新人教版八年级下册二次根式单元测试题及答案
2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)
2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。
八年级下册数学二次根式单元试卷(含答案)
, x − 3 ≥ 0
{ 3−x ≥ 0
解得x=3,
将 代入 ,得 x=3
−−−−−
−−−−−
y = √x − 3 + √3 − x + 2
, y = 2 将x=3、y=2代入xy得 9,
所以xy=9.
13.使式子
−−−−− √m − 2
有意义的最小整数m是
.
【参考答案】
答案:2. 解:根据题意得,m-2≥0, 解得m≥2, 所以最小整数m是2.
−−−−−−−
−−−−−−−
已知 < < ,化简 14.
2x5
√(x
−
2
2)
+
√(x
−
2
5)
=
.
【参考答案】
答案:3.
−−−−−−−
−−−−−−−
解: , √(x − 2)2 + √(x − 5)2 = | x - 2 | + | x - 5 |
因为2<x<5,所以x-2>0,x-5<0,
所以|x-2|+|x-5|=x-2+5-x=3.
,宽为
2
−− √10
,则下列说法不正确的是().
A.大长方形的长为6
−− √10
B.大长方形的宽为5
−− √10
C.大长方形的周长为11
−− √10
D.大长方形的面积为300
【参考答案】
答案:C.
解:
由题意得大长方形的两边分别为 , , −−
−−
−−
3 √10 + 2 √10 = 5 √10
−−
−−
人教版数学八年级第十六章 二次根式单元卷
一、选择题
人教版八年级下册数学《二次根式》单元测试卷(含答案)
人教版八年级下册数学《二次根式》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.2得( ).A.2B.C. D.2.化简后,与2的被开方数相同的二次根式是( ).A .12B .18C .41 D .61 3.下列式子中,是二次根式的是( ).A ..x4.下列计算正确的是( )= =5.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11 C .44- D .446.下列各式中,一定是二次根式的是( ).A .23-B .2)3.0(-C .2-D .x7.设22a b c ====,则a ,b ,c 的大小关系是( )A.a b c >>B.a c b >>C.c b a >>D.b c a >>8.若x x +=-11 )A .1x -B .1x -C .1D .1-9.=( )A BC D .不同于以上三个答案10.计算:下列三个命题:①若α,β是互不相等的无理数,则αβαβ+-是无理数;②若α,β是互不相等的无理数,则αβαβ-+是无理数;③若α,β其中正确命题的个数是( )A . 0B .1C .2D .3二 、填空题(本大题共5小题,每小题3分,共15分) 11.485127-=______.12.的有理化因式是 ;y 的有理化因式是 .的有理化因式是 .14.是可以合并的二次根式,则____a =.15.已知254245222+-----=x x x x y ,则22y x += .三 、解答题(本大题共7小题,共55分)16.计算:(1) (2(3(417.先化简,再求值:((6)a a a a -+--,其中215+=a18.若最简二次根式a 2b a -的值19.已知x ,求32353x x x +-+的值.20.若a a ,b 的值.21.已知1018222=++a a a a,求a 的值.22.比较大小(1(2人教版八年级下册数学《二次根式》单元测试卷答案解析一 、选择题1.A ;因为230x -≥,23232x x ≥=-,所以210|21|21x x x ->=-=-221(23)2x x =---=.2.B .3.A4.A5.D6.B7.A ;1a ===,同理1122bc ==220>+,所以1110,c b a c b a >>><<.8.B9.C =====10.A ;①1)1)1)]123++-=+=是有理数;13==是有理数; 0=是有理数.二 、填空题11.-12.直接比较大小,无从入手,所以可以通过做差的方法比较大小.0=<,13.(1(2)y ; (3).14.4;依题意,得,3a-5=a+3 ,解得a=4 .15.6;因一个等式中含两个未知量,初看似乎条件不足,不妨从二次根式的定义入手. 由题可知:22222205420,262045x x x y x y x x⎧-≥⎪⎪-→-==→+=⎨-⎪≥⎪-⎩.三 、解答题16.(1)2;(2)(3)2;(4.17.原式223663a a a a =--+=-,把215+=a 代入得原式=16)32⨯-=.18.222a b a b a b +=⎧⎨+=+⎩,解得11a b =⎧⎨=⎩,∴原式211=-=-.19.由条件得2x ,即2x +=两边平方并整理得 2410x x +-=故原式322(4)(41)2x x x x x =+--+-+22(41)(41)22x x x x x =+--+-+=20.11a b =⎧⎨=⎩. 21.先化原方程中的二次根式为最简二次根式,然后按着解一般整式方程的步骤去解即可.10102a=22.(1====+65(2==,,2011+∴(1(2。
新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(包含答案解析)
一、选择题1.下列式子中正确的是( )A =B .a b =-C .(a b =-D .22== 2.若x=,则2x 2x -=( )A B .1 C .2D 13.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤14.已知0<x<3,化简=的结果是( )A .3x-4B .x-4C .3x+6D .-x+6 5.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .=6.下列算式中,正确的是( )A .3=B =C =D 4= 7.下列四个数中,是负数的是( )A .2-B .2(2)-C .D 8.下列计算正确的是( )A 7=±B 7=-C 112=D =9x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x = 10.下列各式计算正确的是( )A +=B .26=(C 4=D = 11.下列计算正确的是( )A .336a a a +=B .1=C .()325x x =D .642b b b ÷=12. )A B .C D .二、填空题13.计算:()235328-+---=__________.14.如果代数式1x -有意义,那么实数x 的取值范围是____15.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.16.若224y x x =-+-+,则y x 的平方根是__________.17.如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为6,则图中阴影部分的面积是__________.18.13a a+=a a =______. 19.计算:232)(32)=______.20.2121=-+3232=+4343=+,请从上述等式找出规律,并利用规律计算(20082)32435420082007++⋅⋅⋅++=++++_________. 三、解答题21.(1)计算:503248- (2)计算:16215)362(3)解方程组:25214323x y x y -=-⎧⎨+=⎩(4)解方程组:4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 22.计算:(1)121850322(2)21)-.23.计算:(12- (2) 248(31)(31)(31)(31)1++++- 24.阅读下列简化过程:1===;==== ……解答下列问题:(1)请用n (n 为正整数)表示化简过程规律________;(2++⋯+; (3)设a =,b =c =,比较a ,b ,c 的大小关系.25()201220202π-⎛⎫+-- ⎪⎝⎭26.计算:.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A 、不是同类二次根式,不能合并,故错误,不符合题意;B 、计算错误,不符合题意;C 、符合合并同类二次根式的法则,正确,符合题意.D 、计算错误,不符合题意;【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 2.B解析:B【分析】直接将已知分母有理化,进而代入求出答案.【详解】解:∵ x==1=, ∴ ()2x 2x x x 2-=- )112=- 21=-1=.【点评】此题主要考查了分母有理化,正确化简二次根式是解题关键.3.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案. 【详解】∵∴x−1≥0,解得:x≥1.故选:C .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4.A解析:A【分析】先根据0<x<3判定2x+1和x-5的正负,然后再根据二次根式的性质和绝对值的性质化简,最后合并同类项即可.解:∵0<x<3∴2x+1>0,x-5<0∴=2x+1+x-5=3x-4.故答案为A.【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据0<x<3判定2x+1和x-5的正负是解答本题的关键.5.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.6.C解析:C【分析】根据二次根式的除法与加减法法则逐项判断即可得.【详解】A、=B235=+=,此项错误;C==D2==,此项错误;故选:C.【点睛】本题考查了二次根式的除法与加减法,熟练掌握运算法则是解题关键.7.C解析:C先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】-=>,不符合题意;A、220-=>,不符合题意;B、()2240C、0<,符合题意;D20=>,不符合题意;故选:C.【点睛】本题考查了正数和负数,主要利用了有理数的乘方和绝对值的性质以及二次根式的性质,熟记正数和负数的定义是解题的关键.8.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A77=-=,故该选项错误;B77=-=,故该选项错误;C====,故该选项正确;D2故选:D.【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键.9.A解析:A【分析】根据二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:A.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 10.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 11.D解析:D【分析】依次根据合并同类项法则,二次根式的加减、幂的乘方和同底数幂的除法判断即可.【详解】解:A. 3332a a a +=,故该选项错误;B. =C. ()32236x x x ⨯==,故该选项错误;D. 64642b b b b -÷==,故该选项正确.故选:D .【点睛】本题考查幂的相关计算,合并同类项和二次根式的加减.掌握相关运算法则,能分别计算是解题关键.12.C解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A 不是同类二次根式,故本选项不符合题意;B 、=C =D、=,所以2故选:C.【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.二、填空题13.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()--=322=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.14.x≥1【分析】直接利用二次根式有意义的条件分析得出答案【详解】解:∵代数式有意义∴∴x≥1故答案为:x≥1【点睛】此题主要考查了二次根式的有意义的条件列出不等式是解题关键解析:x≥1.【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵x-≥,∴10∴x≥1.故答案为:x≥1.【点睛】此题主要考查了二次根式的有意义的条件,列出不等式是解题关键.15.﹣2a【分析】依据数轴即可得到a+1<0b﹣1>0a﹣b<0即可化简|a+1|﹣【详解】解:由题可得﹣2<a <﹣11<b <2∴a+1<0b ﹣1>0a ﹣b <0∴|a+1|﹣=|a+1|﹣|b ﹣1|+|解析:﹣2a .【分析】依据数轴即可得到a +1<0,b ﹣1>0,a ﹣b <0,即可化简|a +1|.【详解】解:由题可得,﹣2<a <﹣1,1<b <2,∴a +1<0,b ﹣1>0,a ﹣b <0,∴|a +1|=|a +1|﹣|b ﹣1|+|a ﹣b |=﹣a ﹣1﹣(b ﹣1)+(﹣a +b )=﹣a ﹣1﹣b +1﹣a +b=﹣2a ,故答案为:﹣2a .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是熟练掌握所学的知识,正确的进行化简.16.【分析】根据二次根式的有意义的条件得出x 值进而求出y 代入计算即可【详解】解:要使有意义则:∴∴∴∴的平方根为故答案为:【点睛】本题考查了二次根式的有意义的条件解题的关键是掌握被开方数大于或等于零 解析:4±【分析】根据二次根式的有意义的条件得出x 值,进而求出y ,代入计算即可.【详解】解:要使4y =有意义,则:2020x x -≥⎧⎨-≥⎩, ∴2x =,∴4y =, ∴=4=±,∴y x 的平方根为4±,故答案为:4±.【点睛】本题考查了二次根式的有意义的条件,解题的关键是掌握被开方数大于或等于零.17.【分析】设两个正方形AB的边长是xy(x<y)得出方程x2=2y2=6求出x=y=代入阴影部分的面积是(y-x)x求出即可【详解】解:设两个正方形AB的边长是xy(x<y)则x2=2y2=6x=y=解析:2【分析】设两个正方形A,B的边长是x、y(x<y),得出方程x2=2,y2=6,求出,,代入阴影部分的面积是(y-x)x求出即可.【详解】解:设两个正方形A,B的边长是x、y(x<y),则x2=2,y2=6,,,则阴影部分的面积是(y-x)x=-=2-,故答案为:2-.【点睛】本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.18.【分析】把平方后得到取算数平方根即可求解【详解】∵∴∴(舍负)故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式是解决此题的关键【分析】平方后,得到13aa+=,取算数平方根即可求解.【详解】∵13aa+=,∴212325aa=++=+=,∴=.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解决此题的关键.19.【分析】先将化成再运用平方差公式计算从而可得解【详解】解:===故答案为:【点睛】此题主要考查了二次根式的混合运算熟练运用乘法公式是解答此题的关键【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22⎡⎤-⎣⎦=【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键. 20.2006【分析】所求代数式第一个括号内可由已知的信息化简为:然后利用平方差公式计算【详解】解:原式故答案为:2006【点睛】本题考查了数字型规律二次根式的混合运算解答此类题目的关键是认真观察题中式子解析:2006【分析】 所求代数式第一个括号内可由已知的信息化简为:,然后利用平方差公式计算.【详解】解:1===⋯ ∴原式==20082=-2006=.故答案为:2006.【点睛】本题考查了数字型规律,二次根式的混合运算,解答此类题目的关键是认真观察题中式子的特点,找出其中的抵消规律.三、解答题21.(1)72;(2)-2)25x y =⎧⎨=⎩;(4)368x y =⎧⎨=⎩【分析】(1)由二次根式的性质进行化简,再计算加减运算即可;(2)由二次根式的性质和乘法运算进行化简,再计算加减运算即可;(3)利用加减消元法解二元一次方程,即可得到答案;(4)利用加减消元法解二元一次方程,即可得到答案;【详解】解:(1)4=4 =142-=72; (2)=-=-;(3)25214323x y x y -=-⎧⎨+=⎩①②, 由②-①⨯2,得1365y =,∴5y =,把5y =代入①,得22521x -=-,∴2x =,∴方程组的解为25x y =⎧⎨=⎩; (4)4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩①②, 由①-②,得334x x -=, ∴36x =,把36x =代入①,得124y -=,∴8y =, ∴方程组的解为368x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,二次根式的性质,二元一次方程组的解法,解题的关键是熟练掌握运算法则,正确的进行解题.22.(1);(2)﹣【分析】(1)先化为最简二次根式,然后根据二次根式的运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【详解】解:(1)==(2)21)-=5﹣6﹣(5﹣)=﹣1﹣(6﹣=﹣1﹣=﹣【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键. 23.(1)52;(2)16332- 【分析】(1)先由二次根式的性质、立方根、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)由平方差公式进行化简,然后得到答案.【详解】解:(1)原式31322=++52=; (2)原式248(31)(31)(31)(31)(31)12-++++=-16163133122--=-=. 【点睛】本题考查了平方差公式,实数的混合运算,二次根式的性质,以及绝对值的化简,解题的关键是熟练掌握运算法则进行计算.24.(1==2)1;(3)c b a >>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1== (21=+1=1=.(3)a ==2b ==2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.25.7-【分析】 先化简二次根式、绝对值、负整数指数幂运算、零指数幂运算,再计算加减法.【详解】()201220202π-⎛⎫+-- ⎪⎝⎭=2241+-=7-【点睛】此题考查实数的混合运算,熟练掌握二次根式的化简、绝对值的化简、负整数指数幂运算、零指数幂运算是解题的关键.26.【分析】根据二次根式混合运算的运算顺序,先算乘除,再将二次根式化成最简二次根式,最后合并同类二次根式即可得出结果.【详解】解:====【点睛】本题考查了二次根式的混合运算,掌握二次根式混合运算的相关运算法则是解题的关键.。
人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)
人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。
【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)
人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C. 9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c ) A. 2a -2c B. -2c C. 2b D.2a11、已知a ,b a 、b ,则下列表示正确的是( ) A. 0.3ab B. 3ab C. 0.1ab D.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是( )C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)a a b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+同理可得:32321-=+从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB 二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1; 18、±3三、解答题 19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+;四、解答题21、22、; 23、2017; 24、-a 五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0. (3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版八年级数学下册 第十六章 二次根式 单元测试题(含答案)一、选择题。
初二数学人教版八年级下册第十六章二次根式单元测试题答案解析
初二数学人教版八年级下册第十六章二次根式单元测试题一.选择题1.下列根式中是最简二次根式的是()A. B. C.D.【答案】A【解析】根据最简二次根式的定义即可求出答案.解:B.原式=B不是最简二次根式;C.原式=,故C不是最简二次根式;D.原式=,故D不是最简二次根式;2故选A.【点评】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.是同类二次根式的是()【答案】D【解析】如果几个二次根式化为最简二次根式后被开方的数相同,则这几个二次根式是同类二次根式.解:A=.故A项不符合题意.B==.故B项不符合题意.C4==.故C项不符合题意.D==.故D项符合题意.故本题正确答案为D.【点评】本题主要考查二次根式的化简.3.下列计算正确的是()A. ﹣|﹣3|=3B. ﹣32=9C. 3= D. 3=±【答案】C【解析】根据绝对值定义,有理数的乘方,二次根式性质计算可得.解:选项A,根据绝对值定义可得-∣-3∣=-3,该选项错误.选项B,根据有理数的乘方得 -32=-9,该选项错误.选项C,根据二次根式的性质可得23=,该选项正确.选项D,根据二次根式的化简可得3=,该选项错误.故选C.【点评】本题主要考查了绝对值定义,有理数的乘方,二次根式性质,熟悉掌握是关键.4.x≥3是下列哪个二次根式有意义的条件()【答案】D【解析】根据二次根式有意义的条件逐项求解即可得答案.解:A、x+3≥0,解得:x≥-3,故此选项错误;B、x-3>0,解得:x>3,故此选项错误;C、x+3>0,解得:x>-3,故此选项错误;D、x-3≥0,解得:x≥3,故此选项正确,故选D.【点评】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.5.=a﹣2,则a与2的大小关系是()A. a=2B. a>2C. a≤2D. a≥2【答案】D【解析】=∣a-2∣=a-2,可知a-2≥0,即a≥2.=∣a-2∣=a-2,可知a-2≥0,即a≥2,故选D.【点评】此题主要考察去绝对值的运算.6.下列运算:-0;×==2;+2)2=7,其中错误的有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】根据二次根式加减法法则、二次根式乘除法法则、完全平方公式逐一进行计算即可.0,正确,不符合题意;=12,错误,符合题意;=2,正确,不符合题意;+2)2,错误,符合题意,所以错误的有2个,故选B.【点评】本题考查了二次根式混合运算,熟练掌握二次根式的运算法则是解题的关键.7.=x的取值范围是()A. 1≤x≤3B. 1<x≤3C. x≥3D. x>3【答案】D【解析】根据商的算术平方根的性质可得关于x的不等式组,解不等式组即可求得答案.解:由题意得:1030 xx-≥⎧⎨->⎩,解得:x>3,故选D.【点评】本题考查了商的算术平方根的性质,熟练掌握是解题的关键.8.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为( )cm2.A. 16-B. -12+C. 8-D. 4-【答案】B【解析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.解:∵两张正方形纸片的面积分别为16cm2和12cm2,4=cm,=cm,∴AB=4cm,BC=4)cm,∴空白部分的面积=4)×4−12−16=(12-+ cm 2.故选B.【点评】此题考查二次根式的应用,解题关键在于将正方形面积直接开根即是正方形的边长.二.填空题9.=_____. 【答案】3【解析】直接利用二次根式乘法法则进行计算即可.= 故答案为3.【点评】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解本题的关键.10.计算:))201820192的结果是_____.2【解析】逆用积的乘方运算法则以及平方差公式即可求得答案.解:))201820192=)))2018201822⨯⨯=)))201822⎡⎤⎣⎦⨯⨯=(5-4)2018×)2,【点评】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.11.是同类二次根式,则a•b的值是_____.【答案】18【解析】由同类二次根式的被开方数相同即可解题.解:解:∵,∴a=2,2b+5=3b-4,解得:a=2,b=9,∴ab=18.【点评】本题考查了同类根式的应用,属于简单题,熟悉同类根式的概念是解题关键.12.在实数范围内有意义,则x的取值范围是_____.x≥-【答案】8【解析】根据被开方式大于且等于零列式求解即可.解:由题意得x+8≥0,∴x≥-8.故答案为x≥-8.【点评】本题考查了二次根式有意义的条件,熟练掌握被开方式大于且等于零时二次根式有意义是解答本题的关键.13.如果实数a、b+_____.【答案】2b-a【解析】由数轴知a.0.b 且|a|.|b|,据此得a -b.0,再根据二次根式的性质和绝对值的性质化简可得.解:由数轴知a.0.b ,且|a|.|b|.则a -b.0.-b|+|b|=b -a+b=2b -a.故答案为2b -a.【点评】本题主要考查二次根式的性质与化简,解题的关键是熟练掌握二次根式的性质、绝对值的性质.14.若a 、b 为实数,且b =7a ++4,则a+b =_____. 【答案】5或3【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.解:由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点评】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.15.观察下列等式:1+11﹣111+=112,1+12﹣121+=116,1+13﹣131+=1112, …请你根据以上规律,写出第n 个等式_____.()()211111n n n n n n ++=+=++ 【解析】根据已知算式得出规律,根据规律求出即可. 解:解:∵观察下列等式:111111112=+-=+111112216=++=+1111133112=+-=+ …∴第n 1n -11n +=1+()11n n +.1n -11n +=1+()11n n +. 【点评】本题考查了二次根式的性质的应用,关键是能根据题意得出规律.16.已知y 2016,则2(x+y)的平方根是_____.【答案】±2【解析】先根据二次根式有意义的条件得到关于x的不等式组,解不等式求得x的值后,代入可求得y的值,继而可求得答案.解:由题意得:20180 20180 xx-≥⎧⎨-≥⎩,解得:x=2018,所以y=-2016,所以2(x+y)=4,所以2(x+y)的平方根是±2,故答案为±2.【点评】本题考查了二次根式有意义的条件,平方根,求出x、y的值是解题的关键.17.如果最简二次根式a=_____,b=_____.【答案】(1). 0(2). 1【解析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.解:依题意得:12{233bba a+=+=+,解得0 {1ab==.故答案为0;1.【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.18.,那么x的最小正整数是________【答案】11.【解析】根据题意,它们化简后的被开方数相同,列出方程求解即可.解:∴2x+5=3,解得x=−1(舍去),2x+5=12,解得x=3.5(舍去),2x+5=27,解得x=11.即:当x 取最小正整数11是同类根式.故答案是:11.【点评】此题考查同类二次根式,解题关键在于掌握运算法则.三.解答题19.计算+2﹣+).【答案】(1;(2)【解析】.1)先把各二次根式化为最简二次根式.然后合并即可..2)先根据完全平方公式和平方差公式计算.然后合并即可.解:(1)原式=.2)原式=8(53)+-=82+=6+.【点评】本题考查了二次根式的混合运算.先把各二次根式化为最简二次根式.再进行二次根式的乘除运算.然后合并同类二次根式.20.已知长方形长a ,宽b .求长方形的周长;.求与长方形等面积的正方形的周长,并比较长方形周长与正方形周长大小关系.【答案】①,长方形的周长大于正方形的周长.【解析】①根据长方形的周长公式列出算式,然后根据二次根式混合运算的运算法则进行计算即可;②先求出正方形的边长,然后利用周长公式进行求解即可.解:①长方形的周长为;,∴此正方形的周长为,.6.6,则长方形的周长大于正方形的周长.【点评】本题考查了二次根式的混合运算,实数大小比较等,熟练掌握相关知识和运算法则以及求解方法是解题的关键.21.阅读材料,然后作答:在化简二次根式时,这一类式子,==;211==,这种把分母中的根号化去叫做分母有理化.还有一种方法也可以将进行分母有理化:221111-===;请仿照上述方法解决下面问题:(1)(2).【答案】(1(2【解析】根据题意即可求出答案.解:解:(122-(2【点评】..........................22.是同类二次根式.(1)求出a的值;(2)若a≤x≤2a,化简:|x﹣.【答案】.1.a=3.(2)4【解析】解:(1)利用同类二次根式定义,列式.(1)4a-5=13-2a,解得a=3.(2)a≤x≤2a,3<x<6,2x-2x-=∣x-2∣+∣x-6∣=x-2-x+6=4.,0,0a aaa a≥⎧==⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.23.已知非零实数a,bb﹣=a,求a b﹣1的值.【答案】a b-1=25.【解析】先根据二次根式的意义确定:(a-5..b2+1.≥0.a≥5.再化简.由绝对值和二次根式的非负性列等式可得结论.解:由题意得(a-5)(b2+1)≥0.∴a≥5.+|b--a-4+|b-3|+∴|b-又因为|b-故|b-则b=3.a=5.故a b-1=52=25.【点评】考查了二次根式的性质和化简及非负数的性质,解题的关键是将所给的式子化为非负数的和为0的等式,然后利用非负性求出a.b的值,本题属于中等题型.24.(1) 观察下列各式的特点:1>>2>,222>,…填“>”“<”或“=”).(2)观察下列式子的化简过程:==,1====…n≥2)的化简过程.(3)根据上面(1)(2)得出的规律计算下面的算式:++L.【答案】(1)>;9.【解析】(1)根据题目所给的例题大小关系可直接得到答案;(2==(3)根据(21计算即可.解:(1)故答案为>.==;(3)原式=)﹣)﹣﹣=﹣)+(﹣﹣)=)【点评】本题主要考查了分母有理化,关键是认真观察题目所给的例题,找出其中的规律,然后应用规律进行计算.。
人教版八年级数学下册第十六章二次根式单元测试卷(含答案)
⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。
有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。
合并的是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
4.下列各式计算正确的是()A.错误!未找到引⽤源。
+错误!未找到引⽤源。
=错误!未找到引⽤源。
B.4错误!未找到引⽤源。
-3错误!未找到引⽤源。
=1C.2错误!未找到引⽤源。
×3错误!未找到引⽤源。
=6错误!未找到引⽤源。
D.错误!未找到引⽤源。
÷错误!未找到引⽤源。
=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2B.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2C.错误!未找到引⽤源。
=x-1D.错误!未找到引⽤源。
=错误!未找到引⽤源。
·错误!未找到引⽤源。
6.已知a=错误!未找到引⽤源。
+1,b=错误!未找到引⽤源。
,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。
÷错误!未找到引⽤源。
×错误!未找到引⽤源。
的结果为()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。
+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。
-1,ab=错误!未找到引⽤源。
2020-2021学年人教版八年级数学下册第16章 二次根式单元测试卷及答案
第16章二次根式一、选择题(本大题共10小题,共30分)1.使根式有意义的x的范围是()A.x≥0B.x≥4C.x≥﹣4D.x≤﹣42.若二次根式在实数范围内有意义,则实数x的取值范围是()A.x<3B.x>3C.x≠3D.x≤33.下列运算正确的是()A.B.C.D.4.下列二次根式中,最简二次根式是()A.B.C.D.5.下面是二次根式的是()A.B.﹣3C.D.06.估计﹣的运算结果在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.下列四个数中,数值不同于其他三个的是()A.|﹣1|B.﹣(﹣1)C.﹣D.(﹣1)48.下列计算正确的是()A.B.C.D.9.下列计算正确的是()A.B.C.D.10.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2021次相遇在()边上.A.CD B.AD C.AB D.BC二、填空题(本大题共6小题,共18分)11.=,=.12.已知x<0,化简二次根式的结果是.13.要使二次根式有意义,x应满足的条件是.14.分解因式:x2﹣2x﹣1=.15.已知+|y﹣3|=0,那么x y=.16.化简:(a>0,b>0)=.三、计算题(本大题共2小题,共12分)17.若ab=1,我们称a与b互为倒数,我们可以用以下方法证明+1与﹣1互为倒数:方法一:∵=2﹣1=1,∴+1与﹣1互为倒数.方法二:∵﹣1,∴+1与﹣1互为倒数.(1)请你证明+与﹣互为倒数;(2)若(x﹣1)2=x,求的值;(3)利用“换元法”求的值.18.观察下列及其验证过程:2.验证:2.(1)请仿照上面的方法来验证.(2)根据上面反映的规律,请写出用自然数n(n≥2)所表示的等式,并说明其成立的理由.四、解答题(本大题共5小题,共40分)19.计算:(1)﹣++;(2).20.若a>0,b>0且(+)=3(+5),求的值.21.已知x=+1,y=﹣1,求:(1)代数式xy的值;(2)代数式x3+x2y+xy2+y3的值.22.计算:﹣4+(﹣)÷.23.阅读材料,并解答问题我们知道,如果a,b都是整数,并且有整数c.使得a=bc,①那么就称b为a的约数.通常我们只讨论正整数的正约数,即①中的a,b,c都是正整数,以下如不特别申明,所有的字母都表示正整数.72有多少个约数?不难一一列举,72的约数有12个,它们是1,2,3,4,6,8,9,12,18,24,36,72.请注意其中包含1及72本身.有没有一个公式,可以帮助我们算出一个数的约数的个数呢?有的.如果将72分解为质因数的乘积,即72=23×32②那么72的所有约数都是2×3③的形式,其中k1可取4个值:0,1,2,3;k2可取3个值:0,1,2;(例如:在k1=0,k2=0时,③是1;在k1=3,k2=2时,③是72).因此,72的约数共有4×3=12(个).一般地,设有自然数即可以分解为n=p1p2……p m,其中p1,p2……p m是不同的质数,k1,k2,……k m是正整数,其中k1可取k1+1个值:0,1,2,3,……k1;k2可取k2+1个值,0,1,2,3,……,k2,k m可取k m+1个值,0,1,2,3……k m;所以n的约数共有(k1+1)(k2+1)……(k m+1)个.根据上述材料请解答以下题目:(1)试求6000的约数个数.(2)恰有10个约数的数最小是多少?(3)求72的所有的约数和.参考答案与试题解析一、选择题(本大题共10小题,共30分)1.使根式有意义的x的范围是()A.x≥0B.x≥4C.x≥﹣4D.x≤﹣4【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:使根式有意义,则4+x≥0,解得:x≥﹣4,故x的范围是:x≥﹣4,故选:C.2.若二次根式在实数范围内有意义,则实数x的取值范围是()A.x<3B.x>3C.x≠3D.x≤3【分析】直接利用二次根式有意义的条件得出答案.【解答】解:若二次根式在实数范围内有意义,故3﹣x≥0,解得:x≤3.故选:D.3.下列运算正确的是()A.B.C.D.【分析】利用二次根式的加减法对A、C进行判断;根据二次根式的性质对B、D进行判断.【解答】解:A、与﹣不能合并,所以A选项错误;B、原式=2,所以B选项正确;C、与不能合并,所以C选项错误;D、原式=|﹣2|=2﹣,所以D选项错误.故选:B.4.下列二次根式中,最简二次根式是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含分母,故C错误;D、被开方数含能开得尽方的因式,故D错误;故选:B.5.下面是二次根式的是()A.B.﹣3C.D.0【分析】根据二次根式的定义作答.【解答】解:、﹣3、0都不是二次根式,只有符合二次根式的定义.故选:C.6.估计﹣的运算结果在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】先把算式化简,再估算的大小,即可解答.【解答】解:∵=,5<<6,∴估计﹣的运算结果在5和6之间.故选:C.7.下列四个数中,数值不同于其他三个的是()A.|﹣1|B.﹣(﹣1)C.﹣D.(﹣1)4【分析】将原数化简即可求出答案.【解答】解:(A)原式=1;(B)原式=1;(C)原式=﹣1;(D)原式=1;故选:C.8.下列计算正确的是()A.B.C.D.【分析】根据二次根式的乘法法则(根指数不变,被开方数相乘)判断A;二次根式的加减就是合并同类二次根式即可判断B、D;根据=|a|即可判断C.【解答】解:A、因为•==,故本选项正确;B、因为+,不是同类二次根式,不能合并,故本选项错误;C、因为=2,故本选项错误;D、因为+=2,故本选项错误;故选:A.9.下列计算正确的是()A.B.C.D.【分析】根先化简二次根式,再计算.==5,(2)2=12.【解答】解:A、==5,故本选项错误;B、2﹣=,故本选项错误;C、(2)2=12,故本选项错误;D、==,故本选项正确.故选:D.10.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2021次相遇在()边上.A.CD B.AD C.AB D.BC【分析】根据甲、乙运动的方向结合速度间的关系即可得出甲、乙第1次相遇在边CD 上、第2次相遇在边AD上、第3次相遇在边AB上、…,由此即可得出甲、乙相遇位置每四次一循环,再根据2021=505×4+1即可得出结论.【解答】解:∵甲的速度是乙的速度的3倍,∴甲、乙第1次相遇时,乙走了正方形周长的×=,∴甲、乙第1次相遇在边CD上.∵甲的速度是乙的速度的3倍,甲点依顺时针方向环行,乙点依逆时针方向环行,∴甲、乙第2次相遇在边AD上,甲、乙第3次相遇在边AB上,甲、乙第4次相遇在边BC上,甲、乙第5次相遇在边CD上,…,∴甲、乙相遇位置每四次一循环.∵2021=505×4+1,∴甲、乙第2021次相遇在边CD上.故选:A.二、填空题(本大题共6小题,共18分)11.=3,=4y.【分析】直接利用二次根式的性质化简求出即可.【解答】解:=3,=4y.故答案为:3,4y.12.已知x<0,化简二次根式的结果是﹣x.【分析】根据二次根式有意义,可知y≤0,再由二次根式的性质解答.【解答】解:∵x<0,﹣x2y≥0,∴y≤0,∴=﹣x.故答案为:﹣x.13.要使二次根式有意义,x应满足的条件是x≥3.【分析】一般地,形如(a≥0)的式子,叫做二次根式.根据二次根式的定义可知被开方数必须为非负数.【解答】解:依题意有2x﹣6≥0,解得x≥3.14.分解因式:x2﹣2x﹣1=.【分析】先令x2﹣2x﹣1=0,解得x=1±,即可对所给代数式因式分解.【解答】解:先令x2﹣2x﹣1=0,解得x=1±,∴x2﹣2x﹣1=[x﹣(1+)][x﹣(1﹣)]=(x﹣1﹣)(x﹣1+).故答案是(x﹣1﹣)(x﹣1+).15.已知+|y﹣3|=0,那么x y=﹣8.【分析】先根据非负数的性质列出关于x、y的方程,求出x、y的值,再把x、y的值代入所求代数式进行计算即可.【解答】解:∵+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴x y=(﹣2)3=﹣8.故答案为:﹣8.16.化简:(a>0,b>0)=2b.【分析】直接利用二次根式的性质化简得出答案.【解答】解:(a>0,b>0)==2b.故答案为:2b.三、计算题(本大题共2小题,共12分)17.若ab=1,我们称a与b互为倒数,我们可以用以下方法证明+1与﹣1互为倒数:方法一:∵=2﹣1=1,∴+1与﹣1互为倒数.方法二:∵﹣1,∴+1与﹣1互为倒数.(1)请你证明+与﹣互为倒数;(2)若(x﹣1)2=x,求的值;(3)利用“换元法”求的值.【分析】(1)利用倒数的定义证明即可;(2)求出=3,根据完全平方公式进行变形求值即可;(3)设m=2+,n=2﹣,则mn=1,原式变形为(mn)10,代入mn的值即可.【解答】解:(1)(+)(﹣)=()2﹣()2=3﹣2=1,所以+与﹣互为倒数;(2)∵(x﹣1)2=x,∴x2﹣3x+1=0,∴x﹣3+=0,即x+=3,∴=(x+)2﹣4=9﹣4,=5;(3)设m=2+,n=2﹣,则mn=()()=1,∴原式=m10n10=(mn)10=110,=1.18.观察下列及其验证过程:2.验证:2.(1)请仿照上面的方法来验证.(2)根据上面反映的规律,请写出用自然数n(n≥2)所表示的等式,并说明其成立的理由.【分析】(1)仿照例题做法依次变形即可得;(2)类比已知等式得出n=,再依据二次根式的性质,类比题干解答过程依次变形即可得.【解答】解:(1)4====;(2)n=,验证:n====.四、解答题(本大题共5小题,共40分)19.计算:(1)﹣++;(2).【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据零指数幂、负整数指数幂和平方差公式计算.【解答】解:(1)原式=2﹣++﹣1=﹣1;(2)原式=2﹣1﹣1++=.20.若a>0,b>0且(+)=3(+5),求的值.【分析】根据a>0,b>0且(+)=3(+5),可以求得a和b的关系,然后代入所求式子,即可解答本题.【解答】解:∵(+)=3(+5)∴a+=3+15b,∴a﹣2﹣15b=0,∴(﹣5)(+3)=0,∵a>0,b>0,∴﹣5=0,+3≠0,∴=5,∴a=25b,∴====2,即的值是2.21.已知x=+1,y=﹣1,求:(1)代数式xy的值;(2)代数式x3+x2y+xy2+y3的值.【分析】(1)将x、y的值代入后利用平方差公式计算即可;(2)先求出x2、y2的值,再代入到原式=x2(x+y)+y2(x+y)=(x2+y2)(x+y)计算可得.【解答】解:(1)xy=()()=;(2)∵x=,y=,∴x2=()2=4+2,y2=()2=4﹣2,则原式=x2(x+y)+y2(x+y)=(x2+y2)(x+y)=(4+2+4﹣2)(+)=8×2=16.22.计算:﹣4+(﹣)÷.【分析】直接利用二次根式的混合运算法则化简,进而计算得出答案.【解答】解:原式=2+﹣2+÷﹣÷=2+﹣2+2﹣2=.23.阅读材料,并解答问题我们知道,如果a,b都是整数,并且有整数c.使得a=bc,①那么就称b为a的约数.通常我们只讨论正整数的正约数,即①中的a,b,c都是正整数,以下如不特别申明,所有的字母都表示正整数.72有多少个约数?不难一一列举,72的约数有12个,它们是1,2,3,4,6,8,9,12,18,24,36,72.请注意其中包含1及72本身.有没有一个公式,可以帮助我们算出一个数的约数的个数呢?有的.如果将72分解为质因数的乘积,即72=23×32②那么72的所有约数都是2×3③的形式,其中k1可取4个值:0,1,2,3;k2可取3个值:0,1,2;(例如:在k1=0,k2=0时,③是1;在k1=3,k2=2时,③是72).因此,72的约数共有4×3=12(个).一般地,设有自然数即可以分解为n=p1p2……p m,其中p1,p2……p m是不同的质数,k1,k2,……k m是正整数,其中k1可取k1+1个值:0,1,2,3,……k1;k2可取k2+1个值,0,1,2,3,……,k2,k m可取k m+1个值,0,1,2,3……k m;所以n的约数共有(k1+1)(k2+1)……(k m+1)个.根据上述材料请解答以下题目:(1)试求6000的约数个数.(2)恰有10个约数的数最小是多少?(3)求72的所有的约数和.【分析】(1)由6000=1000×6=24×3×53即可求;(2)因为10=2×5,则有24×3=48最小;(3)由已知将72的所有约数相加即可.【解答】解:(1)6000=24×3×53,∵(4+1)(1+1)(3+1)=40,∴6000有40个约数;(2)∵10=2×5,∴这个数最小是48;(3)∵72的约数有1,2,3,4,6,8,9,12,18,24,36,72,∴1+2+3+4+6+8+9+12+18+24+36+72=195,∴72的所有的约数和是195.1、三人行,必有我师。
人教版八年级下册第16章二次根式单元测试试题(含答案解析)
【详解】
原式=a2-4a+4-4-2=(a-2)2-6,
把a=2- 代入原式=(a-2)2-6
=(2- -2)2-6
=5-6
=-1,
故答案为-1.
【点睛】
本题考查了二次根式的化简求值,以及完全平方式的应用,是基础知识要熟练掌握.
7.5
【分析】
A. B.
C. D.
25..若ab≠0则等式 成立的条件是( ).
A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0
参考答案
1.21
【分析】
因为 是整数,且 = ,则21n是完全平方数,满足条件的最小正整数n为21.
【详解】
∵ = ,且 是整数;
∴3 是整数,即21n是完全平方数;
13.
【分析】
分别将每项计算出来,再化简.
【详解】
思路:
解:原式
【点睛】
此题考查学生的计算能力,此题属于低档试题,计算要小心.
∴n的最小正整数值为21.
故答案为21
【点睛】
主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则 ;除法法则 .解题关键是分解成一个完全平方数和一个代数式的积的形式.
2.2(x+ )(x- ).
【分析】
先提取公因式2后,再把剩下的式子写成x2-( )2,符合平方差公式的特点,可以继续分解.
人教版八年级下册第16章二次根式单元测试试题
学校:___________姓名:___________班级:___________考号:___________
人教版八年级数学下册第十六章《二次根式》单元测试卷附答案
第十六章《二次根式》单元测试卷(共23题,满分120分,考试用时90分钟)一、选择题(共10小题,每小题3分,共30分)1.下列式子是二次根式的是()A.2B.√2C.√23D.√−22.二次根式√x−2有意义的条件是()A.x>2B.x<2C.x≥2D.x≤23.下列式子中,属于最简二次根式的是()A.√12B.√23C.√0.3D.√74.化简√(−2)2得()A.2B.-2C.±2D.45.下列二次根式中,不能与√2合并的是()A.√12B.√8C.√12D.√186.下列计算正确的是()A.√2+√3=√5B.2+√2=2√2C.3√2−√2=3D.3√2−√2=2√27.下列计算错误的是()A.√5×√6=√30B.√18÷√2=9C.3√3÷3√3=1D.3√2×2=6√28.计算(2+√5)(2-√5)的结果是()A.-1B.-3C.9-4 √5D.9+4 √59.若二次根式√1+a与√4−a的被开方数相同,则a的值为()A.1B.2C.23D.3210.(创新题)如图,数轴上表示1,√2的对应点分别为A,B,则以点A为圆心,以AB为半径的圆交数轴于点C,则点C表示的数是()A.√2-1B.1-√2C.2-√2D.√2-2二、填空题(共5小题,每小题3分,共15分)11.计算√8−√2的结果等于.12.计算:3√5×2√5=.13.若√12n是正整数,则最小的整数n是.14.已知实数x,y满足|x-4|+√y−8=0,则分别以x,y的值为两边长的等腰三角形的周长是.15.(跨学科融合)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图1),在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现计划在休息区摆放占地面积为3×1.5平方米的“背靠背”休闲椅(如图2),并要求休闲椅摆放在东西方向或南北方向上,请通过计算说明休息区内最多能摆放张这样的休闲椅.三、解答题(一)(共3小题,每小题8分,共24分)16.计算:3√5+2√12−√20.17.计算:√24÷√3−√6×2√3.18.求代数式2xx2−2x+1÷(1+1x−1)的值,其中x=√2+1.四、解答题(二)(共3小题,每小题9分,共27分)19.已知x=2+√3,求代数式x2-2√3x+3的值.20.若x,y都是实数,且y=√x−3+√3−x+8,求x+y的值.21.如图,已知实数a,b,c在数轴上的位置,化简:√a2-|a-b|+√(b+c)2.五、解答题(三)(共2小题,每小题12分,共24分)22.(跨学科融合)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=√2ℎg(不考虑风速的影响,g≈10 m/s2).(1)求从40 m高空抛物到落地的时间(结果保留根号);(2)小明说从80 m高空抛物到落地的时间是(1)中所求时间的2倍,他的说法正确吗?请说明理由;(3)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m).某质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少(单位:J)?这个鸡蛋会伤害到楼下的行人吗?(注:杀伤无防护的人体只需要65 J的动能)23.阅读下列材料,然后解答问题:√5=√5√5×√5=3√55.(一)√2 3=√2×3√3×3=√63.(二)√3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−1=√3-1.(三)以上这种化简的步骤叫做分母有理化.。
人教版八年级下册 第16章《二次根式》单元培优测试卷(解析版)
第16章《二次根式》单元培优测试卷、选择题工.下列各式成立的是正=a D J(-3)〜=3A.7H F=-2【1题答案】【答案】D【解析】【分析】根据二次根式的性质化简即可.【详解】A.J(_2)2 =2,故本选项错误;B.(") =4,故本选项错误;C.J后=同,故本选项错误;D.J(-3『=3,故本选项正确.故选D.【点睛】本题考查了二次根式的基本性质:①〃K); V^>()(双重非负性).②(&)2%(生0)(任何一个非负数都可以写成一个数的平方的形式).③日=a(。
加)(算术平方根的意义).2.下列二次根式中,是最简二次根式的是()2B.耳【2题答案】【答案】A【解析】【分析】直接利用最简二次根式的定义分析得出答案.【详解】A.且是最简二次根式,故此选项正确;2D ・ 阮二xH ,故此选项错误•故选A.【点睛】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.3 .若二次根式:7有意义,则x 的取值范围是()A. x> —B. —C. —D. xW5 5 5 5【3题答案】【答案】B【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,5x- 1>0,解得,[,故选人【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键. 4.如图,从一个大正方形中裁去面积为30cm2和48 cm2的两个小正方形,则余下部分的面积为()A. 78 cm 2B. + \/30) cm 2C. 12M cm 2 【4题答案】【答案】P【解析】 【分析】根据两小正方形的面积求出大正方形的边长及面积,然后减去两个小正方形的面积,即可求出阴影 c.D. 24M cm 2故此选项错误;部分的面积进而得出答案.【详解】解:从一个大正方形中裁去面积为300层和48cm2的两个小正方形,大正方形的边长是同+ A =同+ ,留下部分(即阴影部分)的面积是:2(46 +而)-30-48 = 24V10(c/722)故选:D.【点睛】此题主要考查了二次根式的应用,正确求出大正方形的面积是关键.5.已知百砺是正整数,则满足条件的最大负整数m为()A. -10B. -40C. -90D. -160 【5题答案】【答案】A【解析】【详解】依题意可得,T0m>0且是完全平方数,因此可求得mVO,所以满足条件的m的值为TO.故选A.6.已知X=g + 1, —则/+个+)2的值为( )A 4 B. 6 C. 8 D. 1() 【6题答案】【答案】P【解析】【分析】根据f +盯+),2=(工2+2个,+,2)_孙=。
(2021年整理)人教版数学八年级下册《二次根式》单元检测题(含答案)
人教版数学八年级下册《二次根式》单元检测题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版数学八年级下册《二次根式》单元检测题(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版数学八年级下册《二次根式》单元检测题(含答案)的全部内容。
《二次根式》单元检测题一、选择题(每小题只有一个正确答案)1.下列各式中:①; ) A. 1个 B 。
2个 C 。
3个 D. 4个2.下列运算正确的是( )A. =-6 B 。
()2=9 C. =±16 D。
)2=-253的值等于( )B. - C 。
1 D. —14是同类二次根式的为( )A 。
5+与互为倒数,则( )A. a=b —1B. a=b+1 C 。
a+b=1 D. a+b=-16.在Rt△ABC 中,∠C=90°,c 为斜边,a 、b 为直角边,2c a b --- 的结果为( )A 。
3a+b ﹣c B. ﹣a ﹣3b+3c C. a+3b ﹣3c D. 2a7 是整数,则自然数n 的值有( )个.A. 7 B 。
8 C 。
9 D 。
108.不改变根式的大小,把中根号外的因式移到根号内正确的结果是( )C 。
。
9.已知三角形的三边长分别为a 、b 、c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S =,其中2a b c p ++=;我国南宋时期数学家秦九韶(约12021261)-曾提出利用三角形的三边求其面积的秦九韶公式2222221()22a b c S a b +-=-,若一个三角形的三边长分别为234,,,则其面积是( )A 。
八年级下册数学二次根式单元试卷2(含答案)
C.
,故错误; (
– √3
-1)2=3-2
– √3
+1
−−−−−−
, 故 错 误 D .
√52
−
2
3
=4
.
故选B.
4.下列说法正确的是()
若 < ,则 < A. a 0
−−
√a2
0
B.(
−−− √−a
)2=a
若 C .
−−− √−x
有意义,则x<0
D.
− −
1
√
=
a
√a a
【参考答案】
答案:D.
解:A、若a<0,则
–
A . √3 + √2 = √5
–
–
–
B . √3 × √2 = √6
C.(
– √3
-1)2=3-1
−−−−−−
D.
√52
−
2
3
=5-3
4.下列说法正确的是()
若 < ,则 < A. a 0
−−
√a2
0
B.(
−−− √−a
)2=a
若 C .
−−− √−x
有意义,则x<0
D.
− −
1
√
=
a
√a a
已知 ,那么 的值为() −−−−
方法二:
a−b √a+√b
=
2
2
(√a) −(√b)
√a+√b
(√a−√b)(√a+√b)
−
=
= √a - √b .
√a+√b
请你挑选一种你喜欢的方法,对 1 进行分母有理化,并求当x= 1 时,式子x2-x+1的值.
人教版八年级下数学单元测试二次根式练习及答案
二次根式(A卷)一、填空题(每题2分,共28分)1.4的平方根是_____________.2.的平方根是_____________.7.在实数范围内分解因式:a4-4 =____________.二、选择题(每题4分,共20分)15.下列说法正确的是( ).(A) x≥1 (B)x>1且x≠-2 (C) x≠-2 (D) x≥1且x≠-2(A)2x-4 (B)-2 (C)4-2x (D)2三、计算题(各小题6分,共30分)四、化简求值(各小题5分,共10分)五、解答题(各小题8分,共24分)29. 有一块面积为(2a+ b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a - b)2π,问所挖去的圆的半径多少?30.已知正方形纸片的面积是32cm2,如果将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是多少(保留3个有效数字)?二次根式(B卷)一、填空题(每题3分,共54分)2.-27的立方根= .二、选择题(每题4分,共20分)15.下列式子成立的是( ).17.下列计算正确的是( ).三、计算题(各小题6分,共30分)四、化简求值(各小题8分,共16分)五、解答题(各小题8分,共24分)二次根式(A卷)答案1.±22. ±23. –ab4. –25. 0或46. m≥112. -x-y13. x≤414.15. B 16. A 17. D 18. A 19. A 20. D23. 2430. 1.80二次根式(B卷)答案2. -33. -a-66. 07. 18. ≤012. 200315. D 16. C 17. C 18. C 19. B 20. A。
新人教版八年级下册二次根式单元测试题及答案
新人教版八年级下册二次根式单元测试题及答案八年级下册数学目标单元检测题(一)《二次根式》一、选择题:(每小题2分,共26分)1、下列代数式中,属于二次根式的是()A、3x 2.B、(a≥1)D、—A、4B、C、a 22、在二次根式,中,x的取值范围是()A、x≥1B、x>1C、x≤1D、x<13、已知(x-1)2+(y+2)2=0,则(x+y)2的算术平方根是()A、1B、±1C、-1D、44、下列计算中正确的是()A、211(x2+y)x y。
B、35C、a+3=2aD、3/4=23/45、化简23+11/45=()A、1/5B、30C、65D、6306、下列二次根式:12.5a,a,b,1/a,m+y2/其中是-anx/324最简二次根式的有()A、2个B、3个C、1个D、4个7、若等式(m-3)/(m+3)=1成立,则m的取值范围是()A、m≥2B、m>3C、1/2≤m<3D、m≥38、已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()A、5cmB、7cmC、5cm或7cmD、无法确定9、把二次根式x4+x2y2化简,得()A、2xCx+yB、x2+xyC、1+xyD、x2-y210、下列各组二次根式中,属于同类二次根式的为()A、2和B B、2和C C、a+1/12a2b和D a-1/ab211、如果a≤1,那么化简(1-a)3/(a-1)1-a=()A、-1B、0C、1D、无法确定12、下列各组二次根式中,x的取值范围相同的是()A、x+1和x B、x和C x2+1和x2+2D、和x二、填空题:(每小题3分,共36分)13、化简42x-3/(x-4)(x+1),得()A、2B、4-4xC、4x-4D、-214、用“>”或“<”符号连接:(1)-26<-33;(2)3<5;(3)3-5)2<7-315、3(-5的相反数是5,绝对值是516、如果最简二次根式3a-3与7-2a是同类二次根式,那么a的值是1/217、计算:8√24=24√2;(1/2)2=1/4;(-5)2=2518、当$x\geq-\frac{1}{3}$时,二次根式$3x+1$有意义;当$x>-1$时,代数式$x+1$有意义。