《自动控制原理》第三章 35 稳态误差计算

合集下载

自动控制原理--控制系统的稳态误差

自动控制原理--控制系统的稳态误差
不能采用拉氏变换终值定理的缘故。因此,利用式(356)来计算稳态误差是普遍成立的,而利用拉氏变换终 值定理的式(3-60)求稳态误差时,应注意使用条件。
二、给定作用下的稳态误差
设系统开环传递函数为:
其中K为开环增益,v为系统中含有的积分环节数 对应于v=0,1,2的系统分别称为0型,Ⅰ型和Ⅱ型系统。
稳态误差的定义
• 误差定义为输入量与反馈量的差值
• 稳态误差为误差的稳态值 • 如果需要可以将误差转换成输出量的量纲
• 稳态误差不仅与其传递函数有关,而且与输入 信号的形式和大小有关。其终值为:
稳态误差计算
误差的定义:
E(s) R(s) B(s)
lim ess ()
( L1[ E ( s )])
(1)系统是稳定的; (2)所求信号的终值要存在。
例27 已知系统如图3-36所示。当输入信号 rt ,1干t扰信 号 n时t,求1t系 统的总的稳态误差。
Ns
Rs
Es
K1
K2 s
Y s
Bs
图3-36 例3-15系统结构图
解:⑴对于本例,只要参数 K1, K均2大于零,则系统一定是稳 定的。
⑵在r t 信1t号 作用下(此时令 n)t 0
s0
s0
1 s K1K2
K2 s K1K2
1 s
1 K1
由以上的分析和例题看出,稳态误差不仅与系统本身
的结构和参数有关,而且与外作用有关。利用拉氏变换
的终值定理求得的稳态误差值或者是零,或者是常数,
或者是无穷大,反映不出它随时间的变化过程。另外,
对于有些输入信号,例如正弦函数,是不能应用终值定
最后由终值定理求得稳态误差 ess
ess

自动控制原理第三章

自动控制原理第三章

yf (t) Cfi e +y p (t)
i t
i 1
yp (t)是强迫响应, fi 由输入信号决定。 C
零输入响应是系统的输入为零时,系统的 初始状态所引起的响应。 零输入响应表示为:
y x (t) Cxi e
i 1
n
i t
C xi 由初始状态决定。
两种分解方法的关系是:
二阶系统的单位阶跃响应
2 n Y (s) 2 R( s) 2 s 2 n s n 2 n 2 s ( s 2 2 n s n ) 1 s 2 n 2 Yss ( s ) Yt ( s ) 2 s s 2 n s n
有响应。但齐次解中各固有运动模态的系数则
由初始条件和输入信号共同决定。
当系统的特征根都位于左半 S 平面时,各 固有运动模态都将随着时间的推移而衰减到零,
齐次解也就衰减到零。这种情况下,齐次解表
现为系统响应的动态分量。
自动控制系统中描述暂态响应的性能指 标为:快速性和平稳性。
特解的形式与激励信号的形式有关,称 为系统的强迫相应,取决于输入函数和系统的 特性。当系统的特征根都位于左半 S 平面时,
(5)正弦函数
r t A sint
A R( s ) L A sint 2 s 2
四.阶跃响应的时域性能指标
一个控制系统的时间相应分为两部分:瞬态响应及稳态响应
c(t) = ct(t) + css(t) = 瞬态响应 + 稳态响应 1. 瞬态响应性能指标
图3-1
1.上升时间 tr :阶跃响应曲线从t=0开始第一次 上升到稳态值所需要的时间。一般从稳态值的 10%上升到90%所需的时间 2. 峰值时间tp: 阶跃响应曲线从t=0开始上升到第一个峰值所需要 的时间. 3. 最大超调量Mp: 阶跃响应曲线的最大峰值与稳态值之差与稳态值之 比,即

自动控制原理 第三章 控制系统的时域分析—5稳态误差

自动控制原理 第三章 控制系统的时域分析—5稳态误差

2020年9月6日6时59分
2
一、稳态误差的定义
系统的误差e(t)一般定义为输出量的希望值与 实际值之差。系统误差的定义有两种形式: (1)系统误差(从输出端定义) (s) Cr (s) C(s)
Cr(s)为系统输出量的希望值,其定义为E(s)=0时系 统的输出,C(s)为输出量的实际值。
(2)作用误差(从输入端定义)E(s) R(s) B(s) 作用误差就是给定输入R(s)与主反馈信号B(s)之差。
§ 3-6 控制系统的稳态误差
系统的稳态分量反映系统跟踪输入信号的准 确度或抑制扰动信号的能力,用稳态误差描述。在 系统的分析、设计中,稳态误差是一项重要的性能 指标,它与系统本身的结构、参数及外作用的形式 有关,也与元件的不灵敏、零点漂移、老化及各种 传动机械的间隙、摩擦等因素有关。
本章只讨论由于系统结构、参数及外作用等因 素所引起的稳态误差。 ➢ 给定稳态误差(由给定输入引起的稳态误差) ➢ 扰动稳态误差(由扰动输入引起的稳态误差)
式中
1 er (s) 1 G(s)H (s)
称为给定输入作用下系统的误差传递函数。
应用拉氏变换的终值定理可以方便地求出系 统的稳态误差。
2020年9月6日6时59分
9
ess
lim
t
e(t)
lim
s0
sE(s)
lim
s0
s
1
1 G(s)H(s)
R(s)
1
lim s
R(s)
s0 1 G开 (s)
稳态误差可表示为ess1 1 Kp因此,在单位阶跃输入下,给定稳态误差取决于
系统的稳态位置误差系数。
2020年9月6日6时59分
12
对于0型系统,v=0

自动控制原理第3章

自动控制原理第3章
间常数“T”。
12
一阶系统分析
3、单位抛物线响应
y(t)的特点:
y(t)1t2T tT2(1eT t) t0 2
输入与输出之间存在误差为无穷大,这意味着一阶系
统是不能跟踪单位抛物线输入信号的。
4、单位脉冲响应
t
y(t)TeT t0
当 t时, y()0
13
一阶系统分析
对一阶系统典型输入响应的两点说明: 1、输入信号为单位抛物线信号时,输出无法跟踪输入 2、三种响应之间的关系:
38
稳定性分析及代数判据
劳斯判据:
系统稳定的必要条件:特征方程所有系数均为正。
系统稳定的充分条件:特征方程所有系数组成劳斯表,其第 一列元素必须为正。
具体步骤:
1、先求出系统的特征方程
a n S n a n 1 S n 1 a 1 S a n0
注意:
(1) s要降阶排列 (2) 所有系数必须大于0
阶跃响应:
p 2 j1 2 n
Y sss22 n2 n s n2A s1s2 A 2 2 s n s A 3 n
yt 11 12e n t sin 1 2n t
y(t)
ξ=0.3
1
ξ=0.5
20
0
t
二阶系统分析
3、临界阻尼( =1 )
特征根
p1,2 n
阶跃响应:
yt 1 e n t1 n t
42
稳定性分析及代数判据
解:系统闭环特征方程为 s36s25sK0
列劳斯表
s3
1
5
s2
6
K
s 30 K 0
6
s0
K
稳定必须满足
30 K 0 6

自动控制原理 自动控制原理 第三章3:线性定常系统的稳定误差计算P

自动控制原理 自动控制原理 第三章3:线性定常系统的稳定误差计算P

∞ v R00 ess = K 0
ν =0 ν =1 ν ≥2
13
e ss
∞ R v 00 = K 0
ν = 0 ν = 1 ν ≥ 2
0型系统稳态时不能跟踪斜坡输入 Ⅰ型系统能跟踪斜坡输入,但存在一个稳态位置误差 型系统能跟踪斜坡输入, Ⅱ 型及 Ⅱ 型以上系统 , 稳态时能准确跟踪斜坡输入 型及Ⅱ型以上系统, 信号,不存在位置误差. 信号,不存在位置误差.
( 3 66 )
K p : 静态位置误差系数
K G (s)H (s) = s
20102010-7-11
ν
∏1 i= ∏1 j=
n ν
m
(τ (T
i
s + 1) ,
j
n ≥ m
s + 1)
K
p
K ,ν = 0 = ∞ ,ν ≥ 1
10
第三章 线性系统的时域分析法
K
p
K ,ν = 0 = ∞ ,ν ≥ 1
2 s→ 0
K s v2
s→ 0
20102010-7-11
第三章 线性系统的时域分析法
17
误差系数 类型
静态位置误 差系数
Kp
静态速度误差 系数
Kv
静态加速度误 差系数
K
a
0型
K
∞ ∞
0
0
Ⅰ型
K

0 K
Ⅱ型
20102010-7-11
第三章 线性系统的时域分析法
18
输入
类型
r(t ) = R0
R0 1+ K
e
ss
ν 与 K R (s)
系统型别 开环增益有关 输入信号

《自动控制原理》第三第讲

《自动控制原理》第三第讲

误差系数 Kp Kv Ka
单位阶跃 输入
r(t) = u(t)
单位速度 输入
r(t) = t
单位加速 度输入
r(t) = 1 t 2 2
0
K0 0
1 1+K
I
∞ K0
0
II
∞ ∞K
0


1

K
1
0
K
1. 稳态误差与输入信号有关;与开环增益有关;与积分环节的个 数有关。
2. 减小或消除稳态误差的方法: a、增加开环放大系数K; b、提高系统的型号数;
R(s)
E(s) -
G1 ( s)
+ G2 (s) C(s)
H (s) (b)
通常,给定输入作用产生的误差为系统的给定误差
(E=R-HC),扰动作用产生的误差为扰动误差。认为扰动输入时 系统的理想输出为零,故从输出端的误差信号为:
En
= C理想
− C实际
=
−C实际
=
−Cn
= − G2 1+ G1G2 H
=
lim sv+1R(s)
s→0
lim sv + K
s→0
由上式可见, ess 与系统的型号v﹑开环增益K及输入信号
的形式及大小有关,由于工程实际上的输入信号多为阶跃信号
﹑斜坡信号(即等速度信号) ﹑抛物线信号(即等加速度信号) 或者为这三种信号的组合, 所以下面只讨论这三种信号作用 下的稳态误差问题.
Ka
m
G(s)H (s)
=
K sv
∏ (τ is +1)
i =1
n−v
∏ (Tjs +1)

自动控制原理及应用课件(第三章)

自动控制原理及应用课件(第三章)

即 s1,2=- n 临界阻尼情况的单位阶跃响应为
C(s) n2 1 (s n )2 s
设部分分式为
C(s) A1 A2 A3
s s n (s n )2
式中,待定系数分别为A1=1,A2=-1,A3=-n
于是有
C(s) 1 1 n s s n (s n )2
取C(s)的拉普拉斯逆变换,则有
R(s) A0 s2
3.抛物线信号 抛物线信号的数学表达式为
0
r(t)
1 2
A0t
2
(t 0) (t ≥ 0)
式中,A0为常数。
当A0=1时,称为单位抛物线信 号,也称为单位加速度信号。
抛物线信号如图所示,它表示
随时间以等加速度增长的信号。
图3-3 抛物线信号
抛物线信号在零初始条件下的拉普拉斯变换为
R(s) A0 s3
4.脉冲信号 脉冲信号是一个脉宽极短的信号,其数学表达式为
0 t < 0;t >
r
(t
)
A0
0<t <
脉冲信号如图3-4(a)所示,
当A0=1时,若令脉宽 →0,则
称为单位理想脉冲函数,记作
(t),单位脉冲函数如图3-4(
b)所示, (t)函数满足
(t)
0
(t 0) (t 0)
闭环传递函数为 系统特征根为
(s) n2 s2 n2
s1,2 jn
无阻尼情况的单位阶跃响应为
C(s) n2 1 1 s s2 n2 s s s2 n2
取C(s)的拉普拉斯逆变换,则有
c(t) 1 cosnt (t ≥ 0)
系统阶跃响应曲线为等幅振荡,超调量为100%,振荡频率为 自然振荡角频率 n 。由于曲线不收敛,系统处于临界稳定状 态。

稳态误差计算(普通解法)

稳态误差计算(普通解法)

⎡ K ⎤ 1 ⎤ ⎡1 G( z) = Z ⎢ = KZ ⎢ − ⎥ ⎣ s s + 1⎥ ⎦ ⎣ s ( s + 1) ⎦
z ⎛ z =K⎜ − −T ⎝ z −1 z − e
系统特征方程为
图 6-21 离散系统结构图
K (1 − e−T ) z ⎞ = ⎟ −T ⎠ ( z − 1)( z − e )
D( z ) = ( z − 1)( z − e −T ) + K (1 − e −T ) z = z 2 + [(1 − e −T ) K − 1 − e −T ]z + e −T = 0
利用朱利稳定判据
⎧ D(1) = K (1 − e −T ) > 0 ⎪ ⎨ −T −T ⎪ ⎩ D(−1) = 2(1 + e ) − K (1 − e ) > 0
e(∞) = lim
z →1
( z − 1)( z − 0.368) =0 z 2 − 0.736 z + 0.368
2
当 r (t ) = t ,相应 r (nT ) = nT 时, R ( z ) = T z ( z − 1) ,于是由式(6-59)求得
e(∞) = lim
z →1
T ( z − 0.368) = T =1 z − 0.736 z + 0.368
G( z) =
e − T z + 1 − 2e − T 0.368 z + 0.264 = 2 −T ( z − 1)( z − e ) T =1 z − 1.368 z + 0.368
2
0.368 z + 0.264 →∞ z − 1.368 z + 0.368 0.368 z + 0.264 =1 K v = lim( z − 1) 2 z →1 z − 1.368 z + 0.368 K p = lim

自动控制原理第三章

自动控制原理第三章
5
3-2 一阶系统的时域分析
用一阶微分方程描述的控制系统
3-2-1 一阶系统数学描述 RC电路 其微分方程为: 电路, 例如 RC电路,其微分方程为:
R + r(t) _ I
1 Cs
+ C c(t) _ C(s)
ɺ T c+c = r
其中:c(t) 为电路输出电压, 其中: 为电路输出电压, R(s) UR r(t) 为电路输入电压, 为电路输入电压, T=RC为时间常数 为时间常数 由原理图得系统结构图。 由原理图得系统结构图。 R(s) 当初始条件为零时,其传递函数为: 当初始条件为零时,其传递函数为 C ( s) 1 = Φ ( s) = 一阶惯性环节 R(s) Ts + 1
t − 1 2 c (t ) = t − Tt + T 2 1 − e T 2
误差: 误差:

(t ≥ 0)

t − e (t ) = r (t ) − c (t ) = Tt − T 1 − e T 2
(t ≥ 0)
跟踪误差随时间推移而增大,直至无限大。 跟踪误差随时间推移而增大,直至无限大。 因此,一阶系统不能跟踪加速度输入。 因此,一阶系统不能跟踪加速度输入。
1 R
-
1 Ts
C(s)
6
3-2-2 一阶系统单位阶跃响应 系统输入: 系统输入:R(s ) = 1 系统输出: 系统输出:C ( s ) = Φ ( s ) R( s ) = 1 ⋅ 1 Ts + 1 s 1 T = − s Ts + 1 变换, Λ−1变换,得:h( t ) = 1 − e ,t ≥ 0 阶跃响应的特点: 阶跃响应的特点: 1 1) 在 t=0 时的斜率最大,为: 时的斜率最大,

《自动控制原理》稳定性和稳态误差

《自动控制原理》稳定性和稳态误差

7-5 离散系统的稳定性和稳定误差 回顾:线性连续系统 稳定性和稳态误差问题:线性离散系统 稳定性和稳态误差 ?分析:sT e z =,首先研究s 平面与z 平面的关系。

一.s 域到z 域的映射s 域到z 域的关系: sT e z = S → Zs 域中的任意点可表示为ωσj s +=,映射到z 域则为 T j T T j e e e z ωσωσ==+)(ωσj s += ━━━━━━━━→ T e z σ=,T z ω=∠ (7—84)问题:s 平面上的点、线、面 如何映射到 z 平面?(1) s 平面上虚轴的映射虚轴:0=σ,ω=∞-→0→∞分析:0=σ时,1==T e z σ,ω=∞-→0→∞时,T z ω=∠==∞-→0→∞ 以原点为圆心的单位圆,经沿着单位圆转过无穷多圈分析:T 采样周期,单位[sec], 采样频率,单位[1/sec] f s =1/T采样角频率 s ω,单位[rad/sec] , T s /2πω=ω=2/s ω-→0→2/s ω时,T z ω=∠=π-→0→π 正好逆时针转一圈ω=2/s ω→s ω→2/3s ω时,T z ω=∠=π→π2→π3 又逆时针转一圈由图可见:可以把s平面划分为无穷多条平行于实轴的周期带,其中从-ωs/2到ωs/2的周期带称为主要带,其余的周期带叫做次要带。

(2) 等σ线映射s 平面上的等σ垂线,映射到z 平面上是以Te z σ=为半径的圆 s 平面上的虚轴映射为z 平面上的单位圆左半s 平面上的等σ线映射为z 平面上的同心圆,在单位圆内 右半s平面上的等σ线映射为z 平面上的同心圆,在单位圆外(3) 等ω线映射在特定采样周期T 情况下,由式(7-84)可知,s 平面的等ω水平线,映射到z 平面上的轨迹,是一簇从原点出发的映射,其相角T z ω=∠从正实轴计量,如图7-36所示。

由图可见,s 平面上2/s ωω=水平线,在z 平面上正好为负实轴。

自动控制原理习题及其解答第三章

自动控制原理习题及其解答第三章

第三章例3-1 系统的结构图如图3-1所示。

已知传递函数 )12.0/(10)(+=s s G 。

今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的0.1倍,并保证总放大系数不变。

试确定参数K h 和K 0的数值。

解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。

一阶系统的过渡过程时间t s 与其时间常数成正比。

根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。

例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。

解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。

例3-3 设控制系统如图3-2所示。

试分析参数b 的取值对系统阶跃响应动态性能的影响。

解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。

动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。

解毕。

例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。

试确定系统的传递函数。

解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。

自动控制原理-第3章

自动控制原理-第3章

响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法

《自动控制原理》第三章-3-5-稳态误差计算

《自动控制原理》第三章-3-5-稳态误差计算

伺服电动机
R(s)
E(s)
1
C(s)
-
s(s 1)
K 1, 1
r(t) 1(t),k p , ess 0
r(t) t, kv 1, ess 1
r(t)
1 2
t2, ka
0, ess
位置随动系统
能源与动力学院 第三章 线性系统的时域分析法
14
4.扰动作用下稳态误差
R(s)
-
E(s)
R(s) E(s) 20
s4
N (s)
+
2
C(s)
s(s 2)
能源与动力学院 第三章 线性系统的时域分析法
28
3-20
R
-
K1
U
K2 S(T1S 1)
C
G(s)
K1K 2
B
s(T1s 1)(T2s 1)
1 T2S 1
(s)
C(s) R(s)
T1T2 s 3
K1K2 (T2s 1) (T1 T2 )s2 s
1
能源与动力学院 第三章 线性系统的时域分析法
7
3.输入作用下稳态误差计算
(1)阶跃作用下的稳态误差
r(t) R 1(t), R(s) R s
ess
Lim sR(s) s0 1 G(s)H (s)
Lim s1R(s)
s0
K Lim s
s0
1
R LimG(s)H (s)
Lim s R
s0
K Lim s
27
参考答案: Kp= ,kv=5,ka=0,essr=0.4,essn=-0.2
四、控制系统如图, r(t) 1 2t, n(t) 1(t), 试计算

北京科技大学《自动控制原理》课件-稳定性与稳态误差

北京科技大学《自动控制原理》课件-稳定性与稳态误差
1)当平衡态的任意小邻域内不存在系统的别的平 衡态时,称此平衡态为孤立的平衡态。 2) 对于线性定常系统当A为非奇异矩阵式,平衡 状态唯一,当A为奇异时,则会有无穷多个。
3) 稳定性问题都是相对于某个平衡状态而言的。
4) 如果一个系统有多个平衡点。由于每个平衡
a
点处系统的稳定性可能是不同的。
4.2 线性系统稳定性的基本概念
行。从而完成劳斯表的排列。
①关于原点对称的根可以通过求解这个辅助方程式得到, 而且其根的数目总是偶数的。
②若劳斯表第一列中系数的符号有变化,其变化的次数就 论 结 等于该方程在S右半平面上根的数目,相应的系统为不稳定。
③如果第一列上的元素没有符号变化,则表示该方程中有 共轭纯虚根存在,相应的系统为临界稳定。
系统稳态 误差定义
第一 方法
第二 方法
线性 非线性
系统稳态 误差计算
4.1 引子
A.Lyapunov(1857-1918),俄国 数学家(Chebyshev 的学生, Markov的同学),在他的博 士论文中,Lyapunov系统地研 究了由微分方程描述的一般运 动的稳定性问题,建立了著名 的Laypunov方法,他的工作 为现代控制及非线性控制奠定 基础。
如果第一列上面的系数与下面的系数符号相同,则表
示该方程中有一对共轭虚根存在,相应的系统为临界稳 定。
4.3线性定常系统稳定性的代数判据
例4.3-2 已知系统的闭环特征方程式为
S 3 2S 2 S 2 0
试判别相应系统的稳定性。
解: 列劳斯表 S 3
1
1
S2
2
2
S1
0( )
S0
2
由于表中第一列 上面元素的符号与其下面元素的符号相同,

自动控制原理:3-3 控制系统的稳态误差

自动控制原理:3-3  控制系统的稳态误差

ans=
2.0000
-2.0000
-0.0000+1.0000i
-0.0000-1.0000i -0.5000+0.8660i -0.5000-0.8660i
由于有1个正实部根的特征根, 所以,系统不稳定。
《自动控制原理》国家精品课程 浙江工业大学自动化研究所 14
3.4.2 MATLAB求控制系统的单位阶跃响应
有差系统 无差系统
准确跟踪 系统
§3-3 控制系统的稳态误差
2.单位斜坡输入 xr (t) t
Xr
(s)
1 s2
e lim s0
sE
(s)
lim
s0
s 1
Xr (s)
WK s
lim
s0
1
s WK
s
1 s2
1
lim
s0
sWK
s
若令
Kv
lim
s0
sWK
s
则 e 1
Kv
速度 误差系数
0型系统 Ⅰ型系统 Ⅱ型以上系统
当输入r(t) 为单位加速度信号时,为使系统的 静态误差为零,试确定前馈环节的参数a 和b 。
lim
s0
sN1X r s
sN K
稳态误差取决于Kk与N,而N越高稳态精度(准 确性)越高,稳定性越差。
二、典型输入情况下系统的给定稳态误差及误差系数
1.单位阶跃输入
xr
t
1 0
t0 t0
1 X r (s) s
§3-3 控制系统的稳态误差
e
lim
s0
sE
(s)
lim
s0
s 1
Xr (s)
WK s

自动控制原理稳态误差

自动控制原理稳态误差

自动控制原理稳态误差
在自动控制原理中,稳态误差是指系统在达到稳态时,输出值与期望值之间的差异。

稳态误差的大小和系统的控制算法有关,常用的控制算法包括比例控制、积分控制和微分控制。

比例控制是最简单的控制算法,通过调整比例增益来控制系统的输出。

然而,比例控制往往会产生稳态误差。

当比例增益增大时,稳态误差会减小,但系统的稳定性可能会受到影响。

当比例增益调整得过大时,系统可能会变得不稳定。

为了降低稳态误差,可以采用积分控制。

积分控制通过对误差进行积分来调整系统的输出。

积分控制可以消除稳态误差,但会引入超调现象,导致系统的动态响应变差。

为了解决超调问题,可以采用微分控制。

微分控制通过对误差进行微分来调整系统的输出。

微分控制可以提高系统的响应速度,但可能导致系统的稳态误差增加。

为了综合利用比例控制、积分控制和微分控制的优势,可以采用PID控制。

PID控制是一种常用的自动控制算法,通过对误差进行比例、积分和微分操作来调整系统的输出。

PID控制可
以同时减小稳态误差和超调现象,提高系统的稳定性和响应速度。

综上所述,稳态误差是自动控制系统中常见的问题,可以通过调整控制算法的参数来减小稳态误差。

但需要根据具体的系统要求和性能指标来选择合适的控制算法和参数。

03 自动控制原理—第三章(2)

03 自动控制原理—第三章(2)

一,稳态误差的定义
1. 系统误差ε(t)定义为:系统响应的期望值c0(t)与实际值c (t)之差,即: ε (t ) = co (t ) c (t ) ε (s ) = co (s ) c(s ) 通常以偏差信号 R ( s ) H ( s ) C ( s ) 为零来确定希望值,即:
R (s ) H (s )CO (s ) = 0
3.6 系统稳态性能分析
评价一个控制系统的性能时,应在系统稳定的前提 下,对系统的动态性能与稳态性能进行分析.如前所 述,系统的动态性能用相对稳定性能和快速性能指标 来评价.而系统的稳态性能用稳态误差指标来评价, 即根据系统响应某些典型输入信号的稳态误差来评价. 稳态误差反映自动控制系统跟踪输入控制信号或抑 制扰动信号的能力和准确度.稳态误差主要与系统的 结构,参数和输入信号的形式有关.
上述三种误差系数定量地描述了系统在稳态误差与给定信号 种类和大小之间的关系,统称为系统静态误差系数. 4.控制系统的型别与无差度阶数 系统的开环传递函数可以看成由一些典型环节组成,即:
G K (s) = K sν
∏ (τ s + 1)∏ (τ
i =1 n1 i k =1 n2 j j =1 l =1
2.传递函数: Gc(s)=Kp(1+τds) 若偏差正处于下降状态,则 d τ d e (t ) < 0 dt 说明比例微分控制器预见到偏差在减小,将产生一个适当大小的控制 信号,在振荡相对较小的情况下将系统输出调整到期望值. 因此,利用微分控制反映信号的变化率(即变化趋势)的"预报"作 用,在偏差信号变化前给出校正信号,防止系统过大地偏离期望值和 出现剧烈振荡的倾向,有效地增强系统的相对稳定性,而比例部分则 保证了在偏差恒定时的控制作用. 可见,比例—微分控制同时具有比例控制和微分控制的优点,可以根 据偏差的实际大小与变化趋势给出恰当的控制作用. PD调节器主要用于在基本不影响系统稳态精度的前提下提高系统的相 对稳定性,改善系统的动态性能.

3-5线性系统的稳态误差计算

3-5线性系统的稳态误差计算
er (t ) L1 ER ( s)
en (t ) EN (s) EN ( s) N (s)
1 ER ( s) 1 G1 ( s)G2 ( s) H ( s)
EN ( s)
G2 ( s) H ( s) 1 G1 ( s)G2 ( s) H ( s)
1
ess essr essn 3
(2)r(t ) 1(t ), n(t ) sin 4t,求ess
es (t ) essr
1 s 1 1 1 = lim s s 0 1 1 2 1 s 3 s 1
1 1 3 essn (t ) sin(4t 1800 cos 1 ) 3 5 5
则:essnຫໍສະໝຸດ 1 s N 1 lim s N ( s ) lim N (s) s 0 s 0 K KN N N s
注意:当系统开环传递 函数G1 ( s)G2 ( s) H (s)含有积分环节 (1型及以上系统 )时, 上述计算式成立。
四、改善系统稳态性能的措施
• 增加开环传函Gk(s)的型别:有利于消除ess,增加G1(s)的 型别; • 增加开环传函Gk(s)的增益:有利于减小ess,增加G1(s)的 增益; • 为了减小扰动误差,可以增加偏差点到扰动作用点之间积 分环节个数或放大系数 • 放大系数不能任意放大,积分环节也不能太多(一般2个 ),否则系统将会不稳定。
s0
1 ER ( s) 1 G1 ( s)G2 ( s) H ( s)
essn lim en (t ) lim sEN ( s) lim s EN ( s) N ( s)
t s0 s0
G2 ( s) H ( s) EN ( s) 1 G1 ( s)G2 ( s) H ( s)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两种定义的联系: E ' ( s ) E ( s ) H (s)
H ( s ) 1时, E ( s ) E ' ( s )
能源与动力学院 第三章 线性系统的时域分析法
3
1. 误差与稳态误差的定义…
e(t ) L1[ E (s)] L1[e (s) R (s)] L1[ R (s) ] 1 G(s)H (s)
3-6 线性系统的稳态误差计算 (Steady-state error)
稳定性 系统性能 动态性能
稳态性能 稳态误差
稳态性能
原理性误差 结构性误差 (附加稳态误差)
系统结构 输入类型、形式 摩擦,间隙 死区等非线性
能源与动力学院
第三章 线性系统的时域分析法
1
3-6 线性系统稳态误差计算
本节内容:
N(s)
C(s)
G2 (s)
H (s)
输出端误差定义
E'n
(s)
Cn(s)
G2(s)
1G1(s)G2(s)H(s)
N(s)
输入端误差定义
En(s)
Cn(s)H(s)
G2(s)H(S) 1G1(s)G2(s)H(s)
ets (t ) ess (t ) 稳态误差
ess ( )
Lim
s0
sE (s)
Lim
s0
1
sR (s) G(s)H
(s)
ess():终值误差 条件s: E(s)在右半平面及析 虚( 轴原 上点 解除外)
能源与动力学院 第三章 线性系统的时域分析法
4
1. 误差与稳态误差的定义…
例1
R(s) E(S)
误差与稳态误差的定义 系统的类型 输入作用下稳态误差计算 扰动作用下稳态误差 减小或消除稳态误差的措施
能源与动力学院
第三章 线性系统的时域分析法
2
1. 误差与稳态误差的定义
R(s) E(s)
C(s)
G(s)
H s
R(s) 1
E'(s)
C(s)
H(s)
G(s)H (s)
输入端定义的稳态误差 e(t) 输出端定义的稳态误差 e’(t)=希望输出-c(t)
r(t) Rt
c(t)
RR ess K KV
t
0
t
速度误差不是速度上存在稳态误差
能源与动力学院 第三章 线性系统的时域分析法
10
3. 输入作用下稳态误差计算…
(3)加速度作用下的稳态误差
r(t)12R2t,R(s)sR3
ess
Lim s0 1
sR(s) G(s)H(s)
Lims1R(s)
s0
1 Ts
C(s)
E(s) R(s)
111
Ts Ts1
Ts
r(t) sin t 求ess
Ts
E(s)
Ts1 s22
e ( t) T 2 T 2 1 e t/T T 2 T 2 1 co t T 2 T s 2 1 si tn
若用终值定理
essL s 0ismE (s)L s 0im s1/T (ss22)0?
s0
R LimsG(s)H(s)
Lims1R
s0
K Lims
s0
s0
kvL s 0ism G (s)H (s), essk R v
系统型 别
静态速度 误差系数
kv
速度误差
e ss
R kv
0
0
I
K
R
K
II
0
III
0
能源与动力学院 第三章 线性系统的时域分析法
9
3. 输入作用下稳态误差计算…
(2)斜坡作用下的稳态误差…
1
能源与动力学院 第三章 线性系统的时域分析法
7
3. 输入作用下稳态误差计算
(1)阶跃作用下的稳态误差
r(t)R1(t),R(s)R s
ess
Lim sR(s) s0 1G(s)H(s)
Lims1R(s)
s0
K Lims
s0
1
R LimG(s)H(s)
Lims R
s0
K Lims
s0
s0
kpL s 0iG m (s)H (s), ess1 R kp
系统 型别
0
静态位置 误差系数
kp
K
位置误差
ess
R 1 kp
R
1 K
I
0
II
0
III
0
能源与动力学院 第三章 线性系统的时域分析法
8
3. 输入作用下稳态误差计算…
(2)斜坡作用下的稳态误差
r(t)R,tR(s)sR2
ess
Lim sR(s) s0 1G(s)H(s)
Lims1R(s)
s0
K Lims
1
C(s)
-
s(s 1)
K 1, 1
r (t ) 1(t ), k p , ess 0
r (t ) t, kv 1, ess 1
r (t )
1 2
t 2 , ka
0, ess
位置随动系统
能源与动力学院 第三章 线性系统的时域分析法
14
4. 扰动作用下稳态误差
R(s)
-
E(s)
G1(s)
(3)加速度作用下的稳态误差…
r (t)
ess
R Ka
c (t )
0
t
加速度误差不是加速度上存在稳态误差
能源与动力学院 第三章 线性系统的时域分析法
12
3. 输入作用下稳态误差计算…
系统 型别
静态误差系数
阶跃输入 r(t)=R1(t)
位置误差
kp kv ka
ess
R 1 kp
R
0 k0 0
1 k
I k 0
s 0
能源与动力学院 第三章 线性系统的时域分析法
6
单位负反馈系统开环传递函数如下,试指出其型
别 G(s) 2(s2) (s0.5)(s1)
(1) G(s)s2(s2 (0 s. 5)2)(s1)
(2)
0
2
(3) G(s)2(ss 4(8s)(s1 )2)
4
(4) G(s)s32(5ss23)6s
能源与动力学院 第三章 线性系统的时域分析法
5
2. 系统的类型
m
K(is1)
开环传递函 G(s)数 H(s: )
i1
n
s (Tjs1)
j1
0 0型系统 1 I型系统
R(s) E(s)
C(s)
G(s)
2 II 型系统
H s
......
essL s 0i1m G s(R s()sH )(s)L sK 0ism L 1R is(m s)
K Lims
s0
R Lims2G(s)H(s)
Lims2R
s0
K Lims
s0
s0
kaL s 0is2 m G (s)H (s), essk R a
系统 型别
静态加速度 误差系数
ka
加速度误差
e ss
R ka
0
0
I
0
II
K
III
R K
0
能源与动力学院 第三章 线性系统的时域分析法
11
3. 输入作用下稳态误差计算…
0
II k
0
III
0
斜坡输入 r(t)=Rt
速度误差
e ss
R kv
R k
0
0
加速度输入 ra
R k
0
能源与动力学院 第三章 线性系统的时域分析法
13
3. 输入作用下稳态误差计算…
稳态误差的物理意义(单位反馈系统)
伺服电动机
R(s)
E(s)
相关文档
最新文档