)呈酸性,加水至100ml。
2.9氰化钾:10%溶液。
2.10二苯基硫巴腙(双硫腙)(HGB 3343-60):0.05%三氯甲烷溶液,保存于冰箱中,必要时按下述方法纯化。
美国药典USP32-重金属测试
<231> 重金属本试验系在规定的试验条件下,金属离子与硫化物离子反应显色,通过制备的标准铅溶液目视比较测定,以确证供试品中重金属杂质含量不超过各论项下规定的限度(以供试品中铅的百分比表示,以重量计)。
(见分光光度法和光散射项下测定法目视比较法<851>)[ 注意:对本试验有响应的典型物质有铅、汞、铋、砷、锑、锡、镉、银、铜和钼等]。
除各论另有规定外,按第一法测定重金属。
第一法适用于在规定试验条件下,能产生澄清、无色溶液的物质。
第二法适用于在第一法规定试验条件下不能产生澄清、无色溶液的物质,或者适用于由于性质复杂,易干扰硫化物离子与金属离子形成沉淀的物质,或者是不易挥发的和易挥发的油类物质。
第三法为湿消化法,仅用于第一法、第二法都不适合的情况。
特殊试剂特殊试剂特殊试剂特殊试剂硝酸铅贮备液—取硝酸铅159.8mg,溶于100ml水中,加1ml硝酸,用水稀释至1000ml。
制备和贮存本溶液的玻璃容器应不含可溶性铅。
标准铅溶液—使用当天,取硝酸铅贮备液10.0ml,用水稀释至100.0ml。
每1ml的标准铅溶液含相当于10µg的铅。
按每克供试品取100µl标准铅溶液制备的对照溶液,相当于供试品含百万分之一的铅。
方法方法方法方法IIII pH3.5醋酸盐缓冲液—取醋酸铵25.0g溶于25ml水中,加6N盐酸液38.0ml,必要时,用6N氢氧化铵液或6N盐酸液调节pH至3.5,用水稀释至100ml,混匀。
标准溶液准备—精密量取标准铅溶液2ml,(相当于20µg的Pb),置50ml比色管中,加水稀释至25ml,以精密pH试纸作为外指示剂,用1N醋酸液或6N 氢氧化铵液调节pH至3.0~4.0,用水稀释至40ml,混匀。
供试品溶液制备—取各论项下规定的供试品溶液25ml,置50ml比色管中,或用各论项下规定用量的酸溶解样品,再用水稀释至25ml,供试品以g计,按下式计算: 2.0/(1000L)式中L是重金属限度(%)。
含铅测试标准0005
含铅测试标准0005
对于含铅测试,可能指的是环境、食品、水等不同领域的相关标准。
没有明确指出"0005"是什么具体的含铅测试标准。
以下
是一些常见的含铅测试标准:
1. 环境领域:
- 美国环境保护署(EPA)制定的环境样品中铅的测定方法:EPA Method 6010C
- 欧盟制定的环境样品中铅的测定方法:EN ISO 17294-2:2016 - 中国国家标准GB/T 16649-2018《环境空气质量直读式待测
元素测定方法铅的测定》
2. 食品领域:
- 美国食品药品监督管理局(FDA)制定的食品中铅含量限制:FDA Compliance Policy Guide, Section 545.400
- 欧盟制定的食品中铅含量限制:Commission Regulation (EC) No 1881/2006
- 中国国家标准GB 5009.12-2017《食品安全国家标准食品中
铅的测定》
3. 水领域:
- 美国环境保护署(EPA)制定的饮用水中铅含量限制:EPA National Primary Drinking Water Regulations
- 欧盟制定的饮用水中铅含量限制:Directive 98/83/EC
- 中国国家标准GB/T 5750.6-2006《环境质量标准水质包括修订版》
请根据具体的应用领域和需求进一步查找相关的具体标准。
FDA-CPG-7117.07法规(玻璃、陶瓷、瓷釉)
进口和国产的日用陶器(瓷器) - 铅污染》美国FDA/ORA规则:CPG7117.07美国FDA/ORA规则,第五章食品、染料、化妆品,第545节与食品相关的物品,第545.450段:《进口和国产的日用陶器(瓷器) - 铅污染》。
编号:(CPG 7117.07)背景情况:从一些日用陶瓷制品的可以与食物接触的表面中,发现含有大量的铅。
这种金属可被食物溶出,长期食用,能引起慢性铅中毒,对健康产生各种各样的有害影响。
管理准则:以下是食品安全及应用营养学中心/区域管理机构/执行机构(HFS-605),在诉讼诸律或扣留进口商品时,所依据的标准:器皿:1、适用于装食物的,同时满足下列条件。
2、按最新版本的ASTM-C738方法(卷号15.02,ASTM(美国材料检验协会)标准年刊),通过测试6件器皿在每毫升浸出溶液中的铅含量,检查相应的各类陶瓷是否超出限量指标。
该方法另见于AOAC方法973.32和973.82(官方分析方法,AOAC国际),或者参考FDA实验信息公告第4123号和第4126号(美国食品及药品管理局,地区科学部,HFC-140,罗克威尔市,马里兰州20857)。
限量指标单位μg/ml扁平器皿:6件的平均为3.0小空心器皿(不包括杯子和大杯):6件中任何一件为2.0杯子/大杯:6件中任何一件为0.5大空心器皿(不包括罐):6件中任何一件为1.0罐:6件中任何一件为0.5用于调制、盛放、贮存食物的陶瓷器皿分类定义如下:扁平器皿:测量从器皿内最低点至口缘水平面之间的深度,不超过25mm的陶瓷器皿。
空心器皿:测量从器皿内最低点到口缘水平面之间的深度,超过25mm的陶瓷器皿。
小空心器皿:容量小于1.1升。
大空心器皿:容量大于等于1.1升。
杯和大杯:小陶瓷空心容器,通常用于在室温或室温以上饮用饮料,例如咖啡或茶。
杯和大杯总是但不全是240毫升或8液安士,并且带有把柄。
杯总是有底座和弧形的侧面,而大杯有圆柱形的侧面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J. Cosmet. Sci.,60, 405–414 (July/August 2009)Determination of total lead in lipstick: Development and validation of a microwave-assisted digestion, inductively coupled plasma–mass spectrometric methodNANCY M. HEPP, WILLIAM R. MINDAK, and JOHN CHENG,Offi ce of Cosmetics and Colors (N.M.H) and Offi ce of Regulatory Science(W.R.M., J.C.), Center for Food Safety and Applied Nutrition,U.S. Food and Drug Administration, College Park, MD 20740.Accepted for publication May 6, 2009.SynopsisRecent reports describing the presence of lead (Pb) in lipsticks have suggested that, under ordinary use, the potential amount of Pb exposure is harmful. To permit independent assessment of the Pb contamination, a method for determining total Pb in lipstick using microwave-assisted digestion and analysis employing in-ductively coupled plasma–mass spectrometry (ICP–MS) was developed and validated. Since lipsticks may contain fats, oils, pigments, dyes, and minerals, several reference materials (RM) were analyzed, including coal, wear metals in oil, organic Pb in oil, milk powder, and estuarine sediment. With the exception of the RM with mineral content (estuarine sediment), complete recovery of Pb from the RMs was obtained by simple nitric acid (HNO3) digestion. Complete recovery of Pb from estuarine sediment was achieved only when hydrofl uoric acid (HF) was added to the digestion mix, followed by treatment with excess boric acid (H3BO3) to neutralize the HF and to dissolve insoluble fl uorides. Commercial lipsticks were tested for total Pb by the validated method. The detection limit was estimated to be 0.04 µg Pb/g. The average value obtained for the lipsticks was 1.07 µg/g. Undigested material was present in some lipstick digests when only HNO3 was used, and generally lower Pb values were obtained. All of the Pb levels found by the U.S. Food and Drug Adminis-tration (FDA) were within the range the agency would expect to fi nd in lipsticks formulated with permitted color additives and other ingredients prepared under good manufacturing practice (GMP) conditions. This method will be useful for the FDA and industry in helping to ensure the safety of cosmetic products. INTRODUCTIONAlthough major sources of lead (Pb) contamination from leaded gasoline, Pb-based paints, Pb in public water systems, and Pb solder for sealing canned foods have been reduced through various regulatory actions, public concerns still exist over possible sources of Pb contamination. Pb from gasoline and paint can remain in soil and dust for many years, and imported foods and cosmetics may contain unsafe levels of Pb (1). The FDA issued warnings in 2003 for litargirio, a yellow- or peach-colored powder used in traditional remedies by people of Central America and the Caribbean region, particularly the Dominican Republic, because it contains up to 79% Pb. In 2003 and 2006 the FDA issued warnings for kohl, a traditional cosmetic eyeliner common in the Middle East, North Africa, Sub-Saharan Africa, and South Asia, because it frequently contains more than 50% Pb.405406JOURNAL OF COSMETIC SCIENCERecent media reports and e-mail hoaxes describing the presence of Pb in lipsticks have sug-gested that under conditions of ordinary use, the potential amount of Pb exposure is harm-ful (2–4). Pb contamination of lipsticks may originate from Pb solder or leaded paint in production equipment or from contaminated dust. Lipsticks also may be contaminated with Pb if they are manufactured with ingredients that naturally contain Pb or are produced under conditions that could introduce Pb into the ingredients. Dyes and pigments used as ingredients in lipsticks are regulated as color additives by the FDA and must undergo pre-market approval by the agency before they may be used in any cosmetics. The FDA controls potential Pb exposure from color additives by setting limiting specifications for Pb (5). Under current regulations, most color additives approved for cosmetic use are permitted to contain up to 20 µg Pb/g. In addition, certain color additives are required to be batch certi-fi ed by the FDA, and analysis for Pb is part of the certifi cation process.Other than color additives, the FDA does not have the statutory authority under the Federal Food, Drug, and Cosmetic Act (FD&C Act) to require pre-market approval of cosmetic products such as lipsticks or their ingredients. It is the responsibility of the manufacturer or distributor to ensure that cosmetic products and their ingredients are in compliance with requirements of the FD&C Act and other applicable laws and regula-tions (6). With the exception of color additives, a manufacturer may use any ingredient in the formulation of a cosmetic that does not cause the cosmetic to be adulterated or misbranded under the FD&C Act.Several methods have been reported for the analysis of Pb in lipstick and other cosmetics. Okamoto et al. (7) used a 1-gram portion of lipstick ignited at 500°C. The resulting ash was extracted with 20 ml and then 10 ml of 2N hydrochloric acid (HCl) and made up to 50 ml with 0.5% HCl. Pb was determined by atomic absorption spectrometry (AAS) using the standard addition method. A simple microwave-assisted acid extraction technique for determining Pb by inductively coupled plasma–optical emission spectrometry (ICP–OES) was reported by Besecker et al. (8). In their method, 0.15-g portions of several types of cosmetics were treated with 3.0 ml of HNO3 and heated in quartz vessels for a total time of 50 minutes at a maximum pressure of 74 bar. Accuracy was verifi ed by spike recoveries and by recoveries from an estuarine sediment reference material (RM) (National Institute of Standards and Technology, NIST, Estuarine Sediment SRM 1646). Besecker et al. men-tioned that their quartz vessels were cleaned with a mixture containing hydrofl uoric acid (HF). Others have noted an increased recovery of Pb when using vessels previously exposed to HF (9). Satisfactory recovery of Pb from the RM may not have occurred with vessels that had no prior HF exposure. The Lead Analysis Task Force of the Cosmetic, Toiletry, and Fragrance Association (CTFA, now the Personal Care Products Council) (10), developed a method for determining Pb in cosmetics using HNO3 and HF, microwave heating in sealed vessels, and for those cosmetics containing refractory materials, a subsequent treatment with boric acid (in smaller quantities than used in this study). This report presents a vali-dated method for determination of total Pb in lipstick, the Pb content of several lipstick products analyzed by the validated method, and a comparison with Pb content determined by other techniques.The FDA has developed and validated a method for determining Pb in lipstick in order to independently assess possible Pb contamination of lipstick products on the market. Analysis by x-ray fl uorescence (XRF) was initially investigated in order to avoid lengthy sample preparation. However, the technique is not sensitive enough with the availableDETERMINATION OF TOTAL LEAD IN LIPSTICK407 equipment and is subject to matrix absorption errors. AAS with electrothermal atomiza-tion analysis was also considered. However, since sample digestion would be necessary, inductively coupled plasma–mass spectrometry (ICP–MS) was chosen because of its po-tential for better sensitivity and speed. Thus, the effort focused on developing a method using microwave-assisted acid digestion for sample preparation and determination by ICP–MS.EXPERIMENTALCHEMICALS, REAGENTS, AND REFERENCE MATERIALSTwenty shades of lipstick sold in the United States under ten brand names were pur-chased from retail stores or provided by manufacturers. Multiple samples with the same lot number were obtained for several shades in order to compare analytical techniques. Six RMs were used for comparing different preparation techniques and for quality assurance: wear-metals in lubricating oil, SRM 1084a (NIST, Gaithersburg, MD); whole milk pow-der, SRM 8435 (NIST); estuarine sediment, SRM 1646a (NIST); lead in base oil 20 standard, ORG-PB8-2Y/Z (SPEX CertiPrep, Inc., Metuchen, NJ); base oil 20 standard (SPEX CertiPrep, Inc.); and trace elements in coal, SRM 1632c (NIST).American Society for Testing and Materials (ASTM) type 1 grade water was used to pre-pare reagents, standards, and analytical solutions. Pb standards (0, 0.1, 0.5, 1.0, and 10 ng Pb/ml), Pb stock (0.1 and 1.0 µg Pb/ml), and thallium internal standard (0.1 µg Tl/ml) solutions were prepared from commercial ICP–MS grade single-element analyte solu-tions (High-Purity Standards, Charleston, SC). Trace metals grade (TMG) HNO3 (Fisher Scientifi c, Pittsburgh, PA) was used for cleaning laboratory ware and digestion vessel lin-ers. Optima grade HNO3 and HF (Fisher Scientifi c) were used for sample, stock, and standard solutions. Boric acid (Puratronic grade, Alfa Aesar, Ward Hill, MA) was used to prepare 4% boric acid solution, which was conveniently dispensed with a bottle-top dis-penser. A 0.100-µg Pb/g in base oil 20 stock solution was prepared from 1000 µg Pb/g (SPEX ORG-PB8-2Y/Z organo-metallic standard solution) serially diluted to 10.00 and then to 0.100 µg Pb/g with SPEX base oil 20.Lipsticks were digested using XP-1500 Plus vessels in a MARS microwave digestion oven (CEM Corp., Matthews, NC). Pb determinations were performed on an Agilent 7500c ICP–MS (Agilent Technologies, Inc., Santa Clara, CA) equipped with a Peltier cooled Scott double-pass spray chamber and a MicroMist nebulizer (Glass Expansion, West Melbourne, Victoria, Australia). The built-in peristaltic pump was used to deliver the analytical and thallium internal standard solutions to the nebulizer at 0.17 ml/min and at 0.01 ml/min, respectively. The analytical and internal standard solutions were merged with a Tee fi tting. METHOD DEVELOPMENTLipstick is a challenging matrix of many ingredients including waxes, oils, dyes, and pigments (11). The pigments may include refractory minerals such as alumina, silica, titanium dioxide, and mica. Preliminary experiments with one lot of lipstick revealed an easily detectable amount of Pb, but quantitative results varied depending on preparation technique. In order to evaluate preparation techniques, a composite was prepared byJOURNAL OF COSMETIC SCIENCE408melting and mixing together eleven tubes of lipstick (same brand and shade, but several lot numbers). These lipsticks were placed in a beaker submerged in a water bath at 85°C and stirred with a propeller-type mixer.Initial attempts to completely dissolve a lipstick sample using typical microwave- assisted HNO3 digestion were unsuccessful. A cloudy, white suspension remained after the treatment. Also, replicate results for a single lot of lipstick showed variations in Pb recovery for different lipstick portion sizes and maximum digestion temperatures (see Table I).The portion size and temperature effects on Pb recovery suggested that microwave-as-sisted digestion with HNO3 was incomplete for Pb and that levels of Pb recovered would vary depending on digestion parameters. Therefore, other preparation procedures were investigated that might achieve total recovery of Pb. A dry ash procedure was tried in which a lipstick sample was heated gradually to 540°C and held at that temperature for an hour. The resulting residue was treated with HNO3 and HCl but would not com-pletely dissolve. The acid leachate was diluted with water and analyzed by ICP–MS. Results were variable and lower compared to values obtained with microwave-assisted acid diges-tion. Similarly, sodium carbonate fusion at 1075°C resulted in a residue that would not completely dissolve in HNO3 or HCl and produced variable values for Pb. The results indicated that some Pb must be associated with the undissolved refractory mineral matter in the lipsticks and suggested that HF would be necessary to break down the minerals. Based on work of other investigators (10), the initial HF dissolution procedure used 0.3-g portions of lipstick, 7 ml HNO3 + 2 ml HF, and sealed Tefl on microwave digestion ves-sels. A two-step procedure was used for digestion. The vessels were heated to 130°C over 15 minutes and held at that temperature for three minutes before ramping to 200°C over 15 minutes and holding for an additional 30 minutes. The vessels were allowed to cool to <50°C and then were vented. Initially 6 ml of 4% boric acid was then added to each vessel and the solutions were heated to 170°C over 15 minutes and held for ten minutes to complex the HF. Boron forms a strong complex with fl uoride according to the reaction shown in equation 1. After cooling and venting, the solutions were diluted to a fi nal vol-ume of 200 ml for ICP–MS analysis. However, the digests were still cloudy, with a ge-latinous precipitate appearing upon centrifugation. Also, results varied depending on the analytical portion. Equation 1 is as follows:+ B(OH)3→ HBF4+ 3H2O (1) 4HFTherefore, an excess of boric acid was used to dissolve any insoluble fl uorides. The revised HF digestion procedure used 30 ml of 4% boric acid and resulted in clear solutions for allTable IAnalytical Portion and Temperature Effects on Pb Determined After Digestion with Nitric Acid Portion size (g)Maximum digestion temperature (°C)µg Pb/g0.3240 1.40.1240 2.10.32000.5DETERMINATION OF TOTAL LEAD IN LIPSTICK 409lipstick samples and no variation in ICP–MS values for lipstick portion sizes ranging from 0.1 to 0.4 g (see Figure 1). The fi nal method parameters are outlined in Table II.For each lipstick sample, duplicate portions and portions fortifi ed at 0.5 and 1.0 µg Pb/g were digested. A Pb solution in 1% HNO 3 was used for fortifi cation. Each digestion batch of 12 vessels also included a blank, a blank + 0.02 µg Pb/g, an organic Pb RM (0.100 µg Pb/g in base oil 20), and an RM with mineral content (estuarine stediment, SRM 1646a).RESULTSMETHOD VALIDATIONAccuracy of the method was demonstrated by measuring recoveries of Pb from RMs and from fortifi ed lipstick samples. Since no lipstick-type RM was available, several RMs were analyzed representing varying matrix types. NIST 1635 trace elements in coal (complex matrix, organics); NIST 8435 whole milk powder (high fat matrix); NIST 1084a wear metals in oil and SPEX ORG-PB8-2Y/Z lead in base oil 20 (oily matrices Figure 1.Portion size effect before and after adding excess boric acid.● 0.3-g lipstick portion ● 2 ml HF + 7 ml HNO 3● CEM XP-1500+ vessels, MARS Microwave Digestion System ● Heat in two steps to 200°C, hold for 30 min:Stage Power (watts)Ramp (min)Pressure(psi)Temperature (°C)Hold (min)1120015:0008001303:002120015:00080020030:00● Cool to <50°C, vent, add 30 ml 4% boric acid ● Heat to 180°C, hold for 10 min ● Dilute to 200 mlJOURNAL OF COSMETIC SCIENCE410containing organically complexed Pb); and NIST 1646a estuarine sediment (refractory mineral matrix). Pb recoveries from RMs with and without HF are shown in Table III. Complete recovery of Pb from the RMs was obtained by simple HNO3digestion, with the exception of estuarine sediment, for which complete recovery was obtained only when HF was used in the digestion. Each lipstick sample was fortifi ed at two levels and analyzed following HNO3/HF digestion, with recoveries averaging 98.1%. Absence of matrix infl u-ence was shown by sequentially diluting several analytical solutions, with no signifi cant differences.Analytical solution stability was demonstrated by analysis of three representative analytical solutions over time. Two analytical solutions containing approximately 0.25 and 1.0 µg Pb/l were analyzed on days 1, 3, 7, and 14 using freshly prepared standard solutions on each day. There was <5% variation over the time period. A 10-µg Pb/l standard solution prepared on day 1 and analyzed with the analytical solutions on subsequent days behaved similarly.Method precision was demonstrated by between-day and within-day repeatability experiments. A 3% relative percent difference (RPD) was observed from analyzing 22 portions of lipstick composite over three days, and 2% RPD was obtained from analyzing 12 portions of one lipstick brand over three days. The precision of the instrument was tested by analyzing an analytical solution seven times on one day, yielding 2% RPD. The ruggedness of the method was demonstrated by varying the analytical parameters. There were no signfi cant differences in Pb results with portion size variations of 0.1 to 0.4 g. The volume of HF was varied from 0 to 4 ml (0, 0.5, 1.0, 2.0, 3.0, and 4.0 ml). Pb recov-ery became constant when ≥1 ml was used. The 4% boric acid solution amount was var-ied from 6 ml to 60 ml (6, 20, 30, 40, and 60 ml), with Pb recovery becoming constant when ≥20 ml was used. Solutions also became clear, eliminating the need for fi ltration or centrifugation before ICP–MS analysis. There was no signifi cant change in Pb recovery when the maximum disgestion temperature was lowered from 200°C to 180°C.As a measure of quality control, each digestion batch included two RMs: lead in base oil 20 (representing organic Pb in an oily matrix) and estuarine sediment (representing a mineral matrix). Recovery of Pb from the RMs is shown in Figure 2.Method blanks and method blanks spiked near the detection level were also included in each digestion batch. The average and standard deviation for blanks from fi fteen batchesTable IIILead Recoveries from Reference Materials and Lead Values from a Composited LipstickWith and Without HF*Certifi ed value(µg Pb/g)±95% C.I.HNO3 only(µg Pb/g)HF + HNO3(µg Pg/g)NIST 1635 (trace elements in coal) 1.90.2 1.8 (95%) 1.8 (95%) NIST 1084a (wear metals in oil)101.1 1.3103.7 (103%)SPEX ORG-PB8-2Y/Z (lead inbase oil 20)10001000 (100%)NIST 8435 (whole milk powder)0.110.050.10 (91%)0.11 (100%) NIST 1646a (estuarine sediment)11.7 1.28.2 (70%)10.8 (93%) Composited lipstick——0.29 2.91*Values are the average of 3 to 15 samples. Recoveries are indicated in parentheses.DETERMINATION OF TOTAL LEAD IN LIPSTICK 411are shown in Table IV , along with the aggregate RM results. Method blank results were used to estimate the detection limit of 0.04 μg Pb/g using equation 2 (12):Detection limit = (2 · t · σ · √(1 + 1/N)) (2)LIPSTICK SURVEY AND COMPARISON WITH VALUES BY OTHER METHODSTwenty-two lipstick samples (not including the composite), identifi ed by brand, shade, and lot number, were analyzed for Pb by the validated method. The results are summa-rized in Table V . All of the lipsticks contained detectable amounts of Pb, with values ranging from 0.09 to 3.06 µg/g and an average amount of 1.07 µg/g. Despite the limited size and color range of the survey samples (all were red shades), samples from a few manufacturers (A – C) appeared to contain the highest levels of lead.As stated above, recoveries from lipsticks fortifi ed with lead nitrate, Pb(NO 3)2, and ana-lyzed by the validated method (using HNO 3 and HF) averaged 98.1%. However, recov-eries from some lipsticks were equally good using digestion with HNO 3 alone (see Table III). Good recoveries were observed for all but one RM (the mineral-containing estuarine sediment) using either technique. This suggests that Pb-containing minerals were pres-ent in some but not all lipsticks.Figure 2.Lead recoveries from reference materials.NIST 1646a [estuarine sediment (µg/g)]SPEX ORG-PB8-2Y/Z [lead in base oil 20 (µg/g)]Method blank (µg/g)Blank + 0.02 µg Pb/g (µg/g)Composite lipstick Value(n = 13)Ref. value Value (n = 15)Ref. value Value (n = 15)Value (n = 22)Average10.8411.7 ± 1.20.1000.1000.0190.037 2.91S.D.0.36—0.007—0.0080.0090.09JOURNAL OF COSMETIC SCIENCE412The method developed here is for total Pb. Our studies showed that variable amounts of Pb can be extracted depending upon experimental conditions such as analytical portion, acids used, temperature, decomposition procedure, etc. Consistent results could usually be obtained only by including HF in the digestion procedure. To illustrate this, fi ve lipstick lots and the composite were analyzed by digestion with HNO 3 alone or with HNO 3 + HF. Substantially higher values were obtained for three of the lots and the composite using HNO 3 + HF compared to HNO 3 alone. Pb values for two different lots of the same lipstick were equivalent by digestion with HNO 3 alone or with HNO 3 + HF (see C-4, lots a and b). Results reported by the Campaign for Safe Cosmetics (CSC), in which several of the same brands and shades of lipsticks were analyzed (2), are also listed in Table V . The CSC method used a 0.5-g portion, extraction with sulfuric and nitric acids, and ICP–MS analysis. Lot numbers were not reported by the CSC.Differences among values obtained by the three digestion techniques can be explained by the presence of mineral content in some formulations, as well as by the fact that Pb is easily precipitated as a sulfate after sulfuric acid is used in the CSC extraction. Mica, a mineral permitted as a color additive, which frequently contains small amounts of Pb(13), would require HF for complete dissolution. The use of sulfuric acid in the CSC ex-Table V Lead Content in Lipsticks by Validated Method and by Two Other TechniquesProductShade Lot FDA: HF + HNO 3 (µg Pb/g)FDA: HNO 3 (µg Pb/g)CSC (µg Pb/g) (lot #s unknown)A 1a1.40b1.20, 1.220.12, 0.56c3.06 1.90d3.05B 1Composite2.910.29<0.02a2.38A 2a2.240.03, 0.03C 1a1.79<0.02, <0.02, 0.06A 3a1.760.28C 2a1.53b0.62, 0.680.50, 0.65c1.47 1.20B 2a1.370.91<0.02b0.83, 0.81C 3a1.210.19B 3a1.04<0.02, 0.03C 4a0.670.600.58b0.790.74, 0.80D 1a0.55<0.02D 3a0.480.03D 2a0.43<0.02E 1a0.330.09C 5a0.230.12F 1a0.170.12G 1a0.15<0.02, 0.04H 1a0.120.21I 1a0.10<0.02, 0.03J 1a 0.09<0.02DETERMINATION OF TOTAL LEAD IN LIPSTICK413 traction method may have reduced the soluble Pb available for ICP–MS analysis, thusresulting in the lower values reported by the CSC.The FDA has not set specifi cations for Pb in cosmetics, except that color additives per-mitted as ingredients are usually limited to 20 µg Pb/g (20 ppm) (5). The Pb levels found in these lipsticks, determined by the validated method, are within the range that might be expected from lipsticks formulated with permitted color additives and other ingredi-ents prepared under good manufacturing practice (GMP) conditions. CONCLUSIONSTypical microwave-assisted HNO3 digestion produced low-biased, inaccurate values for some lipstick samples and one of the RMs. All of the lipsticks analyzed in this work con-tained detectable amounts of Pb when digested with HNO3 and HF. Some of the Pb in certain lipstick samples appears to be incorporated in the refractory mineral pigments, which require HF for complete digestion. Pb levels found by the FDA are within the range that might be expected from lipsticks formulated with permitted color additives and other ingredients prepared under GMP conditions.ACKNOWLEDGMENTSThe authors thank Richard Jacobs of the FDA’s San Francisco District Lab for analyzing several lipsticks after a HNO3 extraction treatment. Nancy Hepp would like to thank Stephen Capar in the FD A’s Office of Regulatory Science and his group for allowing her to use his laboratories, equipment, and instrumentation to do the studies, and for providing helpful guidance. She would also like to thank Fred Hurley for advice and for sharing knowledge of cosmetics and lipsticks. Finally, we are very grateful to representa-tives from several cosmetic companies and the industry trade group, the Personal Care Product Council, for cooperation in providing samples and information about testing, and to Stanley Milstein in the FDA’s Offi ce of Cosmetics and Colors for coordinating all involved parties.REFERENCES(1) “Lead Poisoning,” March 15, 2007 accessed August 2008, </health/lead-poisoning/FL00068/ DSECTION=causes>.(2) “Campaign for Safe Cosmetics, A Poison Kiss: The Problem of Lead in Lipstick,” October 2007, ac-cessed October 2007, </your_health/poisonkiss.cfm>.(3) R. Paige, “Dangerous Levels of Lead in Lipstick, Lip Gloss?,” May 17, 2006, accessed July 2008, <http:///consumer/Lipstick.Lip.Gloss.2.516979.html>.(4) B. Thompson, “Is Lead Inside Lipstick,” July 24, 2006, accessed September 26, 2008, <http://www./print/9566833/detail.html>.(5) Code of Federal Regulations (2008) Title 21 (U.S. Government Printing Offi ce, Washington, DC), Sec-tions 73, 74, and 82.(6) Federal Food, Drug, and Cosmetic Act, Chapter XI, as amended January 2004.(7) M. Okamoto, M. Kanda, I. Matsumoto, and Y. Miya, Fast analysis of trace amounts of lead in cosmeticsby atomic absorption spectrophotometry, J. Soc. Cosmet. Chem.,22, 589–598 (1971).(8) K. D. Besecker, C. B. Rhoades, B. T. Jones, and K. W. Barnes, A simple closed-vessel nitric acid diges-tion method for cosmetic samples, Atom. Spectros.,19, 48–54 (1998).414JOURNAL OF COSMETIC SCIENCE(9) Y.-H. Xu, A. Iwashita, T. Nakajima, H. Yamashita, H. Takanashi, and A. Ohki, Effect of HF additionon the microwave-assisted acid-digestion for the determination of metals in coal by inductively coupled plasma–atomic emission spectrometry, Talanta,66, 58–64 (2005).(10) Cosmetics, Toiletries, and Fragrances Association, “Determination of Lead Content of Finished Cosmet-ics and Raw Materials by Closed-Vessel Microwave Digestion Graphite Furnace Atomic Absorption Spectrometry: Lead Method CTFA 1997.DOC JAW or SLW 2001” (internal document).(11) M. Schlossman, in Handbook of Cosmetic Science and Technology, 2nd ed., Paye, Barel, and Maibach, Eds.(CRC Press, Boca Raton, FL, 2006), pp. 579–580, 588–589.(12) L. A. Currie, Detection: International update, and some emerging dilemmas involving calibration, theblank, and multiple detection decisions, Chemomet. Intell. Lab. Syst.,37, 151–181 (1997).(13) Geochemical Reference Standards, USGS Certifi cate of Analysis Mica Schist, SDC-1, March 1995, accessedOctober 2008, </geo_chem_stand/mica.html>.。