北京大学量子力学教材 习题集

合集下载

北京大学量子力学习题集1

北京大学量子力学习题集1

[2] 波函数的归一化及 x2, p2 的计算
一维运动的粒子处于状态
ψ
(
x)
=
⎧ ⎨
Axe−
λ
x
,
⎩ 0,
x≥0 x<0
上,其中 λ > 0 ,A为待求的归一化常数,求(1)
粒子坐标的概率分布函数;(2)粒子坐标的平均
值 x 和粒子坐标平方的平均值 x2;(3)粒子动量 的概率分布函数;(4)粒子动量的平均值 p 和粒
则有
⎡⎢− ⎣
=2 2m

d2 dx2
+V (x)⎤⎥ψ E (x)

=
Eψ E (x)
V
(x)
=
E
+
=2 2m
ψ
1 E (x)

d2 dx2
ψ
E
( x),
−∞< x<∞
(1)
如果给定一个定态波函数ψ E (x) ,则由式(1)
可给出 V (x) − E ,欲分别求出 E和 V (x),还需
要附加条件,例如设定 V (x) 的零点.
∑ (En − Em )2 n x m 2 n
∑ = − (Em − En ) m x n (En − Em ) n x m n
∑ =

⎛ ⎜⎝

i=
μ
⎞2 ⎟⎠
n
m pn
n pm
∑ =2
= m p n n pm
μ2
n
=2 =
m
p2
n
μ
式(2)得证.以上利用了完备公式
∑ n n =1
n
∑ (En − Em ) n x m 2 n

北京大学-量子力学习题集5

北京大学-量子力学习题集5

a A 6.设 V (r ) = − + 2 , (a, A > 0) ,求粒子能 r r
量本征值。
解:取守恒量完全集为 ( H , L , Lz ) ,其共 同本征函数为 χ (r ) Ylm (θ , ϕ ) ψ (r , θ , ϕ ) = R(r )Ylm (θ , ϕ ) = r χ (r ) 满足的径向方程
ψ ( x) =
1 2π
∫ ϕ ( P ')e
i − ( p '+ p ) x
dp ' = e
i − xp
ψ 0 ( x)
⎛α ⎞ 其中 ψ 0 ( x) = ⎜ π ⎟ ⎝ ⎠
2
1/ 4
e
−α 2 x 2 2
⎛ mω ⎞ α =⎜ ⎟ ,故有 , ⎝ ⎠
2 p2 − 2 mω
1/ 2
P = ∫ψ ( x)ψ ( x)dx = e
任何位置,单位体积内测到一个粒子的概 率为1. 若沿用上面的方法来求归一化系 数,则会出现


−∞
Ae
2 − ikx ikx
e dx = ∫ A dx = ∞ ⋅ A
2 −∞

2
要使积分为1,必须A=0,因此波函数不能 归一,只能归一为δ函数。
1 ∫−∞ 2π exp {−ik ′x} exp {ikx} dx = δ (k − k ′)
⎛a⎞ 2 2 设归一化的本征态为 ⎜ ⎟ , a + b = 1则 b⎠ ⎝ 由本征方程
⎛ B −iA ⎞ ⎛ a ⎞ ⎛a⎞ ⎜ ⎟⎜ ⎟ = λ ⎜ ⎟ ⎝ iA − B ⎠ ⎝ b ⎠ ⎝b⎠
可以解出本征态为
Ψ± ⎡ ⎤ 1 =⎢ ⎥ 2 2 2 2 ⎢ ⎣ A + (B ∓ A + B ) ⎥ ⎦

《量子力学教程》作业题及答案--2017-2018第一学期

《量子力学教程》作业题及答案--2017-2018第一学期
第二章波函数和薛定谔方程
1、 求 一 维 线 性 谐 振 子 处 在 第 一 激 发 态 时 概 率 最 大 的 位 置 。
解:ψ 1(x ) =(

π
)αxe − α
2
x2 /2
w(x ) = ψ 1(x ) =
2
2α 3
π
x 2e − α
2
x2
2 2 2 2 ∂w(x ) = 0 得 2xe − α x − 2α 2xx 2e − α x = 0 ∂x
E n x n y = E n x + E n y = (n x + 2n y + )ω
3) 对于基态, n x ,n y = 0 , E 00 =
3 ω 是非简并的; 2
对于第一激发态,
5 n x = 1 , E 10 = ω 是非简并的; 2 n y = 0 7 n x = 0 n x = 2 , , E 01 = E 20 = ω 能级是二重简并的; 2 = 1 = 0 n n y y 9 n x = 3 nx = 1 , ,E E = = ω 是二重简并的。 30 11 n = 1 2 = 0 n y y
x < 0 0 ≤ x ≤ a 中, x > a
V0
4
的本征态,试确定此势阱的宽度 a 。
解:对于 E = −
V0
4
< 0 的情况,三个区域中的波函数分别为
ψ 1 ( x ) = 0 ψ 2 ( x ) = A sin kx ψ ( x ) = B exp(− αx ) 3
其中,
k=
n
则只有量子数 n = 1,3,5, 时, H n (0) = 0 ( n = 1,3,5, ) 则能级为 E n = ( n + 1 2 )ω

量子力学习题集及解答

量子力学习题集及解答

量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当A50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。

[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。

这个公式就是斯忒蕃——玻耳兹曼公式。

其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------yy y y y ye e e e e e∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n n π故⎰∞=⨯=-0443159061ππy e dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。

量子力学教程课后习题答案.pptx

量子力学教程课后习题答案.pptx

hc 1.24106 eVm
e
c 2
0.51
10 eV 6
最后,对
hc 2ec 2E
作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短, 因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这 个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世 界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二 象性,从某种子意义来说,只有在微观世界才能显现。 1.3 氦原子的动能是 E 3 kT (k 为玻耳兹曼常数),求 T=1K 时,氦原子的德
3.7 10
eV
9
最后,再对德布罗意波长与温度的关系作一点讨论,由某种粒子构成的温度 为 T 的体系,其中粒子的平均动能的数量级为 kT,这样,其相庆的德布罗意波 长就为
hc hc 2c 2 E 2kc2T
据此可知,当体系的温度越低,相应的德布罗意波长就越长,这时这种粒子的波 动性就越明显,特别是当波长长到比粒子间的平均距离还长时,粒子间的相干性 就尤为明显,因此这时就能用经典的描述粒子统计分布的玻耳兹曼分布,而必须 用量子的描述粒子的统计分布——玻色分布或费米公布。 4. 利用玻尔——索末菲的量子化条件,求:
注意到本题所考虑的钠的价电子的动能仅为 3eV,远远小于电子的质量与光速平 方的乘积,即 0.51106 eV ,因此利用非相对论性的电子的能量——动量关系式, 这样,便有
h
p
2
在这里,利用了 以及
h
2eE
hc
2ec2 E
1.24 10 6 m 2 0.51106 3
0.7110 9 m 0.71nm
(2)当电子在均匀磁场中作圆周运动时,有

北大《量子力学》chpt3

北大《量子力学》chpt3

3.4.续谱本征函数的归一化一、δ函数1. δ函数的定义和表示δ函数不是一般意义下的函数,而是一分布,因对一个处处为0,而仅一点不为零的函数其积分为0。

但习惯上将它看作一函数。

其重要性和意义在积分中体现出来,它可用一函数的极限来定义。

先看不定积分10()00xx x dx x δ-∞>⎧''=⎨<⎩⎰。

这是一阶梯函数,设10()00x U x x >⎧=⎨<⎩,则()()x U x δ'= ,即000()()()()()lim lim lim ()()()2aa a a U x a U x a U x a U x a x F x x a x a aδ+++→→→+--+--===+-- ,所以,当0a +→,()a F x →∞(x )a ,a (∈-)。

但总面积恒为1,即 ()1a F x dx +∞-∞=⎰ (对任意a ),可以证明1()2izxc e U x dz i z π=⎰,所以11()().22izxikx c x U x e dz e dk δππ'===⎰⎰作为函数参量极限δ还可表示为:222222011cos 11sin ()lim lim lim i x x L L Lx Lx x LxLx x x ασασααδππαπ+-→+∞→∞→→-======+ 2.性质:⎩⎨⎧-==∞≠=-⎰+∞∞-dx x x ik x x x x x x )](exp[210)(0000πδ;)'()'(x x x x -=-δδ为偶函数;⎰+∞∞-=-1)'(dx x x δ;⎰⎰+++∞∞-=-=-εεδδ00)()()()()(00x x x f dx xx x f dx xx x f ; )'()'(0)(x x x x x x --⇒==δδ;由傅立叶积分公式得, ⎰⎰+∞∞-+∞∞--=dk x x ik x f dx x f )](exp[)(21)(00π,)'(]/)'(exp[21)'(],/)(exp[21)(00p p p p ix dx p p x x ip dp x x -=-=--==-∴⎰⎰+∞∞-+∞∞-δπδπδ δ函数具有任何级的导数,可以证明()()00()()(1)()n n n x x f x dx f x δ+∞-∞-=-⎰ (注意:微商是对宗量进行的)。

《量子力学导论》习题答案(曾谨言版,北京大学)3

《量子力学导论》习题答案(曾谨言版,北京大学)3

第十章 定态问题的常用近似方法10-1) 设非简谐振子的Hamilton 量表为'0H H H +=222220212x u dx d u H ω+-= 3'x H β=(β为实常数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似)。

解:已知)0()0(0n n n E H ψψ=,()x H e N n x n n αψα2)0(22-=,()ω 21)0(+=n E n ,ωαu =()[]11121+-++=n n n n n x x ψψαψ ()()()()()[]22222112121+-++++++=n n n n n n n n n x x ψψψαψ()()()()()()()[]311333321113321221++--++++++++--=n n n n n n n n n n n n n n n x x ψψψψαψ计算一级微扰:n n n H E ψψ')1(=03==n n x ψψβ。

(也可由()⎰+∞∞-⋅==dx x x H En nn n32')1(βψ0=(奇)直接得出)计算二级微扰,只有下列四个矩阵元不为0:()()',33332122n n n n H n n n x --=--=αβψβψ',1331322n n n n H n n x --=⋅=αβψβψ ()',133111322n n n n H n n x ++=++⋅=αβψβψ ()()()',333332122n n n n H n n n x ++=+++⋅=αβψβψ计算2'knH:()()622',3821αβ--=-n n n Hnn6232',19αβn H n n =- 6232',189αβn H nn =+()()()622',38321αβ+++=+n n n Hnn又ω 3)0(3)0(=--n n E E ,ω =--)0(1)0(n n E E , ω -=-+)0(1)0(n n E E ,ω 3)0(3)0(-=-+n n E E ,∑-++=++=∴kk n knnnnnnnn E E HHEEEEE )0()0(2''')0()2()1()0(43222811303021ωβωu n n n ⋅++-⎪⎭⎫ ⎝⎛+=)0()0()0('')0()1()0(k kkn knnnnn E E H ψψψψψ∑-+=+=()()()()()()⎥⎦⎤⎢⎣⎡+++-+--+---=++--)0(3)0(1)0(1)0(33)0(321311133213122n n n n n n n n n n n n n n n ψψψψωαβψ10-2) 考虑耦合振子,'0H H H += 参 书.下册§9.2()2221222221220212x x u x x u H ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=ω 21'x x H λ-=(λ为实常数,刻画耦合强度) (a )求出0H 的本征值及能级简并度。

量子力学课后习题答案

量子力学课后习题答案

Wnl (r)dr Rnl2 (r)r 2dr
例如:对于基态 n 1, l 0
W10 (r) R102 (r)r 2

4 a03
r e2 2r / a0
求最可几半径
R e 2 r / a0
10
a03 / 2
dW10 (r) 4 (2r 2 r 2 )e2r / a0
x)

k
2
2
(
x)

0
其解为 2 (x) Asin kx B cos kx
根据波函数的标准条件确定系数A、B,由连续性条件,得
2 (0) 1(0) B 0
2 (a) 3 (a) Asin ka 0
A0
sin ka 0
ka n
(n 1, 2, 3,)
[1 r
eikr
r
(1 r
eikr )

1 r
eikr
r
(1 r
eikr )]er
i1 1 11 1 1

2
[ r
(
r2
ik
) r

r
(
r2
ik
r )]er

k
r2
er
J1与er 同向。 1 表示向外传播的球面波。
习题
(2)
J2

i
2
(
2
* 2
2*
解:U (x)与t 无关,是定态问题
薛定谔方程为

2
2
d2 dx2

(x) U (x) (x)

E (x)
在各区域的具体形式为:
x0

量子力学测试题23北师大-2003

量子力学测试题23北师大-2003

1 量子力学测试题(6)(北师大2003)1、(20分)一维谐振子t=0时处于基态0ψ和第一激发态1ψ的叠加态))()((21)0,(10x x x ψψψ+=其中 222100)(x e N x αψ-= x e N x x αψα2)(222111-=(1)求t 时刻位置和动量的平均值t t p x ,;(2)证明:对于一维谐振子的任何态,t 时刻位置和动量的平均值有以下关系 t t p mx dt d1= (3)求t 时刻能量的平均值t H 。

2、(40分)t=0时氢原子的波函数为⎥⎦⎤⎢⎣⎡+=-+χϕθχϕθϕθψ),(32),(31)(),,(111021Y Y r R r其中±χ为自旋z S 的本征态。

(1)测量下列物理量的可能值及相应几率是什么?轨道角动量平方和z 分量z L L ˆ,ˆ2;自旋角动量平方2ˆS ;总角动量平方2ˆJ (S L J ˆˆˆ+=)。

(2)电子自旋向上,到坐标原点距离为r 的概率密度;(3)能量的平均值E ;(4)轨道角动量x 分量的平均值x L ;(5)0≠t 时问题(3)和(4)的结论会改变吗?3、(30分)自旋算符σσ ⋅=n n ,其中为方向单位矢)cos ,sin sin ,cos (sin θϕθϕθ=n(1)求n σ的本征态±χ;(2)证明n ±=±±χσχ||;(3)一个两电子体系处在自旋单态[])2()1()2()1(2100αββαχ-=,求第一个电子的自旋算符σσ ⋅=n n 1作用于00χ的结果?001=χσn4、(30分)外磁场中电子的哈密顿量()221ˆA q P H -=μ。

(1)求位置矢量r 和Hˆ的对易关系]ˆ,[H r;2 (2)证明连续性方程0),(),(),(*=⋅∇+∂∂t r J t r t r t ψψ中的几率流密度 ⎪⎭⎫ ⎝⎛-∇-∇-=2**22ψψψψψμA iq i J 5、(30分)在磁场0B e B z =中,把()00ˆ2ˆˆB S L H z z +='μ看成微扰。

北京大学602量子力学考研参考书、历年真题、复试分数线

北京大学602量子力学考研参考书、历年真题、复试分数线

二、录取和调剂:
1、考生能否录取,以考生的总成绩名次为准。复试成绩不及格的考生不能录取。各学
院(系、所、中心)拟录取名单经批准后公布。 2、我校未录取考生,达到国家分数线并符合调剂规定的,按教育部要求进行调剂。
专注中国名校保(考)研考博辅导权威
三、2015 北京大学 602 量子力学考研参考书 数学分析(一、二、三册)方企勤等北京大学出版社 配套习题集
有人引用量子力学中的随机性支持自由意志说,但是第一,这种微观尺度上的随机性和 通常意义下的宏观的自由意志之间仍然有着难以逾越的距离;第二,这种随机性是否不可约 简(irreducible)还难以证明,因为人们在微观尺度上的观察能力仍然有限。自然界是否真
专注中国名校保(考)研考博辅导权威
有随机性还是一个悬而未决的问题。对这个鸿沟起决定作用的就是普朗克常数。统计学中的 许多随机事件的例子,严格说来实为决定性的。
在量子力学中,一个物理体系的状态由波函数表示,波函数的任意线性叠加仍然代表体 系的一种可能状态。对应于代表该量的算符对其波函数的作用;波函数的模平方代表作为其 变量的物理量出现的几率密度。 二、北京大学 602 量子力学考研复试分数线
90
90
管理学 (12)
50 50
90
90
艺术学 (13)
50 50
90
总分 360 370 345 360
345
345 320 320 350 350
备注
北大-新加坡国 立大学汉语言 文字学双硕士 班为 340。
(2)、联考: 考试科目
专业学位 应用统计 025200 金融硕士 025100 税务硕士 025300
90
50 50
90

北京大学-量子力学习题集4

北京大学-量子力学习题集4
1 = [C0Y11 + C0Y1−1 + (C1 + C−1 )Y10 ] 2
比较后得
1 C1 = C0 2
1 , C−1 = C0 2
由波函数归一得
1 C0 = 2

1 ψ = [Y11 + Y1−1 + 2Y10 ] 2
ˆ2 = B ˆ 2 = 1, 5. Hermite算符 与 满足 A , , 均无简并,求 (1)在A表象中 与 的矩阵表达式,并求 的本征函数表示式; (2)在B表象中 与 的矩阵表达式,并求 的本征函数表示式; (3)A表象到B表象的幺正变换矩阵S。
= C1Φ1 +C2Φ2
(4)
其中
C1 = (exp(−iω1t ) + exp(−iω2t )) / 2 ,
C2 = (exp( −iω1t ) − exp( −iω2t )) / 2
(5)
| C1 |2 = {1 + cos(ω1 − ω2 )t}2 ,
| C2 |2 = {1 − cos(ω1 − ω2 )t}2
其中 所以静电势能为

,得
所以
体系的Hamilton量为
所以
因为
考虑到这里不过是一级微扰论,而H '又只 是在核子体积内起作用。 这里a为 Bohr半径。
所以计算中可略去径向波函数中的指数, 认为 ,由此得1s态能移
2p态能移
10. 粒子在二维无限深方势阱中运动,
0 ≤ x ≤ a, 0 ≤ y ≤ a ⎧ 0, V =⎨ ⎩ ∞, x < 0, x > a , y < 0, y > a
A = (a1 + a2 ) / 2 + ((a1 − a2 ) / 2) cos( E1 − E2 )t /

(整理)北京大学量子力学期末试题

(整理)北京大学量子力学期末试题

量子力学习题(三年级用)北京大学物理学院二O O三年第一章 绪论1、计算下列情况的Broglie de -波长,指出那种情况要用量子力学处理: (1)能量为eV .0250的慢中子()克2410671-⋅=μ.n;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-⋅=μ.a;(3)飞行速度为100米/秒,质量为40克的子弹。

2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少?3、利用Broglie de -关系,及园形轨道为各波长的整数倍,给出氢原子能量可能值。

第二章 波函数与波动力学1、设()()为常数a Ae x x a 2221-=ϕ(1)求归一化常数 (2).?p ?,x x ==2、求ikr ikr e re r -=ϕ=ϕ1121和的几率流密度。

3、若(),Be e A kx kx -+=ϕ求其几率流密度,你从结果中能得到什么样的结论?(其中k 为实数)4、一维运动的粒子处于()⎩⎨⎧<>=ϕλ-000x x Axe x x的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。

5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证0=υ⨯∇其中ρ=υ/j6、一维自由运动粒子,在0=t时,波函数为()()x ,x δ=ϕ0求:?)t ,x (=ϕ2第三章 一维定态问题1、粒子处于位场()000000〉⎩⎨⎧≥〈=V x V x V中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动)2、一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=0000x a x x V )x ( 中运动。

(1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ϕ态,证明:,/a x2=().n a x x ⎪⎭⎫ ⎝⎛π-=-222261123、若在x 轴的有限区域,有一位势,在区域外的波函数为如DS A S B D S A S C 22211211+=+=这即“出射”波和“入射”波之间的关系,证明:01122211211222221212211=+=+=+**S S S S S S S S这表明S 是么正矩阵4、试求在半壁无限高位垒中粒子的束缚态能级和波函数()⎪⎩⎪⎨⎧>≤≤<∞=ax V a x x V X 0000 5、求粒子在下列位场中运动的能级()⎪⎩⎪⎨⎧>μω≤∞=021022x x x V X6、粒子以动能E 入射,受到双δ势垒作用()[])a x ()x (V V x -δ+δ=0求反射几率和透射几率,以及发生完全透射的条件。

1量子力学练习1~5+解答

1量子力学练习1~5+解答
对于质量为角频率为的三维各向同性的谐振子其势能表达式为由于其势能表达式的特殊性所以求解三维各向同性的谐振子的本征值和本征函数可以在三种坐标中进行但是在不同坐标系中求解所选守恒量完全集不同在球坐标系中常为守恒量完全集在柱坐标系常选为守恒量完全集中在直角坐标系中常选为守恒量完全集
量子力学练习一
1.爱因斯坦在解释光电效应时,提出光量子(光子)概念;爱因斯坦光电效应方程为
解:(1)令 ,则由归一化条件可得
而 ,故
归一化的波函数为
(2)坐标几率密度取极值的条件
即x=0时坐标几率密度取极大值,其值为
9.设粒子归一化波函数为 ,求在 范围内找到粒子的几率。
解:波函数已归一化,故在 范围内找到粒子的几率,应将x,z分量积分掉即
10.写出几率守恒的积分和微分形式以及几率密度、几率流密度的表达式;并计算:
4.对于质量为 、角频率为 的三维各向同性的谐振子,其势能表达式为,由于其势能表达式的特殊性,所以求解三维各向同性的谐振子的本征值和本征函数可以在三种坐标中进行,但是在不同坐标系中求解所选守恒量完全集不同,在球坐标系中常选为守恒量完全集,在柱坐标系常选为守恒量完全集中在直角坐标系中常选为守恒量完全集。
(2)粒子动量p的平均值 、 及动量不确定度(涨落) ;
(3) ,并验证测不准关系;
解:一维无限深势阱中,粒子处于第一激发态的波函数为
(1)粒子坐标的平均值:
(2)动量的平均值:
(3) ,满足测不准关系
2.粒子被限制在如下势场中运动,试写出粒子所满足的Schrodinger方程(粒子能量 ),并确定其边界条件。(不需要具体计算,所写方程要最简(参数引人))
(C1,C2为常数)
同理
8.设粒子处于 状态中,求 和 (提示:首先利用升降算符 ,证明

《量子力学导论》习题答案(曾谨言版,北京大学)(2)

《量子力学导论》习题答案(曾谨言版,北京大学)(2)

第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m M r p-==∙μ (1) 总动量 21p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121M P m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’) 总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m uR p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p m Mr p p R -⨯++⨯= )2)(1(⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。

总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=+=μμ2122222122112222122222m m pP u m p m m u m m p P u m p m m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p P m m m P m m m μ2222M P += (4’) [从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、和的算术表示式r i ∇-= R i ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m m Mi p m p m M p ∇-∇-=-=(1) 其中 1111z y x r ∂∂+∂∂+∂∂=∇, 而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111, 同理,y Y M m y ∂∂+∂∂=∂∂11zZ M m z ∂∂+∂∂=∂∂11; (利用上题(17)(18)式。

量子力学习题集及答案

量子力学习题集及答案

量子力学习题集及答案09光信息量子力研究题集一、填空题1.__________2.设电子能量为4电子伏,其德布罗意波长为6.125A。

XXX的量子化条件为∫pdq=nh,应用这量子化条件求得一维谐振子的能级En=(nωℏ)。

3.XXX假说的正确性,在1927年为XXX和革末所做的电子衍射实验所证实,德布罗意关系为E=ωℏ和p=ℏk。

4.ψ(r)=(三维空间自由粒子的归一化波函数为e^(ip·r/ℏ)),其中p为动量算符的归一化本征态。

5.∫ψ*(r)ψ(r)dτ=(δ(p'-p)),其中δ为狄拉克函数。

6.t=0时体系的状态为ψ(x,0)=ψ_n(x)+2ψ_2(x),其中ψ_n(x)为一维线性谐振子的定态波函数,则ψ(x,t)=(ψ(x)e^(-iωt/2)+2ψ_2(x)e^(-5iωt/2))。

7.按照量子力学理论,微观粒子的几率密度w=(|Ψ|^2),几率流密度j=(iℏ/2μ)(Ψ*∇Ψ-Ψ∇Ψ*)。

其中Ψ(r)描写粒子的状态,Ψ(r)是粒子的几率密度,在Ψ(r)中F(x)的平均值为F=(∫Ψ*F(x)Ψdx)/(∫Ψ*Ψdx)。

8.波函数Ψ和cΨ是描写同一状态,Ψe^(iδ)中的e^(iδ)称为相因子,e^(iδ)不影响波函数Ψ的归一化,因为e^(iδ)=1.9.定态是指能量具有确定值的状态,束缚态是指无穷远处波函数为零的状态。

10.E1=E2时,Ψ(x,t)=Ψ_1(x)exp(-iE1t)+Ψ_2(x)exp(-iE2t)是定态的条件。

11.这时几率密度和几率流密度都与时间无关。

12.粒子在能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应。

13.无穷远处波函数为零的状态称为束缚态,其能量一般为分立谱。

14.ψ(x,t)=(ψ(x)e^(-iωt/2)+ψ_3(x)e^(-7iωt/2))。

2.15.在一维无限深势阱中,粒子处于位置区间x a,第一激发态的能量为1/13(22222/2ma2),第一激发态的波函数为sin(n x/a)(n=2)/a。

量子力学习题集及答案

量子力学习题集及答案
23.设氢原子的状态为,求: (1)能量E,轨道角动量z分量自旋角动量z分量的可能值和相应几 率; (2)能量E,轨道角动量z分量自旋角动量z分量的平均值。 解: .
(1) 能量有两种可能值,, ,相应几率分别为; 有两种可能值,, ,相应几率分别为; 有两种可能值,, ,相应几率分别为; (2) =
3. 德布罗意假说的正确性,在1927年为戴维孙和革末所做 的( 电 )子衍射实验所证实,德布罗意关系(公式) 为( )和( )。
4. 三维空间自由粒子的归一化波函数为=( ), ( )。 5. 动量算符的归一化本征态( ),( )。 6. t=0时体系的状态为,其中为一维线性谐振子的定态波函
数,则( )。 7. 按照量子力学理论,微观粒子的几率密度=( ),几率
流密度=( )。 8. 设描写粒子的状态,是( 粒子的几率密度 ),在中的
平均值为=( )。 9. 波函数和是描写( 同一 )状态,中的称为( 相因子
),不影响波函数的归一化,因为( )。 10. 定态是指( 能量具有确定值 )的状态,束缚态是指
(无穷远处波函数为零)的状态。 11. 是定态的条件是( ),这时几率密度和( 几率密度 )
二、计算、证明题
1.粒子在一维势场中运动,试从薛定谔方程出发求出粒子的定态能 级和归一化波函数.
解:当 当 令得

2.一粒子在一维势场中运动,试求粒子的能级和归一化定态波函数 (准确解)。 解: 令则
3.一粒子在硬壁球形空腔中运动,势能为
试从薛定谔方程出发求粒子在态中的能级和定态波函数(不必归一 化)。 { 提示:在态中 } 解: 当 当 令得
立。
23. 力学量算符的本征值必为( 实数 ),力学量算符的属
于两个不同本征值的本征态必( 相互正交 )。

北京大学量子力学习题集2

北京大学量子力学习题集2

+
p2c2
− mc2
=
mc2
⎛⎜1 + ⎝
p2 m2c2
⎞1/ 2 ⎟ ⎠
− mc2
考虑了 T
与 p 关系的相对论修正至
1阶
c2
T

mc2
⎛ ⎜1
+

p2 2m2c2

p4 8m4c4
⎞ ⎟ ⎠

mc2
= p2 − p4 2m 8m3c2
而相对论修正项 − p4 可看作微扰.
8m3c2
由微扰论,基态能量的移动为
+
pz
z
)
⎤ ⎥⎦
c为归一化常数.
[17] 在无限长圆筒中运动粒子的能量 设粒子在无限长的圆筒中运动,筒半径为 a , 求粒子能量.
解 柱坐标下的Schrodinger方程
⎡ ⎢ ⎣

2
2m
⎛ ⎜ ⎝
∂2
∂ρ 2
+
1
ρ
⋅∂
∂ρ
⎞ ⎟
+

L2z
2mρ 2

2
2m

∂2 ∂z 2
⎤⎥ψ

=

用分离变量法求解方程
可见这里 y = a′ = 4 2 / me2 = 4a0 (a0是Bohr半径) ,表 示电子基态最大概率之所在.
(V) 能量完备集为
En, px , pz
= − me4 32 2n2
+
1 2m
(
px2
+
py2 )
波函数为
ψ n, px , py
(r)
=

北大90、10量子力学

北大90、10量子力学

2010年北大量子力学真题
2009年北大量子力学真题
量子力学。

共六题,全是大题。

1.两个非全同粒子在一维谐振子势中的波函数、能级。

知道t=0时的初态,求t 时刻处于能量为**的概率。

(**表示记不清楚)
2.一维方势阱,0<x<a处V(x)=V0,其余地方V(x)=0.一粒子从x>a区域向左射去,求透射的概率。

(我是分E<V0和E>V0两种情况算的)
3.①在Lz表象中求Lx(L=1)的本征值、本征态。

②在Lz=1的态下求Lx=0或1的概率。

4.①某势阱,求基态的波函数和能量。

②开始处于E=(1/2)hω,求在H'作用下,仍处于E=(5/2)hω的概率。

(简并微扰论)
5.一个立方体形状的势场。

6.氢原子在微扰作用H'=e·z·delta(t)作用下跃迁到各激发态的概率之和。

(我用了公式sigma/k><k/=1)。

《量子力学导论》习题答案(曾谨言版,北京大学)1

《量子力学导论》习题答案(曾谨言版,北京大学)1

自己收藏的希望能够给大家带来帮助 第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, ⎩⎨⎧<<><∞=a x ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。

解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系 λ/h p = (2) 而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。

解:除了与箱壁碰撞外,粒子在箱内作自由运动。

假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。

动量大小不改变,仅方向反向。

选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。

利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量 ⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1)其中a 由下式决定:221()2x a E V x m a ω===。

北京大学量子力学教材_习题集

北京大学量子力学教材_习题集

p2 V (r ) ,试用纯矩阵的方法,证明下列求和规则 5、设 H 2
2 E n E m x nm
n

2 2
(提示:求
H, X, H, X, X 然后求矩阵元 m H, X , X m )
2
6、若矩阵 A,B,C 满足 A
(1)证明: AB BA
x0 0xa xa
x0 x0
VX 1 2 2 x 2
6、粒子以动能 E 入射,受到双 势垒作用
Vx V0 ( x ) ( x a )
求反射几率和透射几率,以及发生完全透射的条件。
7、质量为 m 的粒子处于一维谐振子势场 V1 ( x) 的基态,
ˆB ˆ 是厄密算符的条件。 (2)求出 A
5、证明:
ˆ ˆ e L ˆ 1 L ˆ, 1 L ˆ ˆ,A ˆ, L ˆ ,A ˆ, L ˆ, L ˆ ,A eL A A L 2! 3! ˆ ,B ˆ 都对易,证明 6、如果 A , B 与它们的对易子 A

ˆ B

ˆ
6、设 V
r Br 2 A / r 2 , 其中A, B 0 ,求粒子的能量本征值。
7、设粒子在半径为 a ,高为 h 的园筒中运动,在筒内位能为 0,筒壁和筒外位
9
能为无穷大,求粒子的能量本征值和本征函数。
8、碱金属原子和类碱金属原子的最外层电子在原子实电场中运动,原子实电场
近似地可用下面的电势表示:
2
, p 2 x ,并验证测不准关系。
5
第四章
量子力学中的力学量
1、
若H

1 2 2 2 px py pz V( x ,y ,z ) 2 i V , x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p2 V (r ) ,试用纯矩阵的方法,证明下列求和规则 5、设 H 2
2 E n E m x nm
n

2 2
(提示:求
H, X, H, X, X 然后求矩阵元 m H, X , X m )
2
6、若矩阵 A,B,C 满足 A
(1)证明: AB BA
x0 0xa x0
(1)求粒子的能级和对应的波函数; (2)若粒子处于 n ( x ) 态,证明: x
a / 2,
x x
2
6 a2 1 2 2 . 12 n
3、若在 x 轴的有限区域,有一位势,在区域外的波函数为

C S11 A S12 D B S 21 A S 22 D
a 1 2

e

a2x2 i t 2 2
(2)氢原子基态:
r , t
e
r i E 2t a0
2、求一维无限深位阱(0≤ x ≤a)中粒子的坐标和动量在能量表象中的矩阵元。
ˆ x 的矩阵表示。 3、求在动量表象中角动量 L
4、在( l
2
ˆ x 的可能值及相应几率。 , l z )表象中,求 l 1 的空间中的 L
3、设氢原子处于状态
r , ,
求氢原子能量,角动量平方和角动量分量的可能值,以及这些可能值出现的几率 和这些力学量的平均量。
4、证明
1 2 1 ,r 2 r r
1 2 ,r 2
5、设氢原子处于基态,求电子处于经典力学不允许区域
率。




E V T 0 的几
(1)
2 2 2
q, p i, f (q)是q 的可微函数,证明
3、证明
ˆ , [B ˆ ]] [B ˆ ,A ˆ ]] [C ˆ ,[A ˆ ,B ˆ ,C ˆ , [C ˆ ]] 0 [A
ˆ, B ˆ 是厄密算符 4、如果, A
(1)证明
ˆ B ˆ ,B ˆ n , iA ˆ 是厄密算符; A
r
其中, Z e 表示原子实的电荷, A
Z e A 2 r r
0 ,证明,电子在原子实电场中的能量为 e 4 z 2 2 2 1
E nl
n l 2
而 l 为 l 的函数, 讨论 l 何时较小, 求出 l 小时,E nl 公式, 并讨论能级的简并度。

e e
(提示,考虑 f ( )
A
ˆ B 1 A ˆ ,B ˆ A 2 e ˆ

ˆ
e A e B e A B , 证明
ˆ
df A, B f 然后积分) d
6
ˆ 和A ˆ 7、设 是一小量,算符 A
1
存在,求证
从而证明: i u ni p x xu nj d

ij 2
9、一维谐振子处在基态
x

a e 1/ 2
a
2x 2 / 2
求: (1)势能的平均值 A (2)动能的平均值 T

1 m 2 X 2 ; 2
2 Px / 2m;
(3)动量的几率分布函数 其中 a

m
L x iL y , 证明


2 2
11、设粒子处于 Ylm ( , ) 状态,利用上题结果求 l x , l y 12、利用力学量的平均值随时间的变化,求证一维自由运动的 X 2 随时间的变
7
化为:
X X
2 t 2
0

2
2 1 1 2 XP X p X X 0 x 0 p x 0 t2C CB 2iA
AC CA 0 ;
(2)在 A 表象中,求 B 和 C 矩阵表示。
p2 x 7、设 H V ( x ), 分别写出 x 表象和 Px 表象中 x, p x 及 H 的矩阵表示。 2
2 0 0 在正交基矢 1 , 2 和 3 展开的态空间中, 某力学量 A a 0 0 1 求 8、 0 1 0


论?(其中 k 为实数) 4、一维运动的粒子处于
Axe x x 0
的状态,其中
x0 x0
0, 求归一化系数 A 和粒子动量的几率分布函数。
0
5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证
其中
j/
6、一维自由运动粒子,在 t
12
在态

1 1 1 1 2 3 中测量 A 的可能值,几率和平均值。 2 2 2
13
第七章 自

1、设 为常数,证明 e 2、若
i z
cos i z sin 。
1 x i y , 证明 2 0 2 3、 在 z 表象中, 求 n 的本征态, nsin con, sin sin , cos 是 (, )
6.64 10 24 克 ;
(3)飞行速度为 100 米/秒,质量为 40 克的子弹。 2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等, 问要实现这种转化,光子的波长最大是多少? 3、利用 de Broglie 关系,及园形轨道为各波长的整数倍,给出氢原子能量 可能值。
ˆ B ˆ 1 A ˆ 1B ˆ 1 2 A ˆ 1 2 A ˆ 1B ˆ 1B ˆ 1 ˆ ) 1 A ˆA ˆA ˆA (A
8、如 u ni 是能量 E n 的本征函数( i为简并指标 ) ,证明
u ni xp x p x x u nj dx 0
V1( x )
1 2 kx 2
k0
(1)若弹性系数 k 突然变为 2k ,即势场变为
4
V2( X ) kx 2
随即测量粒子的能量,求发现粒子处于新势场 V2 基态几率; (2)势场 V1 突然变成 V2 后,不进行测量,经过一段时间 后,势场又恢复成 V1 , 问 取什么值时,粒子仍恢复到原来 V1 场的基态。 8、设一维谐振子处于基态,求它的 x
2
, p 2 x ,并验证测不准关系。
5
第四章
量子力学中的力学量
1、
若H

1 2 2 2 px py pz V( x ,y ,z ) 2 i V , x


证明: [ H , Px ]
[ H , x ] i
2、设
px ,
q, p f (q) 2ihpf , (2) p , p f (q ) p f ; i
9、粒子作一维运动,其哈密顿量
2 px H0 Vx 2m
的能级为 E n ,试用 Feynmen
(0)
Hellmann 定理,求 Px m
H H0
的能级 E n 。
10、设有两个一维势阱
V1 x V2 x
若粒子在两势阱中都存在束缚能级,分别为 E1n , E 2n (1)证明 E1n (提示:令 V
12、计算氢原子中 3D
14、设带电粒子在相互垂直的均匀电场 E 及均匀磁场 B 中运动,求其能谱和波
函数(取磁场方向为 Z 轴方向,电场方向为 X 轴方向) 。
11
第六章
量子力学的矩阵形式及表象理论
1、列出下列波函数在动量表象中的表示
(1)一维谐振子基态:
x, t
1
3 a n
n 1,2
E 2n
, x 1 V1 V2
1 2 2 KX 1 Kb 2 2
x b x b
(2)若粒子的势场
V( X )
中运动,试估计其束缚能总数的上、下限
10
11、证明在规范变换下
j
1 ˆ ˆ P ˆ q A P 2 c
这即“出射”波和“入射”波之间的关系,
3
S11
证明:
2 2
S12 S 22
2 2
1 1
S 21
S11S12 S 21S 22 0
这表明 S 是么正矩阵 4、试求在半壁无限高位垒中粒子的束缚态能级和波函数
VX 0 V 0
5、求粒子在下列位场中运动的能级
1
第二章
波函数与波动力学
1、设
x
1 a 2x 2 Ae 2
a为常数
(1)求归一化常数 (2) x 2、求 1 3、若
?, p x ? .
1 1 e ikr 和 2 e ikr 的几率流密度。 r r
A e kx Be kx , 求其几率流密度,你从结果中能得到什么样的结
x0 0xa xa
x0 x0
VX 1 2 2 x 2
6、粒子以动能 E 入射,受到双 势垒作用
Vx V0 ( x ) ( x a )
求反射几率和透射几率,以及发生完全透射的条件。
7、质量为 m 的粒子处于一维谐振子势场 V1 ( x) 的基态,
ˆB ˆ 是厄密算符的条件。 (2)求出 A
5、证明:
ˆ ˆ e L ˆ 1 L ˆ, 1 L ˆ ˆ,A ˆ, L ˆ ,A ˆ, L ˆ, L ˆ ,A eL A A L 2! 3! ˆ ,B ˆ 都对易,证明 6、如果 A , B 与它们的对易子 A

ˆ B

ˆ
0 时,波函数为
x , 0 x
求:
( x, t ) ?
2
2
第三章
一维定态问题
1、粒子处于位场
相关文档
最新文档