城市土壤碳储量估算方法综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
城市土壤碳储量估算方法综述
作者:王甜甜黄艳萍聂兵
来源:《安徽农学通报》2017年第01期
摘要:城市作为主要的人类活动集中地,在碳循环中占据着重要地位。伴随着全球气候变化的加剧,城市土壤碳库研究被赋予了新的内涵,受到了广泛关注。该文综述了土壤类型法、模型法、生命地带法及GIS估算法等几种主要的城市土壤碳储量估算方法,并分析了其优缺点。
关键词:城市土壤;碳储量;估算方法
中图分类号 S153.6 文献标识码 A 文章编号 1007-7731(2017)01-0069-03
Abstract:The urban,as the main gathering place for human activities nowadays,takes an important role in carbon cycling.Nowadays,with the exacerbating of global climate change,the urban soil carbon pool is given a new connotation,and was widely concerned.This thesis summarizes several main methods of estimating the carbon storage,such as soil type method,model method,life zone method and GIS estimation method,etc.In addition,the thesis analyzed the merits and demerits of each method in order to reduce or avoid the mistakes caused by the improper research methods in the process of estimating carbon storage of the soil.
Key words:Urban soils;Carbon storage;Estimation method
1 引言
陆地生态系统碳循环及碳平衡对土地利用/覆被变化(LUCC)的响应是当前全球变化和碳平衡研究的重点内容[1-2]。人口增长压力导致的LUCC正深刻影响着生态系统地上和地下的碳储量[3],已经成为改变陆地生态系统碳库的主要驱动因素,对人类的生存环境和社会经济的
可持续发展产生着重要的影响[4-5]。由于人口的高度集中和经济活动频繁,快速发展过程中的城市用地在迅速扩张。城市用地的改变深刻影响着城市土壤的理化性质,使得土壤既可能成为碳汇,也可能成为碳源[6]。章明奎等的研究表明,城市土壤碳具有明显的积累并具较大的空
间变异性,城区土壤的平均有机碳贮量远高于远郊区土壤,且城市土壤有机碳较为稳定[7]。Pouyat的研究发现随着相邻的土地利用类型的城市化,城市的土壤碳储量将受到强烈影响[8]。研究表明,大约60%~70%已损耗的碳,可通过采取合理的土地利用和管理方式被重新固定[9]。因此,精确估算城市生态系统土壤碳储量,准确评价其对土地利用/覆被变化的响应,是制定合理的土地政策,增加陆地碳汇量的基础[10]。
2 城市土壤碳储量估算主要方法
目前研究城市土壤碳储量的方法主要有土壤类型法、模型法、生命地带法、GIS估算法等,由于受到资料收集、空间差异、科学技术等差异性因素影响,每种方法各有利弊。
2.1 土壤类型法土壤类型法是通过实验获得土壤剖面数据,从而估算土壤碳含量,再根据区域或国家尺度的土壤图上的各土壤类型面积计算得到土壤碳储量[11]。学者史利江等采用土壤类型法,根据上海第二次土壤普查资料,研究了上海市土壤有机碳储量、碳密度及其空间分布格局,结果表明,上海地区0~100cm深度的土壤有机碳总储量及平均土壤有机碳密度分别为5.76×107t和10.55kg/m2,相对全国平均水平较高,表现为较强的碳蓄积能力[12];陈曦以广西第二次土壤普查的土壤剖面数据为基础,结合广西1:50万的土壤图以及行政区划图,计算得到各城市表层土壤有机碳库储量为6.42×1011kg,而有机碳密度均值为
3.33kg/m2,低于全国平均值[13]。实际研究中,根据不同研究区域的地形地貌条件,学者们采用的土地分类方法也不尽相同,如许文强等基于网格的土壤类型法,估算干旱区典型的三工河流域城市土壤碳储量为1
4.35GT,平均碳密度为6.70kg/m2[14];刘为华采用扇形网格方法,将城市宏观大尺度和土壤样地小尺度数据加以整合,得到研究区绿地土壤0~30cm土层的碳密度和碳储量分别为2
5.807kg/m2和3 589 968.57t,30~60cm土层土壤碳密度和碳储量分别为28.129kg/m2和3 106 810.18t[15]。
综合来说,土壤类型法的优点在于:可以利用如世界土壤图、国家土壤图等统一的估算体系,方便各学者将研究结果进行归总和比对,其缺点在于统一的估算系统较于笼统简化,在计算结果的精度上可能存在较大差异。
2.2 模型方法模型方法是根据各种土壤碳循环模型估算土壤碳蓄积量的方法,这种方法可以综合考虑决定进入土壤的碳数量和质量,以及决定土壤碳分解速率的各种因子,从而估算土壤有机碳储量,并能根据大量实测数据和气候变化模拟数据,预测不同情况下的土壤碳蓄积量动态变化趋势,探讨土壤碳蓄积和固定潜力,分析气候变化对土壤碳蓄积的不同综合影响[16]。1991年Jenkinson使用了Lausanne模型计算了从土壤有机质中释放的二氧化碳排放量,估算出土壤有机质在未来60a将有61×1015G[17];李克让应用生物地球化学模型及生物物理子模型、植物生长子模型、土壤子模型3个包含关系的子模型,估算出中国陆地生态系统土壤总碳储量为82.65Gt,平均土壤碳密度为9.17kg/m2[18]。
根据不同的研究目的,国内外已经开发了多种土壤碳循环的模型,不仅能够适用于各种要求的研究,也能够解决尺度转换的问题,但是土壤碳循环模型在开发和计算上都较为复杂困难,需要大量的模拟运算,不仅对技术手段有较高要求,而且需要大量的观测数据。
2.3 生命地带法生命地带法是根据生命地带类型的土壤有机碳密度乘以该类型分布面积来计算土壤有机碳蓄积量的方法。最为经典的是Post基于Holdridge生命带模型,搜集了2 696个土壤土层数据资料,估算出全球1m土层有机碳库为1 395Gt[19]。该方法不仅能够计算出总的土壤有机碳储量,还能够了解不同生命地带类型的土壤有机碳储量,而且每个生命地带类型还能够包括不同的土壤类型,使得分布范围更加广泛。该方法的缺点是数据的来源过于广泛,可靠性不足,容易造成计算结果有较大的差异性。