工程材料课后作业及答案

合集下载

工程材料作业习题及答案全

工程材料作业习题及答案全

1、下列各种工件应该采用何种硬度实验方法来测定其硬度?锉刀、黄铜轴套、供应状态的各种非合金钢材、硬质合金刀片、耐磨工件的表面硬化层、调质态的机床主轴。

2、已知Cu(f.c.c)的原子直径为2.56A,求Cu的晶格常数a,并计算1mm3Cu中的原子数。

3、已知金属A(熔点600℃)与金属B(熔点500℃)在液态无限互溶;在固态300℃时A溶于B的最大溶解度为30%,室温时为10%,但B不溶于A;在300℃时,含40%B的液态合金发生共晶反应。

求:①作出A-B合金相图(请用尺子等工具,标出横纵座标系,相图各区域名称,规范作图)②写出共晶反应式。

③分析20%A,45%A,80%A等合金的结晶过程,用结晶表达式表达。

4.一个二元共晶反应如下:L(75%)←→α(15%B)+β(95%B)(1)计算含50%B的合金完全凝固时①初晶α与共晶(α+β)的重量百分数。

②α相和β相的重量百分数。

③共晶体中的α相和β相的重量百分数。

(2)若显微组织中,测出初晶β相与(α+β)共晶各占一半,求该合金的成分。

5.有形状,尺寸相同的两个Cu-Ni合金铸件,一个含Ni90%,另一个含Ni50%,铸件自然冷却,问哪个铸件的偏析严重,为什么?1.何谓铁素体,奥氏体,渗碳体,珠光体和莱氏体,它们的结构,组织形态,性能等各有何特点?2.分析含碳量为0.3%,1.3%,3.0%和5.0%的铁碳合金的结晶过程和室温组织。

3.指出下列名词的主要区别:一次渗碳体,二次渗碳体,三次渗碳体,共晶渗碳体和共析渗碳体。

4.写出铁碳合金的共晶反应式和共析反应式。

5.根据铁碳相图:①分析0.6%C的钢室温下的组织,并计算其相对量。

②分析1.2%C的钢室温下的相组成,并计算其相对量。

③计算铁碳合金中二次渗碳体和三次渗碳体的最大含量。

6.对某退火碳素钢进行金相分析,其组织为珠光体+网状渗碳体,其中珠光体占93%,问此钢的含碳量大约为多少?7.依据铁碳相图说明产生下列现象的原因:①含碳量为1.0%的钢比含碳量为0.4%的钢硬度高。

工程材料课后答案(部分)

工程材料课后答案(部分)
热塑性: 聚合物可以通过加热和冷却的方法,使聚合物重复地软化(或熔化)和硬化(或固化)的性能。
热固性: 聚合物加热加压成型固化后,不能再加热熔化和软化,称为热固性。
柔性: 在拉力作用下,呈卷曲状或线团状的线型大分子链可以伸展拉直,外力去除后,又缩回到原来的卷曲状和线团状。这种能拉伸、回缩的性能称为分子链的柔性。
解: r原子=34a=34×2.87×10-10≈1.24×10-10(m)
43πr3原子×2a3=43π34a3×2a3≈0.68=68%
(5) 在常温下,已知铜原子的直径d=2.55×10-10m,求铜的晶源自常数。 解: r原子=24a
(4) γ-Fe的一个晶胞内的原子数为(4个) .
(5) 高分子材料大分子链的化学组成以(C、H、O)为主要元素,根据组成元素的不同,可分为三类,即(碳链大分子) 、 (杂链大分子)和(元素链大分子) .
(6) 大分子链的几何形状主要为(线型) 、 (支化型)和(体型) 。热塑性聚合物主要是(线型和支化型)分子链,热固性聚合物主要是(体型)分子链。
答: ab段为右螺型位错。
bc段为刃型位错,半原子面过bc线且垂直于纸面,在纸面外。
cd段为混合位错。
de段为左螺型位错。
ea段为刃型位错,半原子面过ea线且垂直于纸面,在纸面里。 (8) 什么是固溶强化?造成固溶强化的原因是什么?
答: 形成固溶体使金属强度和硬度提高的现象称为固溶强化。
(7) 高分子材料的凝聚状态有(晶态) 、 (部分晶态)和(非晶态)三种。
(8) 线型非晶态高聚物在不同温度下的三种物理状态是(玻璃态) 、 (高弹态)和(粘流态) .
(9) 与金属材料比较,高分子材料的主要力学性能特点是强度(低) 、弹性(高) 、弹性模量(低)等。

同济大学工程材料课后习题答案(上海科学技术出版社)

同济大学工程材料课后习题答案(上海科学技术出版社)

同济⼤学⼯程材料课后习题答案(上海科学技术出版社)《⼯程材料》复习思考题参考答案第⼀章⾦属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,⾯缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,⾃发形核,⾮⾃发形核,变质处理,变质剂.答:点缺陷:原⼦排列不规则的区域在空间三个⽅向尺⼨都很⼩,主要指空位间隙原⼦,置换原⼦等.线缺陷:原⼦排列的不规则区域在空间⼀个⽅向上的尺⼨很⼤,⽽在其余两个⽅向上的尺⼨很⼩.如位错.⾯缺陷:原⼦排列不规则的区域在空间两个⽅向上的尺⼨很⼤,⽽另⼀⽅向上的尺⼨很⼩.如晶界和亚晶界.亚晶粒:在多晶体的每⼀个晶粒内,晶格位向也并⾮完全⼀致,⽽是存在着许多尺⼨很⼩,位向差很⼩的⼩晶块,它们相互镶嵌⽽成晶粒,称亚晶粒.亚晶界:两相邻亚晶粒间的边界称为亚晶界.刃型位错:位错可认为是晶格中⼀部分晶体相对于另⼀部分晶体的局部滑移⽽造成.滑移部分与未滑移部分的交界线即为位错线.如果相对滑移的结果上半部分多出⼀半原⼦⾯,多余半原⼦⾯的边缘好像插⼊晶体中的⼀把⼑的刃⼝,故称"刃型位错".单晶体:如果⼀块晶体,其内部的晶格位向完全⼀致,则称这块晶体为单晶体.多晶体:由多种晶粒组成的晶体结构称为"多晶体".过冷度:实际结晶温度与理论结晶温度之差称为过冷度.⾃发形核:在⼀定条件下,从液态⾦属中直接产⽣,原⼦呈规则排列的结晶核⼼.⾮⾃发形核:是液态⾦属依附在⼀些未溶颗粒表⾯所形成的晶核.变质处理:在液态⾦属结晶前,特意加⼊某些难熔固态颗粒,造成⼤量可以成为⾮⾃发晶核的固态质点,使结晶时的晶核数⽬⼤⼤增加,从⽽提⾼了形核率,细化晶粒,这种处理⽅法即为变质处理.变质剂:在浇注前所加⼊的难熔杂质称为变质剂.2.常见的⾦属晶体结构有哪⼏种α-Fe ,γ- Fe ,Al ,Cu ,Ni , Pb , Cr , V ,Mg,Zn 各属何种晶体结构答:常见⾦属晶体结构:体⼼⽴⽅晶格,⾯⼼⽴⽅晶格,密排六⽅晶格;α-Fe,Cr,V属于体⼼⽴⽅晶格;γ-Fe ,Al,Cu,Ni,Pb属于⾯⼼⽴⽅晶格;Mg,Zn属于密排六⽅晶格;3.配位数和致密度可以⽤来说明哪些问题答:⽤来说明晶体中原⼦排列的紧密程度.晶体中配位数和致密度越⼤,则晶体中原⼦排列越紧密.4.晶⾯指数和晶向指数有什么不同答:晶向是指晶格中各种原⼦列的位向,⽤晶向指数来表⽰,形式为;晶⾯是指晶格中不同⽅位上的原⼦⾯,⽤晶⾯指数来表⽰,形式为.5.实际晶体中的点缺陷,线缺陷和⾯缺陷对⾦属性能有何影响答:如果⾦属中⽆晶体缺陷时,通过理论计算具有极⾼的强度,随着晶体中缺陷的增加,⾦属的强度迅速下降,当缺陷增加到⼀定值后,⾦属的强度⼜随晶体缺陷的增加⽽增加.因此,⽆论点缺陷,线缺陷和⾯缺陷都会造成晶格崎变,从⽽使晶体强度增加.同时晶体缺陷的存在还会增加⾦属的电阻,降低⾦属的抗腐蚀性能.6.为何单晶体具有各向异性,⽽多晶体在⼀般情况下不显⽰出各向异性答:因为单晶体内各个⽅向上原⼦排列密度不同,造成原⼦间结合⼒不同,因⽽表现出各向异性;⽽多晶体是由很多个单晶体所组成,它在各个⽅向上的⼒相互抵消平衡,因⽽表现各向同性.7.过冷度与冷却速度有何关系它对⾦属结晶过程有何影响对铸件晶粒⼤⼩有何影响答:①冷却速度越⼤,则过冷度也越⼤.②随着冷却速度的增⼤,则晶体内形核率和长⼤速度都加快,加速结晶过程的进⾏,但当冷速达到⼀定值以后则结晶过程将减慢,因为这时原⼦的扩散能⼒减弱.③过冷度增⼤,ΔF⼤,结晶驱动⼒⼤,形核率和长⼤速度都⼤,且N的增加⽐G增加得快,提⾼了N与G的⽐值,晶粒变细,但过冷度过⼤,对晶粒细化不利,结晶发⽣困难.8.⾦属结晶的基本规律是什么晶核的形成率和成长率受到哪些因素的影响答:①⾦属结晶的基本规律是形核和核长⼤.②受到过冷度的影响,随着过冷度的增⼤,晶核的形成率和成长率都增⼤,但形成率的增长⽐成长率的增长快;同时外来难熔杂质以及振动和搅拌的⽅法也会增⼤形核率.9.在铸造⽣产中,采⽤哪些措施控制晶粒⼤⼩在⽣产中如何应⽤变质处理答:①采⽤的⽅法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的⽅法来控制晶粒⼤⼩.②变质处理:在液态⾦属结晶前,特意加⼊某些难熔固态颗粒,造成⼤量可以成为⾮⾃发晶核的固态质点,使结晶时的晶核数⽬⼤⼤增加,从⽽提⾼了形核率,细化晶粒.③机械振动,搅拌.第⼆章⾦属的塑性变形与再结晶1.解释下列名词:加⼯硬化,回复,再结晶,热加⼯,冷加⼯.答:加⼯硬化:随着塑性变形的增加,⾦属的强度,硬度迅速增加;塑性,韧性迅速下降的现象.回复:为了消除⾦属的加⼯硬化现象,将变形⾦属加热到某⼀温度,以使其组织和性能发⽣变化.在加热温度较低时,原⼦的活动能⼒不⼤,这时⾦属的晶粒⼤⼩和形状没有明显的变化,只是在晶内发⽣点缺陷的消失以及位错的迁移等变化,因此,这时⾦属的强度,硬度和塑性等机械性能变化不⼤,⽽只是使内应⼒及电阻率等性能显著降低.此阶段为回复阶段.再结晶:被加热到较⾼的温度时,原⼦也具有较⼤的活动能⼒,使晶粒的外形开始变化.从破碎拉长的晶粒变成新的等轴晶粒.和变形前的晶粒形状相似,晶格类型相同,把这⼀阶段称为"再结晶".热加⼯:将⾦属加热到再结晶温度以上⼀定温度进⾏压⼒加⼯.冷加⼯:在再结晶温度以下进⾏的压⼒加⼯.2.产⽣加⼯硬化的原因是什么加⼯硬化在⾦属加⼯中有什么利弊答:①随着变形的增加,晶粒逐渐被拉长,直⾄破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈⼤,晶粒破碎的程度愈⼤,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长⽽被拉长.因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,⾦属的塑性变形抗⼒将迅速增⼤,即强度和硬度显著提⾼,⽽塑性和韧性下降产⽣所谓"加⼯硬化"现象.②⾦属的加⼯硬化现象会给⾦属的进⼀步加⼯带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动.另⼀⽅⾯⼈们可以利⽤加⼯硬化现象,来提⾼⾦属强度和硬度,如冷拔⾼强度钢丝就是利⽤冷加⼯变形产⽣的加⼯硬化来提⾼钢丝的强度的.加⼯硬化也是某些压⼒加⼯⼯艺能够实现的重要因素.如冷拉钢丝拉过模孔的部分,由于发⽣了加⼯硬化,不再继续变形⽽使变形转移到尚未拉过模孔的部分,这样钢丝才可以继续通过模孔⽽成形.3.划分冷加⼯和热加⼯的主要条件是什么答:主要是再结晶温度.在再结晶温度以下进⾏的压⼒加⼯为冷加⼯,产⽣加⼯硬化现象;反之为热加⼯,产⽣的加⼯硬化现象被再结晶所消除.4.与冷加⼯⽐较,热加⼯给⾦属件带来的益处有哪些答:(1)通过热加⼯,可使铸态⾦属中的⽓孔焊合,从⽽使其致密度得以提⾼.(2)通过热加⼯,可使铸态⾦属中的枝晶和柱状晶破碎,从⽽使晶粒细化,机械性能提⾼.(3)通过热加⼯,可使铸态⾦属中的枝晶偏析和⾮⾦属夹杂分布发⽣改变,使它们沿着变形的⽅向细碎拉长,形成热压⼒加⼯"纤维组织"(流线),使纵向的强度,塑性和韧性显著⼤于横向.如果合理利⽤热加⼯流线,尽量使流线与零件⼯作时承受的最⼤拉应⼒⽅向⼀致,⽽与外加切应⼒或冲击⼒相垂直,可提⾼零件使⽤寿命.5.为什么细晶粒钢强度⾼,塑性,韧性也好答:晶界是阻碍位错运动的,⽽各晶粒位向不同,互相约束,也阻碍晶粒的变形.因此,⾦属的晶粒愈细,其晶界总⾯积愈⼤,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗⼒也愈⼤.因此,⾦属的晶粒愈细强度愈⾼.同时晶粒愈细,⾦属单位体积中的晶粒数便越多,变形时同样的变形量便可分散在更多的晶粒中发⽣,产⽣较均匀的变形,⽽不致造成局部的应⼒集中,引起裂纹的过早产⽣和发展.因此,塑性,韧性也越好.6.⾦属经冷塑性变形后,组织和性能发⽣什么变化答:①晶粒沿变形⽅向拉长,性能趋于各向异性,如纵向的强度和塑性远⼤于横向等;②晶粒破碎,位错密度增加,产⽣加⼯硬化,即随着变形量的增加,强度和硬度显著提⾼,⽽塑性和韧性下降;③织构现象的产⽣,即随着变形的发⽣,不仅⾦属中的晶粒会被破碎拉长,⽽且各晶粒的晶格位向也会沿着变形的⽅向同时发⽣转动,转动结果⾦属中每个晶粒的晶格位向趋于⼤体⼀致,产⽣织构现象;④冷压⼒加⼯过程中由于材料各部分的变形不均匀或晶粒内各部分和各晶粒间的变形不均匀,⾦属内部会形成残余的内应⼒,这在⼀般情况下都是不利的,会引起零件尺⼨不稳定.7.分析加⼯硬化对⾦属材料的强化作⽤答:随着塑性变形的进⾏,位错密度不断增加,因此位错在运动时的相互交割,位错缠结加剧,使位错运动的阻⼒增⼤,引起变形抗⼒的增加.这样,⾦属的塑性变形就变得困难,要继续变形就必须增⼤外⼒,因此提⾼了⾦属的强度.8.已知⾦属钨,铁,铅,锡的熔点分别为3380℃,1538℃,327℃,232℃,试计算这些⾦属的最低再结晶温度,并分析钨和铁在1100℃下的加⼯,铅和锡在室温(20℃)下的加⼯各为何种加⼯答:T再=0.4T熔;钨T再=[0.4*(3380+273)]-273=1188.2℃; 铁T再=[0.4*(1538+273)]-273=451.4℃; 铅T再=[0.4*(327+273)]-273=-33℃; 锡T再=[0.4*(232+273)]-273=-71℃.由于钨T再为1188.2℃>1100℃,因此属于热加⼯;铁T再为451.4℃<1100℃,因此属于冷加⼯;铅T再为-33℃<20℃,属于冷加⼯;锡T再为-710.6%C(2)按质量分类:即含有杂质元素S,P的多少分类:普通碳素钢:S≤0.055% P≤0.045%优质碳素钢:S,P≤0.035~0.040%⾼级优质碳素钢:S≤0.02~0.03%;P≤ 0.03~0.035%(3)按⽤途分类碳素结构钢:⽤于制造各种⼯程构件,如桥梁,船舶,建筑构件等,及机器零件,如齿轮,轴,连杆,螺钉,螺母等.碳素⼯具钢:⽤于制造各种⼑具,量具,模具等,⼀般为⾼碳钢,在质量上都是优质钢或⾼级优质钢.牌号的表⽰⽅法:(1)普通碳素结构钢:⽤Q+数字表⽰,"Q"为屈服点,"屈"汉语拼⾳,数字表⽰屈服点数值.若牌号后⾯标注字母A,B,C,D,则表⽰钢材质量等级不同,A,B,C,D质量依次提⾼,"F"表⽰沸腾钢,"b"为半镇静钢,不标"F"和"b"的为镇静钢.(2)优质碳素结构钢:牌号是采⽤两位数字表⽰的,表⽰钢中平均含碳量的万分之⼏.若钢中含锰量较⾼,须将锰元素标出,(3)碳素⼯具钢:这类钢的牌号是⽤"碳"或"T"字后附数字表⽰.数字表⽰钢中平均含碳量的千分之⼏.若为⾼级优质碳素⼯具钢,则在钢号最后附以"A"字.19.低碳钢,中碳钢及⾼碳钢是如何根据含碳量划分的分别举例说明他们的⽤途答:低碳钢:含碳量⼩于或等于0.25%的钢;08,10,钢,塑性,韧性好,具有优良的冷成型性能和焊接性能,常冷轧成薄板,⽤于制作仪表外壳,汽车和拖拉机上的冷冲压件,如汽车车⾝,拖拉机驾驶室等;15,20,25钢⽤于制作尺⼨较⼩,负荷较轻,表⾯要求耐磨,⼼部强度要求不⾼的渗碳零件,如活塞钢,样板等.中碳钢:含碳量为0.30~0.55%的钢;30,35,40,45,50钢经热处理(淬⽕+⾼温回⽕)后具有良好的综合机械性能,即具有较⾼的强度和较⾼的塑性,韧性,⽤于制作轴类零件;⾼碳钢:含碳量⼤于0.6%的钢;60,65钢热处理(淬⽕+⾼温回⽕)后具有⾼的弹性极限,常⽤作弹簧.T7,T8,⽤于制造要求较⾼韧性,承受冲击负荷的⼯具,如⼩型冲头,凿⼦,锤⼦等.T9,T10,T11,⽤于制造要求中韧性的⼯具,如钻头,丝锥,车⼑,冲模,拉丝模,锯条.T12,T13,钢具有⾼硬度,⾼耐磨性,但韧性低,⽤于制造不受冲击的⼯具如量规,塞规,样板,锉⼑,刮⼑,精车⼑等.20.下列零件或⼯具⽤何种碳钢制造:⼿锯锯条,普通螺钉,车床主轴.答:⼿锯锯条:它要求有较⾼的硬度和耐磨性,因此⽤碳素⼯具钢制造,如T9,T9A,T10,T10A,T11,T11A.普通螺钉:它要保证有⼀定的机械性能,⽤普通碳素结构钢制造,如Q195,Q215,Q235.车床主轴:它要求有较⾼的综合机械性能,⽤优质碳素结构钢,如30,35,40,45,50.21.指出下列各种钢的类别,符号,数字的含义,主要特点及⽤途:Q235-AF,Q235-C,Q195-B,Q255-D,40,45,08,20,20R,20G,T8,T10A,T12A答:Q235-AF:普通碳素结构钢,屈服强度为235MPa的A级沸腾钢.Q235-C:屈服强度为235MPa的C级普通碳素结构钢,Q195-B: 屈服强度为195MPa的B级普通碳素结构钢,Q255-D: 屈服强度为255MPa的D级普通碳素结构钢,Q195,Q235含碳量低,有⼀定强度,常扎制成薄板,钢筋,焊接钢管等,⽤于桥梁,建筑等钢结构,也可制造普通的铆钉,螺钉,螺母,垫圈,地脚螺栓,轴套,销轴等等,Q255钢强度较⾼,塑性,韧性较好,可进⾏焊接.通常扎制成型钢,条钢和钢板作结构件以及制造连杆,键,销,简单机械上的齿轮,轴节等.40:含碳量为0.4%的优质碳素结构钢.45含碳量为0.45%的优质碳素结构钢.40,45钢经热处理(淬⽕+⾼温回⽕)后具有良好的综合机械性能,即具有较⾼的强度和较⾼的塑性,韧性,⽤于制作轴类零件.08:含碳量为0.08%的优质碳素结构钢.塑性,韧性好,具有优良的冷成型性能和焊接性能,常冷轧成薄板,⽤于制作仪表外壳,汽车和拖拉机上的冷冲压件,如汽车车⾝,拖拉机驾驶室等.20:含碳量为0.2%的优质碳素结构钢.⽤于制作尺⼨较⼩,负荷较轻,表⾯要求耐磨,⼼部强度要求不⾼的渗碳零件,如活塞钢,样板等.20R:含碳量为0.2%的优质碳素结构钢,容器专⽤钢.20G:含碳量为0.2%的优质碳素结构钢,锅炉专⽤钢.T8:含碳量为0.8%的碳素⼯具钢.⽤于制造要求较⾼韧性,承受冲击负荷的⼯具,如⼩型冲头,凿⼦,锤⼦等.T10A:含碳量为1.0%的⾼级优质碳素⼯具钢.⽤于制造要求中韧性的⼯具,如钻头,丝锥,车⼑,冲模,拉丝模,锯条.T12A:含碳量为1.2%的⾼级优质碳素⼯具钢.具有⾼硬度,⾼耐磨性,但韧性低,⽤于制造不受冲击的⼯具如量规,塞规,样板,锉⼑,刮⼑,精车⼑.第五章钢的热处理1.何谓钢的热处理钢的热处理操作有哪些基本类型试说明热处理同其它⼯艺过程的关系及其在机械制造中的地位和作⽤.答:(1)为了改变钢材内部的组织结构,以满⾜对零件的加⼯性能和使⽤性能的要求所施加的⼀种综合的热加⼯⼯艺过程.(2)热处理包括普通热处理和表⾯热处理;普通热处理⾥⾯包括退⽕,正⽕,淬⽕和回⽕,表⾯热处理包括表⾯淬⽕和化学热处理,表⾯淬⽕包括⽕焰加热表⾯淬⽕和感应加热表⾯淬⽕,化学热处理包括渗碳,渗氮和碳氮共渗等.(3)热处理是机器零件加⼯⼯艺过程中的重要⼯序.⼀个⽑坯件经过预备热处理,然后进⾏切削加⼯,再经过最终热处理,经过精加⼯,最后装配成为零件.热处理在机械制造中具有重要的地位和作⽤,适当的热处理可以显著提⾼钢的机械性能,延长机器零件的使⽤寿命.热处理⼯艺不但可以强化⾦属材料,充分挖掘材料潜⼒,降低结构重量,节省材料和能源,⽽且能够提⾼机械产品质量,⼤幅度延长机器零件的使⽤寿命,做到⼀个顶⼏个,顶⼗⼏个.此外,通过热处理还可使⼯件表⾯具有抗磨损,耐腐蚀等特殊物理化学性能.2.解释下列名词:1)奥⽒体的起始晶粒度,实际晶粒度,本质晶粒度;答:(1)起始晶粒度:是指在临界温度以上,奥⽒体形成刚刚完成,其晶粒边界刚刚接触时的晶粒⼤⼩.(2)实际晶粒度:是指在某⼀具体的热处理加热条件下所得到的晶粒尺⼨.(3)本质晶粒度:根据标准试验⽅法,在930±10℃保温⾜够时间(3-8⼩时)后测定的钢中晶粒的⼤⼩.2)珠光体,索⽒体,屈⽒体,贝⽒体,马⽒体;答:珠光体:铁素体和渗碳体的机械混合物.索⽒体:在650~600℃温度范围内形成层⽚较细的珠光体.屈⽒体:在600~550℃温度范围内形成⽚层极细的珠光体.贝⽒体:过饱和的铁素体和渗碳体组成的混合物.马⽒体:碳在α-Fe中的过饱和固溶体.3)奥⽒体,过冷奥⽒体,残余奥⽒体;答:奥⽒体: 碳在中形成的间隙固溶体.过冷奥⽒体: 处于临界点以下的不稳定的将要发⽣分解的奥⽒体称为过冷奥⽒体.残余奥⽒体:M转变结束后剩余的奥⽒体.4)退⽕,正⽕,淬⽕,回⽕,冷处理,时效处理(尺⼨稳定处理);答:退⽕:将⼯件加热到临界点以上或在临界点以下某⼀温度保温⼀定时间后,以⼗分缓慢的冷却速度(炉冷,坑冷,灰冷)进⾏冷却的⼀种操作.正⽕:将⼯件加热到Ac3或Accm以上30~80℃,保温后从炉中取出在空⽓中冷却.淬⽕:将钢件加热到Ac3或Ac1以上30~50℃,保温⼀定时间,然后快速冷却(⼀般为油冷或⽔冷),从⽽得马⽒体的⼀种操作. 回⽕:将淬⽕钢重新加热到A1点以下的某⼀温度,保温⼀定时间后,冷却到室温的⼀种操作.冷处理:把冷到室温的淬⽕钢继续放到深冷剂中冷却,以减少残余奥⽒体的操作.时效处理:为使⼆次淬⽕层的组织稳定,在110~150℃经过6~36⼩时的⼈⼯时效处理,以使组织稳定.5)淬⽕临界冷却速度(Vk),淬透性,淬硬性;答:淬⽕临界冷却速度(Vk):淬⽕时获得全部马⽒体组织的最⼩冷却速度.淬透性:钢在淬⽕后获得淬硬层深度⼤⼩的能⼒.淬硬性:钢在淬⽕后获得马⽒体的最⾼硬度.6)再结晶,重结晶;答:再结晶:⾦属材料加热到较⾼的温度时,原⼦具有较⼤的活动能⼒,使晶粒的外形开始变化.从破碎拉长的晶粒变成新的等轴晶粒.和变形前的晶粒形状相似,晶格类型相同,把这⼀阶段称为"再结晶".重结晶:由于温度变化,引起晶体重新形核,长⼤,发⽣晶体结构的改变,称为重结晶.7)调质处理,变质处理.答:调质处理:淬⽕后的⾼温回⽕.变质处理:在液态⾦属结晶前,特意加⼊某些难熔固态颗粒,造成⼤量可以成为⾮⾃发晶核的固态质点,使结晶时的晶核数⽬⼤⼤增加,从⽽提⾼了形核率,细化晶粒.3.指出A1,A3,Acm; AC1,AC3, Accm ; Ar1,Ar3,Arcm 各临界点的意义.答:A1:共析转变线,含碳量在0.02~6.69%的铁碳合⾦冷却到727℃时都有共析转变发⽣,形成P.A3:奥⽒体析出铁素体的开始线.Acm:碳在奥⽒体中的溶解度曲线.AC1:实际加热时的共析转变线.AC3:实际加热时奥⽒体析出铁素体的开始线.Acm:实际加热时碳在奥⽒体中的溶解度曲线.Ar1:实际冷却时的共析转变线.Ar3:实际冷却时奥⽒体析出铁素体的开始线.Arcm:实际冷却时碳在奥⽒体中的溶解度曲线.4.何谓本质细晶粒钢本质细晶粒钢的奥⽒体晶粒是否⼀定⽐本质粗晶粒钢的细答:(1)本质细晶粒钢:加热到临界点以上直到930℃,随温度升⾼,晶粒长⼤速度很缓慢,称本质细晶粒钢.(2)不⼀定.本质晶粒度只代表钢在加热时奥⽒体晶粒长⼤倾向的⼤⼩.本质粗晶粒钢在较低加热温度下可获得细晶粒,⽽本质细晶粒钢若在较⾼温度下加热也会得到粗晶粒.5.珠光体类型组织有哪⼏种它们在形成条件,组织形态和性能⽅⾯有何特点答:(1)三种.分别是珠光体,索⽒体和屈⽒体.(2)珠光体是过冷奥⽒体在550℃以上等温停留时发⽣转变,它是由铁素体和渗碳体组成的⽚层相间的组织.索⽒体是在650~600℃温度范围内形成层⽚较细的珠光体.屈⽒体是在600~550℃温度范围内形成⽚层极细的珠光体.珠光体⽚间距愈⼩,相界⾯积愈⼤,强化作⽤愈⼤,因⽽强度和硬度升⾼,同时,由于此时渗碳体⽚较薄,易随铁素体⼀起变形⽽不脆断,因此细⽚珠光体⼜具有较好的韧性和塑性.6.贝⽒体类型组织有哪⼏种它们在形成条件,组织形态和性能⽅⾯有何特点答:(1)两种.上贝⽒体和下贝⽒体.(2)上贝⽒体的形成温度在600~350℃.在显微镜下呈⽻⽑状,它是由许多互相平⾏的过饱和铁素体⽚和分布在⽚间的断续细⼩的渗碳体组成的混合物.其硬度较⾼,可达HRC40~45,但由于其铁素体⽚较粗,因此塑性和韧性较差.下贝⽒体的形成温度在350℃~Ms,下贝⽒体在光学显微镜下呈⿊⾊针叶状,在电镜下观察是由针叶状的铁素体和分布在其上的极为细⼩的渗碳体粒⼦组成的.下贝⽒体具有⾼强度,⾼硬度,⾼塑性,⾼韧性,即具有良好的综合机械性能.7.马⽒体组织有哪⼏种基本类型它们在形成条件,晶体结构,组织形态,性能有何特点马⽒体的硬度与含碳量关系如何答:(1)两种,板条马⽒体和⽚状马⽒体.(2)奥⽒体转变后,所产⽣的M的形态取决于奥⽒体中的含碳量,含碳量2.5%)以外的所有合⾦元素,都增⼤过冷奥⽒体稳定性,使C 曲线右移,则Vk减⼩.(2)⼀定尺⼨的⼯件在某介质中淬⽕,其淬透层的深度与⼯件截⾯各点的冷却速度有关.如果⼯件截⾯中⼼的冷速⾼于Vk,⼯件就会淬透.然⽽⼯件淬⽕时表⾯冷速最⼤,⼼部冷速最⼩,由表⾯⾄⼼部冷速逐渐降低.只有冷速⼤于Vk的⼯件外层部分才能得到马⽒体.因此,Vk越⼩,钢的淬透层越深,淬透性越好.12.将5mm的T8钢加热⾄760℃并保温⾜够时间,问采⽤什么样的冷却⼯艺可得到如下组织:珠光体,索⽒体,屈⽒体,上贝⽒体,下贝⽒体,屈⽒体+马⽒体,马⽒体+少量残余奥⽒体;在C曲线上描出⼯艺曲线⽰意图.答:(1)珠光体:冷却⾄线~550℃范围内等温停留⼀段时间,再冷却下来得到珠光体组织.索⽒体:冷却⾄650~600℃温度范围内等温停留⼀段时间,再冷却下来得到索光体组织.屈⽒体:冷却⾄600~550℃温度范围内等温停留⼀段时间,再冷却下来得到屈⽒体组织.上贝⽒体:冷却⾄600~350℃温度范围内等温停留⼀段时间,再冷却下来得到上贝⽒体组织.下贝⽒体:冷却⾄350℃~Ms温度范围内等温停留⼀段时间,再冷却下来得到下贝⽒体组织.屈⽒体+马⽒体:以⼤于获得马⽒体组织的最⼩冷却速度并⼩于获得珠光体组织的最⼤冷却速度连续冷却,获得屈⽒体+马⽒体.马⽒体+少量残余奥⽒体:以⼤于获得马⽒体组织的最⼩冷却速度冷却获得马⽒体+少量残余奥⽒体.(2)13.退⽕的主要⽬的是什么⽣产上常⽤的退⽕操作有哪⼏种指出退⽕操作的应⽤范围.答:(1)均匀钢的化学成分及组织,细化晶粒,调整硬度,并消除内应⼒和加⼯硬化,改善钢的切削加⼯性能并为随后的淬⽕作好组织准备.(2)⽣产上常⽤的退⽕操作有完全退⽕,等温退⽕,球化退⽕,去应⼒退⽕等.(3)完全退⽕和等温退⽕⽤于亚共析钢成分的碳钢和合⾦钢的铸件,锻件及热轧型材.有时也⽤于焊接结构.球化退⽕主要⽤于共析或过共析成分的碳钢及合⾦钢.去应⼒退⽕主要⽤于消除铸件,锻件,焊接件,冷冲压件(或冷拔件)及机加⼯的残余内应⼒.14.何谓球化退⽕为什么过共析钢必须采⽤球化退⽕⽽不采⽤完全退⽕答:(1)将钢件加热到Ac1以上30~50℃,保温⼀定时间后随炉缓慢冷却⾄600℃后出炉空冷.(2)过共析钢组织若为层状渗碳体和⽹状⼆次渗碳体时,不仅硬度⾼,难以切削加⼯,⽽且增⼤钢的脆性,容易产⽣淬⽕变形及开裂.通过球化退⽕,使层状渗碳体和⽹状渗碳体变为球状渗碳体,以降低硬度,均匀组织,改善切削加⼯性.15.确定下列钢件的退⽕⽅法,并指出退⽕⽬的及退⽕后的组织:1)经冷轧后的15钢钢板,要求降低硬度;答:再结晶退⽕.⽬的:使变形晶粒重新转变为等轴晶粒,以消除加⼯硬化现象,降低了硬度,消除内应⼒.细化晶粒,均匀组织,消除内应⼒,降低硬度以消除加⼯硬化现象.组织:等轴晶的⼤量铁素体和少量珠光体.2)ZG35的铸造齿轮答:完全退⽕.经铸造后的齿轮存在晶粒粗⼤并不均匀现象,且存在残余内应⼒.因此退⽕⽬的:细化晶粒,均匀组织,消除内应⼒,降低硬度,改善切削加⼯性.组织:晶粒均匀细⼩的铁素体和珠光体.3)锻造过热后的60钢锻坯;答:完全退⽕.由于锻造过热后组织晶粒剧烈粗化并分布不均匀,且存在残余内应⼒.因此退⽕⽬的:细化晶粒,均匀组织,消除内应⼒,降低硬度,改善切削加⼯性.组织:晶粒均匀细⼩的少量铁素体和⼤量珠光体.4)具有⽚状渗碳体的T12钢坯;答:球化退⽕.由于T12钢坯⾥的渗碳体呈⽚状,因此不仅硬度⾼,难以切削加⼯,⽽且增⼤钢的脆性,容易产⽣淬⽕变形及开裂.通过球化退⽕,使层状渗碳体和⽹状渗碳体变为球状渗碳体,以降低硬度,均匀组织,改善切削加⼯性.组织:粒状珠光体和球状渗碳体.16.正⽕与退⽕的主要区别是什么⽣产中应如何选择正⽕及退⽕答:与退⽕的区别是①加热温度不同,对于过共析钢退⽕加热温度在Ac1以上30~50℃⽽正⽕加热温度在Accm以上30~50℃.②冷速快,组织细,强度和硬度有所提⾼.当钢件尺⼨较⼩时,正⽕后组织:S,⽽退⽕后组织:P.选择:(1)从切削加⼯性上考虑切削加⼯性⼜包括硬度,切削脆性,表⾯粗糙度及对⼑具的磨损等.⼀般⾦属的硬度在HB170~230范围内,切削性能较好.⾼于它过硬,难以加⼯,且⼑具磨损快;过低则切屑不易断,造成⼑具发热和磨损,加⼯后的零件表⾯粗糙度很⼤.对于低,中碳结构钢以正⽕作为预先热处理⽐较合适,⾼碳结构钢和⼯具钢则以退⽕为宜.⾄于合⾦钢,由于合⾦元素的加⼊,使钢的硬度有所提⾼,故中碳以上的合⾦钢⼀般都采⽤退⽕以改善切削性.(2)从使⽤性能上考虑如⼯件性能要求不太⾼,随后不再进⾏淬⽕和回⽕,那么往往⽤正⽕来提⾼其机械性能,但若零件的形状⽐较复杂,正⽕的冷却速度有形成裂纹的危险,应采⽤退⽕.(3)从经济上考虑正⽕⽐退⽕的⽣产周期短,耗能少,且操作简便,故在可能的条件下,应优先考虑以正⽕代替退⽕.17.指出下列零件的锻造⽑坯进⾏正⽕的主要⽬的及正⽕后的显微组织:(1)20钢齿轮(2)45钢⼩轴(3)T12钢锉⼑答:(1)⽬的:细化晶粒,均匀组织,消除内应⼒,提⾼硬度,改善切削加⼯性.组织:晶粒均匀细⼩的⼤量铁素体和少量索⽒体.(2)⽬的:细化晶粒,均匀组织,消除内应⼒.组织:晶粒均匀细⼩的铁素体和索⽒体.(3)⽬的:细化晶粒,均匀组织,消除⽹状Fe3CⅡ,为球化退⽕做组织准备,消除内应⼒.组织:索⽒体和球状渗碳体.18.⼀批45钢试样(尺⼨Φ15*10mm),因其组织,晶粒⼤⼩不均匀,需采⽤退⽕处理.拟采⽤以下⼏种退⽕⼯艺;(1)缓慢加热⾄700℃,保温⾜够时间,随炉冷却⾄室温;(2)缓慢加热⾄840℃,保温⾜够时间,随炉冷却⾄室温;。

工程材料课后习题答案

工程材料课后习题答案

⼯程材料课后习题答案参考答案第1章机械⼯程对材料性能的要求思考题与习题P201.3、机械零件在⼯作条件下可能承受哪些负荷?这些负荷对零件产⽣什么作⽤?p4⼯程构件与机械零件(以下简称零件或构件)在⼯作条件下可能受到⼒学负荷、热负荷或环境介质的作⽤。

有时只受到⼀种负荷作⽤,更多的时候将受到两种或三种负荷的同时作⽤。

在⼒学负荷作⽤条件下,零件将产⽣变形,甚⾄出现断裂;在热负荷作⽤下,将产⽣尺⼨和体积的改变,并产⽣热应⼒,同时随温度的升⾼,零件的承载能⼒下降;环境介质的作⽤主要表现为环境对零件表⾯造成的化学腐蚀,电化学腐蚀及摩擦磨损等作⽤。

1.4 整机性能、机械零件的性能和制造该零件所⽤材料的⼒学性能间是什么关系?p7机器的整机性能除与机器构造、加⼯与制造等因素有关外,主要取决于零部件的结构与性能,尤其是关键件的性能。

在合理⽽优质的设计与制造的基础上,机器的性能主要由其零部件的强度及其它相关性能来决定。

机械零件的强度是由结构因素、加⼯⼯艺因素、材料因素和使⽤因素等确定的。

在结构因素和加⼯⼯艺因素正确合理的条件下,⼤多数零件的体积、重量、性能和寿命主要由材料因素,即主要由材料的强度及其它⼒学性能所决定。

在设计机械产品时,主要是根据零件失效的⽅式正确选择的材料的强度等⼒学性能判据指标来进⾏定量计算,以确定产品的结构和零件的尺⼨。

1.5常⽤机械⼯程材料按化学组成分为⼏个⼤类?各⾃的主要特征是什么?p17机械⼯程中使⽤的材料常按化学组成分为四⼤类:⾦属材料、⾼分⼦材料、陶瓷材料和复合材料。

提⽰:强度、塑性、化学稳定性、⾼温性能、电学、热学⽅⾯考虑回答。

1.7、常⽤哪⼏种硬度试验?如何选⽤P18?硬度试验的优点何在P11?硬度试验有以下优点:●试验设备简单,操作迅速⽅便;●试验时⼀般不破坏成品零件,因⽽⽆需加⼯专门的试样,试验对象可以是各类⼯程材料和各种尺⼨的零件;●硬度作为⼀种综合的性能参量,与其它⼒学性能如强度、塑性、耐磨性之间的关系密切,由此可按硬度估算强度⽽免做复杂的拉伸实验(强韧性要求⾼时则例外);●材料的硬度还与⼯艺性能之间有联系,如塑性加⼯性能、切削加⼯性能和焊接性能等,因⽽可作为评定材料⼯艺性能的参考;●硬度能较敏感地反映材料的成分与组织结构的变化,故可⽤来检验原材料和控制冷、热加⼯质量。

工程材料基础知识-课后习题及答案.docx

工程材料基础知识-课后习题及答案.docx

第一章工程材料基础知识参考答案1.金属材料的力学性能指标有哪些?各用什么符号表示?它们的物理意义是什么?答:常用的力学性能包括:强度、塑性、硬度、冲击韧性、疲劳强度等。

强度是指金属材料在静荷作用下抵抗破坏(过量塑性变形或断裂)的性能。

强度常用材料单位面积所能承受载荷的最大能力(即应力。

,单位为Mpa)表示。

塑性是指金属材料在载荷作用下,产生塑性变形(永久变形)而不被破坏的能力。

金属塑性常用伸长率5和断面收缩率出来表示:硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力,是衡量材料软硬程度的指标,是一个综合的物理量。

常用的硬度指标有布氏硬度(HBS、HBW)、洛氏硬度(HRA、HRB、HRC等)和维氏硬度(HV)。

以很大速度作用于机件上的载荷称为冲击载荷,金属在冲击载荷作用下抵抗破坏的能力叫做冲击韧性。

冲击韧性的常用指标为冲击韧度,用符号a k表示。

疲劳强度是指金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。

疲劳强度用。

-1表示,单位为MPa。

2.对某零件有力学性能要求时,一般可在其设计图上提出硬度技术要求而不是强度或塑性要求,这是为什么?答:这是由它们的定义、性质和测量方法决定的。

硬度是一个表征材料性能的综合性指标,表示材料表面局部区域内抵抗变形和破坏的能力,同时硬度的测量操作简单,不破坏零件,而强度和塑性的测量操作复杂且破坏零件,所以实际生产中,在零件设计图或工艺卡上一般提出硬度技术要求而不提强度或塑性值。

3.比较布氏、洛氏、维氏硬度的测量原理及应用范围。

答:(1)布氏硬度测量原理:采用直径为D的球形压头,以相应的试验力F压入材料的表面,经规定保持时间后卸除试验力,用读数显微镜测量残余压痕平均直径d,用球冠形压痕单位表面积上所受的压力表示硬度值。

实际测量可通过测出d值后查表获得硬度值。

布氏硬度测量范围:用于原材料与半成品硬度测量,可用于测量铸铁;非铁金属(有色金属)、硬度较低的钢(如退火、正火、调质处理的钢)(2)洛氏硬度测量原理:用金刚石圆锥或淬火钢球压头,在试验压力F的作用下,将压头压入材料表面,保持规定时间后,去除主试验力,保持初始试验力,用残余压痕深度增量计算硬度值,实际测量时,可通过试验机的表盘直接读出洛氏硬度的数值。

(完整版)工程材料课后答案

(完整版)工程材料课后答案

作业01力学性能b1-1. 下列情况分别是因为哪一个力学性能指标达不到要求?(1)紧固螺栓使用后发生塑性变形。

屈服强度(2)齿轮正常负荷条件下工作中发生断裂。

疲劳强度(3)汽车紧急刹车时,发动机曲轴发生断裂。

冲击韧度(4)不锈钢圆板冲压加工成圆柱杯的过程中发生裂纹。

塑性(5)齿轮工作在寿命期内发生严重磨损。

硬度b1-2 下列现象与哪一个力学性能有关?(1)铜比低碳钢容易被锯割。

硬度(2)锯条易被折断,而铁丝不易折断。

塑性作业02a金属结构与结晶判断题F1. 凡是由液体凝固成固体的过程都是结晶过程。

2. 室温下,金属晶粒越细,则强度越高、塑性越低。

F选择题1. 金属结晶时,冷却速度越快,其实际结晶温度将:ba. 越高b. 越低c. 越接近理论结晶温度2. 为细化晶粒,可采用:ba. 快速浇注b. 加变质剂c. 以砂型代金属型3. 晶体中的位错属于:ca. 体缺陷b. 面缺陷c. 线缺陷d. 点缺陷问答题将20kg纯铜和30kg纯镍熔化后慢冷至T1温度,求此时:(1) 液、固两相L和α的化学成分(2) 两相的相对重量(3) 两相的质量答:整个合金含Ni的质量分数为:X = 30/(20+30) = 60%(1)两相的化学成分:w L(Ni)= 50%wα(Ni)= 80%(2)两相的相对重量为:液相m L= (80-60)/(80-50)≈67%固相mα= 1-67% = 33%a b c(2)两相的质量为:液相M L= 50×67% ≈33(kg)固相mα= 50 -33 = 17(kg)作业02c Fe-C相图判断题1. 铁素体的本质是碳在α-Fe中的间隙相。

F2. 珠光体P实质上是由铁素体F和渗碳体Fe3C两个相组成。

T3. 在铁碳合金平衡结晶过程中,只有碳含量为4.3%的铁碳合金F才能发生共晶反应。

4. 退火状态(接近平衡组织)的亚共析钢中,碳含量为0.45%F比0.20%的塑性和强度都高。

《工程材料》课后习题答案

《工程材料》课后习题答案

1-5在下面几种情况下,该用什么方法来测试硬度?写出硬度符号。

(1)检查锉刀、钻头成品硬度;(2)检查材料库中钢材硬度;(3)检查薄壁工件的硬度或工件表面很薄的硬化层;(4)黄铜轴套;(5)硬质合金刀片;(1)检查锉刀、钻头成品硬度采用洛氏硬度试验来测定,硬度值符号HRC。

(2)检查材料库中钢材硬度采用布氏硬度试验来测定,硬度值符号HBW。

(3)检查薄壁工件的硬度或工件表面很薄的硬化层硬度采用洛氏硬度试验来测定,硬度值符号HRC。

(4)黄铜轴套硬度采用布氏硬度试验来测定,硬度值符号HBW。

(5)硬质合金刀片采用洛氏硬度试验来测定,硬度值符号HRC。

2-4单晶体和多晶体有何差别?为什么单晶体具有各向异性,多晶体具有各项同性?单晶体是由原子排列位向或方式完全一致的晶格组成的;多晶体是由很多个小的单晶体所组成的,每个晶粒的原子位向是不同的。

因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。

2-5简述实际金属晶体和理想晶体在结构与性能上的主要差异。

理想晶体中原子完全为规则排列,实际金属晶体由于许多因素的影响,使这些原子排列受到干扰和破坏,内部总是存在大量缺陷。

如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。

因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。

同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。

2-6简述间隙固溶体和间隙化合物的异同点。

间隙固溶体和间隙化合物都是溶质原子嵌入晶格间隙形成的。

间隙固溶体的晶体结构与溶剂的结构相同,而间隙化合物的晶体结构不同于组成它的任一组元,它是以分子式来表示其组成。

3-3常用的管路焊锡为成分w(Pb=50%)、w(Sn=50%) 的Pb-Sn合金。

工程材料课后题答案

工程材料课后题答案

第一章6、实际金属晶体中存在哪些缺陷?它们对性能有什么影响?答:点缺陷:空位、间隙原子、异类原子。

点缺陷造成局部晶格畸变,使金属的电阻率、屈服强度增加,密度发生变化。

线缺陷:位错。

位错的存在极大地影响金属的机械性能。

当金属为理想晶体或仅含极少量位错时,金属的屈服强度σs很高,当含有一定量的位错时,强度降低。

当进行形变加工时,为错密度增加,σs将会增高。

面缺陷:晶界、亚晶界。

亚晶界由位错垂直排列成位错墙而构成。

亚晶界是晶粒内的一种面缺陷。

在晶界、亚晶界或金属内部的其他界面上,原子的排列偏离平衡位置,晶格畸变较大,位错密度较大(可达1016m-2以上)。

原子处于较高的能量状态,原子的活性较大,所以对金属中的许多过程的进行,具有极为重要的作用。

晶界和亚晶界均可提高金属的强度。

晶界越多,晶粒越细,金属的塑性变形能力越大,塑性越好。

8、什么是固溶强化?造成固溶强化的原因是什么?答:形成固溶体使金属强度和硬度提高的现象称为固溶强化。

固溶体随着溶质原子的溶入晶格发生畸变。

晶格畸变随溶质原子浓度的提高而增大。

晶格畸变增大位错运动的阻力,使金属的滑移变形变得更加困难,从而提高合金的强度和硬度。

9、间隙固溶体和间隙相有什么不同?答:合金组元通过溶解形成一种成分和性能均匀的,且结构与组元之一相同的固相称为间隙固溶体。

间隙固溶体中溶质原子进入溶剂晶格的间隙之中。

间隙固溶体的晶体结构与溶剂相同。

间隙相是间隙化合物中的一种,其晶体结构不同于组成它的任意元素的晶体结构,一般是较大金属元素的原子占据晶格的结点位置,半径较小的非金属元素的原子占据晶格的间隙位置,晶体结构简单,间隙相一般具有高熔点、高硬度,非常稳定,是合金的重要组成相。

第二章1、金属结晶的条件和动力是什么?答:液态金属结晶的条件是金属必须过冷,要有一定的过冷度。

液体金属结晶的动力是金属在液态和固态之间存在的自由能差(ΔF)。

2、金属结晶的基本规律是什么?答:液态金属结晶是由生核和长大两个密切联系的基本过程来实现的。

最新工程材料课后作业及答案

最新工程材料课后作业及答案

工程材料课后作业及答案作业:第一章1 解释概念晶体结构:构成晶体的基元在三维空间的具体的规律排列方式。

固溶体:溶质原子完全溶于固态溶剂中,并能保持溶剂元素的晶格类型的合金相。

点缺陷:在空间三维方向上的尺寸很小,约为几个原子间距,又称零维缺陷。

线缺陷:各种类型的位错,是指晶体中的原子发生了有规律的错排现象。

面缺陷:晶界、亚晶界、相界、孪晶界、表面和层错都属于面缺陷。

离子键:由于正离子和负离子间的库仑引力而形成的。

共价键:共用价电子对产生的结合键叫共价键。

金属键:贡献出价电子的原子成为正离子,与公有化的自由电子间产生静电作用而结合起来。

这种结合力就叫做金属键。

空间点阵:阵点在空间呈周期性规则排列并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。

晶界:晶体结构相同但位向不同的晶粒之间的界面,称为晶粒间界,简称晶界。

位错:晶体中的原子发生的有规律的错排现象。

2 实际晶体中存在哪几类缺陷。

P32(9)点缺陷包括空位,置换原子和间隙原子;线缺陷主要由位错组成,包括刃位错和螺位错;面缺陷包括外表面、相界、晶界、孪晶界和堆垛层错。

3常见的金属晶格类型有哪几种?α-Fe、γ-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种晶体结构?体心立方:α-Fe、Cr、V面心立方:γ-Fe、Al、Cu、Ni密排六方:Mg、Zn第二章1 理解下列术语和基本概念:组织组成物:显微组织中独立的组成部分。

相:合金中具有同一聚集状态、相同的晶体结构,成分和性能均一,并由相界隔开的组成部分。

碳钢:0.0218%< w(C)≤2.11%的铁碳合金。

铸铁:含碳量大于2.11%的铁碳合金。

铁素体:碳固溶于α-Fe(或δ-Fe)中形成的间隙固溶体。

奥氏体:γ相常称奥氏体, 用符号 A或γ表示, 是碳在γ-Fe 中的间隙固溶体, 呈面心立方晶格。

渗碳体:Fe与C的一种具有复杂结构的间隙化合物, 通常称为渗碳体。

工程材料及成型技术课后作业参考答案

工程材料及成型技术课后作业参考答案
Ac1 + 30~50℃
3. 淬火钢进行回火的目的是 淬火应力, 力学性能, 工件的组织和尺寸。回火温度越高,钢的强度与硬度越 。
减少或消除
调整
稳定

4. 钢的淬透性越高,则其C曲线的位置越 , 说明临界冷却速度越 。
靠右

作业 04a 钢-结构钢
判断题
1. 所有的合金元素都能提高钢的淬透性。
1. T8钢比T12和40钢有更好的淬透性和淬硬性。
F
2. T8钢与20MnVB相比,淬硬性和淬高其红硬性。
F
4. 高速钢需要反复锻造是因为硬度高不易成型。
F
5.高速钢采用很高温度淬火,其目的是使碳化物尽可能多地 溶入A中,从而提高钢的红硬性。
T
6. A型不锈钢可采用加工硬化提高强度。
T
7. A不锈钢的热处理工艺是淬火后低温回火处理。
F
8. GCr15钢制造的高精度丝杠于淬火后进行冷处理, 可消除残余A,以提高尺寸稳定性。
T
填空题
1. T12 是 钢,可制造 。
碳素工具
锯条、量规
2. 9SiCr 是 钢,可制造 。
a
5. 完全退火主要适用于: a. 共析钢 b. 亚共析钢 c. 过共析钢
b
6. 钢的回火处理是在: a. 退火后进行 b. 淬火后进行 c. 正火后进行
b
7. 20钢的渗C温度范围是: a. 600~650℃ b. 800~820℃ c. 900~950℃ d. 1000~1050℃
4
3. α-Fe、Al、Cu、Ni、V、Mg、Zn各属何种晶体结构: 体心立方 ;面心立方 ;密排六方 。
α-Fe、V

工程材料(第四版)习题与辅导答案

工程材料(第四版)习题与辅导答案

工程材料习题与辅导答案一、填空1、屈服强度是表示金属材料抵抗微量塑性变形的能力。

3、α—Fe的晶格类型为体心立方晶格。

4、γ—Fe的晶格类型为面心立方晶格。

5、随着固溶体中溶质原子含量增加,固溶体的强度、硬度__升高__。

6、金属的结晶包括形核和长大两个基本过程。

7、金属的实际结晶温度___低于_其理论结晶温度,这种想象称为过冷。

8、理论结晶温度与实际结晶温度之差△T称为___过冷度___。

9、金属结晶时,冷却速度越快,则晶粒越__细小__。

10、铁素体的力学性能特点是塑性、韧性好。

11、渗碳体的力学性能特点是硬度高、脆性大。

12、碳溶解在_γ-Fe__中所形成的间隙固溶体称为奥氏体。

13、碳溶解在_α-Fe__中所形成的间隙固溶体称为铁素体。

14、珠光体的本质是铁素体和渗碳体的机械混合物。

15、共析钢的室温平衡组织为 P(或珠光体)。

共析钢的退火组织为 P(或珠光体)。

16、亚共析钢的含碳量越高,其室温平衡组织中的珠光体量越多。

17、在室温平衡状态下,碳钢随着其含碳量的增加,韧、塑性下降。

19、在铁碳合金的室温平衡组织中,渗碳体相的含量是随着含碳量增加而增加。

20、在退火态的20钢、45钢、T8钢、T13钢中,δ和αK值最高的是 20 钢。

21、共析钢加热到奥氏体状态,冷却后获得的组织取决于钢的_冷却速度__。

22、共析钢过冷奥氏体在(A1~680)℃温度区间等温转变的产物是珠光体(或P) 。

23、共析钢过冷奥氏体在680~600℃温度区间等温转变的产物是索氏体(细珠光体)。

24、共析钢过冷奥氏体在(600~550)℃温度区间等温转变的产物是托氏体(或极细珠光体)。

25、共析钢过冷奥氏体在550~350℃温度区间等温转变的产物是B上(或上贝氏体)。

26、共析钢过冷奥氏体在(350~230)℃温度区间等温转变的产物是下贝氏体(或B下)。

27、亚共析钢的正常淬火温度范围是 Ac3 + 30~50℃。

工程材料学 答案1

工程材料学 答案1

工程材料作业(1)答案1、下列各种工件应该采用何种硬度实验方法来测定其硬度?锉刀:HRC,黄铜轴套:HB、HRB供应状态的各种非合金钢材:HB、HRB硬质合金刀片:HV、耐磨工件的表面硬化层:HV(HRA)、调质态的机床主轴:HB、HRB、(HRC)2、已知Cu的原子直径为2.56A,求Cu的晶格常数a,并计算1mm3Cu中的原子数。

Cu是f.c.c,r=√2/4a,r=2.56A/2=1.28A;a=4r/√2=2/√2×2.56=3.62A依据1个晶胞(a3:3.623,单位A)中有4个Cu原子,1mm3的原子数?a3:4=1mm3:x,注意单位换算,x=4/a3,x=4/3.623=8.4×10193、已知金属A(熔点600℃)与金属B(熔点500℃)在液态无限互溶;在固态300℃时A溶于B的最大溶解度为30%,室温时为10%,但B不溶于A;在300℃时,含40%B的液态合金发生共晶反应。

求:①作出A-B合金相图:请用尺子等工具,标出横纵座标系,相图各区域名称,规范作图②写出共晶反应式。

300℃L40%B=(α30%A+A)③分析20%A,45%A,80%A等合金的结晶过程,用结晶表达式表达。

20%A:L→L+α→α→α+A45%A:L→L+α→α+(α30%A+A)→α+(α30%A+A)+A80%A:L→L+A→A+(α30%A+A)4.一个二元共晶反应如下:L(75%B)←→α(15%B)+β(95%B)(1)计算含50%B的合金完全凝固时①初晶α与共晶(α+β)的重量百分数。

属于亚共晶组织Wα初晶%=(75-50)/(75-15)=5/12=0.42×100%=42%W共晶%=100%-42%=58%②α相和β相的重量百分数。

Wα%=(95-50)/(95-15)=9/16=0.56×100%=56%Wβ%=100%-56%=44%③共晶体中的α相和β相的重量百分数。

工程材料作业答案_

工程材料作业答案_

工程材料作业答案作业1 材料结构基础1.实际金属晶体中存在哪些晶体缺陷?它们对性能有什么影响?实际金属晶体存在点缺陷、线缺陷、面缺陷、体缺陷。

(1)点缺陷使周围晶格发生畸变,提高晶体内能量,降低电导率,提高强度;(2)线缺陷越多,其运动越艰难,材料的强度、硬度越高,脆性越大,塑性越差;(3)面缺陷越多,晶粒越细,强度越高,塑性也越好;(4)体缺陷:孔洞影响材料的力学、光学、热学性能;裂纹影响材料的力学性能;夹杂影响材料的力学、光学、电学性能。

2.金属常见的3种晶体结构是什么?画出结构暗示图。

(1)体心立方(bcc)(2)面心立方(fcc)(3)密排六方(hcp)3.按价键结构对材料举行分类,简述各类材料的性能特点。

第1 页/共13 页4.简述构成材料的5种化学键及其对普通性能的影响。

离子键,共价键,金属键,范德华力,氢键。

(1)离子键组成的离子晶体硬度高,强度高,脆性大,绝缘,塑性差;(2)由共价键组成的晶体熔点高,强度高,脆性大;(3)由金属键组成的金属有:a.良好的导电、导热性;b.良好的塑性变形能力;c.不透明、展示金属光泽;d.电阻随温度升高而增大;(4)由分子键组成的材料熔点低、硬度低、绝缘;(5)有氢键的材料熔点沸点比分子晶体高。

5.简述钢的3种热力学平衡相。

(1)铁素体:碳溶于α-Fe中形成的间隙固溶体。

铁素体因为溶碳量小,力学性能与纯铁相似。

塑性、冲击韧性较好,强度、硬度较低;(2)奥氏体:碳溶于γ-Fe中所形成的间隙固溶体。

奥氏体的强度、硬度较低,但有良好的塑性;(3)渗碳体:铁碳组成的具有复杂斜方结构的间隙化合物。

渗碳体硬度高,塑性和韧性很低。

6.什么是钢的珠光体、屈氏体、索氏体、贝氏体、马氏体、残余奥氏体?珠光体:铁素体和渗碳体组成的机械混合物。

性能介于铁素体和渗碳体之间,综合性能好;屈氏体:铁素体与渗碳体组成的片层更薄的珠光体;索氏体:片层铁素体与渗碳体的双相混合组织,其片层间距较小,碳在铁素体中无过度饱和;贝氏体:渗碳体与铁素体的机械混合物,高温改变及低温改变相异的组织,具有较高的强韧性配合;马氏体:将钢加热到一定温度(形成奥氏体)后经疾驰冷却(淬火),得到的能使钢变硬、增强的一种淬火组织;残余奥氏体:淬火未能改变成马氏体而保留到室温的奥氏体。

(完整版)工程材料课后习题参考答案

(完整版)工程材料课后习题参考答案

工程材料第一章金属的晶体结构与结晶1.解释以下名词点缺陷:原子排列不规那么的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等.线缺陷:原子排列的不规那么区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小.如位错.面缺陷:原子排列不规那么的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小.如晶界和亚晶界.亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒.亚晶界:两相邻亚晶粒间的边界称为亚晶界.刃型位错:位错可认为是晶格中一局部晶体相对于另一局部晶体的局部滑移而造成.滑移局部与未滑移局部的交界线即为位错线.如果相对滑移的结果上半局部多出一半原子面,多余半原子面的边缘好似插入晶体中的一把刀的刃口,故称“刃型位错〞.单晶体:如果一块晶体,其内部的晶格位向完全一致,那么称这块晶体为单晶体.多晶体:由多种晶粒组成的晶体结构称为“多晶体〞.过冷度:实际结晶温度与理论结晶温度之差称为过冷度.自发形核:在一定条件下,从液态金属中直接产生,原子呈规那么排列的结晶核心.非自发形核:是液态金属依附在一些未溶颗粒外表所形成的晶核.变质处理:在液态金属结晶前,特意参加某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提升了形核率,细化晶粒,这种处理方法即为变质处理.变质剂:在浇注前所参加的难熔杂质称为变质剂.2.常见的金属晶体结构有哪几种a -Fe、丫- Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn各属何种晶体结构答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;a— Fe、Cr、V属于体心立方晶格;丫一Fe、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题答:用来说明晶体中原子排列的紧密程度.晶体中配位数和致密度越大,那么晶体中原子排列越紧密.4.晶面指数和晶向指数有什么不同答:晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为uvw ;晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为hkl.5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加.因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加.同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能.6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:由于单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性.7.过冷度与冷却速度有何关系它对金属结晶过程有何影响对铸件晶粒大小有何影响答:①冷却速度越大,那么过冷度也越大.②随着冷却速度的增大,那么晶体内形核率和长大速度都加快, 加速结晶过程的进行,但当冷速到达一定值以后那么结晶过程将减慢,由于这时原子的扩散水平减弱.③过冷度增大,A F大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难.8.金属结晶的根本规律是什么晶核的形成率和成长率受到哪些因素的影响答:①金属结晶的根本规律是形核和核长大.②受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及振动和搅拌的方法也第2页共50页会增大形核率.9.在铸造生产中,采用哪些举措限制晶粒大小在生产中如何应用变质处理答:①采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的方法来限制晶粒大小.②变质处理:在液态金属结晶前, 特意参加某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提升了形核率,细化晶粒.③机械振动、搅拌.第二章金属的塑性变形与再结晶1.解释以下名词:加工硬化、回复、再结晶、热加工、冷加工.答:加工硬化:随着塑性变形的增加,金属的强度、硬度迅速增加;塑性、韧性迅速下降的现象.回复:为了消除金属的加工硬化现象,将变形金属加热到某一温度,以使其组织和性能发生变化.在加热温度较低时,原子的活动水平不大,这时金属的晶粒大小和形状没有明显的变化,只是在晶内发生点缺陷的消失以及位错的迁移等变化,因此,这时金属的强度、硬度和塑性等机械性能变化不大,而只是使内应力及电阻率等性能显著降低.此阶段为回复阶段.再结晶:被加热到较高的温度时,原子也具有较大的活动水平,使晶粒的外形开始变化.从破碎拉长的晶粒变成新的等轴晶粒.和变形前的晶粒形状相似,晶格类型相同,把这一阶段称为“再结晶〞.热加工:将金属加热到再结晶温度以上一定温度进行压力加工.冷加工:在再结晶温度以下进行的压力加工.2.产生加工硬化的原因是什么加工硬化在金属加工中有什么利弊答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大, 晶粒破碎的程度愈大, 这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长.因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和硬度显著提升,而塑性和韧性下降产生所谓“加工硬化〞现象.②金属的加工硬化现象会给金属的进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动.另一方面人们可以利用加工硬化现象,来提升金属强度和硬度,如冷拔高强度钢丝就是利用冷加工变形产生的加工硬化来提升钢丝的强度的.加工硬化也是某些压力加工工艺能够实现的重要因素.如冷拉钢丝拉过模孔的局部,由于发生了加工硬化,不再继续变形而使变形转移到尚未拉过模孔的部分,这样钢丝才可以继续通过模孔而成形.3.划分冷加工和热加工的主要条件是什么答:主要是再结晶温度.在再结晶温度以下进行的压力加工为冷加工,产生加工硬化现象;反之为热加工,产生的加工硬化现象被再结晶所消除.4.与冷加工比拟,热加工给金属件带来的益处有哪些答:(1)通过热加工,可使铸态金属中的气孔焊合,从而使其致密度得以提升.(2)通过热加工,可使铸态金属中的枝晶和柱状晶破碎,从而使晶粒细化,机械性能提升.(3)通过热加工,可使铸态金属中的枝晶偏析和非金属夹杂分布发生改变,使它们沿着变形的方向细碎拉长,形成热压力加工“纤维组织〞(流线),使纵向的强度、塑性和韧性显著大于横向.如果合理利用热加工流线,尽量使流线与零件工作时承受的最大拉应力方向一致,而与外加切应力或冲击力相垂直,可提升零件使用寿命.5.为什么细晶粒钢强度高,塑性,韧性也好答:晶界是阻碍位错运动的,而各晶粒位向不同,互相约束,也阻碍晶粒的变形.因此,金属的晶粒愈细,其晶界总面积愈大,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗力也愈大.因此,金属的晶粒愈细强度愈高.同时晶粒愈细,金属单位体积中的晶粒数便越多,变形时同样的变形量便可分散在更多的晶粒中发生,产生较均匀的变形, 而不致造成局部的应力集中,引起裂纹的过早产生和开展.因此,塑性,韧性也越好.6.金属经冷塑性变形后,组织和性能发生什么变化答:①晶粒沿变形方向拉长,性能趋于各向异性,如纵向的强度和塑性远大于横向等;②晶粒破碎,位错密度增加,产生加工硬化,即随着变形量的增加,强度和硬度显著提升,而塑性和韧性下降;③ 织构现象的产生,即随着变形的发生, 不仅金属中的晶粒会被破碎拉长,而且各晶粒的晶格位向也会沿着变形的方向同时发生转动,转动结果金属中每个晶粒的晶格位向趋于大体一致,产生织构现象;④冷压力加工过程中由于材料各局部的变形不均匀或晶粒内各局部和各晶粒间的变形不均匀,金属内部会形成剩余的内应力,这在一般情况下都是不利的,会引起零件尺寸不稳定.7.分析加工硬化对金属材料的强化作用答:随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割、位错缠结加剧,使位错运动的阻力增大,引起变形抗力的增加.这样,金属的塑性变形就变得困难,要继续变形就必须增大外力,因此提升了金属的强度.8.金属鸨、铁、铅、锡的熔点分别为3380C、1538C、327C、232 C ,试计算这些金属的最低再结晶温度,并分析鸨和铁在1100c下的加工、铅和锡在室温(20C)下的加工各为何种加工答:T 再=0.4T 熔;鸨T 再=[0.4* (3380+273)卜273=1188.2 C ;铁T 再=[0.4* (1538+273) ]-273=451.4 C ;铅T 再=[0.4* (327+273) ]-273=-33 C ;锡T 再=[0.4* (232+273)卜273=-71 C .由于鸨T 再为1188.2 C> 1100C,因此属于热加工;铁T再为451.4CV 1100C,因此属于冷加工;铅T再为-33CV20C,属于冷加工;锡T再为-71V20C,属于冷加工.9.在制造齿轮时,有时采用喷丸法(即将金属丸喷射到零件外表上)使齿面得以强化.试分析强化原因.答:高速金属丸喷射到零件外表上,使工件外表层产生塑性变形,形成一定厚度的加工硬化层,使齿面的强度、硬度升高.第三章合金的结构与二元状态图1.解释以下名词:合金,组元,相,相图;固溶体,金属间化合物,机械混合物;枝晶偏析,比重偏析;固溶强化, 弥散强化.答:合金:通过熔炼,烧结或其它方法,将一种金属元素同一种或几种其它元素结合在一起所形成的具有金属特性的新物质,称为合金.组元:组成合金的最根本的、独立的物质称为组元.相:在金属或合金中,凡成分相同、结构相同并与其它局部有界面分开的均匀组成局部,均称之为相.相图:用来表示合金系中各个合金的结晶过程的简明图解称为相图.固溶体:合金的组元之间以不同的比例混合,混合后形成的固相的晶格结构与组成合金的某一组元的相同,这种相称为固溶体.金属间化合物:合金的组元间发生相互作用形成的一种具有金属性质的新相,称为金属间化合物.它的晶体结构不同于任一组元,用分子式来表示其组成.机械混合物:合金的组织由不同的相以不同的比例机械的混合在一起,称机械混合物.枝晶偏析:实际生产中,合金冷却速度快,原子扩散不充分,使得先结晶出来的固溶体合金含高熔点组元较多,后结晶含低熔点组元较多,这种在晶粒内化学成分不均匀的现象称为枝晶偏析.比重偏析:比重偏析是由组成相与溶液之间的密度差异所引起的.如果先共晶相与溶液之间的密度差异较大,那么在缓慢冷却条件下凝固时,先共晶相便会在液体中上浮或下沉,从而导致结晶后铸件上下局部的化学成分不一致,产生比重偏析.固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象称为固溶强化.弥散强化:合金中以固溶体为主再有适量的金属间化合物弥散分布,会提升合金的强度、硬度及耐磨性,这种强化方式为弥散强化.2.指出以下名词的主要区别:1〕置换固溶体与间隙固溶体;答:置换固溶体:溶质原子代替溶剂晶格结点上的一局部原子而组成的固溶体称置换固溶体.间隙固溶体:溶质原子填充在溶剂晶格的间隙中形成的固溶体,即间隙固溶体.2〕相组成物与组织组成物;相组成物:合金的根本组成相.组织组成物:合金显微组织中的独立组成局部.3.以下元素在a -Fe中形成哪几种固溶体Si、C、N、Cr、Mn答:Si、Cr、Mn形成置换固溶体;C、N形成间隙固溶体.4.试述固溶强化、加工强化和弥散强化的强化原理,并说明三者的区别.答:固溶强化:溶质原子溶入后,要引起溶剂金属的晶格产生畸变,进而位错运动时受到阻力增大.弥散强化:金属化合物本身有很高的硬度,因此合金中以固溶体为基体再有适量的金属间化合物均匀细小弥散分布时,会提升合金的强度、硬度及耐磨性.这种用金属间化合物来强化合金的方式为弥散强化.加工强化:通过产生塑性变形来增大位错密度,从而增大位错运动阻力, 引起塑性变形抗力的增加, 提升合金的强度和硬度.区别:固溶强化和弥散强化都是利用合金的组成相来强化合金,固溶强化是通过产生晶格畸变,使位错运动阻力增大来强化合金;弥散强化是利用金属化合物本身的高强度和硬度来强化合金;而加工强化是通过力的作用产生塑性变形,增大位错密度以增大位错运动阻力来强化合金;三者相比,通过固溶强化得到的强度、硬度最低,但塑性、韧性最好,加工强化得到的强度、硬度最高,但塑韧性最差,弥散强化介于两者之间.5.固溶体和金属间化合物在结构和性能上有什么主要差异答:在结构上:固溶体的晶体结构与溶剂的结构相同,而金属间化合物的晶体结构不同于组成它的任一组元,它是以分子式来表示其组成.在性能上:形成固溶体和金属间化合物都能强化合金,但固溶体的强度、硬度比金属间化合物低, 塑性、韧性比金属间化合物好,也就是固溶体有更好的综合机械性能.6.何谓共晶反响、包晶反响和共析反响式比拟这三种反响的异同点.答:共晶反响:指一定成分的液体合金,在一定温度下,同时结晶出成分和晶格均不相同的两种晶体的反响.包晶反响:指一定成分的固相与一定成分的液相作用,形成另外一种固相的反响过程.共析反响:由特定成分的单相固态合金,在恒定的温度下,分解成两个新的,具有一定晶体结构的固相的反响.共同点:反响都是在恒温下发生,反响物和产物都是具有特定成分的相,都处于三相平衡状态.不同点:共晶反响是一种液相在恒温下生成两种固相的反响;共析反响是一种固相在恒温下生成两种固相的反响;而包晶反响是一种液相与一种固相在恒温下生成另一种固相的反响.7.二元合金相图表达了合金的哪些关系答:二元合金相图表达了合金的状态与温度和成分之间的关系.8.在二元合金相图中应用杠杆定律可以计算什么答:应用杠杆定律可以计算合金相互平衡两相的成分和相对含量.9.A(熔点600C)与B(500C)在液态无限互溶;在固态300c时A溶于B的最大溶解度为30% ,室温时为10%,但B不溶于A;在300c时,含40% B的液态合金发生共晶反响.现要求:1)作出A-B合金相图;2)分析20% A,45%A,80%A等合金的结晶过程,并确定室温下的组织组成物和相组成物的相对量.(2)20%A合金如图①:合金在1点以上全部为液相,当冷至1点时,开始从液相中析出“固溶体,至2点结束,2〜3点之间合金全部由a固溶体所组成,但当合金冷到3点以下,由于固溶体a的浓度超过了它的溶解度限度,于是从固溶体a中析出二次相A,因此最终显微组织:a +An相组成物:a +AA= (90-80/90) *100%=11%a =1-A%=89%45%A合金如图②:合金在1点以上全部为液相,冷至1点时开始从液相中析出a固溶体,此时液相线成分沿线BE变化,固相线成分沿BD线变化,当冷至2点时,液相线成分到达E点,发生共晶反响,形成(A+a)共晶体,合金自2点冷至室温过程中,自中析出二次相An,因而合金②室温组织:A n + a +(A+ a )相组成物:A+ a组织:An= (70-55) /70*100%=21% a =1- An =79%A+ a = (70-55) /(70-40) *100%=50%相:A= (90-55) /90*100%=50% a =1-A%=50%80%A合金如图③:合金在1点以上全部为液相, 冷至1点时开始从液相中析出A,此时液相线成分沿AE线变化, 冷至2点时,液相线成分到达点,发生共晶反响,形成(A+ a)共晶体,因而合金③的室温组织:A+ (A+ a ) 相组成物:A+ a组织:A= (40-20) /40*100%=50% A+ a =1-A%=50%相:A= (90-20) /90*100%=78% a =1-A%=22%10.某合金相图如下图.1)试标注①一④空白区域中存在相的名称;2)指出此相图包括哪几种转变类型;3)说明合金I的平衡结晶过程及室温下的显微组织.答:(1)①:L+丫②:丫+ B ③:B+( a + B )④:0 + an(2)匀晶转变;共析转变(3)合金①在1点以上全部为液相,冷至1点时开始从液相中析出丫固溶体至2点结束,2〜3点之间合金全部由T固溶体所组成,3点以下,开始从T固溶体中析出a固溶体,冷至4点时合金全部由a固溶体所组成,4〜5之间全部由a固溶体所组成,冷到5 点以下,由于a 固溶体的浓度超过了它的溶解度限度,从a中析出第二相B固溶体,最终得到室稳下的显微组织:a + B n11.有形状、尺寸相同的两个Cu-Ni合金铸件,一个含90% Ni ,另一个含50% Ni,铸后自然冷却,问哪个铸件的偏析较严重答:含50% Ni的Cu-Ni合金铸件偏析较严重.在实际冷却过程中,由于冷速较快,使得先结晶局部含高熔点组元多,后结晶局部含低熔点组元多,由于含50% Ni的Cu-Ni合金铸件固相线与液相线范围比含90% Ni铸件宽,因此它所造成的化学成分不均匀现象要比含90% Ni 的Cu-Ni合金铸件严重.第四章铁碳合金1.何谓金属的同素异构转变试画出纯铁的结晶冷却曲线和晶体结构变化图答:由于条件〔温度或压力〕变化引起金属晶体结构的转变,称同素异构转变.S4 3210987 654321时间2.为什么丫-Fe和a-Fe的比容不同一块质量一定的铁发生〔丫-Fe - a-Fe 〕转变时, 其体积如何变化答:由于丫-Fe和a-Fe原子排列的紧密程度不同,丫-Fe的致密度为74%,a-Fe的致密度为68%,因此一块质量一定的铁发生〔丫-Fe - a -Fe 〕转变时体积将发生膨胀.3.何谓铁素体〔F〕,奥氏体〔A〕,渗碳体〔FesC〕,珠光体〔P〕,莱氏体〔Ld〕 ?它们的结构、组织形态、性能等各有何特点答:铁素体〔F〕:铁素体是碳在Fe中形成的间隙固溶体,为体心立方晶格.由于碳在Fe中的溶解度、很小,它的性能与纯铁相近.塑性、韧性好,强度、第11页共50页硬度低.它在钢中一般呈块状或片状.奥氏体〔A〕:奥氏体是碳在片中形成的间隙固溶体,面心立方晶格.因其品格间隙尺寸较大,故碳在Fe中的溶解度较大.有很好的塑性.渗碳体〔FesC〕:铁和碳相互作用形成的具有复杂品格的间隙化合物.渗碳体具有很高的硬度,但塑性很差,延伸率接近于零.在钢中以片状存在或网络状存在于晶界.在莱氏体中为连续的基体,有时呈鱼骨状.珠光体〔P〕:由铁素体和渗碳体组成的机械混合物.铁素体和渗碳体呈层片状.珠光体有较高的强度和硬度,但塑性较差.莱氏体〔Ld〕:由奥氏体和渗碳体组成的机械混合物.在莱氏体中,渗碳体是连续分布的相,奥氏体呈颗粒状分布在渗碳体基体上.由于渗碳体很脆,所以莱氏体是塑性很差的组织.4.Fe-FesC合金相图有何作用在生产实践中有何指导意义又有何局限性答:①碳钢和铸铁都是铁碳合金,是使用最广泛的金属材料.铁碳合金相图是研究铁碳合金的重要工具,了解与掌握铁碳合金相图,对于钢铁材料的研究和使用,各种热加工工艺的制订以及工艺废品原因的分析等方面都有重要指导意义.②为选材提供成分依据:F Fe3c相图描述了铁碳合金的组织随含碳量的变化规律, 合金的性能决定于合金的组织,这样根据零件的性能要求来选择不同成分的铁碳合金;为制定热加工工艺提供依据:对铸造,根据相图可以找出不同成分的钢或铸铁的熔点,确定铸造温度;根据相图上液相线和固相线间距离估计铸造性能的好坏. 对于锻造:根据相图可以确定锻造温度.对焊接: 根据相图来分析碳钢焊缝组织,并用适当热处理方法来减轻或消除组织不均匀性;对热处理:F Fe3c相图更为重要,如退火、正火、淬火的加热温度都要参考铁碳相图加以选择.③由于铁碳相图是以无限缓慢加热和冷却的速度得到的,而在实际加热和冷却通常都有不同程度的滞后现象.5.画出Fe-Fe s C 相图,指出图中S、C、E、P、N、G 及GS、SE、PQ、PSK 各点、线的意义,并标出各相区的相组成物和组织组成物V1段.口1 0. Q. b 1. 2.0 2,143.0i. 0 4. 355 自.6. 69+ C的FeSC 1539140012001UQQHDU600C:共晶点1148c 4.30%C,在这一点上发生共晶转变,反响式:Lc A E Fe a C ,当冷到1148c时具有C点成分的液体中同时结晶出具有E点成分的奥氏体和渗碳体的两相混合物——莱氏体Le A E Fe3CE:碳在Fe中的最大溶解度点1148c2.11%CG:Fe Fe同素异构转变点〔A3〕912C 0%CH:碳在Fe中的最大溶解度为1495c 0.09%CJ:包品转变点1495c 0.17%C在这一点上发生包品转变,反响式:L BH A J当冷却到1495c时具有B点成分的液相与具有H点成分的固相6反响生成具有J 点成分的周相AN:FeFe同素异构转变点〔A4〕1394c 0%CP:碳在Fe中的最大溶解度点0.0218%C 727cS:共析点727c 0.77%C在这一点上发生共析转变,反响式:A s F p Fe3C ,当冷却到727c时从具有S点成分的奥氏体中同时析出具有P点成分的铁素体和渗碳体的两相混合物一一珠光体P 〔F p Fe3C〕ES线:碳在奥氏体中的溶解度曲线,又称Acm温度线,随温度的降低,碳在奥化体中的溶解度减少,多余的碳以Fe3c形式析出,所以具有0.77%〜2.11%C的钢冷却到Acm线与PSK线之间时的组织A Fe3C n ,从A中析出的Fe3c称为二次渗碳体.GS线:不同含碳量的奥氏体冷却时析出铁素体的开始线称A3线,GP线那么是铁素体析出的终了线,所以GSP区的显微组织是F AoPQ线:碳在铁素体中的溶解度曲线,随温度的降低,碳在铁素体中的溶解度减少, 多余的碳以Fe3c形式析出,从F中析出的Fe3c称为三次渗碳体Fe s Cw ,由于铁素体含碳很少,析出的FesCw很少,一般忽略,认为从727c冷却到室温的显微组织不变.PSK线:共析转变线,在这条线上发生共析转变A S F P Fe s C ,产物〔P〕珠光体,含碳量在0.02〜6.69%的铁碳合金冷却到727c时都有共析转变发生.6.简述Fe-Fe^C相图中三个根本反响:包晶反响,共晶反响及共析反响,写出反响式,标出含碳量及温度.答:共析反响:冷却到727c时具有S点成分的奥氏体中同时析出具有P点成分的铁素体和渗碳体的两相混合物.Y 0.8 727?F0.02+Fe3c6.69包品反响:冷却到1495c时具有B点成分的液相与具有H点成分的固相6反响生成具有J 点成分的固相Ao L0.5+ 6 0.11495? Y 0.16共晶反响:1148c时具有C点成分的液体中同时结晶出具有E点成分的奥氏体和渗碳体的两相混合物.L4.3 1147?2 2.14+ F63C6.697.何谓碳素钢何谓白口铁两者的成分组织和性能有何差异答:碳素钢:含有0.02%~2.14%C的铁碳合金.白口铁:含大于2.14%C的铁碳合金.碳素钢中亚共析钢的组织由铁素体和珠光体所组成,其中珠光体中的渗碳体以细片状分布在铁素体基体上,随着含碳量的增加,珠光体的含量增加,那么钢的强度、硬度增力口,塑性、韧性降低.当含碳量到达0.8%时就是珠光体的性能.过共析钢组织由珠光体和二次渗碳体所组成,含碳量接近 1.0%时,强度到达最大值,含碳量继续增加,强度下降.由于二次渗碳体在晶界形成连续的网络,导致钢的脆性增加.白口铁中由于其组织中存在大量的渗碳体,具有很高的硬度和脆性,难以切削加工.8.亚共析钢、共析钢和过共析钢的组织有何特点和异同点.答:亚共析钢的组织由铁素体和珠光体所组成.其中铁素体呈块状.珠光体中铁素体与渗碳体呈片状分布.共析钢的组织由珠光体所组成.过共析钢的组织由珠光体和二次渗碳体所组成,其中二次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业:第一章1 解释概念晶体结构:构成晶体的基元在三维空间的具体的规律排列方式。

固溶体:溶质原子完全溶于固态溶剂中,并能保持溶剂元素的晶格类型的合金相。

点缺陷:在空间三维方向上的尺寸很小,约为几个原子间距,又称零维缺陷。

线缺陷:各种类型的位错,是指晶体中的原子发生了有规律的错排现象。

面缺陷:晶界、亚晶界、相界、孪晶界、表面和层错都属于面缺陷。

离子键:由于正离子和负离子间的库仑引力而形成的。

共价键:共用价电子对产生的结合键叫共价键。

金属键:贡献出价电子的原子成为正离子,与公有化的自由电子间产生静电作用而结合起来。

这种结合力就叫做金属键。

空间点阵:阵点在空间呈周期性规则排列并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。

晶界:晶体结构相同但位向不同的晶粒之间的界面,称为晶粒间界,简称晶界。

位错:晶体中的原子发生的有规律的错排现象。

2 实际晶体中存在哪几类缺陷。

P32(9)点缺陷包括空位,置换原子和间隙原子;线缺陷主要由位错组成,包括刃位错和螺位错;面缺陷包括外表面、相界、晶界、孪晶界和堆垛层错。

3常见的金属晶格类型有哪几种?α-Fe、γ-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种晶体结构?体心立方:α-Fe、Cr、V面心立方:γ-Fe、Al、Cu、Ni密排六方:Mg、Zn第二章1 理解下列术语和基本概念:组织组成物:显微组织中独立的组成部分。

相:合金中具有同一聚集状态、相同的晶体结构,成分和性能均一,并由相界隔开的组成部分。

碳钢:0.0218%< w(C)≤2.11%的铁碳合金。

铸铁:含碳量大于2.11%的铁碳合金。

铁素体:碳固溶于α-Fe(或δ-Fe)中形成的间隙固溶体。

奥氏体:γ相常称奥氏体, 用符号A或γ表示, 是碳在γ-Fe 中的间隙固溶体, 呈面心立方晶格。

渗碳体:Fe与C的一种具有复杂结构的间隙化合物, 通常称为渗碳体。

莱氏体:共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号Ld表示珠光体:共析反应的产物是铁素体与渗碳体的共析混合物, 称珠光体, 以符号P表示。

过冷-纯金属的实际结晶温度总是低于其熔点,这种现象称为过冷。

相图:是用图解的方法表示不同成分、温度下合金中相的平衡关系。

变质处理:往液体金属中加入难熔的固态粉末(变质剂),促进非均匀形核,细化晶粒。

2 默画Fe-Fe3C相图,填出各相区的平衡相,并分析含0.3%C、0.77%C、1.2%C合金的固态相变过程。

Fe-Fe3C相图:略。

成分为0.3%C的铁碳合金:GS线以上,完全为单相奥氏体;GS线以下,共析线以上,单相奥氏体中析出单相铁素体;共析线上剩余奥氏体发生共析反应,析出铁素体与渗碳体的机械混合物即珠光体;共析线以下相和组织不发生转变。

室温组成相:F+Fe3C。

室温组织组成物为F+P成分为0.77%C的铁碳合金:共析线以上,完全为单相奥氏体,共析线上奥氏体发生共析反应,析出铁素体与渗碳体的机械混合物即珠光体;共析线以下相和组织不发生转变。

室温组成相:F+Fe3C。

室温组织组成物为P。

成分为1.2%C的铁碳合金:ES线以上,完全为单相奥氏体;ES线以下,共析线以上,单相奥氏体中析出二次渗碳体;共析线上剩余奥氏体发生共析反应,析出铁素体与渗碳体的机械混合物即珠光体;共析线以下相和组织不发生转变。

室温组成相:F+Fe3C。

组织组成物为Fe3C II+P。

3 比较下列名词(1)Fe3CⅠ、Fe3CⅡ、Fe3CⅢ、Fe3C共晶、Fe3C共析Fe3CⅠ是直接从液相中析出的一次渗碳体。

Fe3CⅡ是指当温度低于碳在奥氏体中的溶解度曲线时,将从奥氏体中析出二次渗碳体。

Fe3CⅢ是指当温度低于碳在铁素体中的溶解度曲线时,将从铁素体中析出三次渗碳体。

共晶产物中的渗碳体称之为Fe3C共晶,而共析产物中的渗碳体称之为Fe3C共析。

(2)α-Fe、铁素体α-Fe为纯铁的一种同素异构体,而铁素体即α相也称铁素体, 用符号F或α表示, 是碳在α-Fe中的间隙固溶体。

(3)共晶转变、共析转变共晶转变是指一定成分的液态在一定温度(共晶温度)下同时析出两种成分的固溶体。

共析转变是指由一种固相转变成完全不同的两种相互关联的固相。

4.说明含碳量对钢的组织与性能的影响。

碳钢在室温下的平衡组织皆由铁素体(F )和渗碳体(Fe3C)两相组成。

随着含碳量的增加,碳钢中铁素体的数量逐渐减少,渗碳体的数量逐渐增多,从而使得组织按下列顺序发生变化:F →F + P →P →P + Fe3CII随着含碳量升高,钢的强度、硬度增加,塑性下降。

当钢中的含碳量超过1.0%以后,钢的硬度继续增加,而强度开始下降,这主要是由于脆性的二次渗碳体沿奥氏体晶界呈网状析出所致。

5 。

P51第1题金属结晶的基本规律是:是晶核的不断形成和晶核不断长大的过程。

冷却速度越大,过冷度越大。

6.P51第2题在一个枝晶范围内成分不均匀的现象叫枝晶偏析,或晶内偏析。

在实际生产条件下,一般冷却速度都较快,固溶体中原子扩散过程不能充分进行。

因此先结晶的枝晶主轴含高熔点组元较多,后结晶的分枝含低熔点组元较多。

通常把具有晶内偏析的合金加热到高温进行长时间的保温,使合金元素进行充分的扩散来消除枝晶偏析,这种处理为扩散退火。

7. P51第4题镇静钢:钢液在浇注前用锰铁、硅铁和铝粉进行充分脱氧,使钢液在凝固时不析出一氧化碳,因而没有沸腾现象而得名。

沸腾钢:钢液在浇注前仅用锰脱氧,脱氧很不充分,钢液在凝固过程中碳和氧发生反应产生大量的一氧化碳,使钢液沸腾,因而得名。

镇静钢的宏观组织:表层细晶粒区,柱状晶粒区,中心等轴晶粒区以及致密的沉积锥体组成。

沸腾钢的宏观组织:表层细晶粒区,柱状晶粒区,中心等轴晶粒区以及大量的气泡组成。

第三章1.理解下列术语和基本概念弹性模量:材料在弹性变形阶段,应力与应变成正比关系,两者的比值称为弹性模量。

屈服强度:屈服时所对应的应力。

抗拉强度:试样能承受最大载荷除以试样原始截面积所得的应力。

塑性:断裂前材料发生塑性变形的能力。

伸长率:一种塑性指标,即试样拉伸过程中的伸长量与原始长度的比值。

显微硬度:维氏硬度的一种,用来测量组织中某一相的硬度。

冲击韧性:冲击功与试样缺口处截面积的比值。

屈服-在拉伸过程中,出现载荷不增加而试样还继续伸长的现象称为屈服。

强度:材料在载荷作用下抵抗变形和断裂的能力。

塑性:断裂前材料发生塑性变形的能力。

第五章1. 理解重要的术语和基本概念形变强化:金属材料经塑性变形后,其强度和硬度升高,塑性和韧性下降,这种现象称为形变强化(加工硬化)。

滑移:在切应力作用下,一部分晶体相对于另一部分沿着某一晶面和晶向发生相对滑动,这种变形方式称为滑移,滑移系:一个滑移面和其上的一个滑移方向组合成一个滑移系。

临界分切应力:晶体的滑移是在切应力作用下进行,而且只有当外力在某一滑移系中的应力达到一定的临界值时,在这一滑移系上晶体才发生滑移,称该临界值为滑移的临界分切应力。

取向因子:临界分切应力中的cosλcosφ称为取向因子孪生:当金属晶体滑移变形难以进行时,其塑性变形还可能以生成孪晶的方式进行,称为孪生。

纤维组织:金属经塑性变形时,沿着变形方向晶粒被拉长。

当变形量很大时,晶粒难以分辨,而呈现出一片如纤维丝状的条纹,称之为纤维组织。

形变织构:随着变形的发生,还伴随着晶粒的转动。

在拉伸时晶粒的滑移面转向平行于外力的方向,在压缩时转向垂直于外力方向。

故在变形量很大时,金属中各晶粒的取向会大致趋于一致,这种由于变形而使晶粒具有择优取向的组织叫形变织构。

回复:在回复阶段,由于温度升高,金属的屈服强度下降,在内应力的作用下将发生局部塑性变形,从而使第一内应力得以消除。

再结晶:冷变形的金属加热到一定温度,组织和性能会发生一系列的变化,其中在变形组织的基体上产生新的无畸变的晶核,并迅速长大形成等轴晶粒,逐渐取代全部变形组织的阶段。

热加工:在再结晶温度以上进行的压力加工称为热加工。

冷加工:在再结晶温度以下进行的压力加工称为冷加工。

固溶强化:溶质原子溶入金属基体而形成固溶体,使金属的强度、硬度升高,塑性、韧性有所下降的现象。

沉淀强化(时效强化):通过过饱和固溶体沉淀形成第二相微粒产生的强化。

弥散强化:第二相微粒通过粉末冶金法加入并起强化作用,称之为弥散强化。

固溶处理:当组元B含量大于Bo的合金加热到略低于固相线的温度,保温一定时间,使B组元充分溶解后,取出快速冷却,则B组元来不及沿CD线析出,而形成亚稳定的过饱和固溶体,这种处理称为固溶处理时效:经固溶处理的合金在室温或一定温度下加热保持一定时间,使过饱和固溶体趋于某种程度的分解,这种处理称为时效。

细晶强化:细化晶粒提高强度的方法。

形变强化:金属塑性变形后,强度、硬度升高,塑性、韧性降低的现象。

第二相强化:第二相以细小弥散的微粒均匀分布于基体相中,产生的强化作用。

2. 工程材料的基本强化方法有那些?形变强化,固溶强化,第二相强化(包括沉淀强化和弥散强化),细晶强化第六章1. 理解重要的术语和基本概念奥氏体:碳固溶于γ-Fe中形成的间隙固溶体。

晶粒度-晶粒的大小称为晶粒度,通常用晶粒的平均面积或平均直径来表示。

残余奥氏体:钢淬火至室温未转变的奥氏体。

珠光体:铁素体和渗碳体的机械混合物。

索氏体:只有在800倍以上光学显微镜下观察才能分辨出铁素体和渗碳体片层状组织形态。

屈氏体:在光学显微镜下已很难分辨出铁素体和渗碳体片层状组织形态。

马氏体:碳在α-Fe中的过饱和间隙固溶体。

贝氏体-是铁素体和渗碳体的混合物。

回火马氏体-当回火温度在100~200℃时,马氏体开始发生部分分解,钢的组织由有一定过饱和度的固溶体和与其有共格关系的ε碳化物所组成,这种组织称为回火马氏体回火屈氏体:在300~400℃之间, 由ε碳化物转变成与基体无共格关系的颗粒状渗碳体。

这一阶段转变完成后, 钢的组织由饱和的针状α相和细小粒状的渗碳体组成,这种组织称为回火屈氏体。

回火索氏体:当回火温度超过400℃以上后,在回火过程中也发生回复和再结晶过程。

α相由针状或板条状转变成无应变的、等轴状新晶拉。

同时渗碳体发生聚集和长大,有一定程度的粗化。

这一阶段转变完成后, 钢的组织由等轴的α相和粗粒状渗碳体组成,称为回火索氏体。

退火:钢加热到一定温度,保温后缓慢冷却的热处理工艺。

正火:将钢件加热到Ac3或Accm以上(Ac3或Accm +30~50℃),保温一定时间后,在空气中冷却得到索氏体或屈氏体(细片状珠光体)组织的热处理工艺。

正火与退火的明显差异是正火冷却速度稍快。

球化退火:使片状珠光体转变为球状珠光体的退火。

淬火:是将钢件加热到Ac1或Ac3以上保温一定时间后,快速冷却得到马氏体(或下贝氏体)组织的热处理工艺。

相关文档
最新文档