焊接变形校正(火焰法)、
火焰矫正钢结构焊接变形施工方法

黧
E
i
.
t
㈩
删
n
辇 热法 ;3=m形加热法 ()i
习 卫川川
刮 。。 。 H 。
’
趱 九 上 八
冀1
影Ⅱ 沏性 lMn 岛温矫 【时不I用水冷却, 扣冲 6 l 叮 包括厚慢
毫 或淬硬倾 向较大的钠材
火焰矫正引起 的啦 与焊接 心 , 一 J 样邵是 J 不 鬟 麓 、 力
恰 的矫正产q 的内应 力‘焊接内 J J 二 j 雨 负载 J 迭加 , 璧 i H,俐牲 、 、 撑角变形 存龚缘板 L面( 埘准焊缝
誊 外) 纵向线状加热( 控制 净 60 5 ℃以下)控 制加热范同不 超过 ,
使柱 、 、 梁 撑的纵应 J _于许, . 1导致承戟友全系数 菱 趟j 亡 、 从 ^ = 』 = i 曩 的降低 一 此 在钢结构制造中 ・ 定要慎币 , 采川合理的T艺 羹
扩 触酮
焊 力, 这种方法 接内 纵向 收缩的同时仃较大的横向 减 少 收 减 少构件损伤
缩, 较堆掌握 6 35 1 4 ¨喷构件不得用水急冷. U .
蠢 j
囊j
措施 以减 少变形并 町能采 蚀矫止 不得不采用火焰 蠢
≥)‘长r 截处 j大几 善梁拱弯 线 面烤一热j个 1撑暑缝向 J由 火以l态嚣 焰翼×曲J状【状,不要 l 两】 加个x多篓 2缘旨,端I2 热改得选: 矫的挠| 13 面截的; 枷则 “ ; 积葺过 鬟 正t纵 } ) 厅f庸 ≤ ( 及 l 矫 在7』 囊 1 焊' 直 =, 薯 、与 开 一f 下 股 、 叵 卜 剐 I 正 『状 点 L _
秘
火 焰矫 正钢 结构焊 接 变 形施 工 方法
钢结构焊接变形的种类及火焰矫正操作方法

的力学性 能及 结构承 载能力; 温度过低 时, 由于产生 的压缩塑 性 影 响 。
变形量小 , 矫正效果不显著。
5 . 实 施 火 焰 矫 正 的 步 骤
工程机械常用的材料 Q 3 4 5 钢板在使用火焰矫正时, 加热温度
实施火焰矫正一般 可按 以下步骤进行 : ( I ) 对构件进行测量,
1 . 火 焰 加 热 矫 正 法 成形加工残余应力主要 是因为工件受工艺性外力而引起 , 如工件 火焰矫正是利用氧一乙炔火焰或其它气体火焰 ( 一般采用中 自由弯曲成形时不得法; 钢 板校平辗压次数少; 机加工吃刀量过大
性焰) 局部加热 时产 生压 缩塑性变形 , 使较长 的金属在冷却 后收 等等都能引起成形加工残余应力。
科技论坛 ■
钢 结 构 焊 接 变 形 的种 类及 火 焰 矫 正 操 作 方 法
卢 丽梅
( 广西景典钢结构有限公 司, 广西 南宁 5 3 0 0 2 2 )
要, 火焰矫 正法在铜结构焊接 变形的控制 中得 到 了普遍 的应 用。本文主要就钢 结构焊接 变形 的种类及火焰矫正操作 方法展 开 了探讨 , 先概 述 了火焰加热矫正法 , 接着分析 了钢结构焊接 变形 的种类和 火焰矫 正操作 方法。
键词阚 结构 ; 焊接 ; 变形 ; 火焰 ; 矫正
中图分类号 : T U 3 9 1 文献标识号 : c 文章编号 : 2 3 0 6 一 4 9 ( 2 D 3 ) ∞一 门 一 2
焊接技术在建筑 中的钢 结构中得到广泛应用 。而钢结构厂 区金属 温度很高 , 金 属受热膨胀 , 但 又受到常温 金属的阻碍和抑 房的主要构件是焊接 H 型钢柱 、 梁、 撑。这些构件在制作时会发生 制 , 便产生了压缩塑性变形。结构件 的焊接变形程度与施焊时热 焊接变形 , 倘若不及时矫 正变形 , 会影 响结构整体安装, 降低工程 源 的输 入 能量 成 正 比 。 的安全可靠性 。通 常矫 正小构件的变形 时普遍应用 的是机械矫 2 . 2 残余应 力变形 。残余应力主要为焊接残余应力和成形加 正法 , 而较大的钢 结构变形普遍采用火焰矫正法矫 正。火焰矫正 工残余应 力, 当工件某 一部位施焊结束后 , 其焊缝金属 由膨胀转为 收缩 , 但其 又受 到 常 温 金 属 的 限制 , 这 时便 产 生 了焊 接 残 余应 力 。 必须控制好温度 , 才能有效控制构件更大地变形 。
钢结构焊接变形的火焰矫正方法

钢结构焊接变形的火焰矫正方法摘要 火焰矫正是钢结构制作过程中解决焊接变形常用的一种方法,本文重点介绍了钢结构焊接变形火焰矫正方法的施工工艺。
关键词 钢结构 焊接 变形 矫正1 前言在XXX 三期炼钢板坯,轨梁精整等厂房钢结构制作项目中,大部分是由宽翼缘焊接H 型钢组成梁、柱等构件。
这些构件在加工过程中存在焊接变形问题。
这些焊接变形如果不矫正,对结构的整体安装和工程的安全可靠性都存在很大的影响。
为此我主要采用了火焰矫正方法,使这些梁柱的焊接变形得到了很好矫正。
2 气体火焰矫正原理金属具有热胀冷缩的特性,机械性能也随温度而变化。
低碳钢(以Q235钢为例)的屈服极限σs 温度的关系如图1虚线所示,一般可简化为实线所示,即当温度在500οC 以下,屈服极限基本无变化;温度高于600οC 时,屈服极限接近于零。
温度在500—600οC 之间时呈线性变化。
当金属结构局部加热时,加热区的金属热膨胀受到周围冷金属的阻止,不能自由变形,某些部位的金属被塑性压缩。
冷却后,残留的局部收缩使结构获得所需要的变形。
2.1线状加热法线状加热法的原理如图2所示,钢板表面被加热后,离加热点最近的表面温度上升最快,膨胀也最快,周围所受热影响较小,膨胀也很小,加热停止后,温度向周围扩散,被加热部分开始冷却,形状也渐次恢复,但又因钢板表面与空气接触,热散较快,因而使表面被加热部分还未恢复原状就已固定下来。
随着冷却过程的持续(图2),在中性轴上侧的高温开始收缩,其收缩力使板向上弯曲,弯曲终止后,钢板两端各缩短a/2,中间却凸起a,这样总体积不变,重量也不变。
火焰沿钢板直线方向移动,同时为使加热线增宽也可作横向摆动,形成长条形加热。
2.2点状加热法对薄板进行加热时,因板较薄,表面热量很快传递到内侧,高温部分贯通至整个板的横剖面。
冷却时,上下表面冷却相同,中性轴上下侧的冷却收缩力也相同,所以加热时上下表面膨胀部分留下来,从而造成板整体缩短,但并没有弯曲。
钢结构焊接变形的火焰矫正施工方法范文(二篇)

钢结构焊接变形的火焰矫正施工方法范文一、引言钢结构在施工过程中,由于焊接产生的高温会引起结构的变形,特别是大型钢结构的焊接变形更为明显。
为了保证钢结构的稳定性和减小焊接变形,常常需要采用火焰矫正的施工方法。
本文将详细介绍钢结构焊接变形的火焰矫正施工方法,以指导工程实践。
二、火焰矫正施工方法钢结构焊接变形的火焰矫正施工方法主要包括火焰热处理和局部加热矫正。
1. 火焰热处理火焰热处理是一种通过钢结构表面加热的方法,来改变焊接区域的组织结构,从而达到减小焊接变形的目的。
具体步骤如下:(1)准备工作:确定焊接变形的部位和范围,并进行标记。
清理焊接区域,确保表面光洁。
(2)施工准备:选择合适的气焰喷枪,调节好气焰的大小和温度。
(3)加热过程:用气焰喷枪在焊接区域进行均匀加热,避免过热或不均匀加热。
根据具体情况可采用局部或全面加热。
(4)冷却过程:在加热达到一定程度后,逐渐停止加热,让焊接区域自然冷却。
2. 局部加热矫正局部加热矫正是通过对焊接变形较大的区域进行局部加热,来减小焊接变形。
具体步骤如下:(1)准备工作:确定焊接变形的部位和范围,并进行标记。
清理焊接区域,确保表面光洁。
(2)施工准备:选择合适的焊割设备,调节好焊割电流和气体流量。
(3)加热过程:用焊割设备对焊接区域进行加热,一般采用割炬的集中热源进行加热。
加热的温度和时间要根据具体情况进行调整。
(4)冷却过程:在加热达到一定程度后,逐渐停止加热,让焊接区域自然冷却。
三、施工注意事项在进行钢结构焊接变形的火焰矫正施工时,需要注意以下事项:1. 安全第一:在进行火焰矫正施工时,必须严格遵守安全操作规程,采取必要的防护措施,防止事故的发生。
2. 环境保护:在进行火焰矫正施工时,要注意环境保护,避免对周围环境造成污染。
3. 控制加热温度:在进行火焰矫正施工时,要控制好加热的温度,避免过热引起其他问题。
4. 施工过程监控:在进行火焰矫正施工时,应定期对焊接区域进行监测和测量,以确保矫正效果。
薄板焊接变形的火焰矫正

薄板焊接变形的火焰矫正摘要:常规的风电机舱罩多采用复合材料制成,具有重量轻、易成形等优点,但同时也存在着成本高、壳体易变形、材料无法回收利用等缺点。
因此德阳东汽电站机械制造有限公司对风力发电机组机舱罩采用金属材料进行了优化设计。
金属机舱罩设计采用内部骨架支撑、外部包裹薄板的形式,保证了机舱罩强度。
关键词:薄板;焊接变形;火焰矫正1 引言这种薄板焊接结构易出现波浪变形,如果火焰矫正方法使用不当,选择同厚板一样任意火烤捶打矫正,还会出现斑点状态的表面。
金属机舱罩制作的难点在于如何有效控制焊接变形,因此生产过程中不仅需要正确的火焰矫正方法,也需要设计各类工装来保证精度。
2 薄板焊接变形的矫正方法火焰圆点加热和线状加热产生残余的压缩塑性变形,使其弯曲的纵横纤维得到收缩,恢复至直线形,则薄板的波浪变形得到矫正。
(1)圆点加热法圆点加热法是火焰在构件上加热为圆点形面积的一种火焰矫正方法。
在板件上加热一个圆点形面积,沿板厚温度分布,可构成圆柱体或圆锥体(即为加热体),如图1所示,其边界框架与未加热部分构成刚性固定,则加热体同两端刚性固定的钢棒加热冷却产生的变形与应力为同一个道理。
加热体受边界框架的制约。
当加热温度至200℃以上时,冷却后会沿加热体圆柱的径向产生残余的压缩塑性变形和应力,可使波浪变形减小。
由加热体本身冷却受边界框架制约产生拉应力,边界框架以外产生压应力,形成新的应力平衡。
图1 圆点加热框架加热体加热圆点的面积大小根据板厚决定,如薄板加热圆点直径取较大些,加热温度600℃以上屈服点较低,其热膨胀受边界框架的制约;若加热圆点选择凸向变形位置,则产生的挤压应力可分为切向应力和法向应力。
切向应力使加热体产生压缩塑性变形,因加热体较薄易失稳。
法向应力使加热体和边界框架凸起成疱状[1]。
但如加热圆点直径过小,冷却后沿加热体圆柱径向产生残余的压缩塑性变形和应力也较小,因此火焰矫正的效果也不明显。
经过长期的生产实践,总结出钢板的厚度与加热圆点直径的关系,见表1。
钢结构焊接变形的火焰矫正施工方法

钢结构焊接变形的火焰矫正施工方法钢结构焊接变形是在焊接过程中由于热量的作用造成的,在焊接过程中,焊接件受热部分会膨胀,而冷却后又会收缩,从而引起焊接变形。
为了使焊接结构达到设计要求,需要对焊接变形进行矫正。
火焰矫正是一种常用的矫正方法,下面将详细介绍钢结构焊接变形的火焰矫正施工方法。
首先,进行焊缝分析。
在进行焊接变形矫正前,需要对焊接变形进行分析,了解焊接变形的类型和程度,从而确定矫正的方案和措施。
一般来说,焊接变形可分为弯曲变形、扭曲变形和拉伸变形。
不同的变形需要采取不同的矫正方法。
其次,确定火焰矫正位置。
在进行火焰矫正前,需要确定焊接变形的局部位置,即变形较为严重的部位。
在确定矫正位置时,应尽量选择焊接变形边缘,以避免矫正后引起新的变形。
然后,进行火焰矫正前的准备工作。
在进行火焰矫正前,需要进行一系列的准备工作。
首先,对焊接变形较大的部位进行清理,确保焊接表面无杂质。
其次,将焊接件固定在矫正工作台上,以保证焊接件在矫正过程中不发生位移。
最后,对焊接件进行加热处理,以提高焊接件的可塑性和变形矫正效果。
接下来,进行火焰矫正。
在进行火焰矫正时,需要使用氧乙炔焊割设备,通过加热焊接件,使其恢复原来的形状。
在进行矫正过程中,应注意控制火焰温度和加热时间,以避免焊接件的过热和烧伤现象。
此外,还要根据焊接变形的类型采取相应的矫正方法。
对于弯曲变形,可以采取对侧矫正法,即对焊接变形后的另一侧进行加热。
对于扭曲变形,可以采取对角矫正法,即对变形较大的两个对角线进行加热。
对于拉伸变形,可以采取法线矫正法,即对变形较大的法线方向进行加热。
最后,进行矫正后的处理。
在完成火焰矫正后,应及时对焊接件进行冷却处理,以稳定焊接件的形状。
同时,还要对焊接件进行检查,确保矫正效果符合设计要求。
如果发现矫正效果不理想,可以对焊接件进行重新矫正,直到达到要求为止。
综上所述,钢结构焊接变形的火焰矫正是一种有效的矫正方法。
通过合理的矫正方案和施工措施,可以有效地消除焊接变形,提高焊接件的质量和稳定性,从而确保钢结构的工程安全。
钢结构构件变形的矫正-火焰矫正法

钢结构构件变形的矫正-火焰矫正法广东省六建集团有限公司钢结构工程分公司张健良[摘要] 着重论述火焰矫正法的工作原理和其不同的加热方式所适用的不同变形矫正,以及控制矫正效果的主要因素。
[关键词] 钢结构构件变形火焰矫正法加热钢结构工程的施工一般都可以分成两个主要施工步骤:首先是结构各类部件的预制加工,然后是钢构件的现场拼接安装。
钢构件的预制加工工作是钢结构施工过程中重要的基础部分,此项工作完成的质量对下一步的现场安装施工起着决定性的影响。
但是钢结构加工过程中构件的变形是经常出现的,其起因主要包括钢结构材料本身的变形、焊接过程中产生的变形以及构件移动堆放碰撞而产生的变形等。
针对不同的变形,可以有不同的矫正方法:如人工矫正、机械矫正、火焰矫正和混合矫正等方法。
在实际施工中如能合理地采用这些方法,将对提高工作效率、保证钢结构加工质量有着重要的作用。
本人自参加工作以来,一直从事钢结构方面的项目,经过多年的实践,发觉火焰矫正法是各矫正方法中操作要求最高、工艺最复杂的方法,也是施工中所采用的主要矫正手段。
对于加工中焊接成型的工字钢、角钢的变形以及薄板、中板由于焊接收缩而产生的凸凹变形的矫正,都是采用了火焰矫正法,火焰矫正变形一般只用于低碳钢。
其基本操作过程是先在钢构件变形处用火焰加热升温,之后通过缓慢冷却或采用大锤敲打矫正变形。
按火焰加热方式的不同,可分成三种形式:点状加热、线状加热和三角加热,分别使用于矫正各类不同形式的变形。
其矫正原理如下:根据金属热胀冷缩的物理性能,当钢材受热时将会在1.2×10-5℃的线膨胀率向各个方向伸长,当冷却到原来温度时,除收缩到未加热时的长度外,钢材还将会继续按 1.48×10-6℃的收缩率继续收缩一部分于是导致收缩后的长度比加热前有所缩短。
因而通过对变形的凸面处适当位置进行火焰加热升温,利用冷却时产生的内部强大的冷缩应力,促使材料的内部纤维受拉生塑性收缩,从而矫正变形。
火焰矫正的规范

1.火焰矫正的基本参数火焰矫正基本参数主要有:加热温度、氧气与丙烷火焰燃烧比、加热速度、冷却速度和火焰能率等。
1.1火焰加热温度火焰矫正根据材质、板厚和加热方法等不同情况,选择不同的加热温度。
可分为低温加热、中温加热和高温加热。
1)低温加热加热温度为500~600℃。
适宜加热板厚小于6mm的钢板。
适宜含碳量大于0.25%的碳素钢(Q235B)和低合金高强度钢(Q345B)火焰矫正。
2)中温加热(45#)723℃。
20mm11.3火焰矫正的加热速度和冷却速度1)火焰矫正加热速度2)冷却速度火焰矫正的冷却速度有两种:一种是空冷(近似于热处理正火);二是喷水冷却(近似于淬火热处理)。
⑴空冷含碳量大于0.25%的钢或合金钢,如果加热超过723℃以上,必须空冷。
⑵喷水冷却水冷用于低温矫正和中温矫正,对于含碳量小于0.25%的低碳钢高温矫正也可采用喷水冷却。
对于含碳量大于0.25%的碳素钢和低合金高碳钢,中温加热和高温加热严禁采用喷水冷却。
1.4火焰能率和烤嘴角度1)火焰能率火焰能率根据每小时丙烷的消耗量(L/h)来确定,而气体消耗量取决于烤嘴的大小。
所以一烤嘴与加①根据构件波浪变形的技术要求,使用平尺测量划出矫正范围。
②在矫正区划出行格图和加热圆点面积。
火焰110mm121)利用加热线横向收缩矫正弯曲变形采用构件中性轴一侧火焰,垂直于中性轴横向线状加热,则加热冷却产生的横向压缩塑性收缩变形使构件向另一侧弯曲。
可在梁、柱外有内筋板腹板焊缝处及中性轴以下横向火焰加热,并在盖板对应处也横向加热,可矫正构件的弯曲变形;另一方面可矫正有构件内筋板横向焊缝引起的角变形及波浪变形。
2)利用线状加热纵向收缩矫正构件弯曲变形梁或柱向下挠曲,可在下盖板上沿二条纵向角焊缝方向线状加热,使梁向上拱曲。
2.5三角形加热法⒈)三角形加热法操作方法三种形式:直线加热、环形加热和曲线加热排列形成加热面积。
三角形加热构件要加热透和均匀,否则易引起翘曲变形。
焊接变形的火焰矫正

焊接变形的火焰矫正隧盔越焊接变形的火焰矫正山东常林机械集团股份有限公司(临沭276715)王绪桥在l丁程机械产品中,钢制结构件在制做过程中,常因施焊过程中的热胀冷缩,构件布局及工艺等因素的影响,引起结构件产生变形.虽然对其采取了一系列预防和控制措施,但最后的变形量仍会超过设计允许变形范围.针对构件各种不同形式的变形,必须选择合适的矫正方法,一般刚性较大的结构件产生的弯曲变形,尤其大型结构件,不易采用冷矫正方法,否则会产生较大的叠加应力或裂纹,这时应在焊接部位与所对称的位置采用火焰矫正.火焰矫正主要应用于焊接性能好的低碳钢和强度较低的低合金钢.火焰矫正是把焊后的凸面部分加热使其热胀,一开始加热时有明显的凸形,而加热到500℃以上时,塑性明显增大,但一般不应>800℃,这时反向抗力即可克服其膨胀力,不再伸长.当冷却时,加热部分会收缩,中问部分收缩最大,比原来状态变得更短些,从而达到矫正目的,使焊件恢复正确尺寸,形状.实质上火焰矫正是利用金属局部受火焰加热后的冷却收缩所产生的张力去拉直原来已经产生的各种焊接变形. 一,火焰矫正的关键准确的加热位置,适宜的加热温度,合适的加热深度,正确的矫正顺序以及合理加热方式这五个方面是提高火焰矫正效果的关键.不同的加热位置可以矫正不同方向的变形,不同的加热温度,可以获得不同的矫正变形能力.而与加热后的冷却速度关系不大,但冷却速度增大,会使金属变脆,可能引起裂纹.1.加热位置的确定并不是所有的变形位置都是矫正的正确位置,变形往往存在于刚性较差的部位.加热位置一定要选择存焊件变形后的凸面部分,如果选择在变形的凹面,则变形将越矫越大.所以说如果加热位置定错了,不但矫正不了变形,有时甚至还会得囡芏笪兰塑塑堡型.热舡WWW.meta1working1950com到相反的结果.另外注意不要在同一位置反复加热,同一部位加热不得超过两次,加热位置通常都远离焊缝.2.加热温度在火焰矫正所允许的范围内,一般来说,钢材的加热温度与变形能力成正比.加热部位的温度必须高出相邻未加热部位,使得受热金属热膨胀受阻,产生压缩塑性.火焰矫正时,加热火焰通常为中性焰,若要限制加热深度可采用氧化焰.常用结构钢加热温度一般控制在600—800~C(从钢材表面颜色上看,应在褐红色至淡樱红色之间),最高≤850℃,最低为360~C左右.温度过高时,会使钢材的组织发生金属变脆,影响韧性,并产生较大的残余应力,大大降低钢材的力学性能及结构承载能力;温度过低时,由于产生的压缩塑性变形量小,矫正效果不显着.工程机械常用的材料Q345钢板在使用火焰矫正时,加热温度>700%时不能用水冷却.淬火倾向较大的钢材及比较厚钢板温度>700~C,矫正时同样也不能用水冷却.低碳钢和Q345等常用低合金钢,当板厚不大,加热温度在360—700~c时,可用水火矫正.采用水火矫正时,要等钢材温度冷却到失去红态时再浇水(见下表),切记加热过程中不要进行浇水.火焰矫正过程用水冷却的目的是限制热胀的范围,增加对加热区的挤压作用,可立即看到矫正效果,不必等待.火焰矫正时的加热温度与表面颜色的对应关系加热温度/℃冷却方式钢材表面颜色与温度对照深褐色(550~580)℃360~600水冷褐红色(580~650)℃暗樱红色(650~730)℃600~700空冷,水冷深樱红色(730~770)oC淡樱红色(800~830)℃700~850空冷亮樱红色(830—960)℃3.加热深度加热深度是控制矫正效果的重要环节之一.加热深度一般控制在钢板厚度的2/3以下.三角形加热方式一般为结构件宽度的2/5左右.若一次加热未达到矫正效果,则需要做第二次加热,其加热温度应略高于前次,否则将无效果.4.矫正顺序在矫正某一部分变形时,要考虑相邻部分和结构整体的影响.当板厚不同时,先矫正厚板,再矫正薄板;结构骨架和钢板都同时变形时,先矫正骨架变形,后矫正钢板变形;当强弱骨架相邻,先矫正强骨架变形,后矫正弱骨架变形;T形梁焊后变形先将腹板矫直,后矫正翼板的角变形;箱形梁变形先矫正扭曲变形,其次矫正弯曲变形;框形底架先矫正中梁,后矫正侧梁;变形处较多时,先将其表面分为几个区域,逐个区域进行矫正.5.加热方式焊接变形是永远避免不了的,在火焰矫正时,对构件的应力要有正确的分析和判断,才能根据实际需要确定合适的矫正方法.(1)线状加热主要用于矫正角变形和弯曲变形,其特点是横向收缩量一般大于纵向收缩量.加热线的宽度越大,横向收缩也越大,尽量利用这一点来提高矫正效果,线状加热的加热线宽度应为钢板厚度的0.5—2 倍,焊炬平均移动速度为4mm/s,加热速度应尽可能快一些,使钢板在横向产生不均匀的收缩,从而消除角变形和弯曲变形.型材和板材的角接焊缝引起的角变形,一般只须在焊缝的背面进行线状加热即可矫正;对于T形接头角焊缝引起的角变形,可根据”板厚度增加,角变形降低”的原则,适当增加钢板的厚度,促使角变形减小.图1是挖掘机结构件回转平台施焊图的一小部分,图2是回转平台因焊接变形产生角变形而采取火焰矫正的演示图.采用火焰矫正虽是一种传统的工艺,但此方案已在实践中得到验证,效果非常好.此件不能采用机械校正法,由于在A处及处采用机械校正受力不均匀,有的地方能校到,有的地方校不到,而且常常会压伤工件表面,校正效果不好.把1部分,2部分,3部分先点固在一起(见图4),然后按图示所标注的焊角尺寸,进行两处周圈施焊.由图l图2于A位置及B位置焊脚尺寸>8ram,需采用多层多道焊接,导致热变形比较大,焊好以后,动臂两端尺寸均<865mm,这时采用图3方式进行火焰矫正.由于钢板比较厚,可在600~800%内,用多个大号气焊炬对准每件侧板外侧两处同时作螺旋式线状加热,加热时焊炬应稍作后倾,边加热边移动,始终保持表面加热.如果一次加热未全部矫正,可待完全冷却后第二次加热,同时根据结构和材料的具体情况,可再Jm#l,力.加热位置位置图3图4(2)三角形加热三角形主要用于矫正厚度大,变形量大的弯曲变形,其焊接加热的部位是在弯曲变形构件的凸缘,三角形的底边在被矫正构件的边缘,顶点朝参磊工.工—廖溷量避幽;.簦誊蓐内.加热面积较大,收缩量也较大,尤其在三角形底部.加热时产生的收缩量是边缘大,逐渐过渡到零.例如上拱变形矫正时,在立板上用三角形加热矫正见图5,若第一次加热后还有上拱变形,在进行第二次加热,加热位置选在第一次加热位置之间,加热方向由里指向边缘.图5构成挖掘机的主要结构件转台,由于焊接变形区比8区低5一[Omm,此时采用三角形加热法矫正,在C区阴影部分加热,选用矫正温度在360—700℃内,即可达到矫正的效果,同样另一边若出现类似,加热另一边阴影部分,结果也很好(见图6).此件若采用机械校正,会把U形板压变形,不但达不到校正目的,还会对_T件转台起破坏作用.图6(3)点状加热传统的火焰矫正方法,通常是用于处理厚度>8mm的钢板.对于<8mm的钢板一般使用点状加热.点状加热主要于薄板产生变形的矫正,采用点状加热时的火焰矫正点的点数可根据构件变形情况确定,由几点到几十点,点的排列一般为梅花状式.若钢板厚度在3mm以下时,加热点直径为18~20mm,加热点之间的中心距为80mm左右,加热温度500%左右,此时钢板呈紫樱色;若钢板厚度在4ram以上时,加热点直径根据变形情况适当增大,加热点之间的中心距可增大到150ram左右,加热温度500—700℃, 此时钢板呈深樱红色;加热后可采用水冷,若钢板厚度>8mm时,应采用自然冷却.点状加热采用多孑L压板防止薄板在加热过程中变墨笙箜塑堡篁参属热加工WW.metaIWOrkingI950C0m 形,通过压板上sl,-ft,/~l热,限制受热面积,增强矫形效果;点状加热有时为提高薄板矫正速度和避免冷却后在加热处出现小泡突起,在加热完一个点后,立即用木锤锤打加热点及其周嗣区域,钢材背面用木锤垫底,紧接着浇水冷却.二,火焰矫正技术要求(1)焊合件经矫正后一般不做退火处理,对有技术要求的矫正工件要做退火处理时,其退火温度一般为650.(2)若想降低焊件的变形,必须要从引起变形的源头解决,而不是在后续的工序中变形越来越多的时候再进行矫正.(3)火焰矫正前提条件不得损坏母材和焊缝,矫正后焊缝处的焊接残余应力状态基本保持不变,不能破坏母材的力学性能.(4)热矫正的目的不是让所矫正的工件完全平直,而是把其控制在误差范围内.钢板矫正后的允许偏差h见图7,钢板的挠曲矢高_厂(每lO00mm范围内),在6(钢板厚度)≤14mm时,h≤1.5mm;在6(钢板厚度)>14mm时,h≤1.0mm.7(5)矫正后钢材表面不允许有明显的凹面和损伤,表面划痕深度≤0.5nlm;矫正时对于中厚钢板,温度未降到室温时不得锤击.(6)加热区域必须避开焊接接头及节点处;加热区域应靠近变形曲线的初始端,这样利于消除变形.三,结语对于多人同时对某一1_件进行火焰矫正时,要密切配合,遵守操作规程,才能对构件变形的火焰矫正得到很好的效果.火焰矫正的优点是操作方便,机动灵活,一般使用的工具是气焊炬,可以在大型复杂结构上进行矫正,对各种变形都有一定效果.火焰矫正是根据结构特点和矫正的变形实际情况,确定加热方式和加热位置,并能凭经验目测控制加热区域温度,获得比较好的矫正效果,从而满足工件的使用性能.MW (20101122)。
浅谈钢结构焊接变形的火焰矫正法

浅谈钢结构焊接变形的火焰矫正法摘要:在实际生产中,当钢结构的焊接残余变形超过要求时,就必须进行矫正。
钢结构焊接变形主要有纵向收缩变形、横向收缩变形、弯曲变形、角变形、波浪边形等。
火焰矫正在钢结构生产中的应用非常广泛,它是利用金属热胀冷缩的物理特性,使用火焰局部加热金属件表面,金属热膨胀部分受周围冷金属的制约,不能自由变形,而产生压缩塑性变形,冷却后压缩塑性变形残留下来,引起局部收缩且在被加热处产生聚结力,使金属构件变形获得矫正。
火焰矫正加热具有局部集中性、热过程的瞬时性、热源的运动性等特点。
火焰矫正在型钢等各种材料变形的矫正中有着非常广泛的应用。
文章对火焰加热的基本参数进行了分析。
火焰矫正的加热方式有直线加热、环形加热、曲线加热等。
对钢结构焊接变形的火焰矫正法作了详细介绍。
在保证钢结构的承载能力的的条件下,设计时应该尽量采用较小的焊缝尺寸;在焊接结构中应该力求焊缝数量少,避免不必要的焊缝;安排焊缝尽可能对称与截面中性轴,或者使焊缝接近中性轴。
关键词: 焊接变形,火焰矫正,加热温度,冷却方式施工方法Abstract: in the actual production, when the steel structure of the welding residual deformation more than the requirement, it is necessary to correct. Steel structure welding deformation main have longitudinal contraction deformation, lateral contraction deformation, the bending deformation, Angle deformation, wavy edge form. The flame correction in steel structure is widely applied in production, it is to use metal heat bilges cold shrink physical properties, use local heating metal surface flame, the metal thermal expansion by the surrounding the cold metal of the constraints, not free deformation, and produce compressive deformation, after cooling compressive deformation, left over, cause local shrinkage and in the heated place produce coalescence force, the metal components deformation for correction. The flame correction with local concentration, heat heating process for the almost, the movement of the heat source, etc. The flame correction in steel various materials of deformation correction has a very wide range of applications. The article to the flame heating of the basic parameters were analyzed. The flame of the way to have a linear correction heating heating, annular heating, curve heating, etc. For steel structure welding deformation flame rectification method in detail. In order to ensure the bearing capacity of the steel structure of the conditions, design, you should try to introduce lesser weld dimension; In the welding structure should try to be less weld number, and avoid unnecessary weld; As far as possible and section are symmetrical arrangement weld neutral axis, or make weld close to neutral axis.Keywords: welding deformation, flame correction, the heating temperature, cooling method and the construction methods引言钢结构在现代工业如冶金、路桥、造船、建筑工程、机械工程中应用越来越广泛。
钢结构焊接变形的火焰矫正施工方法(三篇)

钢结构焊接变形的火焰矫正施工方法钢结构焊接变形是在焊接过程中由于热量造成的材料收缩和形状变化。
要解决这个问题,可以采用火焰矫正法。
火焰矫正是通过施加热量使焊接部位重新膨胀,然后通过冷却使其重新恢复原来的形状。
火焰矫正施工方法主要分为以下几个步骤:步骤一:确定需要矫正的焊接部位,根据焊接变形情况进行定位和标记。
步骤二:选择适当的焊接材料,一般选择和焊接材料相似的材料进行矫正。
这样可以避免由于材料差异引起的新的变形。
步骤三:进行预热。
预热的目的是提高焊接部位的温度,以减少焊接时的热影响区域和残余应力。
预热的温度和时间需要根据材料和焊接参数来确定。
步骤四:点矫正。
在需要矫正的焊接部位周围加热,使材料膨胀。
加热的方法可以使用火焰喷枪、火焰烧烤器等。
加热的时间和温度需要根据焊接材料和厚度来确定。
步骤五:矫正。
在焊接部位加热到适当温度后,使用适当的工具对焊接部位进行矫正。
可以使用锤子、顶板、液压装置等工具进行矫正。
矫正力度需要根据焊接变形情况和设备情况来确定。
步骤六:冷却。
在矫正完成后,需要将焊接部位迅速冷却。
可以使用空气冷却、水冷却等方法。
冷却的速度和方式需要根据材料和焊接参数来确定。
步骤七:检查。
矫正完成后,需要对焊接部位进行检查。
检查的重点是焊缝和周围的变形情况。
如果存在问题,可以进行修复或者重新矫正。
火焰矫正施工方法需要考虑以下几个因素:首先,需要根据焊接变形情况来选择合适的施工方法。
不同的焊接变形需要采用不同的矫正方法。
其次,要注意控制施工过程中的热量。
过高的温度和时间会引起新的变形或者材料的烧灼。
因此,在施工过程中需要控制好加热的温度和时间。
最后,要进行严格的检查和测试。
检查焊接部位的质量和矫正效果,确保焊接后的结构安全可靠。
总的来说,火焰矫正是一种有效的钢结构焊接变形修复方法。
通过合理施工和控制热量,可以有效地解决焊接变形问题,保证焊接结构的质量和安全。
钢结构焊接变形的火焰矫正施工方法(二)钢结构焊接变形是在焊接过程中产生的,主要原因是焊接热引起了材料的热膨胀和热应力,进而导致焊接件产生变形。
火焰矫正工艺的基础原理

部件因焊接或火焰矫正而导致的变形机理是类似的。在这两种应用 中,都发生了局部受限的热输入,然后导致了受热区域的膨胀。
受热区域相邻的冷区域拘束了其膨胀,导致了受热区产生了压缩内部 变形。
为了促进受热区域的塑性变形,必须达到这种材料的屈服极限,此种 极限稍高于弹性极限。为实现这个塑性变形,需要一个外力结合工件 外形引起流动过程并产生超越弹性极限之上的应力。关于这些相关 性,请查看图1。
如何来影响应力? 可以通过外观尺寸的矫正措施例如热处理或机械处理来影响应力。
如何来使用应力? 应力可以用来硬化部件的截面,和/或降低承受载荷时工件的尺寸偏 差。
06
火焰矫正工艺的基础原理
图2:焊接过程中的收缩类型
L
D L
Q
Q
D
L 纵向收缩 Q 横向收缩 D 厚度方向收缩 W 角变形
w
那些在焊接冷却之后没有变形或仅有轻微变形的部件处于高水平的焊 接残余应力之下,这是因为收缩的应力没有导致部件的变形。
16
09. 用于缩短或弯曲部件的基本加热方法
18
9.1. 用于缩短的中心型加热或对称型加热
18
9.2. 用于弯曲的不寻常型或非对称型加热
18
10. 应用于火焰矫正的加热技术
20
10.1. 采用点加热来矫正薄板
20
10.2. 采用椭圆形加热来安装管路系统
21
10.3. 采用线形加热来去处凸出变形
22
10.4. 加热楔子
尽管不同类型的燃料气体都可以用于火焰矫正,但只有氧-乙炔才能实 现最高的火焰温度和火焰密度,从而实现快速加热。
T型结构焊接变形与火焰矫正综合性实验

图 4 焊接前后 T 形结构弯曲曲线 表 6 火焰矫正前、后各点变形量
测点 距离 mm
1 2 3 4 5 6 7 8 9 10
试件
图 3(a)矫正前
图 3(a) 矫正后
图 3(b) 矫正前
图 3(b)矫正后
2.绘出火焰矫正前后的弯曲变形曲线:
七、思考题
图 5 火焰矫正前后各点弯曲变形曲线
1.结合实验结果谈谈影响弯曲变形的因素有哪些? 2.焊接顺序为什么会影响构件弯曲变形量? 3.不同焊接线能量对同一焊接顺序有何影响? 4.结合实验结果谈谈火焰矫正焊接横向收缩引起的弯曲变形有何特点?
图 2 筋板与底板装配示意图
(4)确定焊接工艺参数电流,选择不同的焊接顺序和焊接方向对比,焊接顺序 可参考图 3 所示也可自行选择方案;
8
7
4
3
1
6
2
7
1
2
(a )
3
8
(b )
5
6
4
9
9
10
5
10
图 3 筋板与底板焊接顺序
(5)同种材料对比不同的焊接顺序,异种材料比较相同参数的变形量,试件焊 完待焊接件冷至室温,把焊件放置测量平台,测量变形尺寸以 5 点为焊接件中心
2. 熟悉调节NBC-250、BX3-315 焊机的焊接工艺参数和提高电弧焊技术的动手 能力;
3. 比较弯曲变形理论计算与实际测定焊接构件弯曲变形量的差别。
4. 掌握弯曲变形火焰矫正的基本原理及其规律及火焰矫正操作步骤;
5. 了解低碳钢火焰矫正加热温度、速度对火焰矫正效率的影响;
6. 比较各种火焰矫正方法矫正效率。
5.火焰加热顺序与方法为什么会影响焊接构件矫正效率? 八、实验成绩评定办法
火焰矫正

火焰矫正原理:利用可燃和助燃气体混合点燃后的火焰熔化工件,向熔池填充焊丝。
应用:管道、车体结构维修、堆焊。
材料:非合金钢、低合金钢、有色金属、铸铁。
6mm以下。
左焊法:焊丝可间断送进,焊枪摆动,适用t<3mm;右焊法:焊丝搅动,焊枪不摆动,适用t>3mm,易观察熔池、易焊透、熔池受火焰保护、焊道窄、用气少。
焊丝对气焊的适应程度反映在性能上:流动性、渗透性和在熔池中的气孔倾向性。
填充材料:EN12536气焊焊丝(非合金钢和热强刚)EN12536 O III (O III 焊丝中Ni:细化晶粒)火焰矫正利用材料热胀冷缩特性。
要求材料有高塑性,效果取决于加热位置和火焰能率。
碳钢、低合金钢用600---800℃校正温度。
注意事项:了解材质,焊接性好的矫正后性能变化小;中性焰,加热深度小用氧化焰;矫正前观察变形,考虑加热位置和步骤;室外考虑日照;薄板用木槌;考虑下道工序。
应用:①点加热-管、板,厚板时点距50—100mm,D≥15mm;②平面加热-管,三通下直面段;③直线加热-板,加热宽板厚的0.5—2倍;④三角形加热-型材。
火焰加热目的:减少焊接火切割的冷却速度;降低变形阻力或改变组织。
包括:火焰矫正、预热、火焰硬化、火焰加热等热切割及坡口准备ISo9692-1 钢111、13、3、141、能量束焊;ISo9692-2 钢12ISo9692-3 Al及合金的13、141;ISo9692-4 复合钢板坡口可由机械切割和热切割加工。
根据切口形式分为垂面直线切割、斜面直线切割、曲线和曲面切割。
金属切割三个条件:1)金属燃点低于熔点;2)金属同氧气发生剧烈燃烧反应并放出足够的反应热。
3)燃烧生成的氧化物的熔点应低于该金属熔点,且流动性好。
分类:①按物理过程可分为火焰燃烧切割、溶化切割、升华切割。
②按机械化程度分类可以分手工、半机械化、全机械化和自动化切割。
③按能源分:气体热切割、气体放电电火花等离子热切割、光束激光和电子束热切割。
火焰矫正箱形构件焊接变形施工工法

火焰矫正箱形构件焊接变形施工工法一、前言火焰矫正箱形构件焊接变形施工工法是一种用于修正和控制焊接变形的施工方法。
在传统的焊接过程中,由于热量的作用导致焊接构件发生变形,影响了构件的几何形状和结构稳定性。
为了解决这个问题,火焰矫正箱形构件焊接变形施工工法应运而生,它能够准确地控制焊接过程中的变形,并达到设计要求。
二、工法特点火焰矫正箱形构件焊接变形施工工法具有以下几个特点:1. 精确控制:通过调整火焰矫正箱的温度和位置,能够准确控制焊接过程中的变形,保证构件的几何形状和结构稳定性。
2. 便捷施工:该工法使用简单,操作方便,不需要复杂的设备和技术条件,适用范围广。
3. 高效节能:采用火焰矫正箱进行修正和控制焊接变形,能够节约能源和材料消耗,提高施工效率。
4. 经济可行:相比传统的焊接工法,火焰矫正箱形构件焊接变形施工工法的成本较低,具有较高的经济性。
三、适应范围火焰矫正箱形构件焊接变形施工工法适用于各种材料的箱形构件焊接过程,特别适用于大型、重型箱形构件的焊接。
无论是钢结构、钢筋混凝土还是其他材料,都可以通过该工法准确控制焊接变形,确保施工质量。
四、工艺原理该工法的原理是通过运用火焰矫正箱对焊接构件进行局部加热或冷却,以修正和控制焊接过程中的变形。
根据构件的变形情况,可以选择适当的加热或冷却方式,并通过控制火焰矫正箱的温度和位置,实现对焊接变形的精确控制。
五、施工工艺施工工艺包括以下几个阶段:1. 准备工作:包括准备焊接材料、配置施工人员和机具设备等。
2. 焊接前处理:清理焊接表面、对接缝进行处理,确保焊接质量。
3.火焰矫正箱焊接:根据焊接构件的尺寸和形状,选择合适的火焰矫正箱进行焊接。
4. 变形控制:根据焊接变形情况,对火焰矫正箱进行温度和位置的调整,实现对焊接变形的控制。
5. 焊接收尾:焊接完成后进行收尾工作,如清理焊缝、对焊缝进行检查等。
六、劳动组织施工过程中需要合理组织劳动力,确保施工进度和质量。
钢结构焊接变形的火焰矫正施工方法

钢结构焊接变形的火焰矫正施工方法作者:王林海来源:《名城绘》2020年第09期摘要:随着当今社会的不断发展和进步,人们对于生活的要求也在不断地提高,而作为当前社会中非常重要的钢结构来说同样也是如此。
如今钢结构作为一种非常重要的建筑结构,很多厂房在建设的过程中都需要利用到这种材料进行施工,我国当前在建筑行业采用较多的钢结构中的钢材基本都是H型钢柱、梁和撑,但是这类构件在施工的过程之中难免会出现变形的情况。
若是无法有效对这种变形进行矫正那么也很容易影响建筑整体的安全和稳定性。
本文也就侧重于对当前钢结构焊接变形矫正的方法进行分析,希望能够帮助到有需要的人。
关键词:钢结构;焊接变形;火焰矫正;施工方法引言钢材在进行运输以及存放的过程之中难免会因为一些失误而导致钢材自身的变形,对于钢结构中H型钢柱、梁和撑等结构来说更是容易发生这类问题,若是无法有效地将这些变形情况进行矫正那么就很容易降低工程的整体质量,整体建筑的安全性也会得到降低。
因此相关人员应当通过一定的矫正方法来对其进行矫正,其中火焰矫正法就是一种重要的方法。
一、火焰矫正法的定义及适用范围火焰矫正法目前在矫正钢结构领域中取得了不错的成效,为了方便后续进行研究和探讨本文首先先对火焰矫正法的定义进行了概述。
所谓火焰矫正法就是当钢材出现变形等情况之后利用火焰加热的方法来使其局部的塑性变形,在经过火焰加热之后整体长金属纤维就会出现变短从而形成变形,金属纤维内部原本存在的长短不一情况就会由此解决,那么整体的变形效果也就得到对应的消除,从而达到了矫正的效果[1]。
基本上目前采用该方法来进行矫正是一种较为主流的矫正办法,因为利用该方法进行矫正存在非常多优势,例如其自身操作方法简单、操作手法灵活多变、整体的效果以及效率相对来说也比较高,因此在实际的矫正过程之中大部分工作人员都会采用该方法来进行矫正。
但是在使用的过程之中同样需要按照一定的操作步骤来进行矫正,在进行操作的时候应当对温度以及加热的位置进行控制,由于后续可能会因为加热的效果优劣来决定是否再次进行加热,因为合金钢的使用也需要慎重考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢结构焊接变形的火焰校正方法
钢结构焊接变形的火焰校正方法
目前,钢结构已在厂房建筑中得到广泛的应用。
而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。
这些构件在制作过程中都存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。
焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫正,使其达到符合产品质量要求。
实践证明,多数变形的构件是可以矫正的。
矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。
在生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正。
但火焰矫正是一门较难操作的工作,方法掌握、温度控制不当还会造成构件新的更大变形。
因此,火焰矫正要有丰富的实践经验。
本文对钢结构焊接变形的种类、矫正方法作了一个粗略的分析。
1 钢结构焊接变形的种类与火焰矫正
钢结构的主要构件是焊接H型钢柱、梁、撑。
焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。
下面介绍解决不同部位的施工方法。
以下为火焰矫正时的加热温度(材质为低碳钢)
低温矫正500度~600度冷却方式:水
中温矫正600度~700度冷却方式:空气和水
高温矫正700度~800度冷却方式:空气
注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。
16M n在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。
1.1翼缘板的角变形
矫正H型钢柱、梁、撑角变形。
在翼缘板上面(对准焊缝外)纵向线状加热(加热温度控制在650度以下),注意加热范围不超过两焊脚所控制的范围,所以不用水冷却。
线状加热时要注意:(1)不应在同一位置反复加热;(2)加热过程中不要进行浇水。
这两点是火焰矫正一般原则。
1.2柱、梁、撑的上拱与下挠及弯曲
一、在翼缘板上,对着纵长焊缝,由中间向两端作线状加热,即可矫正弯曲变形。
为避免产生弯曲和扭曲变形,两条加热带要同步进行。
可采取低温矫正或中温矫正法。
这种方法有利于减少焊接内应力,但这种方法在纵向收缩的同时有较大的横向收缩,较难掌
握。
二、翼缘板上作线状加热,在腹板上作三角形加热。
用这种方法矫正柱、梁、撑的弯曲变形,效果显著,横向线状加热宽度一般取20—90mm,板厚小时,加热宽度要窄一些,加热过程应由宽度中间向两边扩展。
线状加热最好由两人同时操作进行,再分别加热三角形三角形的宽度不应超过板厚的2倍,三角形的底与对应的翼板上线状加热宽度相等。
加热三角形从顶部开始,然后从中心向两侧扩展,一层层加热直到三角形的底为止。
加热腹板时温度不能太高,否则造成凹陷变形,很难修复。
注:以上三角形加热方法同样适用于构件的旁弯矫正。
加热时应采用中温矫正,浇水要少。
1.3 柱、梁、撑腹板的波浪变形
矫正波浪变形首先要找出凸起的波峰,用圆点加热法配合手锤矫正。
加热圆点的直径一般为50~90mm,当钢板厚度或波浪形面积较大时直径也应放大,可按d=(4δ+10)mm(d为加热点直径;δ为板厚)计算得出值加热。
烤嘴从波峰起作螺旋形移动,采用中温矫正。
当温度达到600~700度时,将手锤放在加热区边缘处,再用大锤击手锤,使加热区金属受挤压,冷却收缩后被拉平。
矫正时应避免产生过大的收缩应力。
矫完一个圆点后再进行加热第二个波峰点,方法同上。
为加快冷却速度,可对Q235钢材进行加水冷却。
这种矫正方法属于点状加热法,加热点的分布可呈梅花形或链式密点形。
注意温度不要超过750度。
2 结语
火焰矫正引起的应力与焊接内应力一样都是内应力。
不恰当的矫正产生的内应力与焊接内应力和负载应力迭加,会使柱、梁、撑的纵应力超过允许应力,从而导致承载安全系数的降低。
因此在钢结构制造中一定要慎重,尽量采用合理的工艺措施以减少变形,矫正时尽量可能采用机械矫正。
当不得不采用火焰矫正时应注意以下几点:
1、烤火位置不得在主梁最大应力截面附近;
2、矫正处烤火面积在一个截面上不得过大,要多选几个截面;
3、宜用点状加热方式,以改善加热区的应力状态;
4、加热温度最好不超过700度。