有理数的巧算1
有理数巧算裂项法
有理数巧算裂项法
有理数是数学中一类重要的数,包括正整数、负整数、零、分数和小数。
在进行有理数加减乘除运算时,需要用到裂项法,这是一种巧妙的方法,可以将有理数化简,以方便进行运算。
裂项法的基本思想是将一个分数拆分成多个分数之和或之差,这样就能够消去一些因数,从而使计算更为简便。
以下是一些常见的裂项法示例:
1. 裂项法求和
例如,计算2/3 + 7/9
首先,我们找到这两个分数的公共分母,即9,然后将分母拆分成3×3,得到:
2/3 + 7/9 = 2/3×3/3 + 7/9×3/3
= (2×3)/9 + (7×1)/9
= 13/9
= (5×1)/(2×2×3) - (1×3)/(2×2×3)
= 5/12 - 3/12
我们可以将3/4和5/6都分别拆分成若干个分数之积,然后再合并起来,得到:
= 5/4
2/3÷4/5 = 2/3×5/4
总之,裂项法是一种十分常用且实用的方法,可以帮助我们更加方便地进行有理数的计算,提高计算效率。
培优专题3 有理数的巧算(含答案)-
培优专题3 有理数的巧算有理数的巧算,实际上是结合算式的特点,灵活运用有理数的运算律,使之避繁就简,从而提高解题的速度和准确率.由于有理数的巧算常常体现出方法和思维的灵活性,因此是初中数学竞赛试题中,作为考察代数运算能力的一个重要内容.在有理数的运算中,除了一些常见的巧算方法外,还可以用平均数的估算法、连续整数的求和法、求分数和的裂项相消法等.例1计算:(-1136+13107÷24107-1718)÷(-78)×1711.分析在运算中合理运用运算律,可以达到简化运算的目的.要做到合理,关键是仔细观察题中数之间的联系.解:原式=371317818 ()()362418711 -+-⨯-⨯=37398 (17)()2477 -+-⨯-=14878136206 77777777-+=.练习11.-292324×12=_________.2.1995减去它的12,再减去余下的13,再减去余下的14,…依次类推,一直减到余下的11995,•试求最后剩下的数.3.计算:472 6342+472 6352-472 633×472 635-472 634×472 636.例2 计算:3-6+9-12+…+1995-1998+2001-2004.分析 此题解法较多,如何根据其特点使运算简而巧是关键.这个题的特点是每一个数均是3的倍数,当提取公因数3后,很容易发现这个和实际上是由668•个数组成,且可相邻的两个数为一组,组成334组就可解决.解法1:原式=3×(1-2+3-4+…+665-666+667-668)=3×[(1-2)+(3-4)+…+(665-666)+(667-668)]=3×(-334)=-1002.解法2:原式=(3-6)+(9-12)+…+(1995-1998)+(2001-2004)=-3×334=-1002.练习21.计算:1+2-3-4+5+6-7-8+…+1998-1999-2000+2001+2002-2003-2004.2.计算:999×998 998 999-998×999 999 998.3.计算:9999n 个×9999n 个+91999n 个.例3 计算:S n =222121+-+223131+-+…+2211n n +-+22(1)1(1)1n n +++-. 分析 将每一项拆成两项之差,使得总和中构成相反数的项相消.拆项中常常用到: ①1(1)n n +=1n -11n +; ②1(1)(1)n n -+=12(11n --11n +); ③1(1)(2)n n n ++=12[1(1)n n +-1(1)(2)n n ++]. 解:先将假分数化成带分数,并适当拆项.由2211n n +-=1+221n -=1+(11n --11n +), 知:222121+-=1+(1-13) 223131+-=1+(12-14) …因此S n =n+(1-13)+(12-14)+…+(11n --11n +)+(1n -12n +) =n+1+12-11n +-12n + =322992(1)(2)n n n n n ++++. 练习31.1-22+32-42+…+992-1002+1012.2.112⨯+123⨯+134⨯+…+1(1)n n+=________.3.已知:P=(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).那么P的个位数是________.例4 计算:(12+13+…+12005)(1+12+13+…+12004)-(1+12+13+…+12005)(12+13+…+12004).分析四个括号中均包含12+13+…+12004,我们可以用一个字母表示它,简化计算.解:设12+13+…+12004=A,则:原式=(A+12005)(1+A)-(1+A+12005)·A=A+A2+12005+12005A-A-A2-12005A=12005.练习41.求S=1+3+32+33+ (32005)2.求1+12+212+312+…+200412.3.比较:S n=12+23448162nn++++(n是正整数)与2的大小.例5从A、B两地随机抽取10株麦苗,测得它们的株高分别如下:(单位:cm)A:76,90,84,86,81,87,86,82,85,83;B:82,84,85,89,79,80,91,89,79,74.问:哪个麦地的麦苗长得高.分析这里问哪个麦地的麦苗长得高,实质上是比较其平均数的大小.在求平均数时,若直接将各数相加求和,计算较麻烦.一般是当一组数据x1,x2,x3•…x n的各个数值较大且要求它们的和时,我们可将各数据同时减去一个适当的常数a,•得到y1=x1-a,y2=x2-a,y3=x3-a…,y n=x n-a,那么x1+x2+x3+…+x n=na+(y1+y2+y3+…y n).这里应注意的是,常数a的确定要使得新数据的求和运算尽可能简单.解:将上述两组数据分别减去85,得到两组新数据:A′:-9,5,-1,1,-4,2,1,-3,0,-2;B′:-3,-1,0,4,-6,-5,6,4,-6,-11.则A组数据的平均数为:110[85×10+(-9+5-1+1-4+2+1-3+0-2)]=110(850-10)=84.B组数据的平均数为:110[85×10+(-3-1+0+4-6-5+6+4-6-11)]=110(850-18)=83.2.∴A地麦苗长得高.练习51.已知如下数表:12 3 43 4 5 6 74 5 6 7 8 9 10…那么第200行所有数的和为__________.2.对20名儿童的身高测量如下:(单位:cm)97,101,104,98,103,101,99,97,102,96,100,102,88,100,101,96,99,102,105,98.则它们的平均身高是________.3.计算下列各数的和.49.7,50.3,49,49.3,50.5,49.4,49.8,50.2,50,50.4,49.6,49.7,50.2.答案:练习11.-35912.原式=(-30+124)×12=360+12=35912. 2.1.原式=1995×(1-12)×(1-13)×…×(1-11995) =1995×12×23…×19941995 =1.3.2原式=472 635×(472 635-472 633)+472 634×(472 634-472 636)=472 635×2-472 634×2=(472 635-472 634)×2=2.练习21.-2004.原式=(1+2-3-4)+(5+6-7-8)+…+(1997+1998-1999-2000)+(2001+•2002-•2003-2004) =-4×501=-2004.2.1997.原式=(998+1)×998 998 999-998×(998 998 999+1 001 000-1) =998×998 998 999+998 998 999-998×998 998 999-998 998 000+998=999+998=1997.3.21000n 个0原式=9999n 个×9999n 个+1000n 个0+9999n 个=9999n 个×(9999n 个+1)+ 1000n 个0=9999n 个×1000n 个0+1000n 个0=(9999n 个+1)×1000n 个0=1000n 个0×1000n 个0=21000n 个0. 练习31.5151.原式=(1012-1002)+(992-982)+…+(32-22)+1=(101+100)×(101-100)+(99+98)×(99-98)+…+(3+2)×(3-2)+1 =201+197+…+1 =(2011)512+⨯ =5151.2.1n n + 原式=(1-12)+(12-13)+…+(1n -11n +) =1-11n +=1n n +. 3.5.原式=(2-1)(2+1)(22+1)…(232+1)=(22-1)(22+1)…(232+1)=(232-1)(232+1)=264-1.∵21=2,22=4,23=8,24=16,25=32,故264的末尾数字为6,∴原数的末尾数字为5. 练习41.2006312-.3S=3+32+33+…+32006, ∴2S=32006-1,∴S=2006312-. 2.2-200412.设1+12+212+…+200412=A . 则2A=2+1+12+212+…+200312,∴A=2-200412. 3.S n <2. 2S n =1+22+34+48+…+12n n -.∴2S n -S n =1+(22-12)+(34-24)+(48-38)+…+(12n n --112n n --)-2n n =1+12+14+18+…+112n --2n n 由练2知1+12+14+18+…+112n -=2-112n -. ∴S=2-112n --2n n <2. 练习51.159201.第200行的数为:200,201,202…598.方法1:200+201+…+598=(598200)3992+⨯=159201. 方法2:每个数都减去399,则得到一组新数据:-199,-198,-197…,197,198,199,其和为0,故200+201+…+598=399×399+0=159201.2.198.9.将每个数据都减去100得到一组新数据,其和为-11, 故原数据和为:100×20-11=1989,故平均身高为99.45.3.648.1.将原数据的每个数据减去50,得到一组新数据,其和为-1.9,• 故原数据和为:50×13-1.9=648.1.。
有理数的简便运算
有理数的简便运算有理数是指可以表示为两个整数的比值的数,包括正整数、负整数和零。
在数学中,有理数的运算是非常重要的,它们可以进行加法、减法、乘法和除法等运算。
本文将介绍有理数的简便运算方法,帮助读者更好地理解和掌握有理数的运算规则。
一、有理数的加法运算有理数的加法运算是指将两个有理数相加得到一个新的有理数的过程。
要进行有理数的加法运算,可以按照以下步骤进行:1. 将两个有理数的分母找到一个公共的倍数,使得它们的分母相同。
2. 将两个有理数的分子相加,得到新的分子。
3. 分子的符号与原有理数的符号保持一致。
例如,计算-3/4 + 1/2,可以按照以下步骤进行:1. 分母4和2的最小公倍数为4,将两个有理数的分母都改为4。
-3/4 + 1/2 = -3/4 + 2/42. 将两个有理数的分子相加,得到新的分子。
-3/4 + 2/4 = -1/43. 结果的符号与原有理数的符号保持一致,即为负数。
所以,-3/4 + 1/2 = -1/4。
二、有理数的减法运算有理数的减法运算是指将一个有理数减去另一个有理数得到一个新的有理数的过程。
要进行有理数的减法运算,可以按照以下步骤进行:1. 将减法转换为加法,即将减数变为相反数。
2. 将两个有理数按照加法运算的方法相加。
例如,计算5/6 - 1/3,可以按照以下步骤进行:1. 将减数1/3变为相反数,即-1/3。
2. 将两个有理数按照加法运算的方法相加。
5/6 + (-1/3) = 5/6 - 1/33. 按照有理数的加法运算规则进行计算。
5/6 - 1/3 = (5*3 - 6*1) / 6 = 15/18 - 6/18 = 9/184. 将结果进行约分,得到最简形式。
9/18 = 1/2所以,5/6 - 1/3 = 1/2。
三、有理数的乘法运算有理数的乘法运算是指将两个有理数相乘得到一个新的有理数的过程。
要进行有理数的乘法运算,可以按照以下步骤进行:1. 将两个有理数的分子相乘,得到新的分子。
中考数学专题讲练 有理数的巧算(解析版)
有理数的巧算一.结合律加法结合律:三个数相加,先把前面两个数相加,再加第三个数,或者先把后面两个数相加,再和第一个数相加,它们的和不变.乘法结合律:三个数相乘,先把前面两个数相乘,先乘第三个数,或者先把后面两个数相乘,再和第一个数相乘,它们的积不变.二.分配律乘法分配律:两个数的和同一个数相乘,等于把两个加 数分别同这个数相乘,再把两个积加起来,结果不变.三.裂项法在一些题型中,需要运用拆项法(也称裂项法)进行简便运算,运用拆项法使得拆项后的一些数能够互相抵消,达到简化运算的目的.常用拆项公式:(1)()11111n n n n =-++; (2)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭; (3)()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎢⎥⎣⎦,或()()()()()21112112n n n n n n n =-+++++;(4)11a ba b a b+=+⨯,11b aa b a b-=-⨯.四.换元法我们经常会遇到一些数据大、关系复杂的计算题,令人望而生畏,无从下手.这时,如果我们仔细观察数据特点,探究数据规律,巧妙利用字母代替数字(换元法),能够达到化繁为简,化难为易的效果.探索算式的结构往往是解决这类问题的突破口,其步骤大致分为三步:(1)比对观察:寻找并发现题目中的结构与规律;(2)总结归纳:把数字转化为字母,化繁为简;(3)代数计算:利用代数的方法,仔细地将冗长的题目化难为易,解决问题.一.考点:结合律、分配律、裂项法、换元法.二.重难点:裂项法、换元法.三.易错点:裂项法要注意相邻两数之差是多少.题模一:结合律例1.1.1151515 8124292929⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】0【解析】该题考查的是有理数巧算.观察该题,发现都含有共同的因数1529-.因此先提取公因数 原式()15812429⎛⎫=-+-⨯- ⎪⎝⎭, 15029⎛⎫=⨯- ⎪⎝⎭ 0=例1.1.2 计算:()()()3.2289 3.7729 1.59⨯-+-⨯--⨯【答案】 49.5- 【解析】 ()()()3.2289 3.7729 1.59⨯-+-⨯--⨯ 3.2289 3.7729 1.59=-⨯-⨯+⨯ ()3.228 3.772 1.59=--+⨯5.59=-⨯49.5=-.题模二:分配律例1.2.1 计算:1﹣24×(﹣311836+-). 【答案】 6.【解析】 原式=1+9﹣8+4=6.例1.2.2 阅读下列材料: 计算(﹣130)÷(23﹣110+16﹣25) 解法①:原式=(﹣130)÷23﹣(﹣130)÷110+(﹣130)÷16﹣(﹣130)÷25=﹣120+13﹣15+112=16解法②:原式=(﹣130)÷[(23+16)﹣(110+25)]=(﹣130)÷(56﹣12)=﹣130×3=﹣110 解法③:原式的倒数为(23﹣110+16﹣25)÷(﹣130)=(23﹣110+16﹣25)×(﹣30)=﹣20+3﹣5+12=﹣10故原式=﹣110(1)上面得出的结果不同,其中肯定有错误的解法,你认为解法_____是错误的.在正确的解法中,你认为解法_____最简便,该解法运用的运算律是_____.(2)请计算:(﹣142)÷(16﹣314+23﹣37). 【答案】 (1)①;③;乘法分配律(2)﹣18【解析】 (1)上面得出的结果不同,有错误的解法,我认为解法①是错误的.在正确的解法中,我认为解法③最简便,该解法运用的运算律是乘法分配律.(2)∵(16﹣314+23﹣37)÷(﹣142) =(16﹣314+23﹣37)×(﹣42) =16×(﹣42)﹣314×(﹣42)+23×(﹣42)﹣37×(﹣42) =﹣7+9﹣28+18=﹣8 ∴(﹣142)÷(16﹣314+23﹣37)=﹣18题模三:裂项求和例1.3.1 已知220ab a -+-=,求()()()()()()1111112220132013ab a b a b a b ++++++++++的值.【答案】 20142015【解析】 由220ab a -+-=知,2a =,1b =. 原式11111111111201411223342014201522334201420152015=++++=-+-+-++-=⨯⨯⨯⨯ 例1.3.2 计算:15791113151261220304256-+-+-+ 【答案】 98 【解析】 15791113151261220304256-+-+-+ 1223344556677812233445566778+++++++=-+-+-+⨯⨯⨯⨯⨯⨯⨯ 111111111111112233445566778⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-+++-+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 111111111111112233445566778=+--++--++--++ 118=+ 98=. 题模四:换元法例1.4.1 计算:11111111111111232012232011232012232011⎛⎫⎛⎫⎛⎫⎛⎫+++++++-+++++++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【答案】 12012【解析】 设111232012a =+++,111232011b =+++.则原式()()1112012a b b a a ab b ab a b =+-+=+--=-=.随练1.1 计算:()()()32419151515171717-⨯+-⨯--⨯ 【答案】 15-【解析】 提取公因数.()()()32419324191515151515171717171717⎛⎫-⨯+-⨯--⨯=-⨯+-=- ⎪⎝⎭. 随练1.2 3571491236⎛⎫--+÷ ⎪⎝⎭ 【解析】 该题考查的是实数的混合运算. 3571491236⎛⎫--+÷ ⎪⎝⎭ 357364912⎛⎫=--+⨯ ⎪⎝⎭()395473=-⨯-⨯+⨯272021=--+26=-随练1.3 计算:1517()(36)126369-+--⨯- 【答案】 2【解析】 该题考查的是有理数的综合运算.原式()()()()151736363636126369=-⨯-+⨯--⨯--⨯- 330128=-++=2随练1.4 计算:()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【答案】 91216- 【解析】 ()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()91285416⎛⎫=-⨯---+⎡⎤ ⎪⎣⎦⎝⎭ 912116⎛⎫=-⨯ ⎪⎝⎭ 91216=-.随练1.5 阅读材料:计算:12112()()3031065-÷-+- 解法1:原式=1211215111()()()()()3303610530623010⎡⎤-÷++--=-÷-=-⨯=-⎢⎥⎣⎦; 解法2:原式的倒数为:()21121211230310653031065⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭20351210=-+-+=-, 故原式=110-。
初中数学拔尖材料02有理数的巧算 (1)
初中数学拔尖材料02 有理数的巧算初中代数的第一个任务是:引进负数,建立有理数.有理数是代数的基础,必须要学好它.本讲内容主要介绍有理数的巧算的各种方法.1.凑整法:一般凑成整一、整十、整百、整千等数.例1.计算:89899899989999899999++++. 例2.计算:13312155132642586538++++++.例3.正整数1,2,3,…,9998,9999所有数码之和是多少?例4.计算:100100100999999+1999⨯个个个.2.应用运算定律:为了简化运算,通常改变运算顺序,交换律、结合律与分配律并举. 例5.两个十位数1111111111和9999999999的乘积有几个数字是奇数?例6.计算:1311132148()48868-+-⨯-.例7.计算:11111111111111 (1)()(1)()23423452345234+++⨯+++-++++⨯++.3.应用添(去)括号:为了揭示规律,适当添或去括号.例8.计算:12345678979899100+--++--+++--.例9.计算:1111111 ()()() 22448819216384-------.例10.计算:162500012560425÷-⨯.4.拆项法:为了运算简捷,常常需要将一个数学拆成两个数或几个数.例11.计算:5527 57275628⨯+⨯.例12.计算:179111315131220304256-+-+-.例13.求1111 12233420132014++++⨯⨯⨯⨯的值.例14.计算:11113771111155559++++⨯⨯⨯⨯.例15.计算:10123410248162+++++.5.应用幂的性质:对幂的指数较大的,根据数的特点及其关系,运用幂的性质可以简化运算.例16.计算:12713923(0.125)(1)(8)()35-⨯-⨯-⨯-.例17.计算:76777241(1001)(0.125)()()()71311-⨯-⨯-⨯-⨯-.6.倒序相加法:将式子倒过来,对应相加后,和相同.例18.求和:1234100+++++.例19.求一列数的各项之和:1,3,5,7, (2013)例20.求10099989796959493929110987654321++--+++--++++--+++--之和.例21.计算:11111212312341232013++++++++++++++.7.错位相减法:为了简化运算,乘一个数,将式子错位,相减相消. 例22.求23201312222S =+++++.例23.计算:233572112222n n S +=+++++.8.观察找规律:为了简化运算,观察式子,寻找规律.例24.试写出34⨯,3334⨯,333334⨯,…的一般规律,并进行证明.例25.现有数组:(1,1,1);(2,4,8);(3,9,27);…;求第100组的三个数之和.例26.有一串数:11,12-,22,12-,13,23-,33,23-,13,14-,24,34-,…; (1)711是第几个数?(2)第400个数是多少?综合练习1.298720002000200029872987⨯-⨯=_____________________2.1001(((1))------=重括号_____________________3.194144336+630.125+63+63=2323223238⨯⨯⨯_____________ 4.1111++++=144771097100⨯⨯⨯⨯_____________ 5.2235353599=999999n n ⨯个个_____________ 6.已知:1231055++++=1231005050++++=1231000500500++++= …………猜想:12310m ++++=_____________7.设200400a ≤≤,6001200b ≤≤,则b a 的最大值是_____________ 8.若33331231514400++++=,则333324630++++=_____________ 9.把分子为1、分母大于1的自然数的分数称为单位分数;若把单位分数16表示成分母不同的两 个单位分数之和,试求出所有可能的表示.10.一串数:11,11,12,12,22,22,13,13,23,23,33,33,……; (1)115是第几个数?(2)第2014个分数是多少?。
有理数加减法速算与巧算1
有理数加减法速算与巧算1本文档旨在帮助学生掌握有理数加减法的速算与巧算方法。
通过研究本文档,学生将能够提高计算速度,并在解决有理数加减问题时运用巧妙的方法。
1. 有理数的基本概念回顾在开始研究有理数的加减法速算与巧算之前,让我们先回顾一下有理数的基本概念。
有理数是指可以表示为两个整数之比的数。
它包括正有理数、负有理数和零。
有理数可以用分数或小数表示。
2. 有理数加法速算2.1 有理数相加的基本规则有理数相加的基本规则如下:- 同号相加,取绝对值相加,并保持符号不变;- 异号相加,取绝对值相减,结果的符号与绝对值较大的数的符号相同。
2.2 加法速算的技巧为了加快有理数相加的计算速度,我们可以运用一些巧妙的技巧:抵消法当两个有理数相加时,如果它们的绝对值相等,且符号相反,那么它们可以互相抵消,结果为零。
例如:- $3 + (-3) = 0$- $-2 + 2 = 0$这种方法能够帮助我们迅速得出结果,无需进行复杂的计算。
相消法当两个有理数相加时,如果它们的绝对值相差为1,且符号相反,那么它们可以相消,结果为绝对值较大的数的符号。
例如:- $4 + (-3) = 1$- $-5 + 4 = -1$相消法可以帮助我们在不进行具体计算的情况下,直接得出结果。
2.3 示例下面是一些有理数加法速算的示例:示例1计算:$(-5) + 7$解法:由于符号相反,我们可以直接使用抵消法。
结果:$(-5) + 7 = 2$示例2计算:$(-2) + (-8)$解法:由于符号相同,我们可以直接将绝对值相加,并保持符号。
结果:$(-2) + (-8) = -10$3. 有理数减法速算3.1 有理数相减的基本规则有理数相减的基本规则与相加类似,只需要改变减号为加号,然后根据符号规则进行计算。
3.2 减法速算的技巧有理数减法的速算技巧与加法类似,同样可以运用抵消法和相消法来加快计算速度。
3.3 示例下面是一些有理数减法速算的示例:示例1计算:$7 - 5$解法:由于符号相同,我们可以直接将绝对值相减,并保持符号。
【七年级奥数】第1讲 有理数的巧算(例题练习)
第1讲有理数的巧算——例题一、第1讲有理数的巧算(例题部分)1.计算:【答案】解:原式===0+0+0=0【解析】【分析】在有理数加减运算中,应注意利用交换律与结合律,将其中的数适当改变顺序,重新组合、尽可能“凑整”或“抵消”.“抵消”,即两个相反的数相加,和为0(两个相同的数相减,差为0),如上面的与-,-与,但要注意符号,不要搞错,如上面的-与不能抵消,它们的和与可以抵消.2.计算【答案】解:原式===【解析】【分析】在进行有理数的乘除运算时,要注意确定结果的符号:奇数个负数相乘除,结果为负;偶数个负数相乘除,结果为正.通常将小数化为分数,带分数化为假分数,把除法转化为乘法,能约分的先约分,尽量化简。
3.计算【答案】解:原式==【解析】【分析】在进行有理数的四则运算时,还应注意应用分配律.若有公因数,一般可将公因数提出,然后进行运算.如本例中,分子有公因数1×2×3,分母有公因数1×3×5,就可以将它们提出,然后约分,以简化运算.应注意,当提出的公因数带负号时,提取后各项的符号都要改变.4.计算【答案】解:原式====……==1-=【解析】【分析】经过观察发现算式的特点:后一项是前一项的一半.如果我们把后一项加上它本身,就可以得到前一项的值.因此,我们巧添了一个辅助数,使问题得以顺利解决.当然,根据代数式的值得不变性可知,在添加上后不要忘了还应减。
5.计算(1)1+2+3+4+ +2007+2008(2)1-2+3-4+ +2007-2008【答案】(1)解:令S=1+2+3+4+ +2007+2008则S=2008+2007 +2+1两式相加,得2S===2009 2008所以S=即原式=(2)原式===-1004【解析】【分析】(1)由题意知,本小题的特点是:后一项减去前一项的差都相等.这样的一列数是等差数列.即若一列数,有(常数)(i=12,…,n一1),则这列数称为等差数列,其中称为首项,称为末项,n为项数,d为公差.等差数列的和a,的计算公式为:所以,本题也可用这个计算公式计算.有时,项数不能直接看出,可用下面的公式计算:(2)由题意知,相邻的项两两结合求差为-1,可以简化运算.这是由本题的特点所决定的.所以,在做题时,应先观察一下题目的特点,根据特点下手,往往有事半功倍的效果.6.计算【答案】解:原式==1-= =【解析】【分析】在做加减法运算时,根据数的特点,将其中一些数适当拆开,变成两个数的差并且拆开后有一些数可以相互抵消,达到简化运算的目的,这种方法叫拆项法.本例中,我们把拆成,即可求解。
竞赛推免第一讲:巧算有理数
第一讲:巧算有理数一、巧用运算律进行有理数运算时注意符号的处理,再看是否可以用运算律简化运算。
例1 计算:(1)719998-×16;(2)11311()()63641248--+-÷-解析(1)原式=1 (2000)8--×16=-(3200-2) =-31998(2)原式=-1131()48636412--+-⨯=-(-8-43+36-4)=-2223.点评:(1)像719998、2003等数字在参与运算时,往往将其写成120008-、2000+3的形式;(2)利用乘法对加法的分配律时,应注意符号的处理技巧,尽量以免错误。
二、有理数大小的比较有理数大小比较的一般规律:正数>零>负数;两个负数比较大小,绝对值大的反而小;两个正数比较大小,倒数大的反而小、在进行有理数大小比较时,往往利用到作差、作商、倒数比较、平方比较以及运用一些熟知的规律进行比较.例 2 把199191199292,,,199292199393----四个分数按从小到大的顺序排列是.解析:1992192119931931 1,1,1,1, 199119919191199219929292 =+=+=+=+ 1111199319929392,, 199219919291199219919291 199219919291199219919291,. 199319929392199319929392 <<<∴<<<∴>>>∴-<-<-<-而点评:比较分数的大小通常可以将分子化成相同或分母化成相同,再进行比较,除了通分外,倒数法也是经常用到的方法.实际上,此类习题具有一般规律;11n nn n-<+(n是正整数),如12342345<<<<⋅⋅⋅三、有理数巧算的几种特殊方法有理数运算时,经常会出现一些较大或较多的数求和的问题,仔细观察它们的特点,探求其中的规律,往往可以为解题开辟新的途径.1.倒序相加法例3计算:(1)1+2+3+…+2003+2004;(2)1-2+3-4+…+2003-2004.解析(1)设S=1+2+3+…+2003+2004 ①则S=2004+2003+…+3+2+1 ②①+②,得2S =(1+2004)+(2+2003)+…+(2004+1)=2005+2005+…+2005 (共2004个2005)=2005×2004,∴S =200520042⨯=2009010, 即原式=2009010.(2)原式=(1-2)+(3-4)+…+(2003一2004)=-1-1-…-1(共1002个-1)=-1002.点评:(1)式的特点是:后一项减去前一项的差都相等,这样的一列数称为等差数列,第一项叫首项,通常用a 1表示;最后一项叫末项,通常用a n 表示;相等的差叫公差,通常用d 表示。
初一有理巧算精品
有理数运算中的几个技巧有理数的运算是初中数学中的基础运算,熟练地掌握有关的运算技巧,巧妙地运用有关数学方法,是提高运算速度和准确性的必要保证.下面介绍一些运算技巧.一、 归类运算进行有理数的加减运算时,运用交换律、结合律归类加减,常常可以使运算简捷. 如整数与整数结合、如分数与分数结合、同分母与同分母结合等.例1 计算: -(0.5)-(-341) + 2.75-(721).解法一:-(0.5)-(-341) + 2.75-(721)= (-0.5 + 2.75) + (341-721)= 2.25-441=-2 .解法二:-(0.5)-(-341) + 2.75-(721)=-0.5 + 341+ 2.75-721= (3 + 2-7 ) + (-0.5 + 41+ 0.75 -21=-2.评析:解法一是小数与小数相结合,解法二整数与整数结合,这样解决了既含分数又含小数的有理数加减运算问题.同学们遇到类似问题时,应学会灵活选择解题方法.二、 凑整求和将相加可得整数的数放在一起进行运算(其中包括互为相反数相加),可以降低解题难度, 提高解题效率.例2 计算:19+299+3999+49999.解:19+299+3999+49999=20-1+300-1+4000-1+50000-1 = (20+300+4000+50000)-4 = 54320-4 = 54316.在有理数的运算中,为了计算的方便,常把非整数凑成整数,一般凑成整一、整十、 整百、整千等数,这样便于迅速得到答案.三、 变换顺序在有理数的运算中,适当改变运算顺序,有时可以减少运算量,在具体运算过程中,技巧是恰到好处地运用交换率、结合律和分配律等运算律简化运算.例3 计算:[4125+(-71)]+[(-72)+6127].解:[4125+(-71)]+[(-72)+6127]= 4125+(-71)+(-72)+6127 = [4125+6127]+[(-72)+(-71)]= 11+(-73)= 1074.评析:在运算前,首先观察、分析参与运算的数的特征、排列顺序等,适当交换一下各数的位置,达到简化运算、快速解题的目的.四、 逆用运算律在处理有理数的数字运算中,若能根据题目所显示的结构、关系特征,对此加以灵活 变形,便可巧妙地逆用分配律,使解题简洁明快. 例4 计算:17.48³37+174.8³1.9+8.74³88.解:17.48³37+174.8³1.9+8.74³88 =17.48³37+(17.48³10)³1.9+17.48³44=17.48³37+17.48³19+17.48³44 = 17.48³(37+19+44) = 1748.评析:很明显,灵活变形,逆用分配律,减少了运算量,提高了解题效率.五、 巧拆项把一项拆成两项的和或积,使得算式可以消去某些项,使运算简捷.例5 计算2005³20042003-1001³10021001.解:2005³20042003-100210011001= (2004+1)³20042003-(1002-1)³10021001= (2003-1001)+(20042003+10021001)=100320042001.评析:对于这些题目结构复杂,长度较大的数,用常规的方法不易解决.解这类问题要根据题目的结构特点,找出拆项规律,灵活巧妙地把问题解决.六、 变量替换通过引入新变量转化命题结构,这样不但可以减少运算过程,还有利于寻找接题思路, 其中的新变量在解题过程中起到桥梁作用.例6 计算512769)323417(125.0323417-++⨯+³(0.125+323417512769+-). 解:设a =323417+,b = 0.125,c =512769-,则512769)323417(125.0323417-++⨯+³(0.125+323417512769+-) =c ab a +³(b +ac ) =c ab a+³ac ab + = 1.评析:此题横看纵看都显得比较复杂,但若仔细观察,整个式子可分为三个部分:323417+,0.125,512769-,因此,采用变量替换就大大减少了计算量.七、 分组搭配观察所求算式特征,巧妙运用分组搭配处理,可以简化运算. 例7 计算:2-3-4+5+6-7-8+9…+66-67-68+69.解:2-3-4+5+6-7-8+9…+66-67-68+69= (2-3-4+5)+(6-7-8+9)+…+(66-67-68+69) = 0+0+0+…+0 = 0.评析:这种分组运算的过程,实质上是巧妙地添括号或去括号问题.八、 倒序相加在处理多项式的加减乘除运算时,常根据所求式结构,采用倒序相加减的方法把问题简化.例8 计算 21+(31+32)+(41+42+43)+(51+52+53+54)+…+(601+602+…+6058+6059).①解:把①式括号内倒序后,得:21+(32+31)+(43+42+41)+(54+53+52+51)+…+(6059+6058+…+602+601), ② ①+②得:1+2+3+4+…+58+59 = 1770, ∴21+(31+32)+(41+42+43)+(51+52+53+54)+…+(601+602+…+6058+6059) =21(1770) = 885. 评析:显然,此类问题是不能“硬算”的,倒序相加可提高运算速度,降低复杂程度.九、 添数配对例9 计算11+192+1993+19994+199995+1999996+19999997+199999998+1999999999.解:添上9+8+7+6+5+4+3+2+1,依次与各数配对相加,得:11+192+1993+19994+199995+1999996+19999997+199999998+1999999999.= 20+200+2³103+2³104+…+2³109-(9+8+7+6+5+4+3+2+1)= 2222222220-45 = 2222222175.评析:添数配对实质上也是一种凑整运算.十、 整体换元对于较复杂的算式直接运算很困难,若能抓住其特征,运用整体运算的思维,创造性地 加以解决,就能收到事半功倍的效果.例10 计算1-21+41-81+161-321+641-1281+2561.解;设1-21+41-81+161-321+641-1281+2561= x ,①则①³(-21),得-21+41-81+161-321+641-1281+2561-5121=-21x , ②① -②,得1+5121=23x ,解得x =256171,故1-21+41-81+161-321+641-1281+2561=256171.评析:整体换元可以避开局部细节的麻烦,它利用前后项之间的倍数关系,使用的是错位相加法.有理数运算技巧十五招一、归类将同类数(如正数或负数)归类计算。
有理数的巧算
有理数的巧算有理数运算中的几个技巧一、归类运算进行有理数的加减运算时,运用交换律、结合律归类加减,常常可以使运算简捷.如整数与整数结合、如分数与分数结合、同分母与同分母结合等.例1 计算:-(0.5)-(-341) + 2.75-(721).解法一:-(0.5)-(-341) + 2.75-(721) = (-0.5 + 2.75) + (341-721) = 2.25-441=-2 .解法二:-(0.5)-(-341) + 2.75-(721) =-0.5 + 341+ 2.75-721= (3 + 2-7 ) + (-0.5 + 41+ 0.75 -21=-2.例3 计算:[4125+(-71)]+[(-72)+6127].解:[4125+(-71)]+[(-72)+6127] = 4125+(-71)+(-72)+6127 = [4125+6127]+[(-72)+(-71)] = 11+(-73) = 1074.二、分组搭配观察所求算式特征,巧妙运用分组搭配处理,可以简化运算.例4 计算:2-3-4+5+6-7-8+9…+66-67-68+69.解:2-3-4+5+6-7-8+9…+66-67-68+69= (2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)= 0.评析:这种分组运算的过程,实质上是巧妙地添括号或去括号问题.三、凑整求和例5 计算:19+299+3999+49999.解:19+299+3999+49999=20-1+300-1+4000-1+50000-1= (20+300+4000+50000)-4= 54320-4= 54316.例6 计算11+192+1993+19994+199995+1999996+19999997+199999998+1999999999.解:添上9+8+7+6+5+4+3+2+1,依次与各数配对相加,得:11+192+1993+19994+199995+1999996+19999997+199999998+1999999999.= 20+200+2×103+2×104+…+2×109-(9+8+7+6+5+4+3+2+1)= 2222222220-45= 2222222175.四、逆用运算律有理数的数字运算中,若能根据题目所显示的结构、关系特征,对此加以灵活变形,便可巧妙地逆用分配律,使解题简洁明快.例7 计算:17.48×37+174.8×1.9+8.74×88.解:17.48×37+174.8×1.9+8.74×88 =17.48×37+(17.48×10)×1.9+17.48×44=17.48×37+17.48×19+17.48×44= 17.48×(37+19+44)= 1748.五、巧拆项例8 计算2005×20042003-1001×10021001.解:2005×20042003-100210011001? = (2004+1)×20042003-(1002-1)×10021001 = (2003-1001)+(20042003+10021001) =100320042001.评析:对于这些题目结构复杂,长度较大的数,用常规的方法不易解决.解这类问题要根据题目的结构特点,找出拆项规律,灵活巧妙地把问题解决.六、换元法通过引入新变量转化命题结构,这样不但可以减少运算过程,还有利于寻找接题思路,其中的新变量在解题过程中起到桥梁作用.例9 计算512769)323417(125.0323417-++?+×(0.125+323417512769+-).解:设a =323417+,b = 0.125,c =512769-,则 512769)323417(125.0323417-++?+×(0.125+323417512769+-) = cab a +×(b +a c ) =c ab a +×a c ab + = 1.评析:此题横看纵看都显得比较复杂,但若仔细观察,整个式子可分为三个部分:323417+,0.125,512769-,因此,采用变量替换就大大减少了计算量.例10 计算1-21+41-81+161-321+641-1281+2561.解;设1-21+41-81+161-321+641-1281+2561= x ,① 则①×(-21),得-21+41-81+161-321+641-1281+2561-5121=-21x ,② ① -②,得1+5121=23x ,解得x =256171,故 1-21+41-81+161-321+641-1281+2561=256 171.七、倒序相加在处理多项式的加减乘除运算时,常根据所求式结构,采用倒序相加减的方法把问题简化.例11 计算21+(31+32)+(41+42+43)+(51+52+53+54)+…+(601+602+…+6058+6059).① 解:把①式括号内倒序后,得:21+(32+31)+(43+42+41)+(54+53+52+51)+…+(6059+6058+…+602+601),② ①+②得:1+2+3+4+…+58+59 = 1770,∴21+(31+32)+(41+42+43)+(51+52+53+54)+…+(601+602+…+6058+6059) =21(1770) = 885.评析:此题运等比数列求和也行有理数的巧算与速算有理数的计算题在大大小小的考试中都占有很重要的地位,而有理数的题目又变化多样,可以说是形形色色,怎样解决这类题目呢?当然,灵活运用有理数的运算法则、运算律,适当地添加或去括号改变运算顺序,常可达到简化运算的效果。
北师大版初一上数学有理数巧算(一)
有理数巧算(一)【知识要点】1.裂项相消法:有些求若干个分数之和的计算题,如果用通分的方法来解答,显得既繁又难,也很不容易求出正确答案,我们可以把其中的每个加数,根据()11111+-=+n n n n 的原理,分裂为两个分数之差,这样算式中除首、尾两项之外,其余各分数均加、减相消,可巧妙求出整个算式的和,这种巧解思路,称为裂项相消法.2.裂项公式:(k n ,均为自然数)(1)()11+n n 型裂项公式:()11111+-=+n n n n . (2))(1k n n +型裂项公式:⎪⎭⎫ ⎝⎛+-=+k n n k k n n 111)(1 (3))(k n n k +型裂项公式:kn n k n n k +-=+11)(. (4))2)((1k n k n n ++型裂项公式:)2)((1k n k n n ++=⎥⎦⎤⎢⎣⎡++-+)2)((1)(121k n k n k n n k (5).)2)((2k n k n n k ++型裂项公式.)2)((2k n k n n k ++()()()k n k n k n n 211++-+=. 3.倒写相加法:用将原式倒序排列后所得的新式,再与原式对应项相加,使所得的和均相等,这样能使计算简便,这种计算方法叫做倒写相加法.4、错位相减法:用将原式乘以n (n 为正整数)后所得的新式,减去原式,抵消两式中相同的项,这样能使计算简化,这种计算方法叫做错位相减法.【典型例题】例1 计算:10032114321132112111+++++++++++++++.例2 求证:()()()212324321641531421311+++-=+++⨯+⨯+⨯+⨯n n n n n .例3 计算⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++19991141131121119991411311211413112113121121例4、 计算:⎪⎭⎫ ⎝⎛+++++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++9897983981656361434121例5.计算:135261039155152512324636951015⨯⨯+⨯⨯+⨯⨯++⨯⨯=⨯⨯+⨯⨯+⨯⨯++⨯⨯例6.求和20073222221+++++= S【经典练习】1.计算:200720067531++++++2.计算: 111112123123100++++++++++3.计算:()()132********+-++⨯+⨯n n .4.计算:111113142531999199720001998+++++=⨯⨯⨯⨯⨯5.计算:201918143213211⨯⨯++⨯⨯+⨯⨯6.计算:⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++60596058602601545352514342413231217.25611281641321161814121+++++++有理数巧算(一)作业1.122000200120012001+++=2.1111224246246200++++++++++3. 2101111333++++4.11111661111165156++++⨯⨯⨯⨯ 5.1111399241111111111111111112232342399+++=⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++++ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭。
第一讲-七年级有理数的巧算
第一讲 有理数(1)一、知识提要1、 整数和分数统称为有理数。
2、 有理数还可以这样定义: 形如mp (其中m 、p 均为整数,且m ≠0)的数是有理数。
这种表达形式常被用来证明或判断某个数是不是有理数。
3、 有理数的数系表:正整数 正整数 整数 零 正有理数负整数 正分数 有理数 正有限小数 或 有理数 零正分数 负整数 正无限循环小数 负有理数分数 负分数负有限小数负分数负无限循环小数4、 有理数可以用数轴上的点表示。
5、 零是正数和负数的分界点;零不是正数也不是负数。
6、 如果两个数的和为0,则称这两个数互为相反数。
如果两个数的积为1,则称这两个数互为倒数。
7、 有理数的运算法则:(1)、加法:两数相加,同号的取原来的符号,并把绝对值相加;异号的取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,绝对值相等时,和为0;一个数与0相加,仍得这个数。
(2)、减法:减去一个数等于加上这个数的相反数。
(3)、乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;一个数与0相乘, 积为0. 乘方:求n 个相同因数a 的积的运算称为乘方,记为na 。
(4)、除法:除以一个数等于乘以这个数的倒数。
8、有理数的运算律:加法交换律:a b b a +=+;加法结合律:)()(c b a c b a ++=++;乘法交换律:c b b a ⨯=⨯;乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯;乘法分配律:c b c a c b a ⨯+⨯=⨯+)(;9、有理数具有以下性质①对于任意两个有理数a , b ,在a < b , a = b ,a > b 三种关系中,有且只有一种成立。
②如果a < b , 那么b > a 。
③如果a < b , b < c , 那么 a < c④如果a = b , b = c , 那么 a = c⑤如果a = b , 那么 b = a⑥任意一对有理数,对应的和、差、积、商(除数不为零)仍是有理数。
有理数简便运算
有理数简便运算
有理数的简便运算包括加法、减法、乘法和除法。
下面是每种运算的详细步骤:
1. 加法:
- 将两个有理数的分母取相同的公倍数,然后将分子相加得到新的分子。
- 保持分母不变,将新的分子化简为最简形式。
2. 减法:
- 将两个有理数的分母取相同的公倍数,然后将分子相减得到新的分子。
- 保持分母不变,将新的分子化简为最简形式。
3. 乘法:
- 将两个有理数的分子相乘得到新的分子。
- 将两个有理数的分母相乘得到新的分母。
- 将新的分子和分母化简为最简形式。
4. 除法:
- 将第一个有理数的分子乘以第二个有理数的分母得到新的分子。
- 将第一个有理数的分母乘以第二个有理数的分子得到新的分母。
- 将新的分子和分母化简为最简形式。
需要注意的是,在进行有理数的简便运算时,需要将结果化简为最简形式,即分子和分母没有公共因子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: (1-2-3+4)+(5-6-7+8)+…+(2005-2006-2007+2008)-2009+2010=1. 所以,所求最小非负数是1.
添括号是为了造出一系列的“零”,这种 方法可使计算大大简化 (1)(-2011
5 2 3 1 ) (2010 ) 4000 21 6 3 4 2
59 5 9 1 59 59 5 9 1 3 5 9 1 2 135 2 137
发现规律了吗?
4 8 5 9 6 10 7 11 8 12
(6 2) (10 2) (6 1) (10 1) 6 10 (6 1) (10 1) (6 2) (10 2) 6 10 6 2 2 10 2 2 6 10 6 10 1 6 10 6 10 6 2 2 10 2 2 6 10 6 10 1
1 1 1 1 (2) ....... 1 2 2 3 3 4 2010 2011
=
直接计算很麻烦 如何巧算能计算 简化呢?
5 2 3 1 (1)(-2011 ) ( 2010 ) 4000 21 6 3 4 2
(1)分析:这是我们现在六年级同学在有理数加减 运算中的常见题型,如果我们把每个带分数拆成整数 和分数之和,然后再把整数和分数部分分别相加,可 使计算简化,这中方法叫拆项法
【练习 】
计算下列各式的值: (1)-1+3-5+7-9+11-…-1997+1999; (2)11+12-13-14+15+16-17-18+…+99+100;
3 1 1 2 1 3 48 18 1 0.25 3 2 30 (3) 5 4 3 3 3 5
1 2 3 2 4 6 7 14 21 (4) 1 3 5 2 6 10 7 21 35
4 8
【数学小故事】
酒的坛子数
第一层 4 8有个,第二层5 9有个,第三层有 6 10 个 ; 这样依次类推,每下去一层,长和宽两边的坛子就 各增一个,这样一共有7层
4 8 5 9 6 10
(5 1) (9 1) 5 9 (5 1)(9 1)
【知识要点】
1.有理数运算是中学数学中一切运算的基础.在理解 有理数的有关概念、法则,根据法则、公式等正确、 迅速地进行运算的基础上了解巧算.
2.进一步熟练掌握有理数的混合运算的方法,寻找其 中规律,仔细计算,提高运算能力,利用去括号和添 括号的法则使有理数的计算简化.
3.知道应用拆项法来解决有关有理数 的计算问题.
1 2 3 2 4 6 7 14 21 (2) 1 3 5 2 6 10 7 21 35
.
(1)解 原式=(211×555+211×445)+(445×789+555×789) =211×(555+445)+(445+555)×789 =211×1000+1000×789 =1000×(211+789) . =1 000 000.
1 1 1 1 (2) ....... 1 2 2 3 3 4 2010 2011
分析 一般情况下,分数计算是先通分.本题 通分计算将很繁,所以我们不但不通分,反而 利用如下一个关系式,把每一项拆成两项之差 ,然后再计算,这也是一种拆项法. 解 由于
所以
1 1 1 1 1 1 1 原式 ( 1 ) ( ) ( ) ........ ( ) 2 2 3 3 4 2010 2011 1 2010 1 2011 2011
1 2 3 (1 2 2 2 7 7 7) (2)解原式= 1 3 5(1 2 2 2 7 7 7)
2 = 5
例2: 计算:S=1-2+3-4+…+(-1)n+1· n.
分析:不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”. 如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算, 就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.
5 2 3 1 解 原式= (2011 ) ( ) (2010 ) ( ) (4000 ) (21 ) 3 4 2 2 3 1 5 ) (2010 ) 4000 21 ( ) ( ) = (2011 3 4 2 6 1 1 =0+(4 )=- 4 6
解 S=(1-2)+(3-4)+…+(-1)n+1· n. 下面需对n的奇偶性进行讨论: 当n为偶数时,上式是n/2个(-1)的和,所以有
n n s (1) 2 2
当n为奇数时,上式是(n-1)/2个(-1)的和,再加上 最后一项(-1)n+1· n=n,所以有
例3 在数1,2,3,…,2010前添符号“+”和“-”, 并依次运算,所得可能的最小非负数是多少?
分析:因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2, 3,…,2010之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1, 2,3,…,2010中有2010÷2个奇数,即有1005个奇数,所以任意添 加符号“+”或“-”之后,所得的代数和总为奇数,故最小负数不小于1. 现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”, 显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…, 2010每连续四个数分为一组,再按上述规则添加符号,即可.
5 6 10 2 (2 2 12 ) 310
如果是七层、九层, 怎么算?
1.括号的使用
例1: 计算 (1)211×555+445×789+555×789+211×445.
在代数运算中,可以根据运算法则和运算律, 去掉或者添上括号,以此来改变运算的次序, 使复杂的问题变得较简单.