半导体物理习题答案第四章
半导体物理与器件第四版课后习题答案4复习进程
m* E
mo
2
o 13.6
s
0.067 13.6
2
13.1
or E 0.0053 eV
_______________________________________
4.17 (a) E c E F
kT ln N c no
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
19
2.8 10
0.0259 ln
4.11
只供学习与交流
E E Fi
midgap
1 kT ln N
2
Nc
1
1.04 1019
kT ln 2
2.8 1019
0.4952 kT
T (K)
200 400 600
kT (eV)
0.01727 0.03453 0.0518
( E Fi E midgap )(eV)
0.0086 0.0171 0.0257
19
2.8 10 1.04 10
3
T
300
1.12 exp
0.0259 T 300
2.5 10 23 2.912 10 38
3
T
300
1.12 300 exp
0.0259 T
By trial and error, T
367.5 K
3
2.912 10 38 T exp 1.12 300
300
0.0259 T
E E Fi
midgap
0.0128 eV
*
Germanium: m p 0.37mo ,
*
m n 0.55mo
E E Fi
midgap
半导体物理与器件第四课后习题答案3.doc
Chapter 33.1If o a were to increase, the bandgap energy would decrease and the material would begin to behave less like a semiconductor and more like a metal. If o a were to decrease, the bandgap energy would increase and thematerial would begin to behave more like an insulator._______________________________________ 3.2Schrodinger's wave equation is:()()()t x x V xt x m ,,2222ψ⋅+∂ψ∂- ()tt x j ∂ψ∂=, Assume the solution is of the form:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Region I: ()0=x V . Substituting theassumed solution into the wave equation, we obtain:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧∂∂-t E kx j x jku x m exp 22 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=t E kx j x u jE j exp which becomes()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=t E kx j x Eu exp This equation may be written as()()()()0222222=+∂∂+∂∂+-x u mE x x u x x u jk x u kSetting ()()x u x u 1= for region I, the equation becomes:()()()()021221212=--+x u k dx x du jk dxx u d α where222mE=αIn Region II, ()O V x V =. Assume the same form of the solution:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=ψt E kx j x u t x exp , Substituting into Schrodinger's wave equation, we find:()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎩⎨⎧-t E kx j x u jk m exp 222 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u jkexp 2 ()⎪⎭⎪⎬⎫⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∂∂+t E kx j x x u exp 22 ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+t E kx j x u V O exp ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=t E kx j x Eu exp This equation can be written as:()()()2222x x u x x u jk x u k ∂∂+∂∂+- ()()02222=+-x u mEx u mV OSetting ()()x u x u 2= for region II, this equation becomes()()dx x du jk dxx u d 22222+ ()022222=⎪⎪⎭⎫ ⎝⎛+--x u mV k O α where again222mE=α_______________________________________3.3We have()()()()021221212=--+x u k dx x du jk dxx u d α Assume the solution is of the form: ()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp The first derivative is()()()[]x k j A k j dxx du --=ααexp 1 ()()[]x k j B k j +-+-ααexp and the second derivative becomes()()[]()[]x k j A k j dxx u d --=ααexp 2212 ()[]()[]x k j B k j +-++ααexp 2Substituting these equations into the differential equation, we find()()[]x k j A k ---ααexp 2()()[]x k j B k +-+-ααexp 2(){()[]x k j A k j jk --+ααexp 2()()[]}x k j B k j +-+-ααexp ()()[]{x k j A k ---ααexp 22 ()[]}0exp =+-+x k j B α Combining terms, we obtain()()()[]222222αααα----+--k k k k k ()[]x k j A -⨯αexp()()()[]222222αααα--++++-+k k k k k ()[]0exp =+-⨯x k j B α We find that 00=For the differential equation in ()x u 2 and the proposed solution, the procedure is exactly the same as above._______________________________________ 3.4We have the solutions ()()[]x k j A x u -=αexp 1()[]x k j B +-+αexp for a x <<0 and()()[]x k j C x u -=βexp 2()[]x k j D +-+βexp for 0<<-x b .The first boundary condition is ()()0021u u =which yields0=--+D C B AThe second boundary condition is201===x x dx dudx du which yields()()()C k B k A k --+--βαα()0=++D k β The third boundary condition is ()()b u a u -=21 which yields()[]()[]a k j B a k j A +-+-ααexp exp ()()[]b k j C --=βexp()()[]b k j D -+-+βexp and can be written as()[]()[]a k j B a k j A +-+-ααexp exp ()[]b k j C ---βexp()[]0exp =+-b k j D β The fourth boundary condition isbx a x dx dudx du -===21 which yields()()[]a k j A k j --ααexp()()[]a k j B k j +-+-ααexp ()()()[]b k j C k j ---=ββexp()()()[]b k j D k j -+-+-ββexp and can be written as ()()[]a k j A k --ααexp()()[]a k j B k +-+-ααexp()()[]b k j C k ----ββexp()()[]0exp =+++b k j D k ββ_______________________________________ 3.5(b) (i) First point: πα=aSecond point: By trial and error, πα729.1=a (ii) First point: πα2=aSecond point: By trial and error, πα617.2=a_______________________________________3.6(b) (i) First point: πα=aSecond point: By trial and error, πα515.1=a (ii) First point: πα2=aSecond point: By trial and error, πα375.2=a_______________________________________ 3.7ka a aaP cos cos sin =+'αααLet y ka =, x a =α Theny x x xP cos cos sin =+'Consider dy dof this function.()[]{}y x x x P dyd sin cos sin 1-=+⋅'- We find()()()⎭⎬⎫⎩⎨⎧⋅+⋅-'--dy dx x x dy dx x x P cos sin 112y dydxx sin sin -=- Theny x x x x x P dy dx sin sin cos sin 12-=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡+-'For πn ka y ==, ...,2,1,0=n 0sin =⇒y So that, in general,()()dk d ka d a d dy dxαα===0 And22 mE=αSodk dEm mE dk d ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-22/122221 α This implies thatdk dE dk d ==0α for an k π= _______________________________________ 3.8(a) πα=a 1π=⋅a E m o 212()()()()2103123422221102.41011.9210054.12---⨯⨯⨯==ππa m E o19104114.3-⨯=J From Problem 3.5 πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J 12E E E -=∆1918104114.3100198.1--⨯-⨯= 19107868.6-⨯=Jor 24.4106.1107868.61919=⨯⨯=∆--E eV(b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=J From Problem 3.5, πα617.24=aπ617.2224=⋅a E m o()()()()2103123424102.41011.9210054.1617.2---⨯⨯⨯=πE18103364.2-⨯=J 34E E E -=∆1818103646.1103364.2--⨯-⨯= 1910718.9-⨯=Jor 07.6106.110718.91919=⨯⨯=∆--E eV_______________________________________3.9(a) At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα859.0=a o ()()()()210312342102.41011.9210054.1859.0---⨯⨯⨯=πoE19105172.2-⨯=J o E E E -=∆11919105172.2104114.3--⨯-⨯= 2010942.8-⨯=Jor 559.0106.110942.81920=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka . From Problem 3.5, πα729.12=aπ729.1222=⋅a E m o()()()()2103123422102.41011.9210054.1729.1---⨯⨯⨯=πE18100198.1-⨯=J23E E E -=∆1818100198.1103646.1--⨯-⨯= 19104474.3-⨯=Jor 15.2106.1104474.31919=⨯⨯=∆--E eV_______________________________________3.10(a) πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JFrom Problem 3.6, πα515.12=aπ515.1222=⋅a E m o()()()()2103123422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J 12E E E -=∆1919104114.310830.7--⨯-⨯= 19104186.4-⨯=Jor 76.2106.1104186.41919=⨯⨯=∆--E eV (b) πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JFrom Problem 3.6, πα375.24=aπ375.2224=⋅a E m o()()()()2103123424102.41011.9210054.1375.2---⨯⨯⨯=πE18109242.1-⨯=J 34E E E -=∆1818103646.1109242.1--⨯-⨯= 1910597.5-⨯=Jor 50.3106.110597.51919=⨯⨯=∆--E eV_____________________________________3.11(a) At π=ka , πα=a 1π=⋅a E m o 212()()()()2103123421102.41011.9210054.1---⨯⨯⨯=πE19104114.3-⨯=JAt 0=ka , By trial and error, πα727.0=a oπ727.022=⋅a E m o o()()()()210312342102.41011.9210054.1727.0---⨯⨯⨯=πo E19108030.1-⨯=Jo E E E -=∆11919108030.1104114.3--⨯-⨯= 19106084.1-⨯=Jor 005.1106.1106084.11919=⨯⨯=∆--E eV (b) At π2=ka , πα23=aπ2223=⋅a E m o()()()()2103123423102.41011.9210054.12---⨯⨯⨯=πE18103646.1-⨯=JAt π=ka , From Problem 3.6,πα515.12=aπ515.1222=⋅a E m o()()()()2103423422102.41011.9210054.1515.1---⨯⨯⨯=πE1910830.7-⨯=J23E E E -=∆191810830.7103646.1--⨯-⨯= 1910816.5-⨯=Jor 635.3106.110816.51919=⨯⨯=∆--E eV_______________________________________3.12For 100=T K, ()()⇒+⨯-=-1006361001073.4170.124gE164.1=g E eV200=T K, 147.1=g E eV 300=T K, 125.1=g E eV 400=T K, 097.1=g E eV 500=T K, 066.1=g E eV 600=T K, 032.1=g E eV_______________________________________3.13The effective mass is given by1222*1-⎪⎪⎭⎫⎝⎛⋅=dk E d mWe have()()B curve dkE d A curve dk E d 2222> so that ()()B curve m A curve m **<_______________________________________ 3.14The effective mass for a hole is given by1222*1-⎪⎪⎭⎫ ⎝⎛⋅=dk E d m p We have that()()B curve dkEd A curve dk E d 2222> so that ()()B curve m A curve m p p **<_______________________________________ 3.15Points A,B: ⇒<0dk dEvelocity in -x directionPoints C,D: ⇒>0dk dEvelocity in +x directionPoints A,D: ⇒<022dk Ednegative effective massPoints B,C: ⇒>022dkEd positive effective mass _______________________________________3.16For A: 2k C E i =At 101008.0+⨯=k m 1-, 05.0=E eV Or ()()2119108106.105.0--⨯=⨯=E J So ()2101211008.0108⨯=⨯-C3811025.1-⨯=⇒CNow ()()38234121025.1210054.12--*⨯⨯==C m 311044.4-⨯=kgor o m m ⋅⨯⨯=--*31311011.9104437.4o m m 488.0=* For B: 2k C E i =At 101008.0+⨯=k m 1-, 5.0=E eV Or ()()2019108106.15.0--⨯=⨯=E JSo ()2101201008.0108⨯=⨯-C 3711025.1-⨯=⇒CNow ()()37234121025.1210054.12--*⨯⨯==C m 321044.4-⨯=kg or o m m ⋅⨯⨯=--*31321011.9104437.4o m m 0488.0=*_______________________________________ 3.17For A: 22k C E E -=-υ()()()2102191008.0106.1025.0⨯-=⨯--C 3921025.6-⨯=⇒C()()39234221025.6210054.12--*⨯⨯-=-=C m31108873.8-⨯-=kgor o m m ⋅⨯⨯-=--*31311011.9108873.8o m m 976.0--=* For B: 22k C E E -=-υ()()()2102191008.0106.13.0⨯-=⨯--C 382105.7-⨯=⇒C()()3823422105.7210054.12--*⨯⨯-=-=C m3210406.7-⨯-=kgor o m m ⋅⨯⨯-=--*31321011.910406.7o m m 0813.0-=*_______________________________________ 3.18(a) (i) νh E =or ()()341910625.6106.142.1--⨯⨯==h E ν1410429.3⨯=Hz(ii) 141010429.3103⨯⨯===νλc E hc 51075.8-⨯=cm 875=nm(b) (i) ()()341910625.6106.112.1--⨯⨯==h E ν1410705.2⨯=Hz(ii) 141010705.2103⨯⨯==νλc410109.1-⨯=cm 1109=nm_______________________________________ 3.19(c) Curve A: Effective mass is a constantCurve B: Effective mass is positive around 0=k , and is negativearound 2π±=k . _______________________________________ 3.20()[]O O k k E E E --=αcos 1 Then()()()[]O k k E dkdE ---=ααsin 1()[]O k k E -+=ααsin 1 and()[]O k k E dk E d -=ααcos 2122Then221222*11 αE dk Ed m o k k =⋅== or212*αE m =_______________________________________ 3.21(a) ()[]3/123/24lt dn m m m =*()()[]3/123/264.1082.04oom m =o dn m m 56.0=*(b)o o l t cnm m m m m 64.11082.02123+=+=*oo m m 6098.039.24+=o cn m m 12.0=*_______________________________________ 3.22(a) ()()[]3/22/32/3lh hh dp m m m +=*()()[]3/22/32/3082.045.0o om m +=[]o m ⋅+=3/202348.030187.0o dp m m 473.0=*(b) ()()()()2/12/12/32/3lh hh lh hh cpm m m m m ++=*()()()()om ⋅++=2/12/12/32/3082.045.0082.045.0 o cp m m 34.0=*_______________________________________ 3.23For the 3-dimensional infinite potential well, ()0=x V when a x <<0, a y <<0, and a z <<0. In this region, the wave equation is:()()()222222,,,,,,z z y x y z y x x z y x ∂∂+∂∂+∂∂ψψψ()0,,22=+z y x mEψ Use separation of variables technique, so let ()()()()z Z y Y x X z y x =,,ψSubstituting into the wave equation, we have222222zZXY y Y XZ x X YZ ∂∂+∂∂+∂∂ 022=⋅+XYZ mEDividing by XYZ , we obtain021*********=+∂∂⋅+∂∂⋅+∂∂⋅ mEz Z Z y Y Y x X XLet01222222=+∂∂⇒-=∂∂⋅X k x X k x X X xx The solution is of the form: ()x k B x k A x X x x cos sin +=Since ()0,,=z y x ψ at 0=x , then ()00=X so that 0=B .Also, ()0,,=z y x ψ at a x =, so that ()0=a X . Then πx x n a k = where ...,3,2,1=x n Similarly, we have2221y k y Y Y -=∂∂⋅ and 2221z k zZ Z -=∂∂⋅From the boundary conditions, we find πy y n a k = and πz z n a k =where...,3,2,1=y n and ...,3,2,1=z n From the wave equation, we can write022222=+---mE k k k z y xThe energy can be written as()222222⎪⎭⎫⎝⎛++==a n n n m E E z y x n n n z y x π _______________________________________ 3.24The total number of quantum states in the 3-dimensional potential well is given (in k-space) by()332a dk k dk k g T ⋅=ππ where222 mEk =We can then writemEk 2=Taking the differential, we obtaindE Em dE E m dk ⋅⋅=⋅⋅⋅⋅=2112121 Substituting these expressions into the density of states function, we have()dE E mmE a dE E g T ⋅⋅⋅⎪⎭⎫ ⎝⎛=212233 ππ Noting thatπ2h=this density of states function can be simplified and written as()()dE E m h a dE E g T ⋅⋅=2/33324π Dividing by 3a will yield the density of states so that()()E h m E g ⋅=32/324π _______________________________________ 3.25For a one-dimensional infinite potential well,222222k a n E m n ==*π Distance between quantum states()()aa n a n k k n n πππ=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=-+11Now()⎪⎭⎫ ⎝⎛⋅=a dkdk k g T π2NowE m k n *⋅=21dE Em dk n⋅⋅⋅=*2211 Then()dE Em a dE E g n T ⋅⋅⋅=*2212 π Divide by the "volume" a , so ()Em E g n *⋅=21πSo()()()()()EE g 31341011.9067.0210054.11--⨯⋅⨯=π ()EE g 1810055.1⨯=m 3-J 1-_______________________________________ 3.26(a) Silicon, o n m m 08.1=*()()c nc E E h m E g -=*32/324π()dE E E h m g kTE E c nc c c⋅-=⎰+*232/324π()()kT E E c nc cE E h m 22/332/33224+*-⋅⋅=π()()2/332/323224kT hm n⋅⋅=*π ()()[]()()2/33342/33123210625.61011.908.124kT ⋅⋅⨯⨯=--π ()()2/355210953.7kT ⨯=(i) At 300=T K, 0259.0=kT eV()()19106.10259.0-⨯= 2110144.4-⨯=J Then ()()[]2/3215510144.4210953.7-⨯⨯=c g25100.6⨯=m 3-or 19100.6⨯=c g cm 3-(ii) At 400=T K, ()⎪⎭⎫⎝⎛=3004000259.0kT034533.0=eV()()19106.1034533.0-⨯= 21105253.5-⨯=J Then()()[]2/32155105253.5210953.7-⨯⨯=c g2510239.9⨯=m 3- or 191024.9⨯=c g cm 3-(b) GaAs, o nm m 067.0=*()()[]()()2/33342/33123210625.61011.9067.024kT g c ⋅⋅⨯⨯=--π ()()2/3542102288.1kT ⨯=(i) At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215410144.42102288.1-⨯⨯=c g2310272.9⨯=m 3- or 171027.9⨯=c g cm 3-(ii) At 400=T K, 21105253.5-⨯=kT J ()()[]2/32154105253.52102288.1-⨯⨯=c g2410427.1⨯=m 3-181043.1⨯=c g cm 3-_______________________________________ 3.27(a) Silicon, o p m m 56.0=* ()()E E h mE g p-=*υυπ32/324()dE E E h mg E kTE p⋅-=⎰-*υυυυπ332/324()()υυυπE kTE pE E hm 32/332/33224-*-⎪⎭⎫ ⎝⎛-=()()[]2/332/333224kT hmp-⎪⎭⎫ ⎝⎛-=*π ()()[]()()2/33342/33133210625.61011.956.024kT ⎪⎭⎫ ⎝⎛⨯⨯=--π ()()2/355310969.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J ()()[]2/3215510144.4310969.2-⨯⨯=υg2510116.4⨯=m3-or 191012.4⨯=υg cm 3- (ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.5310969.2-⨯⨯=υg2510337.6⨯=m3-or 191034.6⨯=υg cm 3- (b) GaAs, o p m m 48.0=*()()[]()()2/33342/33133210625.61011.948.024kT g ⎪⎭⎫ ⎝⎛⨯⨯=--πυ ()()2/3553103564.2kT ⨯=(i)At 300=T K, 2110144.4-⨯=kT J()()[]2/3215510144.43103564.2-⨯⨯=υg2510266.3⨯=m 3- or 191027.3⨯=υg cm 3-(ii)At 400=T K, 21105253.5-⨯=kT J()()[]2/32155105253.53103564.2-⨯⨯=υg2510029.5⨯=m 3-or 191003.5⨯=υg cm 3-_______________________________________ 3.28(a) ()()c nc E E h m E g -=*32/324π()()[]()c E E -⨯⨯=--3342/33110625.61011.908.124πc E E -⨯=56101929.1 For c E E =; 0=c g1.0+=c E E eV; 4610509.1⨯=c g m 3-J 1-2.0+=c E E eV; 4610134.2⨯=m 3-J 1-3.0+=c E E eV; 4610614.2⨯=m 3-J 1- 4.0+=c E E eV; 4610018.3⨯=m 3-J 1- (b) ()E E h m g p-=*υυπ32/324()()[]()E E -⨯⨯=--υπ3342/33110625.61011.956.024E E -⨯=υ55104541.4 For υE E =; 0=υg1.0-=υE E eV; 4510634.5⨯=υg m 3-J 1-2.0-=υE E eV; 4510968.7⨯=m 3-J 1-3.0-=υE E eV; 4510758.9⨯=m 3-J 1-4.0-=υE E eV; 4610127.1⨯=m 3-J 1-_______________________________________ 3.29(a) ()()68.256.008.12/32/32/3=⎪⎭⎫ ⎝⎛==**pnc m m g g υ(b) ()()0521.048.0067.02/32/32/3=⎪⎭⎫ ⎝⎛==**pncmm g g υ_______________________________________3.30 Plot_______________________________________ 3.31(a) ()()()!710!7!10!!!-=-=i i i i i N g N g W()()()()()()()()()()()()1201238910!3!7!78910===(b) (i) ()()()()()()()()12!10!101112!1012!10!12=-=i W 66=(ii) ()()()()()()()()()()()()1234!8!89101112!812!8!12=-=i W 495=_______________________________________ 3.32()⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F exp 11(a) kT E E F =-, ()()⇒+=1exp 11E f()269.0=E f (b) kT E E F 5=-, ()()⇒+=5exp 11E f()31069.6-⨯=E f(c) kT E E F 10=-, ()()⇒+=10exp 11E f ()51054.4-⨯=E f_______________________________________ 3.33()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F exp 1111or()⎪⎪⎭⎫ ⎝⎛-+=-kT E E E f F exp 111(a) kT E E F =-, ()269.01=-E f (b) kT E E F 5=-, ()31069.61-⨯=-E f(c) kT E E F 10=-, ()51054.41-⨯=-E f_______________________________________ 3.34(a) ()⎥⎦⎤⎢⎣⎡--≅kT E E f F F exp c E E =; 61032.90259.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f 2kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.020259.030.0exp F f 61066.5-⨯=kT E c +; ()⎥⎦⎤⎢⎣⎡+-=0259.00259.030.0exp F f 61043.3-⨯=23kT E c +; ()()⎥⎦⎤⎢⎣⎡+-=0259.020259.0330.0exp F f 61008.2-⨯=kT E c 2+; ()()⎥⎦⎤⎢⎣⎡+-=0259.00259.0230.0exp F f 61026.1-⨯=(b) ⎥⎦⎤⎢⎣⎡-+-=-kT E E f F F exp 1111()⎥⎦⎤⎢⎣⎡--≅kT E E F exp υE E =; ⎥⎦⎤⎢⎣⎡-=-0259.025.0exp 1F f 51043.6-⨯= 2kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.020259.025.0exp 1F f 51090.3-⨯=kT E -υ; ()⎥⎦⎤⎢⎣⎡+-=-0259.00259.025.0exp 1F f 51036.2-⨯=23kTE -υ; ()()⎥⎦⎤⎢⎣⎡+-=-0259.020259.0325.0exp 1F f 51043.1-⨯= kT E 2-υ;()()⎥⎦⎤⎢⎣⎡+-=-0259.00259.0225.0exp 1F f 61070.8-⨯=_______________________________________3.35()()⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡--=kT E kT E kT E E f F c F F exp exp and()⎥⎦⎤⎢⎣⎡--=-kT E E f F F exp 1 ()()⎥⎦⎤⎢⎣⎡---=kT kT E E F υexp So ()⎥⎦⎤⎢⎣⎡-+-kT E kT E F c exp ()⎥⎦⎤⎢⎣⎡+--=kT kT E E F υexp Then kT E E E kT E F F c +-=-+υOr midgap c F E E E E =+=2υ_______________________________________ 3.3622222ma n E n π =For 6=n , Filled state()()()()()2103122234610121011.92610054.1---⨯⨯⨯=πE18105044.1-⨯=Jor 40.9106.1105044.119186=⨯⨯=--E eV For 7=n , Empty state ()()()()()2103122234710121011.92710054.1---⨯⨯⨯=πE1810048.2-⨯=Jor 8.12106.110048.219187=⨯⨯=--E eV Therefore 8.1240.9<<F E eV_______________________________________ 3.37(a) For a 3-D infinite potential well()222222⎪⎭⎫ ⎝⎛++=a n n n mE z y x π For 5 electrons, the 5th electron occupies the quantum state 1,2,2===z y x n n n ; so()2222252⎪⎭⎫ ⎝⎛++=a n n n m E z y x π()()()()()21031222223410121011.9212210054.1---⨯⨯++⨯=π1910761.3-⨯=Jor 35.2106.110761.319195=⨯⨯=--E eV For the next quantum state, which is empty, the quantum state is 2,2,1===z y x n n n . This quantum state is at the same energy, so 35.2=F E eV(b) For 13 electrons, the 13th electronoccupies the quantum state 3,2,3===z y x n n n ; so ()()()()()2103122222341310121011.9232310054.1---⨯⨯++⨯=πE 1910194.9-⨯=Jor 746.5106.110194.9191913=⨯⨯=--E eVThe 14th electron would occupy the quantum state 3,3,2===z y x n n n . This state is at the same energy, so 746.5=F E eV_______________________________________ 3.38The probability of a state at E E E F ∆+=1 being occupied is()⎪⎭⎫ ⎝⎛∆+=⎪⎪⎭⎫ ⎝⎛-+=kT E kT E E E f F exp 11exp 11111 The probability of a state at E E E F ∆-=2being empty is()⎪⎪⎭⎫ ⎝⎛-+-=-kT E E E f F 222exp 1111⎪⎭⎫ ⎝⎛∆-+⎪⎭⎫ ⎝⎛∆-=⎪⎭⎫ ⎝⎛∆-+-=kT E kT E kT E exp 1exp exp 111or()⎪⎭⎫ ⎝⎛∆+=-kT E E f exp 11122so ()()22111E f E f -=_______________________________________3.39(a) At energy 1E , we want01.0exp 11exp 11exp 1111=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-kT E E kT E E kT E E F F FThis expression can be written as01.01exp exp 111=-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+kT E E kT E E F F or()⎪⎪⎭⎫⎝⎛-=kT E E F 1exp 01.01Then()100ln 1kT E E F += orkT E E F 6.41+= (b)At kT E E F 6.4+=, ()()6.4exp 11exp 1111+=⎪⎪⎭⎫ ⎝⎛-+=kT E E E f F which yields()01.000990.01≅=E f_______________________________________ 3.40 (a)()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=0259.050.580.5exp exp kT E E f F F 61032.9-⨯=(b) ()060433.03007000259.0=⎪⎭⎫⎝⎛=kT eV31098.6060433.030.0exp -⨯=⎥⎦⎤⎢⎣⎡-=F f (c) ()⎥⎦⎤⎢⎣⎡--≅-kT E E f F F exp 1 ⎥⎦⎤⎢⎣⎡-=kT 25.0exp 02.0or 5002.0125.0exp ==⎥⎦⎤⎢⎣⎡+kT ()50ln 25.0=kTor()()⎪⎭⎫⎝⎛===3000259.0063906.050ln 25.0T kT which yields 740=T K_______________________________________ 3.41 (a)()00304.00259.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 0.304%(b) At 1000=T K, 08633.0=kT eV Then()1496.008633.00.715.7exp 11=⎪⎭⎫ ⎝⎛-+=E for 14.96%(c) ()997.00259.00.785.6exp 11=⎪⎭⎫ ⎝⎛-+=E for 99.7% (d)At F E E =, ()21=E f for all temperatures_______________________________________ 3.42(a) For 1E E =()()⎥⎦⎤⎢⎣⎡--≅⎪⎪⎭⎫ ⎝⎛-+=kT E E kTE E E fF F11exp exp 11Then()611032.90259.030.0exp -⨯=⎪⎭⎫ ⎝⎛-=E fFor 2E E =, 82.030.012.12=-=-E E F eV Then()⎪⎭⎫ ⎝⎛-+-=-0259.082.0exp 1111E for()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---≅-0259.082.0exp 111E f141078.10259.082.0exp -⨯=⎪⎭⎫ ⎝⎛-=(b) For 4.02=-E E F eV,72.01=-F E E eVAt 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.072.0exp exp 1kT E E E f F or()131045.8-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor()71096.11-⨯=-E f_______________________________________ 3.43(a) At 1E E =()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.030.0exp exp 1kT E E E f F or()61032.9-⨯=E fAt 2E E =, 12.13.042.12=-=-E E F eV So()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.012.1expor()191066.11-⨯=-E f (b) For 4.02=-E E F ,02.11=-F E E eV At 1E E =,()()⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡--=0259.002.1exp exp 1kT E E E f F or()181088.7-⨯=E f At 2E E =,()()⎥⎦⎤⎢⎣⎡--=-kT E E E f F 2exp 1 ⎪⎭⎫ ⎝⎛-=0259.04.0expor ()71096.11-⨯=-E f_______________________________________ 3.44()1exp 1-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+=kTE E E f Fso()()2exp 11-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-=kT E E dE E df F⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛⨯kT E E kT F exp 1or()2exp 1exp 1⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=kT E E kT E E kT dE E df F F (a) At 0=T K, For()00exp =⇒=∞-⇒<dE dfE E F()0exp =⇒+∞=∞+⇒>dEdfE E FAt -∞=⇒=dEdfE E F(b) At 300=T K, 0259.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =,()()65.91110259.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1-(c) At 500=T K, 04317.0=kT eVFor F E E <<, 0=dE dfFor F E E >>, 0=dEdfAt F E E =,()()79.511104317.012-=+⎪⎭⎫ ⎝⎛-=dE df (eV)1- _______________________________________ 3.45(a) At midgap E E =,()⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=kT E kTE E E f g F2exp 11exp 11Si: 12.1=g E eV, ()()⎥⎦⎤⎢⎣⎡+=0259.0212.1exp 11E for()101007.4-⨯=E fGe: 66.0=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0266.0exp 11E for()61093.2-⨯=E f GaAs: 42.1=g E eV ()()⎥⎦⎤⎢⎣⎡+=0259.0242.1exp 11E for()121024.1-⨯=E f(b) Using the results of Problem 3.38, the answers to part (b) are exactly the same as those given in part (a)._______________________________________3.46(a) ()⎥⎦⎤⎢⎣⎡--=kT E E f F F exp ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 108or()810ln 60.0+=kT()032572.010ln 60.08==kT eV ()⎪⎭⎫⎝⎛=3000259.0032572.0Tso 377=T K(b) ⎥⎦⎤⎢⎣⎡-=-kT 60.0exp 106()610ln 60.0+=kT()043429.010ln 60.06==kT ()⎪⎭⎫⎝⎛=3000259.0043429.0Tor 503=T K_______________________________________ 3.47(a) At 200=T K,()017267.03002000259.0=⎪⎭⎫⎝⎛=kT eV⎪⎪⎭⎫ ⎝⎛-+==kT E E f F F exp 1105.019105.01exp =-=⎪⎪⎭⎫ ⎝⎛-kT E E F()()()19ln 017267.019ln ==-kT E E F 05084.0=eV By symmetry, for 95.0=F f , 05084.0-=-F E E eVThen ()1017.005084.02==∆E eV (b) 400=T K, 034533.0=kT eV For 05.0=F f , from part (a),()()()19ln 034533.019ln ==-kT E E F 10168.0=eVThen ()2034.010168.02==∆E eV _______________________________________。
半导体物理习题答案(1-3章)
第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。
试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。
解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:m i n 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为0.25 nm 的一维晶格,当外加102V/m 、107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102V/m 时,88.310t s -=⨯;当E = 107V/m 时,138.310t s -=⨯。
半导体物理学(刘恩科)课后习题解第四章答案
σ = nqu n + pqu p = ni q(u n + u p ) = 1×1010 ×1.602 ×10 -19 × (1350+500) = 3.0 ×10 -6 S / cm
1 1 金钢石结构一个原胞内的等效原子个数为 8 × + 6 × + 4 = 8 个,查看附录 B 知 Si 8 2
ρ i = 1/ σ i =
1 ni q(u n + u p )
=
1 = 12.5Ω ⋅ cm 5 ×10 ×1.602 × 10 −19 × ( 400 + 600)
14
11. 截面积为 10-3cm2, 掺有浓度为 1013cm-3 的 p 型 Si 样品,样品内部加有强度为 103V/cm的电场,求; ①室温时样品的电导率及流过样品的电流密度和电流强度。 ②400K 时样品的电导率及流过样品的电流密度和电流强度。 解: ①查表 4-15(b)知室温下,浓度为 1013cm-3的p型Si样品的电阻率为 ρ ≈ 2000Ω ⋅ cm , 则电导率为 σ = 1 / ρ ≈ 5 ×10 −4 S / cm 。 电流密度为 J = σE = 5 ×10 −4 ×10 3 = 0.5 A / cm 2 电流强度为 I = Js = 0.5 ×10 −3 = 5 ×10 −4 A ②400K时,查图 4-13 可知浓度为 1013cm-3的p型Si的迁移率约为 u p = 500cm 2 /(V ⋅ s ) , 则电导率为 σ = pqu p = 1013 ×1.602 ×10 −19 × 500 = 8 ×10 −4 S / cm 电流密度为 J = σE = 8 ×10 −4 ×10 3 = 0.8 A / cm 2
n = p0 + N D = 2 × 1013 + 8.4 × 1014 = 8.6 × 1014 cm −3
半导体物理学第四章答案
半导体物理学第四章答案第四章习题及答案1. 300K 时,Ge 的本征电阻率为47Ωcm ,如电子和空穴迁移率分别为3900cm 2/( V.S)和1900cm 2/( V.S)。
试求Ge 的载流子浓度。
解:在本征情况下,i n p n ==,由)(/p n i p n u u q n pqu nqu +=+==111σρ知 3131910292190039001060214711--?=+=+=cm u u q n p n i .)(.)(ρ 2. 试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/( V.S)和500cm 2/( V.S)。
当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。
比本征Si 的电导率增大了多少倍?解:300K 时,)/(),/(S V cm u S V cm u p n ?=?=225001350,查表3-2或图3-7可知,室温下Si 的本征载流子浓度约为3101001-?=cm n i .。
本征情况下,cm S +.u u q n pqu nqu -p n i p n /.)()(6191010035001350106021101-?==+=+=σ金钢石结构一个原胞内的等效原子个数为84216818=+?+?个,查看附录B 知Si 的晶格常数为0.543102nm ,则其原子密度为322371051054310208--?=?cm ).(。
掺入百万分之一的As,杂质的浓度为3162210510000001105-?=?=cm N D ,杂质全部电离后,i D n N >>,这种情况下,查图4-14(a )可知其多子的迁移率为800 cm 2/( V.S)cm S .qu N -n D /.''468001060211051916==≈σ比本征情况下增大了66101210346?=?=-..'σσ倍 3. 电阻率为10Ω.m 的p 型Si 样品,试计算室温时多数载流子和少数载流子浓度。
半导体物理(刘恩科)第四章小结含习题答案
ℏ������������
������0 ∝ [ⅇ������0������ − 1]
12.当几种散射概率同时存在时
P=������Ι + ������ΙΙ + ������ΙΙΙ + ⋯ ⋯
τ
=
1 ������
=
1 ������Ι+������ΙΙ+������ΙΙΙ+⋯
⟹
1 ������
=
������Ι
比本征情况下增大了������′
������
=
6.4 3.18×10−6
=
2.01
×
106倍
显然掺杂大大提高了电导率
3. 电阻率为 10.m 的 p 型 Si 样品,试计算室温时多数载流子和少数载流子浓度。
解:对 p 型 Si,多子为空穴 ������ = 1
������������������������
其中������������ = 500 ������������2/(������������)
∴
������
=
1 ������������������������
=
1 10×1.6×10−19×500
=
1.25
×
1015������������−3
������
=
������������2 ������
=
47
×
1.602
×
1 10−19
×
(3800
+
1800)
=
2.37
×
1013������������−3
2. 试 计 算本 征 Si 在 室温 时的 电导率 ,设 电子和 空穴 迁移率 分别 为 1450cm2/( V.S)和
半导体物理习题参考答案第四章
第4章 半导体的导电性2.试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/V ⋅s 和500 cm 2/V ⋅s 。
当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。
掺杂后的电导率比本征Si 的电导率增大了多少倍?解:将室温下Si 的本征载流子密度1.5⨯1010/cm 3及题设电子和空穴的迁移率代入电导率公式()i i n p n q σμμ=+g 算得500克Si 单晶的体积为3214.6 cm 2.33V ==,于是知B 的浓度 ∴1816-32.510 1.1610 cm 214.6A Z N V ⨯===⨯ 室温下硅中此等浓度的B 杂质应已完全电离,查表4-14知相应的空穴迁移率为400 cm 2/V ⋅s 。
故161911 1.35cm 1.1610 1.610400A p N q ρμ-===Ω⋅⨯⨯⨯⨯ 6. 设Si 中电子的迁移率为0.1 m 2/(V .s),电导有效质量m C =0.26m 0,加以强度为104V/m 的电场,试求平均自由时间和平均自由程。
解:由迁移率的定义式*n c cq m τμ=知平均自由时间 *c c n m qμτ⋅= 代入相关数据,得3113190.269.1100.1 1.48101.610n s τ---⨯⨯⨯==⨯⨯8. 0.1A 的。
为5.3⨯10 cm 的施主。
10. 试求本征Si 在473K 时的电阻率。
解:由图4-13查出T=473K 时本征硅中电子和空穴的迁移率分别是2440 cm /V s n μ=⋅,2140 cm /V s p μ=⋅在温度变化不大时可忽略禁带宽度随温度的变化,则任意温度下的本征载流子密度可用室温下的等效态密度N C (300)和N V (300)、禁带宽度E g (300)和室温kT=0.026eV 表示为3/23(300)300()(300)(300)(exp() cm 3000.026g i C V E T n T N N T⋅=-代入相关数据,得193/2133473 1.12300(473)10()exp() =4.110 cm 30020.026473i n ⨯=-⨯⨯⨯- 该值与图3-7中T=200℃(473K )所对应之值低大约一个数量级,这里有忽略禁带变窄的因素,也有其他因素(参见表3-2,计算值普遍比实测值低)。
半导体物理第四章答案
返回
截面积为 0.001cm 的圆柱形纯Si样品,长1mm,接于 10V电源上,室温下希望通过0.1A的电流,问: ⑴样品的电阻为多少? ⑵样品的电导率是多少?
µ n = 1200 cm 2 V ⋅ s ) ⑶应掺入为多少的施主?(
4-11 -
σ 1 = N A qµ p = 1013 ×1.6 ×10 −19 × 500 = 8 ×10 −4 / Ω ⋅ cm
J 1 = σε = 8 × 10 −4 × 10 3 = 0.8 A cm 2
I 1 = J 1 S = 0.8mA
ni = 8 × 1012 cm −3 ⑵400K时,由图3-7知,
第四章
PowerPoint2003
半导体物理习题 第四章
4-1 - 4-6 - 4-11 - 4-16 - 4-2 - 4-7 - 4-12 - 4-17 - 4-3 - 4-8 - 4-13 - 4-18 - 4-4 - 4-9 - 4-14 - 4-19 - 4-5 - 4-10 - 4-15 - 4-20 -
n 8 × 10 n≈ = = 4.41 × 1012 cm −3 p 1.45 × 1013
2 i
(
12 2
)
µ p = 230cm 2 / V ⋅ s µ 由图4-13知, n = 700cm / V ⋅ s ,
2
σ 2 = nqµ n + pqµ p
= 1.6 ×10−19 × 4.41×1012 × 700 + 1.45 ×1013 × 230
即本征激发不可忽略。
N A ≈ ni
,
NA p= 2
半导体物理学第四章答案
全部电离,试计算其电导率。比本征Si的电导率增大了多少倍?
解:300K时,,查表3-2或图3-7可知,室温下Si的本征载流子浓度约
为。
本征情况下,
金钢石结构一个原胞内的等效原子个数为个,查看附录B知Si的晶格
常数为0.543102nm,则其原子密度为。
掺入百万分之一的As,杂质的浓度为,杂质全部电离后,,这种情况
①室温时样品的电导率及流过样品的电流密度和电流强度。 ②400K时样品的电导率及流过样品的电流密度和电流强度。 解: ①查表4-15(b)知室温下,浓度为1013cm-3的p型Si样品的电阻率为, 则电导率为。 电流密度为 电流强度为 ②400K时,查图4-13可知浓度为1013cm-3的p型Si的迁移率约为,则电导 率为 电流密度为 电流强度为 12. 试从图4-14求室温时杂质浓度分别为1015,1016,1017cm-3的p型 和n型Si 样品的空穴和电子迁移率,并分别计算他们的电阻率。再从图 4-15分别求他们的电阻率。
,
,查图4-14(a)知,
④磷原子31015cm-3+镓原子11017cm-3+砷原子11017cm-3
,
,查图4-14(a)知, 17. ①证明当unup且电子浓度n=ni时,材料的电导率最小,并求min的表 达式。 解:
令 因此,为最小点的取值
②试求300K时Ge 和Si样品的最小电导率的数值,并和本征电导率相比 较。 查表4-1,可知室温下硅和锗较纯样品的迁移率 Si: Ge: 18. InSB的电子迁移率为7.5m2/( VS),空穴迁移率为0.075m2/( VS), 室温时本征载流子浓度为1.61016cm-3,试分别计算本征电导率、电阻率 和最小电导率、最大电导率。什么导电类型的材料电阻率可达最大。 解: 借用17题结果 当时,电阻率可达最大,这时 ,这时为P型半导体。
半导体物理导论 课后习题 第4章
Eg
77K
Eg
0
T
T
2
1.21
4.73 104 772 77 636
1.2061eV
Eg
300K
Eg
0
T
T
2
1.21
4.73 104 3002 300 636
1.1615eV
Eg
500K
Eg
0
T
T
2
0.7437
4.73 104 5002 500 636
1.1059eV
习题6. 试分别计算本征Si在77K、300K和500K下的载流子浓度。
解:假设载流子的有效质量近似不变,则:
而
Eg
T
Eg
0
T
T
2
且 4.73104, 636
ni
Eg
Nc Nv e 2k0T
所以
Eg
77K
Eg
0
T
T
2
1.21
4.73 104 772 77 636
1.2061eV
e 3.5 10 cm
1.1615 1.6021039 2 1.3810 23 300
9
3
ni (500K)
N N e
Eg 2k0T
cv
6.025 1019
2.367 1019
e
1.1059 1.6021039 2 1.3810 23 500
1.669 1014 cm3
Eg
300K
Eg
0
T
T
2
1.21
4.73 104 3002 300 636
1.1615eV
半导体物理分章答案第四章
可忽略
占主导
非本征区
本征区
低温区
0 K
4.6 强电场下的效应 热载流子 Effect at Large Field, Hot Carrier
学习重点:
强电场下欧姆定律发生偏离的原因
1、欧姆定率的偏离与强电场效应
N型锗样品电流与电场强度的关系
光学波散射:
正负离子的振动位移会产生附加势场,因此化合物半导体中光学波散射较强。例如:GaAs 对于元素半导体,只是在高温条件下才考虑光学波散射的作用。例如:Ge、Si 离子晶体中光学波对载流子的散射几率
4.3 迁移率与杂质浓度和温度的关系
当几种散射机构同时存在时
2
平均自由时间τ和散射几率P的关系
晶格振动表现为格波
1
N个原胞组成的晶体→格波波矢有N个。格波的总数等于原子自由度总数
2
一个格波波矢q 对应3(n-1)支光学波+3支声学波。
3
光学波=N (n-1)个纵波+2 N (n-1)个横波
4
声学波=N个纵波+2N个横波
5
晶格振动散射可理解为载流子与声子的碰撞,遵循两大守恒法则
6
准动量守恒
7
1、迁移率( Mobility ) 2、散射机制(Scattering mechanisms) 3、迁移率、电阻率与温度的关系
第四章 半导体的导电性 Electrical conduction of Semiconductors
202X
重点:
漂移运动 迁移率 电导率
学习重点:
202X
§4.1 载流子的漂移运动 迁移率 The drift motion of carrier, mobility
半导体物理:课后习题4-12章
解:在本征情况下,n p ni
ρ 1/ σ
1
1
nqun pqup niq(un up )
ni
1 ρq(un up
)
1 47 1.602 1019 (
3900
1900
)
2.29 1013cm3
2. 试计算本征Si在室温时的电导率,设电 子和空穴迁移率分别为1450cm2/( V.S)和 500cm2/( V.S)。当掺入百万分之一的As后 ,设杂质全部电离,试计算其电导率。比本 征Si的电导率增大了多少倍?
B =(H 2Bz2 1) 0.402 cm
6.InSb电子迁移率为7.8m2/(V·s),空穴迁移 率为780cm2/(V·s),本征载流子浓度为1.6
×1016cm-3,求300K时: (1)本征材料的霍尔系数 (2)室温时测得RH=0,求载流子浓度 (3)本征电阻率
解:(1)R
H
=
如图121所示设样品为长8mm宽2mm厚02mm的ge在样品长度两端加10v的电压得到10ma沿x方向的电流再沿样品垂直方向z加01t的磁场则在样品宽度两端测得电压vac为10ma设材料主要是一种载流子导电试求
第四章
1.300K时,Ge的本征电阻率为47cm,如电子 和空穴迁移率分别为3900cm2/(V.S)和 1900cm2/(V.S)。试求Ge 的载流子浓度。
/ (v s)
5.对长1cm、宽2mm、厚0.2mm的n型Ge,如在长度两
端加1.5V电压时得到15mA的电流;再沿样品垂直方 向加以0.2T的磁场,测得霍尔电压为-30mA,求: (1)霍尔系数; (2)载流子浓度; (3)零磁场时的电阻率; (4)0.2T时的电阻率(分别计算长声学波和电离杂 质散射时的情况,设等能面为球面)。
半导体物理学(第7版本)刘恩科第四章习题答案
比本征情况下增大了
' 6.4 2.1 10 6 倍 6 3 10
3. 电阻率为 10 .m 的 p 型 Si 样品,试计算室温时多数载流子和少数载流子浓度。 解:查表 4-15(b)可知,室温下,10 .m 的 p 型 Si 样品的掺杂浓度 NA 约为1.5 1015 cm 3 ,查表 3-2 或 图 3-7 可知,室温下 Si 的本征载流子浓度约为 ni 1.0 10 10 cm 3 , N A ni
n p0 N D 2 10 13 8.4 10 14 8.6 10 14 cm 3
1/
1 1 1.9 cm 14 nqun 8.6 10 1.602 10 19 0.38 10 4
5. 500g 的 Si 单晶,掺有 4.510-5g 的 B ,设杂质全部电离,试求该材料的电阻率p=500cm2/( V.S), 硅单晶密度为 2.33g/cm3,B 原子量为 10.8。 解:该 Si 单晶的体积为: V B 掺杂的浓度为: N A
7 长为 2cm 的具有矩形截面的 Ge 样品,截面线度分别为 1mm 和 2mm,掺有 1022m-3 受主,试求室温时样 品的电导率和电阻。再掺入 51022m-3 施主后,求室温时样品的电导率和电阻。 解: N A 1.0 10 22 m 3 1.0 10 16 cm 3 ,查图 4-14(b)可知,这个掺杂浓度下,Ge 的迁移率 u p 为 1500 cm2/( V.S),又查图 3-7 可知,室温下 Ge 的本征载流子浓度 ni 2 10 13 cm 3 , N A ni ,属强电离区, 所以电导率为
半导体物理习题答案第四章
第4章 半导体的导电性2.试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/V ?s 和500 cm 2/V ?s 。
当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。
掺杂后的电导率比本征Si 的电导率增大了多少倍?解:将室温下Si 的本征载流子密度?1010/cm 3及题设电子和空穴的迁移率代入电导率公式()i i n p n q σμμ=+即得:101961.510 1.610(1350500) 4.4410 s/cm i σ--=⨯⨯⨯⨯+=⨯;已知室温硅的原子密度为5?1022/cm 3,掺入1ppm 的砷,则砷浓度22616351010510 cm D N --=⨯⨯=⨯在此等掺杂情况下可忽略少子对材料电导率的贡献,只考虑多子的贡献。
这时,电子密度n 0因杂质全部电离而等于N D ;电子迁移率考虑到电离杂质的散射而有所下降,查表4-14知n-Si 中电子迁移率在施主浓度为5?1016/cm 3时已下降为800 cm 2/V ?s 。
于是得1619510 1.610800 6.4 s cm n nq σμ-==⨯⨯⨯⨯=/该掺杂硅与本征硅电导率之比866.4 1.44104.4410i σσ-==⨯⨯ 即百万分之一的砷杂质使硅的电导率增大了亿倍5. 500g 的Si 单晶中掺有?10-5g 的B ,设杂质全部电离,求其电阻率。
(硅单晶的密度为2.33g/cm 3,B 原子量为)。
解:为求电阻率须先求杂质浓度。
设掺入Si 中的B 原子总数为Z ,则由1原子质量单位=?10-24g 算得618244.510 2.51010.8 1.6610Z --⨯==⨯⨯⨯个 500克Si 单晶的体积为3500214.6 cm 2.33V ==,于是知B 的浓度 ∴1816-32.510 1.1610 cm 214.6A Z N V ⨯===⨯ 室温下硅中此等浓度的B 杂质应已完全电离,查表4-14知相应的空穴迁移率为400 cm 2/V ?s 。
半导体物理第四章习题答案
半导体物理第四章习题答案(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四篇题解-半导体的导电性刘诺编4-1、对于重掺杂半导体和一般掺杂半导体,为何前者的迁移率随温度的变化趋势不同?试加以定性分析。
解:对于重掺杂半导体,在低温时,杂质散射起主体作用,而晶格振动散射与一般掺杂半导体的相比较,影响并不大,所以这时侯随着温度的升高,重掺杂半导体的迁移率反而增加;温度继续增加后,晶格振动散射起主导作用,导致迁移率下降。
对一般掺杂半导体,由于杂质浓度较低,电离杂质散射基本可以忽略,起主要作用的是晶格振动散射,所以温度越高,迁移率越低。
4-2、何谓迁移率影响迁移率的主要因素有哪些解:迁移率是单位电场强度下载流子所获得的漂移速率。
影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。
4-3、试定性分析Si的电阻率与温度的变化关系。
解:Si的电阻率与温度的变化关系可以分为三个阶段:(1)温度很低时,电阻率随温度升高而降低。
因为这时本征激发极弱,可以忽略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。
(2)温度进一步增加(含室温),电阻率随温度升高而升高。
在这一温度范围内,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。
对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。
(3)温度再进一步增加,电阻率随温度升高而降低。
这时本征激发越来越多,虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。
当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。
4-4、证明当µn ≠µp,且电子浓度pninnμμ/=,空穴浓度npinpμμ/=时半导体的电导率有最小值,并推导minσ的表达式。
半导体物理第四章习题参考答案
9. 由于光的照射在半导体中产生了非平衡载流子 n p 1012 cm-3 ,分别计算
施主掺杂浓度为 ND 1016 cm-3 的 N 型硅和本征硅在这种情况下的准费米能 级的位置,并与原来的费米能级的位置做比较,画出相应的能带图。 答:有:
n
ni
exp
E fn kT
Ei
,
n
E fn
答:(1) 电离杂质散射是由电离的杂质对载流子的库仑相互作用引起的,其特点 为:掺杂浓度越高,电离杂质散射越显著;温度越高,载流子的动能越大,受库 仑相互作用力的影响相对减弱,因此,电离杂质散射在低温时起主要作用,其 、
与温度的关系为:
3
3
I T 2 , I T 2
(2) 声学波散射是晶格振动对载流子散射中作用大的一种,属于晶格自身的特
10. 设空穴浓度是线性分布,在 3μm 内浓度分布差 1015cm-3,μp=400cm2·V-1·s-1, 试计算空穴扩散电流密度。
答:由爱因斯坦关系:
Dp
kT q
p
有:
jp
qDp
p x
kT p
p x
5.52 A
cm2
11. 考虑平衡情形,证明:
en
Vthn nni
exp
Et Ei kT
i niqn piqp 4.45106 Ω cm
(2)
当掺入百万分之一的
As
时,施主浓度为:
ND
5 1022 106
cm-3
51016 cm-3
(其中 N 51022 cm-3 为 Si 的原子密度)。
由于杂质全部电离,从而: n
ND
51016 cm-3,
p
半导体物理习题答案第四章
半导体物理习题答案第四章第4章半导体的导电性2.试计算本征Si 在室温时的电导率,设电⼦和空⽳迁移率分别为1350cm 2/V?s 和500 cm 2/V?s 。
当掺⼊百万分之⼀的As 后,设杂质全部电离,试计算其电导率。
掺杂后的电导率⽐本征Si 的电导率增⼤了多少倍解:将室温下Si 的本征载流⼦密度?1010/cm 3及题设电⼦和空⽳的迁移率代⼊电导率公式()i i n p n q σµµ=+即得:101961.510 1.610(1350500) 4.4410 s/cm i σ--=+=?;已知室温硅的原⼦密度为5?1022/cm 3,掺⼊1ppm 的砷,则砷浓度22616351010510 cm D N --=??=?在此等掺杂情况下可忽略少⼦对材料电导率的贡献,只考虑多⼦的贡献。
这时,电⼦密度n 0因杂质全部电离⽽等于N D ;电⼦迁移率考虑到电离杂质的散射⽽有所下降,查表4-14知n-Si 中电⼦迁移率在施主浓度为5?1016/cm 3时已下降为800 cm 2/V?s 。
于是得1619510 1.610800 6.4 s cm n nq σµ-===/该掺杂硅与本征硅电导率之⽐866.4 1.44104.4410i σσ-==?? 即百万分之⼀的砷杂质使硅的电导率增⼤了亿倍5. 500g 的Si 单晶中掺有?10-5g 的B ,设杂质全部电离,求其电阻率。
(硅单晶的密度为2.33g/cm 3,B 原⼦量为)。
解:为求电阻率须先求杂质浓度。
设掺⼊Si 中的B 原⼦总数为Z ,则由1原⼦质量单位=?10-24g 算得618244.510 2.51010.8 1.6610Z --?==个 500克Si 单晶的体积为3500214.6 cm 2.33V ==,于是知B 的浓度∴1816-32.510 1.1610 cm 214.6A Z N V ?===? 室温下硅中此等浓度的B 杂质应已完全电离,查表4-14知相应的空⽳迁移率为400 cm 2/V?s 。
半导体物理答案
第一篇 半导体中的电子状态习题1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、试指出空穴的主要特征。
1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。
1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。
求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。
题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge 、Si 的禁带宽度具有负温度系数。
1-3、 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A 、荷正电:+q ;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E nD 、m P *=-m n *。
1-4、 解:(1) Ge 、Si:a )Eg (Si :0K) = 1.17eV ;Eg (Ge :0K) = 0.744eV ;b )间接能隙结构c )禁带宽度E g 随温度增加而减小;(2) GaAs :a )Eg (0K) = 1.52eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;1-5、 解:(1) 由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a k d dE ka ka aE dk dE+=-=eVE E E E a kd dE a k E a kd dE a k a k a k ka tg dk dE ooo o 1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=∆<⨯-=+==>⨯=+====∴==--则能带宽度对应能带极大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 半导体的导电性2.试计算本征Si 在室温时的电导率,设电子和空穴迁移率分别为1350cm 2/V s 和500 cm 2/V s 。
当掺入百万分之一的As 后,设杂质全部电离,试计算其电导率。
掺杂后的电导率比本征Si 的电导率增大了多少倍解:将室温下Si 的本征载流子密度1010/cm 3及题设电子和空穴的迁移率代入电导率公式()i i n p n q σμμ=+即得:101961.510 1.610(1350500) 4.4410 s/cm i σ--=⨯⨯⨯⨯+=⨯;已知室温硅的原子密度为51022/cm 3,掺入1ppm 的砷,则砷浓度22616351010510 cm D N --=⨯⨯=⨯在此等掺杂情况下可忽略少子对材料电导率的贡献,只考虑多子的贡献。
这时,电子密度n 0因杂质全部电离而等于N D ;电子迁移率考虑到电离杂质的散射而有所下降,查表4-14知n-Si 中电子迁移率在施主浓度为51016/cm 3时已下降为800 cm 2/Vs 。
于是得1619510 1.610800 6.4 s cm n nq σμ-==⨯⨯⨯⨯=/该掺杂硅与本征硅电导率之比866.4 1.44104.4410i σσ-==⨯⨯ 即百万分之一的砷杂质使硅的电导率增大了亿倍5. 500g 的Si 单晶中掺有10-5g 的B ,设杂质全部电离,求其电阻率。
(硅单晶的密度为2.33g/cm 3,B 原子量为)。
解:为求电阻率须先求杂质浓度。
设掺入Si 中的B 原子总数为Z ,则由1原子质量单位=10-24g 算得618244.510 2.51010.8 1.6610Z --⨯==⨯⨯⨯个 500克Si 单晶的体积为3500214.6 cm 2.33V ==,于是知B 的浓度 ∴1816-32.510 1.1610 cm 214.6A Z N V ⨯===⨯ 室温下硅中此等浓度的B 杂质应已完全电离,查表4-14知相应的空穴迁移率为400 cm 2/V s 。
故161911 1.35cm 1.1610 1.610400A p N q ρμ-===Ω⋅⨯⨯⨯⨯6. 设Si 中电子的迁移率为0.1 m 2/,电导有效质量m C =0.26m 0,加以强度为104V/m 的电场,试求平均自由时间和平均自由程。
解:由迁移率的定义式*nc cq m τμ=知平均自由时间 *c cn m qμτ⋅=代入相关数据,得3113190.269.1100.1 1.48101.610n s τ---⨯⨯⨯==⨯⨯ 平均自由程:134101.48100.110 1.4810 m n n d n c L v ττμε--==⋅=⨯⨯⨯=⨯8. 截面积为0.001cm 2的圆柱形纯Si 样品,长1mm ,接于10V 的电源上,室温下希望通过0.1A 的电流,问: ①样品的电阻须是多少 ②样品的电导率应是多少③应该掺入浓度为多少的施主解:⑴由欧姆定律知其电阻须是101000.1V R I ===Ω ⑵其电导率由关系1LR Sσ=⋅并代入数据得 13L 10 1 s cm 100110R S σ--===⋅⨯⨯/⑶由此知该样品的电阻率须是1cm 。
查图4-15可知相应的施主浓度大约为1015 cm -3。
若用本征硅的电子迁移率1350cm 2/V s 进行计算,则1530191 4.610 cm 1.6101350n n q σμ===⨯⨯⨯- 计算结果偏低,这是由于没有考虑杂质散射对的影响。
按n 0=1015cm -3推算,其电子迁移率应为1180cm 2/Vs ,比本征硅的电子迁移率略低,与图4-14(a)相符。
因为硅中杂质浓度在51015cm -3左右时必已完全电离,因此为获得0.1A 电流,应在此纯硅样品中掺入浓度为1015cm -3的施主。
10. 试求本征Si 在473K 时的电阻率。
解:由图4-13查出T=473K 时本征硅中电子和空穴的迁移率分别是2440 cm /V s n μ=⋅,2140 cm /V s p μ=⋅在温度变化不大时可忽略禁带宽度随温度的变化,则任意温度下的本征载流子密度可用室温下的等效态密度N C (300)和N V (300)、禁带宽度E g (300)和室温kT=表示为3/23(300)300()(300)(300)()exp() cm 3000.026g i C V E T n T N N T⋅=- 代入相关数据,得193/2133473 1.12300(473) 2.8 1.110()exp() =4.110 cm 30020.026473i n ⨯=⨯⨯-⨯⨯⨯- 该值与图3-7中T=200℃(473K )所对应之值低大约一个数量级,这里有忽略禁带变窄的因素,也有其他因素(参见表3-2,计算值普遍比实测值低)。
将相关参数代入电阻率计算式,得473K 下的本征硅电阻率为131911282.3cm ()4.110 1.610(400140)i n p n q ρμμ-===Ω⋅+⨯⨯⨯⨯+注:若不考虑T=473K 时会出现光学波散射,可利用声学波散射的32T μ-∝规律计算T=473K 的载流子迁移率:3223001350()675 cm /V s 473n μ=⨯⋅,322300500()255 cm /V s 473n μ=⨯⋅将2930 cm V s n p μμ+=⋅/置换以上电阻率计算式中的2540 cm V s n p μμ+=⋅/,得163.9cm iρΩ⋅11. 截面积为10-3cm 2,掺有浓度为1013cm -3的P 型Si 样品,样品内部加有强度为103V/cm 的电场,求:①室温时样品的电导率及流过样品的电流密度和电流强度。
②400K 时样品的电导率及流过样品的电流密度和电流强度。
解:⑴该样品掺杂浓度较低,其室温迁移率可取高纯材料之值2500/p cm V s μ=⋅,其电导率1319410 1.610500810 s/cm p pq σμ--==⨯⨯⨯=⨯电流密度 432810100.8A/cm j E σ-==⨯⨯= 电流强度 340.810810I j S A --=⋅=⨯=⨯⑵ T=400K 时,由图3-7(旧版书,新版有误差)查得相应的本征载流子密度为81012/cm 3,接近于掺杂浓度,说明样品已进入向本征激发过渡的状态,参照式(3-60),其空穴密度22261221313304104(810)10 1.4410 cm 22A i AN N N p -++⨯⨯===⨯电子密度 21221230130(810) 4.4410cm 1.4410i n n p -⨯===⨯⨯ 利用声学波散射的32Tμ-∝规律计算T=400K 的载流子迁移率:3223001350()877 cm /V s 400n μ=⨯⋅,322300500()325 cm /V s 400n μ=⨯⋅于是得400K 时的电导率191213300) 1.610(4.4410877 1.4410325) 1.3710/n p q n p s cm σμμ--==⨯⨯⨯+⨯⨯=⨯(+相应的电流密度 3321.371010 1.37A /cm j E σ-==⨯⨯= 电流强度 31.3710A I j S -=⋅=⨯16. 分别计算掺有下列杂质的Si 在室温时的载流子浓度、迁移率和电导率:① 硼原子31015cm -3;② 硼原子1016cm -3,磷原子11016cm -3; ③ 磷原子1016cm -3,硼原子11016cm -3;④ 磷原子31015cm -3,镓原子11017cm -3,砷原子11017cm -3。
解:∵迁移率μ与杂质总浓度有关,而载流子密度由补偿之后的净杂质浓度决定,∴在同样掺杂情况下电导率与迁移率是不同掺杂浓度的函数。
⑴ 只含一种杂质且浓度不高,可认为室温下已全电离,即1530A N 310p cm -==⨯由图4-14查得p 0=31015cm -3时,空穴作为多数载流子的迁移率2480/p cm V s μ=⋅电导率 151910310 1.610480 2.310/p p q s cm σμ--==⨯⨯⨯⨯=⨯⑵ 因受主浓度高于施主,但补偿后净受主浓度不高,可视为全电离,即16161530 1.310 1.010310A D p N N cm -=-=⨯-⨯=⨯,而影响迁移率的电离杂质总浓度应为16161631.310 1.010 2.310i A D N N N cm -=+=⨯+⨯=⨯由图4-14查得这时的空穴迁移率因电离杂质总浓度增高而下降为2340/p cm V s μ=⋅因此,虽然载流子密度不变,而电导率下降为151910310 1.610340 1.6310/p p q s cm σμ--==⨯⨯⨯⨯=⨯⑶ 这时,施主浓度高于受主,补偿后净施主浓度不高,可视为全电离,即16161530 1.310 1.010310n cm -=⨯-⨯=⨯影响迁移率的电离杂质总浓度跟上题一样,即16161631.310 1.010 2.310i N cm -=⨯+⨯=⨯由图4-14查得这时的电子迁移率约为:2980/n cm V s μ=⋅相应的电导率 151910310 1.610980 4.710/n n q s cm σμ--==⨯⨯⨯⨯=⨯⑷ 镓浓度与砷浓度相等,完全补偿,净施主浓度即磷浓度,考虑杂质完全电离,则1530()310D n N P cm -==⨯但影响迁移率的电离杂质总浓度1517173310210 2.0310i N cm -=⨯+⨯=⨯由图4-14查得这时的电子迁移率因电离杂质浓度提高而下降为:2500/n cm V s μ=⋅ 相应的电导率 151910310 1.610500 2.410/n n q s cm σμ--==⨯⨯⨯⨯=⨯17.①证明当n≠p且电子浓度n =n i (p/n)1/2时,材料的电导率最小,并求min σ的表达式;②试求300K 时Ge 和Si 样品的最小电导率的数值,并和本征电导率相比较。
解:⑴∵()n p q n p σμμ=+,又2i n p n =∴2()i n p n q n n σμμ=+ 令0d dnσ=,得220i n p n n μμ+=∴pinn n μμ= 又32222332()20p i np i n d dn nn μμσμ==>故当p i n n n μμ=时,σ取极小值。
这时ni pp n μμ=∴1122min[()()]2p n i n p i n p n pn q n q μμσμμμμμμ=+=因为一般情况下n>p,所以电导率最小的半导体一般是弱p 型。