第5讲 随机过程的基本概念

合集下载

(完整版)随机过程知识点汇总

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x)p kf (t)dt分布函数kxX 的概率分布用概率密度 f (x)F(x)分布函数连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,)其联合分布函数 1 2 n 1 1 2 离散型联合分布列连续型联合概率密度3.随机变量 的数字特征 数学期望:离散型随机变量 XEX x p kkXEX xf (x)dx连续型随机变量2DX E(X EX) 2 EX (EX) 2方差:反映随机变量取值 的离散程度协方差(两个随机变量 X ,Y ):B E[( X EX)(Y EY)] E(XY) EX EYXYB XY相关系数(两个随机变量X,Y ):0,则称 X ,Y 不相关。

若XYDX DY独立不相关itXg(t) E(e )itxe p k 连续 g(t)ke itxf (x)dx4.特征函数离散 g(t) 重要性质: g(0) 1,g(t) 1 g( t) g(t),, g (0) i EX kk k5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布P( X 1) p,P( X 0) qEX pDX pqP(X k) C p q n kk kEX npDX n p qnk泊松分布P( X k) ek!EXDX均匀分布略( x a)21 2N(a, ) f (x)222EX a正态分布eDX2xe ,x 0 0, x 011指数分布f (x)EXDX2X (X ,X , ,X ) 的联合概率密度 X ~ N(a, B) 6.N维正态随机变量1 2 n11 2T 1(x a) B (x a)}f (x , x , , x n ) exp{ 11 2n 2(2 ) | B |2a (a ,a , ,a ), x (x , x , ,x ), B (b ) 正定协方差阵 1 2 n 1 2 n ij n n二.随机过程 的基本概念 1.随机过程 的一般定义设 ( , P)是概率空间, T 是给定 的参数集,若对每个 t T ,都有一个随机变量 X 与之对应, X(t,e),t T ( , 是P)上 的随机过程。

随机过程基本概念

随机过程基本概念

定义
随机过程{(X(t),Y(T)), tÎT}的任意有限维分布都是正态分布
随机过程{X(t), tÎT}和{Y(t), tÎT}相互独立的充要条件是不相关
复值二阶矩过程
数字特征
独立增量过程
实值随机过程{X(t), tÎT},对任意的 相互独立
,随机变量
二阶矩过程{X(t), tÎT}是独立增量过程,其中T=[a,¥),且X(a)=c,c为实常数
性质
非负性 对称性 非负定性
换算
二维随机过程和复值随机过程
二维随机过程 复值随机过程
两个随机过程{X(t), tÎT}和{Y(t), tÎT},{(X(t),Y(T)), tÎT}为二维随机过程,可 简记为{(X(t),Y(T))}或(X(t),Y(T))
二维随机过程{(X(t),Y(T)), tÎT}为m+n维分布函数:
有限维分布族
二维随机过程{(X(t),Y(T)), tÎT}的所有1+1维分布函数、1+2维分布函数、2+1 维分布函数···构成的分布函数族为二维随机过程{(X(t),Y(T)), tÎT}有限维分布函 数组
独立
随机过程{X(t), tÎT}和{Y(t), tÎT}相互独立
数字特征
二维随机过程{(X(t),Y(T)), tÎT},随机过程{X(t), tÎT}和{Y(t), tÎT}的互相关函 数
有限维分布函数族:一维,二维···分布函数族的全体
有限维分布函数的性质
对称性 相容性
对(1,2,···,n)的任一排列(j1,j2,···,jn)有 对m<n,有
密度函数
一维密度函数:对每一个tÎT,X(t)有密度函数 一维密度函数族: n维密度函数: n维密度函数族:

随机过程的基本概念

随机过程的基本概念

随机过程的基本概念随机过程是随机现象的数学模型,是一种以时间为自变量而取随机数值的函数族,是概率论和数理统计中的重要工具之一。

本文将从定义、性质、分类等方面论述随机过程的基本概念。

一、随机过程的定义随机过程是由一个随机变量族{Xt}(t∈T)所组成的集合的统称,其中T为时间参数集合。

换言之,随机过程是时间与随机变量的集合关系,其中随机变量的取值是时间变化的函数。

随机过程可以用X(t)表示,其中t表示时间,X表示在时间t处的随机变量。

简单来说,随机过程就是为一组日期指定随机变量,使得这些随机变量与其日期相关联。

每个随机变量表示特定日期发生的随机事件。

二、随机过程的性质1. 一般随机过程:随机变量群体的每个成员都需要一个完整的概率空间,并且具有一个抽象的时间参数集合。

因此,一般随机过程的样本空间往往是所有该样本空间下所有概率空间的笛卡尔积。

2. 同伦:如果存在同伦t:s→t+s(s∈S),使得随机过程{Xt}具有相同的联合概率分布,则称该随机过程在t上存在同伦。

3. 马尔科夫性质:在一个离散时间的随机过程中,前时刻的状态随后时刻的状态条件独立,且只与当前状态有关,而与以前的任何状态无关,称之为马尔科夫性质。

三、随机过程的分类1. 离散时间:随机变量在离散位置上取值,时间参数集合为整数集,可表示为{Xn}。

2. 连续时间:随机变量在连续位置上取值,时间参数集合为实数集,可表示为{X(t)}3. 马尔科夫过程:随机过程满足马尔科夫性质的过程,由此得名。

4. 二元过程:仅具有两个状态变量,称之为二元过程。

四、随机过程的应用随机过程广泛应用于电信、生物工程、金融、天气预报等领域。

其中,离散时间的随机过程广泛应用于通信领域,如编码、压缩、调制等;连续时间的随机过程用于天气预报、环境工程、资产定价等领域。

在工程领域,随机过程也有广泛应用。

例如,可以使用随机过程模型预测质量的保证水平。

需要重视的是,应用随机过程模型时,要注意模型的精度和可行性,避免虚假模型带来的风险。

随机过程-1随机过程基本概念

随机过程-1随机过程基本概念

均方值 Ψ X (t) EX 2 (t) DX (t) EX 2 (t) [EX (t)]2 Ψ X (t) mx2 (t)
二、随机过程的协方差函数和相关函数 对于任意固定的 t1,t2 T , X1(t), X 2 (t) 为随机变量。 相关系数:
(t1, t2 )
cov[X (t1), X (t2 )] , DX (t1) DX (t2 )
2a / 2
§2 随机过程数字特征
一、随机过程的数学期望和方差
{X (t),t T} 在任意固定时刻均是一个随机变量,因此 随机过程的期望和方差是t的函数。
数学期望(函数)

mX (t) EX (t)
xdF(x,t), t T

方差(函数)
DX (t) DX (t) E[ X (t) mX (t)]2 , t T
X(t)的(自)相关函数
RX (t1, t2 ) EX (t1) X (t2 ), t1, t2 T
二者之间的关系 CX (t1, t2 ) RX (t1, t2 ) mX (t1)mX (t2 ), t1, t2 T
若 t1 t2 t CX (t,t) E[ X (t) mX (t)]2 DX (t) DX (t)
X (t,0 ) —— 随机过程的样本函数或样本曲线,也称为现
实曲线。
样本空间——样本函数的全体。
例5中,若 P{Φ 0} P{Φ }
条曲线构成。
1 ,则 2
Ω

x1(t), x2 (t)

X (t0 ,0 ) —— 样本函数在t0处的数值。
随机过程可简记为:
{X (t),t T}

随机过程的基本概念及类型

随机过程的基本概念及类型
应用数理统计与随机过程
第七章 随机过程的基本概念及类型
第一章 概率论基础
目录 Contents
7.1
随机过程的基本概念
7.2
随机过程的分布率和数字特征
7.3
复随机过程
7.4
几种重要的随机过程
7.1 随机过程的基本概念
通俗地讲, 用于研究随机现象变化过程的随机变量 族称为随机过程.
7.1.1 随机过程的实例
当 t1 t2 t 时,
DX (t )
2 X
(t)
BX
(t,t)
RX
(t,t
)
m
2 X
(t)
最主要的数字特征
mX (t) E[X (t)]
均值函数
RX(t1, t2 ) E[X (t1 )X (t2 )] 自相关函数
7.2 随机过程的分布律和数字特征
例7.2 设随机过程 X (t ) Y cos( t) Z sin( t), t 0, 其中 Y , Z 是相互独立的随机变量, 且 EY EZ 0, DY DZ 2 , 求 {X (t ) t 0}的均值函数 mX (t) 和 协方差函数 BX (s, t).
RW (s, t) E[W (s)W (t)] E[( X (s) Y (s))( X (t ) Y (t ))]
E[ X (s)X (t) X (s)Y (t) Y (s)X (t ) Y (s)Y (t)]
7.2 随机过程的分布律和数字特征
E[ X (s)X (t)] E[ X (s)Y (t)] E[Y (s)X (t)] E[Y (s)Y (t)]
◎ 显然有关系式 BX (s, t) RX (s, t) mX (s)mX (t) , s, t T .

随机过程的基本概念ppt课件

随机过程的基本概念ppt课件
求X(t)的均值、均方值和方差。
.
2.3 平稳随机过程
三、相关系数及相关时间
也称为归一化协方差函 数或标准协方差函数。
相关系数: rX()KXX 2 ()RX()X 2mX 2
相关时间:
0
0 rX()d
rX ( )
1
rX(0) 0.05
0
0
相关时间示意图
.
2.3 平稳随机过程
三、相关系数及相关时间
为随机过程X(t)的二维概率分布。定义
fX(x1,x2,t1,t2)2FX(xx11,xx22,t1,t2)
为随机过程X(t)的二维概率密度。 注意:X(t1)及X(t2)为同一随机过程上的随机变量。
.
2.2 随机过程的统计描述
2、二维概率分布
例2、设随机相位信号
X (n )co s( n/1 0 )
.
2.2 随机过程的统计描述
二、随机过程的数字特征(连续)
• 协方差函数
K X ( t 1 , t 2 ) E { [ X ( t 1 ) m X ( t 1 ) ] [ X ( t 2 ) m X ( t 2 ) ] } (1)如果 KX(t1,t2)0,则称 X (t1 )和 X (t2 )是不相关的。
.
2.3 平稳随机过程
一、定义
(1)严格平稳随机过程
f X ( x 1 , ,x n ,t 1 , ,t n ) f X ( x 1 , ,x n ,t 1 , ,t n )
一维概率密度: fX(x,t)fX(x)
二维概率密度: fX (x 1 ,x 2 ,t1 ,t2 ) fX (x 1 ,x 2 ,) t1 t2
接收机噪声
5
x1(t) 0

随机过程的基本概念和分类

随机过程的基本概念和分类

随机过程的基本概念和分类随机过程是一种随时间和其他随机变量而变化的数学对象,是概率论和统计学中的重要概念。

它被广泛应用于自然科学、工程学、经济学、金融学和社会科学等领域。

本文将介绍随机过程的基本概念和分类,帮助读者更好地理解随机过程的本质和应用。

1. 随机过程的基本概念随机过程是由一组随机变量组成的序列或函数,它表示在一定随机环境下某个系统或现象的发展过程。

在随机过程中,时间通常是一个自变量,而随机变量则是随时间变化的函数或序列。

根据定义域的不同,随机过程可以分为离散时间和连续时间两种类型。

离散时间的随机过程是在离散时间点上的序列,例如投骰子的过程。

连续时间的随机过程是在连续时间上的函数,例如天气的变化。

在通常情况下,连续时间的随机过程被认为是一个时间的连续函数,而离散时间的随机过程则表示为时间的离散序列。

随机过程可以用概率分布函数来表达。

对于连续时间的随机过程,它的概率分布函数是一个满足概率公理的函数。

对于离散时间的随机过程,概率分布可以用概率质量函数来描述。

概率分布函数可以通过研究随机过程的瞬时状态来推导。

随机过程的瞬时状态指位置和方向的一切资料,包括当前位置、速度和加速度等。

2. 随机过程的分类随机过程可以按照多种方式进行分类。

以下是一些常见的分类方式。

2.1 马尔可夫过程马尔可夫过程是一种随机过程,它的状态转移只与它的当前状态有关,而与过去状态和未来状态无关。

马尔可夫过程被广泛应用于物理、经济、金融和信号处理等领域。

根据定义域的不同,马尔可夫过程可以分为离散时间和连续时间两种类型。

离散时间的马尔可夫过程可以用转移矩阵来描述,而连续时间的马尔可夫过程则可以用转移概率密度函数来描述。

2.2 平稳过程平稳过程是指在不同时间段内,随机过程的统计分布不随时间而改变的随机过程。

这意味着它的瞬时状态空间必须一致,并且在不同的时间点上具有相同的概率分布。

平稳过程的例子包括白噪声、布朗运动和马尔可夫过程等。

简述随机过程的基本概念

简述随机过程的基本概念

简述随机过程的基本概念随机过程是概率论的一个重要分支,研究随时间变化的随机现象。

它描述的是随机变量随时间的变动规律,并通过概率论的方法研究其统计特性。

随机变量是随机过程的基本组成部分,表示在给定的实验空间中,某一随机事件所对应的数值。

随机变量可以是离散的(比如抛硬币的正反面),也可以是连续的(比如投掷骰子的点数)。

随机过程可分为离散时间随机过程和连续时间随机过程两种类型。

离散时间随机过程是指在离散的时间点上进行观测,比如某一事件在每个小时的发生概率。

离散时间随机过程通常用随机序列来描述,其中每个随机序列代表不同的事件。

连续时间随机过程是指在连续的时间段内进行观测,比如某一事件在每个时间段内的发生概率。

连续时间随机过程可以通过概率密度函数来描述。

随机过程有两个重要的性质:平稳性和马尔可夫性。

平稳性是指随机过程的统计特性在时间上保持不变。

强平稳性要求整个随机过程的概率分布在时间上保持不变,弱平稳性只要求随机过程的均值和自相关函数在时间上保持不变。

马尔可夫性是指在给定过去的条件下,未来的状态只与当前状态有关。

这意味着给定当前的状态,过去的状态对于预测未来的状态是无关的。

随机过程可以通过随机过程的定义、概率密度函数、特征函数等进行建模和描述。

常用的随机过程模型包括泊松过程、马尔可夫链、布朗运动等。

泊松过程是离散时间且符合强平稳性和马尔可夫性的随机过程。

泊松过程描述了在一段时间内随机事件发生的次数,常用于描述到达某个服务中心或系统的流量。

马尔可夫链是具有马尔可夫性的随机过程。

在马尔可夫链中,系统的状态在不同的时间段内转移,且转移的概率只与当前的状态有关。

这种随机过程常用于描述具有一定变化规律的系统,如天气系统、金融市场等。

布朗运动是连续时间且连续状态的随机过程,它具有良好的连续性和马尔可夫性质。

布朗运动常用于建模和描述股票价格、汇率波动等金融领域中的随机变动。

随机过程的研究可以用于预测和分析各种现实生活中的随机变化。

随机过程的基本概念与应用

随机过程的基本概念与应用

随机过程的基本概念与应用随机过程是概率论中研究一系列随机事件在时间上的演化规律的重要分支。

它在各个领域都有着广泛的应用,在通信、控制、金融、生物、物理等方面都发挥着重要作用。

一、随机过程的基本概念1.1 随机过程的定义随机过程是指一组随机变量${X_t}$,其中$t$表示时间,$X_t$表示在时间$t$时刻随机变量的取值。

随机过程是随机变量的函数族,常用记号为${X_t:t\in T}$。

其中$t$取遍$T$所表示的时间集合,$T$可以是实数集、整数集或其他有限或无限集合。

1.2 随机过程的分类随机过程根据其时间变化的连续性与离散性可以分为连续时间随机过程和离散时间随机过程两种。

连续时间随机过程是指随机变量在时间上是连续的,如布朗运动、泊松过程等。

离散时间随机过程是指随机变量在时间上是离散的,如马尔可夫过程、随机游走等。

1.3 随机过程的性质随机过程具有多种性质,包括平稳性、独立性、齐次性等。

其中比较重要的平稳性是指在时间平移下,随机过程的统计性质保持不变,即一个随机过程是平稳的,当且仅当对于任意$t_1,t_2$,其一阶矩和二阶矩不随时间变化而改变。

例如,设随机过程${X_t:t\geq 0}$的均值为$\mu$,方差为$\sigma^2$,则其平稳性条件为:$$\mathbb{E}[X_t]=\mu, \ \forall t\geq 0$$$$\mathbb{E}[(X_s-\mu)(X_t-\mu)]=\sigma^2, \ \forall s,t\geq 0$$二、随机过程的应用随机过程在许多领域中都有着广泛的应用。

以下列举其中几个典型应用。

2.1 通信领域随机过程在通信领域中是必不可少的工具。

通信信号可以看作是一种随时间变化的随机过程,而信道则可看作是一种将输入信号映射成输出信号的随机过程。

因此,随机过程在信号调制、信噪比估计、编码等方面都有着广泛的应用。

2.2 控制领域在控制领域中,随机过程被广泛用于表示、建模和分析控制系统的动态特性。

随机过程课件

随机过程课件

随机过程课件随机过程课件随机过程是概率论与数理统计中的重要概念,它描述了随机变量随时间的演化规律。

在现代科学和工程领域,随机过程被广泛应用于信号处理、通信系统、金融市场等众多领域。

本文将介绍随机过程的基本概念、分类以及一些常见的应用。

一、随机过程的基本概念随机过程是一族随机变量的集合,它描述了随机变量随时间的变化。

在数学上,随机过程可以用函数的形式表示,即X(t),其中t表示时间,X(t)表示在时间t时刻的随机变量。

随机过程可以分为离散时间和连续时间两种类型。

离散时间随机过程是指随机变量在离散时间点上的演化,例如抛硬币的结果、骰子的点数等。

连续时间随机过程是指随机变量在连续时间上的演化,例如股票价格的变动、电信号的传输等。

二、随机过程的分类根据随机过程的性质和演化规律,可以将其分为多种类型。

常见的分类包括马尔可夫过程、泊松过程、布朗运动等。

1. 马尔可夫过程马尔可夫过程是指在给定当前状态下,未来的演化只与当前状态有关,与过去的状态无关。

马尔可夫过程具有“无记忆”的特性,常用于描述具有时序性质的问题,如排队系统、信道传输等。

2. 泊松过程泊松过程是一种用于描述随机事件的发生次数的随机过程。

它具有独立增量和无记忆性的特点,常用于描述到达率恒定的随机事件,如电话呼叫、交通流量等。

3. 布朗运动布朗运动是一种连续时间的随机过程,其演化规律由随机变量驱动。

布朗运动具有连续性、无界性和马尔可夫性等特点,广泛应用于金融市场、物理学等领域。

三、随机过程的应用随机过程在现代科学和工程领域有着广泛的应用。

以下列举几个常见的应用领域。

1. 信号处理随机过程在信号处理中起到了重要的作用。

通过对信号进行建模,可以利用随机过程的理论和方法对信号进行分析和处理,如图像压缩、语音识别等。

2. 通信系统随机过程在通信系统中也有着重要的应用。

通过对信道的建模,可以利用随机过程的理论来分析和优化通信系统的性能,如误码率分析、信道编码等。

随机过程的基本概念与分类

随机过程的基本概念与分类

随机过程的基本概念与分类随机过程是概率论的一个重要分支,在不同领域如金融、通信、生物学等都有广泛的应用。

它描述的是一组随机变量的演化规律,具有许多重要的特性和分类方式。

本文将介绍随机过程的基本概念和分类方法。

一、基本概念随机过程由一个或多个随机变量组成,这些随机变量的取值取决于一个或多个参数,如时间。

随机过程可以定义为函数的族,其中函数的输入参数是随机变量,输出是实数或向量。

常用的随机过程有离散时间和连续时间两种。

在离散时间随机过程中,随机变量类似于离散的时间点,通常用n表示。

每个时间点上都有一个随机变量X(n)与之相关。

连续时间随机过程则对应于时间变量连续变化的情况,通常用t表示。

每个时间点上都有一个随机变量X(t)与之相关。

随机过程的演化可以通过转移概率描述。

转移概率表示从一个时间点到另一个时间点的跳转概率,常用P(i,j)表示从状态i到状态j的概率。

二、分类方法1. 马尔可夫链马尔可夫链是一个简单的、具有重要应用的随机过程。

它具有马尔可夫性质,即未来状态只与当前状态有关,与历史状态无关。

马尔可夫链有着平稳分布,并且可以通过转移概率矩阵进行描述。

2. 马尔可夫过程马尔可夫过程是一种时间连续的随机过程。

它的转移概率与时间无关,但与前一状态有关。

常见的马尔可夫过程有泊松过程、连续时间马尔可夫链等。

3. 马尔可夫决策过程马尔可夫决策过程是一种在马尔可夫过程基础上引入决策的模型。

它包括状态空间、决策空间、转移概率、奖励函数等要素。

马尔可夫决策过程在决策分析、控制理论等领域有广泛应用。

4. 平稳随机过程平稳随机过程是指在统计特性上不随时间改变的过程。

平稳随机过程具有恒定的概率分布和自相关函数。

常见的平稳随机过程有白噪声、自回归过程等。

5. 随机游走随机游走是一种具有随机性的移动方式。

它可以用来模拟股市价格、随机漫步等现象。

随机游走中的步长和方向通常是随机变量,可以是离散的或连续的。

6. 马尔可夫随机场马尔可夫随机场是一种描述多变量间关系的图模型。

随机过程基础

随机过程基础

随机过程基础随机过程是概率论中一个重要的分支,用于描述随机现象的演化规律和统计特性。

本文将介绍随机过程的基础概念、性质和常见的模型类型。

一、随机过程的概念随机过程是指由一组随机变量组成的函数族 {X(t), t ∈ T},其中 T是一组时间指标。

随机过程可以看作是随机变量随时间的变化过程。

随机过程可以分为离散时间和连续时间两种类型。

离散时间随机过程:当时间指标集 T 为离散集合时,称为离散时间随机过程。

常见的离散时间随机过程有马尔可夫链和泊松过程。

连续时间随机过程:当时间指标集 T 为连续集合时,称为连续时间随机过程。

连续时间随机过程可以用随机微分方程进行描述,常见的连续时间随机过程有布朗运动和扩散过程。

二、随机过程的性质1. 状态空间:随机过程的状态空间是指随机变量 X(t) 可能取值的集合。

2. 轨道:对于固定的时间参数 t,随机过程的轨道是随机过程的一个实现,称为一个样本函数。

3. 随机过程的均值函数和自相关函数:对于随机过程 {X(t), t ∈ T},定义均值函数和自相关函数如下:均值函数:μ(t) = E[X(t)]自相关函数:R(t1, t2) = E[(X(t1) - μ(t1))(X(t2) - μ(t2))]均值函数描述了随机过程在不同时间点的平均值,自相关函数描述了不同时刻的随机变量之间的相关性。

4. 平稳性:如果对于任意的时刻 t1 和 t2,二者的联合分布仅仅依赖于时间差 t2 - t1,而不依赖于具体的时刻 t1 和 t2,那么称该随机过程是平稳的。

三、常见的随机过程模型1. 马尔可夫过程:马尔可夫过程是一类具有马尔可夫性质的随机过程。

在马尔可夫过程中,未来的状态只与当前的状态有关,与过去的状态无关。

2. 泊松过程:泊松过程是一类具有独立增量和平稳增量的随机过程。

泊松过程常用于描述具有随机到达时间和随机离去时间的事件。

3. 布朗运动:布朗运动是一类连续时间的随机过程,具有无记忆性和独立增量性质。

随机过程随机过程的基本概念

随机过程随机过程的基本概念

2.2 随机过程的分类和举例
随机过程可以根据参数集 T 和状态空间 S 是离散集还是
连续集分为四大类.
1、离散参数、离散状态的随机过程 这类过程的特点是参数集是离散的,同时固定t ∈T, X(t)是离散型随机变量即其取值也是离散的。

例 2.2.1(贝努利过程)考虑抛掷一颗骰子的试验,设Xn
是第n(n≥1)次抛掷的点数,对于n=1,2,…的不同值, Xn是
,它不能用一个或几个随机变量来刻画,而要用一族无穷多
个随机变量来描绘,这就是随机过程. 随机过程是概率论的继续和发展. 被认为是概率论的“动力学
”部分. 它的研究对象是随时间演变的随机现象.
事物变化的过程不能用一个(或几个)时间t 的确定的函数 来加以描述. 对事物变化的全过程进行一次观察得到的结果是一个时间t 的 函数,但对同一事物的变化过程独立地重复进行多次观察所 得的结果是不同的,而且每次观察之前不能预知试验结果.
(3) 当 t
的分布函数为
1, x 0 F ( x) X( ) 0, x 0 2
第2章 随机过程的基本概念
2.1 随机过程的定义 2.2 随机过程的分类和举例 2.3 随机过程的有限维分布函数族 2.4 随机过程的数字特征 2.5 两个随机过程的联合分布和数字特征 2.6 复随机过程 2.7 几类重要的随机过程
“电压—时间函数”是不可能预先确知的,只有通过测量
才能得到. 如果在相同的条件下独立地再进行一次测量, 则得到的记录是不同的.
2.1 随机过程的定义
所谓一族随机变量,首先是随机变量,从而是该试验样
本空间上的函数;其次形成一族,因而它还取决于另一
个变量,即还是另一参数集上的函数. 所以,随机过程 就是一族二元函数. 定义2.1.1 设(Ω, F , P)是一个概率空间,T 是一个实的参 数集,定义在Ω 和T 上的二元函数 X(ω,t),如果对于任

随机过程基本概念

随机过程基本概念

X(t)
X(t) A cos(t )
样本曲线x1(t)
状态X(t0)
t0
状态X(t0)
t 样本曲线x2(t)
随机过程定义
设(Ω,F,P)为一概率空间,T为一参数集,T R,
若对每一 t ∈T,均有定义在(Ω,F,P)上的一个 随机变量X(ω,t),(ω∈Ω)与之对应,则称 X(ω,t)为(Ω,F,P)上的一个随机过程(Stachastic Processes,简记为:S.P.)
对任意t∈T, X (t)为一随机变量.称其分布 函数 F (t ; x)=P(X(t) ≤x), x ∈R 为随机过程{X(t),t∈T}的一维分布函数.
2.二维分布函数
对任意固定的t1,t2∈T, X (t1) ,X (t2)为两个随 机变量.称其联合分布函数 F (t1,t2; x1, x2)=P(X(t1) ≤x1, X(t2) ≤x2 ), x1, x2∈R 为随机过程{X(t),t∈T}的二维分布函数.
4.根据参数集与状态空间离散与否,随机过程可分为
参数,连续状态的随机过程
● 连续参数,离散状态的随机过程
● 连续参数,连续状态的随机过程
参数集为离散的随机过程也称为随机序列, 或时间序列.

随机过程的有限维分布函数族
设{X(t),t∈T}是S.P.
1.一维分布函数
3. n维分布函数
对任意固定的t1,t2, …,tn∈T, X (t1) ,X (t2),…, X (tn)为n个随机变量.称其联合分布函数
F (t1,t2 ,…,tn ; x1, x2,…, xn) = P(X(t1) ≤x1, X(t2) ≤x2 … X(tn) ≤xn ) x1 x2,…, xn ∈R 为随机过程{X(t),t∈T}的n维分布函数.

随机过程的基本概念31页PPT

随机过程的基本概念31页PPT


29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
31
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
随机过程的基本概念
6







天高风景 Nhomakorabea澈

7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0
















26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)对称性:对于1,2,…,n 的任意排列(1),(2),…,(n) 有
t ,...t (F1 ... Fn ) t
1 n
(1) ,
t ( n)
(F (1)
F ) (n)
(2)相容性:对于任意的自然数 k ,m,
t , t (F1 Fk ) t ,
5
1.5.2 随机过程的数字特征及有限维分布族
定义 1.5.1 设{Xt,tT} 为(,F, P) (E,E )随机过程, 令 t1 , tn (F1 F2 Fn ) P[ X t1 F1, , X tn Fn ]; ti T 其中F1× ..., × FkE. 称 {t t : ti T ,1 i n, n 1} 为随 机过程{Xt,tT} 的有限维分布族.
n n ( E,E ) ( R,B ( R)) 或 ( E,E ) ( R ,B ( R ))
2
数学解释:可认为{X (,t), t T }是定义在T上 的二元函数。当t固定时, X(,t)是r.v.(stat) ,当固定时, X(,t)是定义在T上的普通函数, 称为随机过程的样本函数或轨道(path),样本函数 的全体称为样本函数空间。
k
9
例1.5.2. 求随机过程 X (t ) X cosbt, 的一维密度函数族.这里b 是常数, X是标准正态随机变量. 解:(1)当cosbt≠0时,由X(t)=Xcosbt,X~N(0,1)知 X(t)~N(0,cos2bt),则X(t)的一维密度函数为
1 2cos2 bt f t ( x) e , x 2 cos bt x2
随机数学
第 5讲 随机过程的基本概念
教师: 陈 萍 prob123@
1
1.5 随机过程的基本概念
1.5.1 随机过程的概念与举例
定义 1.5.10 设 (,F, P)为概率空间, (E,E )为可测空 间,TR ,若t T , X t : E ,且 t给定时,Xt关于F 可测,则称 X t,t T 为 (,F, P) 上取值于E 的随机过 程. 此时, X t()表示在时刻t系统的状态。称 (E,E )为相空 间或状态空间;称 T为参数集或时间域; 通常取
1 k 1
,tk ,tk 1 , ,tkm
(F1
Fk E
E)
反之, (Kolmogorov’s 扩张定理). 对一切 t1 , , t k T , k N 令 vt1 ,...,t k 为Ek上满足以上
性质(1) (2)的概率测度,则存在概率空间 (,F, P)
及定义在 上取值于E的随机过程{Xt} ,使得 vt1 , ,tk ( F1 Fk ) P[ X t1 F1 , , X t Fk ]
(2)当cosbt=0时, X(t)不存在一维密度函数. 故{X(t)}的一维密度函数族为
x 1 1 2 2cos bt e ; t R, t k , k 0, 1, 2,... f t ( x) b 2 2 cos bt 10
16
§1.5.3 几类典型的随机过程
(1) 独立随机序列
对于任意n个不同的参数t1,· · · ,t n T , r.v. X(t1),· · · , X(t n)相互独立,这样的随机序列称为独立 随机序列。
(2) 独立增量过程 定义1.3.1 若随机过程 X t , t 0 满足 s t 增量
RX (t1, t2 ) E[ X t1 X t2 ]
为随机过程{Xt,tT}的自相关函数(correlation),简称相 关函数.
12
(5)称Xt1和Xt2的二阶混合中心矩
C X (t1 , t2 )E [ X t1 X (t1 )][ X t2 X (t2 )]
为随机过程{Xt,tT}的自协方差函数covaricance, 简称协方差函数.
4
u 3S
u2S
uS S dS udS
u 2 dS
ud 2 S d 2S d 3S
u 3 dS u 2d 2 S
ud 3 S
4
h P S n u h d n h S Cn 0.5n ,
d S
随机过程可按时间 ( 参数 ) 是连续的或离散的分为 两类: (1) 若 T 是有限集或可列集时 , 则称为离散参数随机 过程或随机序列. (2) 若 T 是有限或无限区间时 , 则称为连续参数随机 过程. 随机过程也可按任一时刻的状态是连续型随机变 量或离散型随机变量分为两类: (1) 若对于任意 t j T , X (t j ) 都是离散型随机变量 , 称 X (t ), t T 为离散型随机过程; (2)若对于任意 t j T , X (t j ) 都是连续型随机变量, 称 X (t ), t T 为连续型随机过程.
11
(3) 随机变量Xt的方差
2 X (t ) Var[ X t ] E [ X t X (t )]2 ,
称为随机过程{Xt,tT},的方差函数(Varance)
(4) 设Xt1和Xt2是随机过程{Xt,tT}在任意二个时刻 t1和t2时的状态.称Xt1和Xt2的二阶混合原点矩
它的均值函数、协方差函数、相关函数和方差 函数分别定义如下: μZ (t)= E[Zt]=EXt+i EYt ,t T
CZ (s, t ) E{[Zs mZ (s)][Zt mZ (t )]}, s, t T
RZ (s, t ) E[Zs Zt ], s, t T
2Z (t ) E{[Zt mZ (t )][Zt mZ (t )]} E[| Zt mZ (t ) |]2 , t T




{ pt1 ,
.xn ) t1, ,tn ( x1 ,
, tn T , n Z }
称为{Xt,t T }的有穷维概率分布族。

设{X (t), t T }为随机过程,称
t ,,t ( 1 ,, n ) Ee
1 n
i
k X (tk )
k 1
n
为{X (t), t T}的n维特征函数;称
X t X s与 Fs Xu , u s 独立,则称为独立增量过程.
或等价地写作…
17
过程 X t , t T 满足,对任意 t1 < t2 < · · · < t n ∈T, Xt 的增量 X t2 X t1 , X t3 X t2 , , X tn X tn1 相互独立, 这样的随机过程称为独立增量过程。 特别地, 若独立增量过程{X(t),tT}满足增量平稳性, 则称{X(t),tT}为具有平稳增量(或时齐)的独立增量 过程; 进一步,若具有平稳增量的独立增量过程{X(t),tT}满足 (1)参数集T 连续; (0)P{X(0)=0}=1 则称过程{X(t),tT}为Levy过程.
2
定义1.5.2 给定随机过程{Xt,tT}, 给定t,
(1)随机变量Xt的均值或数学期望与t有关,记为
X (t) E[ X t]
称X(t)为随机过程Xt的均值函数(Mean) (2) 随机变量Xt的二阶原点矩
2 2 ( t ) E [ X X t ],
称为随机过程{Xt,tT},的均方值函数.
18
例 1.5.4 设{Xt,tT}是独立增量过程,且增量平稳, P{X0=0}=1,求证:增量的分布完全决定任意有穷维 分布. 证:不妨设X0=0。则s0, t>0, Xt的特征函数
t ( ) Ee
决定了Xs+t-Xs的分布. i 1 X t1 2 X t2 t1 t2 , t1 ,t2 (1 , 2 ) E e i 1 X t1 2 ( X t2 X t1 ) 2 X t1 E e
1 n
特别,对于一维随机过程{X (t), t T } 任意 nZ 和 t1,· · · ,t n T,随机向量(X t1 ,· · · , X t n )’ 的分布函数全体
+
称为{Xt,t T }的有穷维分布函数族。
{Ft1 ,
,tn
( x1, .xn ), t1 ,
, tn T , n Z }
6

若对 t1 ,..., tn ,随机向量 X t1 ,..., X tn 有密度函数, 则 这些密度函数的全体 { ft1 , ,tn ( x1, .xn ), t1, , tn T , n Z }
称为{Xt,t T }的有穷维密度函数族。 若对 t1 ,..., tn ,随机向量 X t ,..., X t 是离散型的, 则 1 n 这些分布律的全体
解: X (t ) E[ X (t )] E[ X 0 V t ]
t
RX (t1, t2 ) E[( X 0 Vt1 )( X 0 Vt 2 )]
2 X (t )
定义1.5.4若{Xt,tT}, {Yt,tT}是两个实随机过程,则 称{Zt = X t+i Yt, t T} 为复随机过程。


(6) 对于两个随机过程{Xt,tT},{Yt,tT},若对任 2 2 意t T,E[Xt] 、 E[Yt] 存在,则称函数
CXY (s, t ) E{[ X s X (s)][Yt Y (t )]}, s, t T
为随机过程 {Xt,tT},与{Yt,tT},的互协方差函 数。
例1.5.3 设 X (t ) X 0 V t , a t b ,其中X0和 V是相互独立的随机变量.且
X 0 ~ N (0, ),V ~ E( ) 求随机过程{X(t),-∞<t<∞}的五种数字特征.
2
相关文档
最新文档