简单的线性规划教案
第七章第四节 简单的线性规划 教案
第七章第四节 简单的线性规划1.本节知识结构:2.学习目的要求(1)会用二元一次不等式(组)表示平面区域,能画出给定的不等式(组)表示的平面区域; (2)了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念; (3)了解线性规划问题的图解法,并能应用线性规划的方法解决一些简单的实际问题,以提高解决实际问题的能力.3.教学任务分析(1)本小节介绍了用二元一次不等式(组)表示平面区域和简单的线性规划问题. 重点是二元一次不等式(组)表示平面区域,相对困难的是把实际问题转化成线性规划问题,并给出解答,解决这一困难的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.(2)教科书首先借助于“献爱心活动”的具体例子,抽象出线性规划的模型:“在条件⎪⎩⎪⎨⎧≥≤+≤+-.1,3753,01x y x y x下,求y x z 35+=的最大值的问题”.在此基础上,提出了研究二元一次不等式的含义的必要性. 这样安排的目的,是使学生体会从具体问题到数学问题的过程,并由此明确所研究问题的基本模型.(3)在探求二元一次不等式所表示的平面区域时,图形计算器或计算机是一个十分有用的工具. 教科书先安排研究“献爱心活动”中的不等式01<+-y x 的含义,在得到它的几何意义是表示直线01=+-y x 的一侧的平面区域后,再给出了不等式01>+-y x 所表示的平面区域,并由此不加证明地给出了一般的二元一次不等式0<++C By Ax (或0>++C By Ax )表示平面区域的结论,说明了怎样确定不等式0<++C By Ax (或0>++C By Ax )表示直线Ax +By +C =0的哪一侧区域. 最后举例说明怎样用二元一次不等式(组)表示平面区域.在“二元一次不等式表示平面区域”中,教科书用点集的观点来分析直线,并提出点的集合}{01),(>-+y x y x表示什么图形的问题. 用集合的观点和语言来分析和描述几何图形问题,常能使问题更加清楚、准确,在教学中应注意运用这种观点和语言. 但是,集合语言有时会使叙述比较繁复,所以,使用时要注意适当性.(4)教学中,要使学生注意,Ax +By +C >0表示的平面区域是直线Ax +By +C =0的某一侧且不包括边界直线Ax +By +C =0;而Ax +By +C ≥0所表示的平面区域包括边界直线Ax +By +C =0.实际上,{),(y x | Ax +By +C ≥}0={),(y x | Ax +By +C >}0∪{),(y x | Ax +By +C=}0.由于对在直线Ax +By +C =0的同一侧的所有点(x ,y ),实数Ax +By +C 的符号相同,所以只需在此直线的某侧任取一点(x 0,y 0),把它的坐标代入Ax +By +C ,由其值的符号即可判断Ax +By +C >0表示直线的哪一侧. (5)教科书利用解决“献爱心活动”这个具体的线性规划问题,说明了线性规划的意义,以及线性约束条件、线性目标函数、可行解、可行域、最优解等有关的基本概念,介绍了线性规划问题的图解方法,最后举例说明了线性规划在实际中的简单应用. 在实际问题的求解中,不必让学生去具体地扣这些概念的名称,只要求能找出线性约束条件,并画出线性约束条件表示的平面区域,然后求出线性目标函数的最优解即可.(6)简单的线性规划问题中的可行域,大多数情况下就是一个二元一次不等式(组)表示的平面区域,因而解决简单的线性规划问题,是以二元一次不等式(组)表示平面区域的知识为基础的. 在具体画二元一次不等式(组)表示的平面区域时,可充分利用图形计算器或计算机.(7)教科书在求“献爱心活动”这个线性规划问题中的线性目标函数y x z 35+=的最大值时,借助了一组直线5x +3y =z ,指出直线往右平移时z 随之增大,这一点未作严格说明,只是直观地承认它. 在教学中可以略作说明:当直线往右平移时,直线在x 轴上的截距随之增大. 而直线5x +3y =z 在x 轴上的截距为5z ,当5z 增大时,z 也随之增大. 当然也可以用直线在y 轴上的截距3z来说明. (8)教科书中安排的例8所反映的线性规划问题是:在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务,这是常见的一类线性规划问题. 例9是另一类常见的线性规划问题:给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源完成该项任务.例8所反映的线性规划问题的可行域是下图中的阴影部分:但例9所反映的线性规划问题的可行域,却是下图阴影部分中两个坐标都是整数的点(称为整点):因此,例9要求的最优解是整点)9,3(B 、)8,4(C ,而不是点)539,518(A ,这也是实际中常常用到的. 此外,对于最优解的近似值,要根据实际问题的具体情形取不足近似值或过剩近似值. (9)本小节安排的“数学实验”,不仅仅是让学生了解二元一次不等式0>++C By Ax (或0<++C By Ax )所表示的平面区域的另一种判定方法,更重要的是让学生通过解决这个问题,培养自己用运动的观点解决含参数的问题的基本方法. 在指导学生研究这一问题时,可启发学生利用图形计算器或计算机的测算与追踪功能去解决问题.4.信息技术在教学设计中的应用 (1)二元一次不等式表示的平面区域①用图形计算器或计算机画出直线l :01=+-y x .在直线l 上任取一点P ,测量出其坐标(x , y ),计算1+-y x 的值,我们发现,点P 的坐标是二元一次方程01=+-y x 的解(如下图(1)).(1) (2) (3)②在直线l 的右下方任取一点P ,测量出其坐标(x , y ),并计算1+-y x 的值,我们发现,点P 的坐标满足二元一次不等式01>+-y x (如上图(2)).③在直线l 的左上方时任取一点P ,测量其坐标(x , y ),并计算1+-y x 的值,我们发现,点P 的坐标满足二元一次不等式01<+-y x (如上图(3)).(2)探求最优解下面我们借助于信息技术工具,探求二元一次函数y x z 35+=在下述条件下的最优解:⎪⎩⎪⎨⎧≥≤+≤+-.1,3753,01x y x y x①用几何画板先作出上述不等式表示的平面区域,然后作出含参数z 的直线l :z y x =+35(如下图).②改变z 的值,观察直线l 的变化,我们发现: 当z 增大时,直线l 向右平移;当11<z 或35>z 时,直线l 与公共区域无公共点;当3511≤≤z 时,直线l 与公共区域有公共点,如35=z 时,直线l 在直线l 2的位置,此时l 经过点A (4,5);又如11=z 时,直线l 在直线l 1的位置,此时l 经过点B (1,2).③根据上述分析,我们可得当l 经过点A (4,5)时,二元一次函数y x z 35+=取最大值35;当l 经过点B (1,2)时,二元一次函数y x z 35+=取最小值11.。
简单的线性规划教学设计
简单的线性规划教学设计简单的线性规划教学设计线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
下面是店铺为你带来的简单的线性规划教学设计,欢迎阅读。
一、教学内容分析线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题.简单的线性规划(涉及两个变量)关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成.突出体现了优化的思想.二、学生学情分析本节课学生在学习了不等式、直线方程的基础上,又通过实例,理解了平面区域的意义,并会画出平面区域,还能初步用数学关系式表示简单的二元线性规划的限制条件,将实际问题转化为数学问题. 从数学知识上看,问题涉及多个已知数据、多个字母变量,多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这都成了学生学习的困难.三、设计思想本课以学生为主体,应用“数形结合”的思想方法,培养学生的学会分析问题、解决问题的能力。
四、教学目标1.知识与技能:(1)了解线性规划的意义及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;能根据条件建立线性目标函数;(2)了解线性规划问题的图解法,并会用图解法求线性目标函数的最大值、最小值.2.过程与方法:培养学生观察、联想以及作图的能力,渗透化归数形结合的数学思想.3.情感、态度与价值观:进一步培养学生学习应用数学的意识及思维的创新性.五、教学重点与难点重点:线性规划问题的图解法.难点:图解法及寻求线性规划问题的最优解.六、学法对例题的处理可让学生思考,然后师生共同对解题思路进行概括,使学生更深刻地领会和掌握解题的方法。
七、教学设计(一)自主学习1. 二元一次不等式(组)表示的平面区域的画法.(由学生回答)如:画出不等式组表示的平面区域.2.设,式中变量满足条件,求的最大值和最小值.问题:能否用不等式的知识来解决以上问题?(否)那么,能不能用二元一次不等式表示的平面区域来求解呢?怎样求解?(二)知识解析在上述引例中,不等式组是一组对变量的约束条件,这组约束条件都是关于的一次不等式,所以又称为线性约束条件。
简单的线性规划教学设计
简单的线性规划教学设计简介:线性规划是运筹学中的一种数学优化方法,通过构建数学模型,以线性函数为目标函数及约束条件,寻找最优解决方案。
本教学设计旨在向学生介绍线性规划的基本概念、模型构建和求解方法,培养学生的数学思维和问题解决能力。
一、教学目标:1. 理解线性规划的基本概念和原理;2. 掌握线性规划模型的构建方法;3. 学会使用单纯形法求解线性规划问题。
二、教学内容:1. 线性规划的基本概念:1.1 优化问题和目标函数;1.2 约束条件;1.3 解的定义和存在性。
2. 线性规划模型的构建方法:2.1 变量设定和定义;2.2 目标函数的确定;2.3 约束条件的建立。
3. 单纯形法的基本原理和步骤:3.1 基变量和非基变量的定义;3.2 初始基可行解的求解;3.3 单纯形表的构建;3.4 单纯形表的优化和迭代。
三、教学过程:1. 导入(5分钟):通过引入一个生活实例,例如购买不同食材制作蛋糕的问题,让学生意识到优化问题的存在性和实际应用。
2. 概念讲解(15分钟):介绍线性规划的基本概念,包括优化问题和目标函数、约束条件以及解的定义和存在性。
通过具体例子,让学生理解各个概念的含义和关系。
3. 模型构建(20分钟):以一个简单的生产问题为例,引导学生设定变量、定义目标函数和建立约束条件。
让学生通过思考和实践,掌握线性规划模型的构建方法。
4. 单纯形法介绍(15分钟):简要介绍单纯形法的基本原理和步骤,包括基变量和非基变量的定义、初始基可行解的求解、单纯形表的构建以及优化和迭代的过程。
5. 求解实例演示(20分钟):随堂演示一个具体的线性规划问题,运用单纯形法进行求解。
过程中,详细解释每一步的计算和判断,让学生了解单纯形法的具体应用过程。
6. 练习与讨论(20分钟):给学生几个简单的线性规划问题,让他们在小组内进行讨论和尝试求解。
鼓励学生主动思考和提问,解决问题中的难点和疑惑。
7. 总结与拓展(5分钟):对本节课的内容进行总结,并展示线性规划在实际问题中的更广泛应用。
高中数学简单线性规划教案
高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。
2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。
2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。
3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。
三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。
2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。
四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。
2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。
五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。
2. 提醒学生在做作业时要注意思考问题的建模和求解方法。
六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。
2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。
7.4 简单的线性规划教案
7.4 简单的线性规划教学目标(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学建议一、知识结构教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.二、重点、难点分析本小节的重点是二元一次不等式(组)表示平面的区域.对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.难点是把实际问题转化为线性规划问题,并给出解答.对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.三、教法建议(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.如果可行域中的整点数目很少,采用逐个试验法也可.(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.线性规划教学设计方案(一)教学目标使学生了解并会作二元一次不等式和不等式组表示的区域.重点难点了解二元一次不等式表示平面区域.教学过程【引入新课】我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?【二元一次不等式表示的平面区域】1.先分析一个具体的例子我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式,这些点却在l的左下方的平面区域.由此我们猜想,对直线l右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.在直线上任取一点,过点P作垂直于y轴的直线,在此直线上点P右侧的任意一点,都有∴于是所以因为点,是L上的任意点,所以,对于直线右上方的任意点,都成立同理,对于直线左下方的任意点,都成立所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集点.是直线右上方的平面区域(如图)类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.2.二元一次不等式和表示平面域.(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.【应用举例】例1 画出不等式表示的平面区域解;先画直线(画线虚线)取原点(0,0),代入,∴∴原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.例2 画出不等式组表示的平面区域分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.课堂练习作出下列二元一次不等式或不等式组表示的平面区域.(1)(2)(3)(4)(5)总结提炼1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法.3.二元一次不等式组表示的平面区域.布置作业1.不等式表示的区域在的().A.右上方 B.右下方 C.左上方 D.左下方2.不等式表示的平面区域是().3.不等式组表示的平面区域是().4.直线右上方的平面区域可用不等式表示.5.不等式组表示的平面区域内的整点坐标是.6.画出表示的区域.答案:1.B 2.D 3.B 4. 5.(-1,-1)6.线性规划教学设计方案(二)教学目标巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点理解二元一次不等式表示平面区域是教学重点.如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.【线性规划】先讨论下面的问题设,式中变量x、y满足下列条件①求z的最大值和最小值.我们先画出不等式组①表示的平面区域,如图中内部且包括边界.点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上.作一组和平等的直线可知,当l在的右上方时,直线l上的点满足.即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t最大,以经过点的直线,所对应的t最小,所以在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的最大值和最小值问题.线性约束条件除了用一次不等式表示外,有时也有一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.【应用举例】例1 解下列线性规划问题:求的最大值和最小值,使式中的x、y满足约束条件解:先作出可行域,见图中表示的区域,且求得.作出直线,再将直线平移,当的平行线过B点时,可使达到最小值,当的平行线过C点时,可使达到最大值.通过这个例子讲清楚线性规划的步骤,即:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找出最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值.例2 解线性规划问题:求的最大值,使式中的x、y满足约束条件.解:作出可行域,见图,五边形OABCD表示的平面区域.作出直线将它平移至点B,显然,点B的坐标是可行域中的最优解,它使达到最大值,解方程组得点B的坐标为(9,2).∴这个例题可在教师的指导下,由学生解出.在此例中,若目标函数设为,约束条件不变,则z的最大值在点C(3,6)处取得.事实上,可行域内最优解对应的点在何处,与目标函数所确定的直线的斜率有关.就这个例子而言,当的斜率为负数时,即时,若(直线的斜率)时,线段BC上所有点都是使z取得最大值(如本例);当时,点C处使z取得最大值(比如:时),若,可请同学思考.随堂练习1.求的最小值,使式中的满足约束条件2.求的最大值,使式中满足约束条件答案:1.时,.2.时,.总结提炼1.线性规划的概念.2.线性规划的问题解法.布置作业1.求的最大值,使式中的满足条件2.求的最小值,使满足下列条件答案:1.2.在可行域内整点中,点(5,2)使z最小,扩展资料线性规划的解课本题中出现的线性规划都有唯一的最优解,其实线性规划的解有许多不同的情况,除了有唯一的最优解的情况外,还有(1)无可行解,从而无最优解.这就是约束条件不等式组无解的情况.(2)有无穷多个最优解例2我们用图解法求解.由于目标函数等高线和可行域的边界线平行,沿着目标函数值增加方向平行移动目标函数的等高线,最终停留在直线上,所以线段AB上的所有点都是最优解.线性规划如果有最优解,只会是有唯一最优解或者有无穷多个最优解这两种情况,不会出现其他情况,这就是下面的命题.命题1 如果线性规划有两个不同的最优解,那么对任意,是最优解.这个命题的证明可以在任何一本线性规划的书中找到,这里就不再证明了.事实上证明是平凡的,只要注意到在线段上,利用线性性质,读者就可以自己证明.(3)有可行解,无最优解.例3我们用图解法求解.从图中可以看出随着目标函数等高线的移动,目标函数值会越来越大,没有上界.有的书上称之为无界解.无界解的情况只会出现在可行域是开区域的时候.如果可行域是闭区域,就一定是有界的,于是有命题2 如果统性规划可行域是闭区域,那么一定有最优解.只要注意到线性函数是连续函数,上面的命题就是“有界闭区域上连续函数可以达到最大值或最小值”这一定理的一个推理.从上面的例子中我们可以看出,如果有最优解,那么就有可行域的顶点是最优解.所以也可以通过比较可行域顶点的目标函数值来求线性规划的最优解.例如,中的顶点的目标函数值是;的目标函数值是3;的目标函数值是于是通过比较可以知道是最优解.线性规划的单纯形算法,就是一种从顶点到顶点并使得目标函数值不断改进的迭代算法,由于可行域的顶点只有有限多个,所以经过有限次送代就可以求出线性规划的最优解.单纯形算法可以求解一般的(变量多于两个)线性规划问题.许多实际问题中变量和约束的个数都很多,有些规模比较大的问题中变量和约束的个数甚至可以上万,这样的问题当然是无法用手工计算的,需要用计算机和专门的软件求解.对于规模不是太大(如几十个变量)的线性规划,现在常用的数学软件如Mathematica,Matlab都可以解.下面介绍如何用Matematica解线性规划.用Mathematica解线性规划用的是ConstrainedMax或者函数,这两个函数的格式如下:[目标函数,][目标函数,]由于软件是用C语言编写的,所以它的函数带有C语言的风格.{}表示表格,和函数中都有两个表格,第一个表格是约束条件的表,第二个表格是变量表,表格中的项用逗号分隔.要指出的是由于一般的线性规划中的变量都是非负变量,这两个函数的变量也要求有非负约束,但是非负约束可以不在约束条件表格中列出.例如求解线性规划只要输入In[2]:=计算机就会给出计算结果最优值2,最优解:斜体的和自动加上的表示输入,表示输出,中的2表示行号.用求例l中的规划问题,在许多实际问题中都要求线性规划的最优整数解,课本中也出现了这样的例子和习题.但是笔者以为求最优整数解不应该成为教学的重点.因为求整数解的问题属于整数规划的范畴,而整数规划和线性规划是运筹学中两个不同的分支.教材的作者显然是知道这一点的,所以在教材的处理上回避了如何去求整数解这个问题.作者这样做一方面告诉大家求整数解不应该成为教学的重点,另一方面也给学生留下了一个自由发展的空间.事实上对于课本上出现的这样非常简单的问题只要在非整数优解的附近找出整数可行解,通过比较它们目标函数值的大小就可以求出最优整数解,学生完全可以自己想办法解决.在科普杂志《科学的美国人》(Scientific American)1981年第6期上有一篇介绍线性规划的文章,文章用了下面的一个例子(本文中的数量单位有改动):某啤酒厂生产两种啤酒,其中淡色啤酒A桶,啤酒B桶.粮食、啤酒花和麦芽是三种有约束的资源,每天分别可以提供480斤、160两和11 90斤.假设生产一桶淡色啤酒需要粮食5斤、啤酒花4两、麦芽20斤;生产一桶啤酒需要粮食15斤、啤酒花4两、麦芽35斤.售出后每桶淡色啤酒可获利13元,每桶啤酒可获利23元.问A,B等于多少时工厂的利润最大.这个例子的线性规划模型是和课本中的例子相比较这个例子有两个优点,一是它的数据更接近实际数据,有真实感,同时由于数字较大求出的最优解不是整数的问题被相对淡化了;另一方面例子中三种约束的单位不同,这在实际问题中经常出现,例子可以告诉学生列规划时并不需要统一各种约束条件的单位.笔者建议在教学中可以使用类似的例子.选自《中学数学月刊》2002第八期选节探究活动利润的线性规划[问题]某企业1997年的利润为5万元,1998年的利润为7万元,1999年的利润为81元,请你根据以上信息拟定两个不同的利润增长直线方程,从而预2001年企业的利润,请问你帮该企业预测的利润是多少万?[分析]首先应考虑在平面直角坐标系中如何描述题中信息:“1997年的利润为5万元,1998年的利润为7万元,1999年的利润为8万元”,在确定这三点坐标后,如何运用这三点坐标,是仅用其中的两点,还是三点信息的综合运用,运用时要注意有其合理性、思考的方向可以考虑将通过特殊点的直线、平行某个线段的直线、与某些点距离最小的直线作为预测直线等等.建立平面直角坐标系,设1997年的利润为5万元对应的点为(0,5),1998年的利润为 7万元及1999年的利润为 8万元分别对应点(1,7)和(2,8),那么①若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为13万元.②若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为11万元.③若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为10万元.④若将过及线段的中点的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.⑤若将过及的重心(注:为3年的年平均利润)的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.⑥若将过及的重心的直线作为预测直线,其方程为:,这样预测2001年的利润为10.667万元.⑦若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为9万元.⑧若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为11.5万元.⑨若将过点且以线段的斜率为斜率的直线,作为预测直线,则预测直线的方程为;,这样预测2001年的利润为12万元.⑩若将过且以线段的斜率与线段的斜率的平均数为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为12万元.如此这样,还有其他方案,在此不—一列举.[思考](1)第⑤种方案与第④种方案的结果完全一致,这是为什么?(2)第⑦种方案中,的现实意义是什么?(3)根据以上的基本解题思路,请你思考新的方案.如方案⑥中,过的重心,找出以为斜率的直线中与两点的距离的平方和最小的直线作为预测直线.(4)根据以上结论及你自己的答案估计一下利润的范围,你预测的利润频率出现最多的是哪一个值?你认为将你预测的结论作怎样的处理,使之得到的利润预测更为有效?如果不要求用线性预测,你能得出什么结果?习题精选一、填空题1.点到直线的距离等于4,且在不等式表示的平面区域内,则点的坐标为__。
简单的线性规划教学设计
《简单的线性规划》教学设计一、内容和内容解析线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。
涉及更多个变量的线性规划问题不能用初等方法解决。
本节课为该单元的第3课时,主要内容是线性规划的相关概念和简单的线性规划问题的解法.重点是如何根据实际问题准确建立目标函数,并依据目标函数的几何含义运用数形结合方法求出最优解。
与其它部分知识的联系,表现在:二、目标和目标解析本课时的目标是:1•了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等相关概念.了解线性规划模型的特征:一组决策变量5・刃表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域)•体会可行域与可行解、可行域与最优解、可行解与最优解的关系.2•掌握实际优化问题建立线性规划模型并运用数形结合方法进行求解的基本思想和步骤.会从实际优化问题中抽象、识别出线性规划模型•能理解目标函数的几何表征(一族平行直线)•能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为建、画、移、求、答.3•培养学生数形结合的能力.对模型中z的最小值的求解,通过对式子疋二h +弘的变形,变为2z z2V = —— x-l-————3利用数形结合思想,把?看作斜率为3的平行直线系在y轴上的截距.平移直线■' 1 '1,使其与y轴的交点最高,观察图象直线经过M(4, 2),得出最优解x = 4,y = 2.三、教学问题诊断分析线性规划问题的难点表现在三个方面:一是将实际问题抽象为线性规划模型;二是线性约束条件和线性目标函数的几何表征;三是线性规划最优解的探求.其中第一个难点通过第1课时已基本克服;第二个难点线性约束条件的几何意义也在第2课时基本解决,本节将继续巩固;第三个难点的解决必须在二元一次不等式(组)表示平面区域的基础上,继续利用数形结合的思想方法把目标函数直观化、可视化,以图解的形式解决之.将决策变量x,y以有序实数对(x,y)的形式反映,沟通问题与平面直角坐标系的联系,一个有序实数对就是一个决策方案.借助线性目标函数的几何意义准确理解线性目标函数在y轴上的截距与z的最值之间的关系;以数学语言表述运用数形结合得到求解线性规划问题的过程。
简单的线性规划教学设计
简单的线性规划教学设计教学目标:1.了解线性规划的概念和基本思想;2.能够通过建立数学模型,解决简单的线性规划问题;3.能够运用线性规划方法进行决策和优化。
教学重点:1.线性规划的概念和基本思想;2.线性规划的数学模型建立;3.线性规划的解法和应用。
教学准备:1.教材《线性规划》;2. PowerPoint 简介线性规划的概念和基本思想;3.实例练习题和答案;4.计算器。
教学过程:Step 1:导入导入线性规划的概念和基本思想,解释线性规划在实际生活中的应用,例如生产计划、投资决策、资源分配等等。
Step 2:讲解线性规划的基本概念通过 PowerPoint 展示线性规划的定义和基本特点,包括决策变量、目标函数、约束条件等。
帮助学生了解线性规划的基本结构。
Step 3:建立线性规划模型通过实例进行演示,分步骤引导学生建立线性规划数学模型。
首先将实际问题转化为决策变量、目标函数和约束条件,然后对这些元素进行量化,建立数学表达式。
Step 4:解决线性规划问题介绍线性规划的解法,包括图解法和单纯形法。
通过实例进行演示,分析不同解法的优缺点,并引导学生理解解的意义和应用。
Step 5:练习和讨论提供一些简单的线性规划练习题,让学生进行练习并讨论解法。
鼓励学生之间的互动和思维碰撞,帮助他们更好地理解和应用线性规划方法。
Step 6:拓展应用介绍线性规划在实际应用中的一些拓展,例如混合整数规划、多目标规划等。
帮助学生了解不同规划方法的适用范围和应用场景。
Step 7:总结与评价对本节课的内容进行总结,复习要点,并进行课堂评价,检查学生对线性规划的理解程度和应用能力。
Step 8:课后延伸布置线性规划的作业,要求学生通过建立数学模型,解决一个实际问题,并鼓励他们在日常生活中寻找和应用线性规划的机会和场景。
教学评价和建议:1.引导学生将线性规划的概念和基本思想与实际问题相结合,加深他们对线性规划的认识和兴趣;2.注重实例分析和练习,帮助学生通过实际操作加深对线性规划的理解和应用;3.鼓励学生积极思考和讨论,培养他们的问题解决能力和团队合作精神;4.提供相关资源和案例,让学生在课后深入学习和进一步拓展应用。
简单的线性规划教案
简单的线性规划教案郭红星●教学目标(一)教学知识点1.线性规划问题,线性规划的意义.2.线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念.(二)能力训练要求1.了解简单的线性规划问题.2.了解线性规划的意义.3.会用图解法解决简单的线性规划问题.(三)德育渗透目标让学生树立数形结合思想.●教学重点用图解法解决简单的线性规划问题.●教学难点准确求得线性规划问题的最优解.●教学方法讲练结合法教师可结合一些典型例题进行讲解,学生再通过练习来掌握用图解法解决一些较简单的线性规划问题.●教具准备多媒体课件(或幻灯片)内容:课本P60图7—23记作§7.4.2 A过程:先分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,再找出不等式组所表示的平面区域(即三直线所围成的封闭区域).再作直线l0:2x+y=0.然后,作一组与直线的平行的直线:l:2x+y=t,t∈R(或平行移动直线l0),从而观察t值的变化.●教学过程Ⅰ.课题导入上节课,咱们一起探讨了二元一次不等式表示平面区域,下面,我们再来探讨一下如何应用其解决一些问题.Ⅱ.讲授新课首先,请同学们来看这样一个问题.设z =2x +y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x求z 的最大值和最小值.分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域.(2)求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如图所示:,以经过点(-2,-1)的直线所对应的t 最小,以经过点(817,89)的直线所对应的t 最大.所以z m in =3×(-2)+5×(-1)=-11. z m ax =3×89+5×817=14.Ⅳ.课时小结1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.Ⅴ.课后作业(一)课本P 65习题7.4(二)1.预习内容:课本P 61~64.2.预习提纲:怎样用线性规划的方法解决一些简单的实际问题.●板书设计。
简单的线性规划教案
简单的线性规划教案教案标题:简单的线性规划教案教学目标:1. 了解线性规划的基本概念和特点。
2. 理解线性规划问题的求解过程。
3. 能够利用线性规划方法解决简单的实际问题。
所需材料:1. 铅笔、纸张、计算器。
2. 多个线性规划问题的案例。
教学步骤:引入阶段:1. 引导学生思考:什么是线性规划?线性规划有哪些应用场景?2. 提出教学目标,并解释线性规划的定义和特点。
探究阶段:3. 解释线性约束条件和目标函数的概念。
4. 利用一个简单的例子说明线性规划问题的形式和表示方法。
5. 引导学生分析并列出问题的线性约束条件和目标函数。
实践阶段:6. 将学生分成小组,每个小组选择一个实际问题,并将其转化为线性规划问题。
7. 指导学生列出问题的线性约束条件和目标函数。
8. 引导学生运用计算器或手动计算,求解其线性规划问题。
9. 学生分享并讨论解决过程和结果。
巩固阶段:10. 提供更多复杂的线性规划问题案例,让学生独立尝试解答,并讨论解决策略和结果。
11. 简要总结线性规划的基本原理和步骤。
拓展阶段:12. 引导学生思考更高级的线性规划问题,如带有整数约束或非线性目标函数的问题。
13. 推荐相关参考书籍和网上学习资源供学生深入学习。
评估方式:1. 在实践阶段,观察学生的合作和参与情况。
2. 收集学生独立解答的线性规划问题的答案,并进行评估。
教学反思:根据学生的反馈和评估结果,适时调整教学步骤和内容,确保学生能够理解和应用线性规划的基本原理。
高三数学《简单的线性规划》教案
城东蜊市阳光实验学校7.4简单的线性规划〔第一课时〕二元一次不等式表示平面区域教学目的:1.理解二元一次不等式表示平面区域;2.掌握确定二元一次不等式表示的平面区域的方法;3.会画出二元一次不等式〔组〕表示的平面区域,并掌握步骤;教学重点:二元一次不等式表示平面区域.教学难点:如何确定二元一次不等式表示的平面区域。
教学过程:【创设问题情境】问题1:在平面直角坐标系中,二元一次方程x+y1=0表示什么图形?请学生画出来.问题2:写出以二元一次方程x+y1=0的解为坐标的点的集合(引出点集{(x,y)x+y1=0})问题3:点集{(x,y)x+y10}在平面直角坐标系中表示什么图形?点集{(x,y)x+y1>0}与点集{(x,y)x+y1>0}又表示什么图形呢【讲授新课】研究问题:在平面直角坐标系中,以二元一次不等式x+y1>0的解为坐标的点的集合{(x,y)x+y1>0}是什么图形一、归纳猜想我们可以看到:在平面直角坐标系中,所有的点被直线x+y1=0分成三类:即在直线x+y1=0上;在直线x+y1=0的左下方的平面区域内;在直线x+y1=0的右上方的平面区域内。
问题1:请同学们在平面直角坐标系中,作出A〔2,0〕,B(0,2),C(1,1),D(2,2)四点,并说明它们分别在上面表达的哪个区域内?问题2:请把A、B、C、D四点的坐标代入x+y1中,发现所得的值的符号有什么规律?〔看几何画板〕由此引导学生归纳猜想:对直线l的右上方的点〔x,y〕,x+y1>0都成立;对直线l左下方的点(x,y),x+y1<0成立.二、证明猜想如图,在直线x+y1=0上任取一点P(x0,y0),过点P作垂直于y轴的直线y=y0,在此直线上点P右侧的任意一点(x,y),都有x>x0,y=y0,所以,x+y>x0+y0=0,所以,x+y 1>x0+y01=0,即x+y1>0,因为点P(x0,y0)是直线x+y1=0上的任意点,•yP(x0,y0)xl:x+y-1=0 •(x,y)Oxy11l:x+y-1=0所以,对于直线x+y1=0右上方的任意点(x,y),x+y1>0都成立.同理,对直线l:x+y1=0左下方的点(x,y),x+y1<0成立所以,在平面直角坐标系中,以二元一次不等式x+y1>0的解为坐标的点的集合{(x,y)x+y1>0}是在直线x+y1=0右上方的平面区域,类似地,在平面直角坐标系中,以二元一次不等式x+y1<0的解为坐标的点的集合{(x,y)x+y1<0}是在直线x+y1=0左下方的平面区域.提出:直线x+y1=0的两侧的点的坐标代入x+y1中,得到的数值的符号,仍然会“同侧同号,异侧异号〞吗?通过分析引导学生得出一般二元一次不等式表示平面区域的有关结论.三、一般二元一次不等式表示平面区域结论:在平面直角坐标系中,•〔1〕二元一次不等式Ax+By+C>0表示直线Ax+By+C=0某一侧所•有点组成的平面区域,Ax+By+C<0那么表示直线另一侧所有点组成•的平面区域;(同侧同号,异侧异号)〔2〕有等那么实,无等那么虚;〔3〕试点定域,原点优先.四、例题:例1:画出不等式x y+5>0表示的平面区域;分析:先作出直线x y+5=0为边界〔画成实线〕,再取原点验证不等式x y+5>0所表示的平面区域.解:先画直线x y+5=0为边界〔画成实线〕,再取原点〔0,0〕代入x y+5中,因为00+5>0,所以原点在不等式x y+5>0所表示的平面区域内,不等式表示的区域如下列图.x-y(看幻灯片) 反思归纳:画二元一次不等式表示的平面区域的方法和步骤: (1)画线定界(注意实、虚线); (2)试点定域. 【随堂练习】〔1〕画出不等式x+y>0表示的平面区域; 〔2〕画出不等式x 3表示的平面区域. 〔让学生完成〕例2:画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3,0,05x y x y x 表示的平面区域. 分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因此是各个不等式所表示的平面区域的公一一共部分。
《简单的线性规划》教学设计
课程篇一、教学指导思想与理论依据线性规划是利用数学为工具,来研究在一定的人、财、物、时、空等资源条件下,如何安排,达到用最少的资源取得最大的效益。
目前所学的线性规划只是规划论中极小的一部分,但这部分内容,也能体现数学的工具性、应用性,为学生今后解决实际问题提供了一种重要的解题方法———数学建模法。
重点是介绍线性规划的有关概念和利用图解法求解。
难点是图解法求最优解的探索过程。
二、教学背景分析1.教学内容分析本课时是本节内容的第二课时,是本节的核心内容。
第一课时即二元一次不等式表示平面区域,为本课时的学习做好了知识上的准备。
第三课时线性规划的应用更是以本课时内容为基础展开的。
2.学生情况分析本节课是对二元一次不等式的深化和再认识、再理解,进一步了解二元一次不等式组在解决实际问题中的应用。
如果直接向学生介绍目标函数的几何意义,考虑到他们的接受能力,用数学游戏来渗透,设置一系列问题,激发学生的探索欲望。
3.教学方式:自主探究、合作探究及教师引导相结合。
4.教学手段:计算机辅助教学。
三、教学目标设计1.知识与技能:了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;会用图解法求线性目标函数的最大值、最小值。
2.情感、态度与价值观:培养学生观察、联想、作图和渗透化归,用数学的意识和解决实际问题的能力。
通过对“线性规划”的历史及应用的大致介绍,使学生感受数学的文化价值。
四、教学过程设计(一)引入:组织学生做选盒子的游戏活动师:在下图的方格中,每列(x )与每行(y )的交汇处都放有一个盒子,每次你只能选其中的一个盒子,每个盒子对应一个分值,即为你的得分,而且该分值与盒子所在的行数和列数有关,且每次的关系式在变化,你会选哪个盒子分值最高第一次:分值=x+y (即:列数+行数)第二次:分值=y -2x (即:行数-列数×2)0123454321y x y x 图1图20123454321师:出图3,在图中找出函数b =2x +y 的最大值01234567894321x y 1011图3学生沿用上面计算的方法显然很复杂,于是学生的思维产生“结点”,引出课题,提出何为线性(即为一次的),怎么规划(即求函数的最值),这是本节课的研究重点。
高中数学必修第二册7.4简单的线性规划教案[整理五套]
§7.4.1 简单的线性规划
一、教学目标:
1.掌握二元一次不等式表示的平面区域
2.培养学生画图能力和解决实际问题的能力
二、教学重点与难点:
重点:理解二元一次不等式表示的平面区域
难点:二元一次不等式表示的平面区域的知识形成
三、教学内容:
(一)问题:
1.画出集合{(x,y)|x+y-1=0}表示的图象
2.集合{(x,y)|x+y-1>0}表示的图形是什么?
(二)新课:
1.二元一次不等式表示的区域
i.在平面直角坐标系中,所有的点被直线x+y-1=0分成______ 类;
在代数方面表现为___________________
ii.猜想:集合{(x,y)|x+y-1>0}表示的图形是直线右上方的所有点
iii.证明:
iv.联想:集合{(x,y)|x+y-1<0}表示的图形是直线左下方的所有点
v.结论:一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所
有点组成的平面区域。
我们把直线画成虚线以表示区域不包括边界直线。
注意思考:在坐标系中画不等
式Ax+By+C 0所表示的平面区域时应怎样画?
vi.区域判断方法:特殊点法。
2.例题分析:
1.画出不等式2x+y-6 < 0表示的平面区域
2.画出不等式组x-y+5>≥0 表示的平面区域
x+y≥0
x≤3
2.求不等式|x|+|y|≤1所表示的平面区域的面积
3.作业
1.教材P60练习中1(2),2(2)
2.教材P65习题7.4 中1。
简单的线性规划高二数学 教案
江西省南昌大学附属中学简单的线性规划高二数学胡凌云一、教材在本章节中的地位及作用1.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新大纲》中增加的一个新内容,反映了《新大纲》对数学知识应用的重视,体现了数学的工具性、应用性.2.本节内容渗透了转化、归纳、数形结合数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材.3.本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力.二、教学目标1.知识目标:能把实际问题转化为简单的线性规划问题,并能给出解答.2.能力目标:培养学生观察、联想以及作图的能力,渗透化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力.3.情感目标:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.三、教学重点与难点1.教学重点:建立线性规划模型2.教学难点:如何把实际问题转化为简单的线性规划问题,并准确给出解答.解决重点、难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,突破难点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化.四、教学方法与手段1.教学方法为了激发学生学习的主体意识,面向全体学生,使学生在获取知识的同时,各方面的能力得到进一步的培养.根据本节课的内容特点,本节课采用启发引导、讲练结合的教学方法,着重于培养学生分析、解决实际问题的能力以及良好的学习品质.2.教学手段新大纲明确指出:要积极创造条件,采用现代化的教学手段进行教学.根据本节知识本身的抽象性以及作图的复杂性,为突出重点、突破难点,增加教学容量,激发学生的学习兴趣,增强教学的条理性、形象性,本节课采用计算机辅助教学,以直观、生动地揭示二元一次不等式(组)所表示的平面区域以及图形的动态变化情况.3.学生课前准备坐标纸、三角板、铅笔和彩色水笔五、教学过程设计教学流程图(一)创设情境,新课导入(教师活动)通过多媒体创设情境(学生活动) 思考、并根据分析,尝试用坐标纸作图、解答.引例:某班班长赵彬预算使用不超过50元的资金购买单价分别为6元的笔筒和7元的文具盒作为奖品,根据需要,笔筒至少买3个,文具盒至少买2个,问他最多共买多少个笔筒和文具盒?请同学们考虑怎么将这个实际问题转化为数学问题?设计意图:通过创设情境,自然地让学生感受到数学与实际生活息息相关,激发学生的学习热情,明确本节课探究目标,同时又复习了线性规划问题的图解法.(二)例题示范,形成技能(教师活动)电脑打出例题,并作分析.(学生活动)思考、并根据分析,尝试解答.例1要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:规格类型 钢板类型 A 规格 B 规格 C 规格 第一种钢板 2 1 1 第二种钢板123今需要A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?[分析]本题是给定一项任务,如何合理安排和规划,能以最少的资源来完成该项任务 (审题)引导学生弄清各元素之间的关系,抓住问题的本质.(建模)① 确定变量及目标函数:第一种钢板x 张,第二种钢板y 张,所用钢板数为z 张,则z =x+y ② 分析约束条件;③ 建立线性规划模型;设需截第一种钢板x 张,第二种钢板y 张,由题中表格得⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,273,182,152y x y x y x y x试求满足上述约束条件的x, y ,且使目标函数z =x+y 取得最小值(其中x, y 均为正整数).因此把实际问题转化为线性规划问题.(求解)④ 运用图解法求出最优解;用多媒体教学, 着重分析如何寻找最优解是整数解.⑤ 回答实际问题的解.解:设需截第一种钢板x 张,第二种钢板y 张,根据题意可得:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,273,182,152y x y x y x y x z=x+y ,作出以上不等式组所表示的平面区域,即可行域. 作直线l : x+y=0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点A ,且与原点距离最近,此时z=x+y 取最小值.解方程组215327x y x y +=⎧⎨+=⎩,,得交点A 的坐标(183955,),由于185和395都不是整数,所以可行域内的点(183955, )不是最优解.将直线l 1向可行域内平移,最先到达的整点为B(3,9)和C(4,8)它们是最优解,此时z 取得最小值12. 答:要截得所需规格的三种钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张,两种方法都最少要截得两种钢板共12张.[说明]这种寻找整点最优解的方法可简述为“平移找解法”,即打网格,描整点,平移直线l ,找出整点最优解.此法应充分利用非整点最优解的信息,作图要精确.设计意图:把实际问题转化为线性规划问题是本节课的重难点,而寻找整点最优解则是例1的难点.为此本环节充分利用计算机辅助教学,投影题目及表格,作可行域,动态演示直线的平移过程等,不仅能够增大教学容量,而且能够使数学知识形象化、直观比,诱发学生在感情上参与;同时,多媒体教学通过对学生各种感官的刺激,以一种接近人类认知特点的方式来组织、展示教学内容及构建知识结构,能把课堂结构反映得更集中、典型、精粹,从而大大优化了课堂结构.例2某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品1 t 需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过300 t 、B 种矿石不超过200 t 、煤不超过360 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?[分析] 本题是在资源一定的条件下,怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大. (审题)引导学生弄清各元素之间的关系,抓住问题的本质,整理已知数据列成下表:产品消耗量 资源 甲产品(1t )乙产品(1t )资源限额(t )A 种矿石(t ) 10 4 300B 种矿石(t ) 5 4 200 煤(t ) 4 9 360 利润(元)6001000(建模)(1)确定变量及目标函数:若设生产甲、乙两种产品分别为x t, y t, 利润总额为z 元,则用x ,y 如何表示z ?(2)分析约束条件:z 值随甲、乙两种产品的产量x ,y 变化而变化,但甲、乙两种产品是否可以任意变化呢?它们受到哪些因素的制约?怎样用数学语言表述这些制约因素? (3)建立线性规划模型:已知变量x,y 满足约束条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x 求x, y 取何值时,目标函数z =600x +1000y 取得最大值,(求解)采用图解法求出最优解解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,根据题意可得:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x 目标函数为:z=600x+1000y . 作出以上不等式组所表示的平面区域,即可行域. 作直线l :600x+1000y=0, 即直线l :3x+5y=0,把直线向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=600x+1000y 取最大值.解方程组⎩⎨⎧=+=+,36094,20045y x y x得M 的坐标为x =36029≈12.3y=100029≈34.5答:应生产甲产品约12.3 t ,乙产品约34.5 t ,能使利润总额达到最大[说明]对于最优解的近似值,要根据实际问题的具体情形取近似值.按四舍五入取值即x =12.4,y =34.5时,虽然z=41940最大,但此时的x,y 不在可行域内.可以验证点(12.4,34.4)和(12.3,34.5)在可行域内,但当x =12.4,y =34.4时,z =41840;当x =12.3,y =34.5时,z =41880,因此按精确度取舍后的最优解点,可以离M 点“较远”,但必须离l 1距离最小.本例要求精确到0.1 t ,只需把坐标平面以0.1 单位网格化,在格点上找到离l 1距离最小的点,就是符合题意的最优解.设计意图:学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,不能正确理解题意,弄清各元素之间的关系;不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;孤立地考虑单个的问题情境,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,本环节教师侧重于引导学生建立数学模式,其余过程由学生自主解决.用多媒体展示最优解的近似值.引导学生结合上述两例子总结归纳解决这类问题的方法和步骤:(三)学生互动巩固提高(教师活动)电脑打出练习、要求学生独立解答.巡视学生解答情况,纠正错误.(学生活动)用坐标纸作图、解答.某人有楼房一幢,室内面积共180m2,拟分隔成两类房间作为旅游客房.大房间每间面积为18m2,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15m2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大效益?(答案:隔出大房间3间,小房间8间或者只隔出小房间12间就能获得最大收益.)(教师用投影展示学生的结论并用多媒体展示正确结论同时点评)设计意图:巩固、加深对线性规划解决实际问题的理解和应用.(四)概括提炼,总结升华(引导学生从知识和思想方法两方面进行总结)1.本节课你学了哪些知识?2.本节课渗透了什么数学思想方法?(五)布置作业,探究延续1.课本作业:P65,习题7.4第3,5题.2.选做题:P88,第16题3.拓展题:通过网络搜索查阅有关线性规划的应用实例设计意图:强化基本技能训练,巩固课堂内容,发现和弥补教与学中的遗漏和不足,以便及时矫正.(六)板书设计(略)(七)教学设计说明1.本节课是线性规划第三课时的教学内容,它以二元一次不等式(组)所表示的平面区域和线性规划的图解法等知识为基础,体现了数学的工具性、应用性,同时也渗透了转化、归纳、数形结合数学思想.2.学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模,故本设计把“实际问题抽象转化为线性规划问题”作为本堂课的重难点,并紧紧围绕如何引导学生根据实际问题的已知条件,找出约束条件和目标函数,然后利用图解法求得最优解作为突破难点的关键.3.对于应用问题而言,学生遇到的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情境,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,故将本节课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在同学们面前.以利于他们理解;分析完题意后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法. 4.本节课的设计,力图让学生在教师的指导下,从“懂”到“会”到“悟”,体会钻研的意识,品尝成功的喜悦,从而使学生在积极活跃的思维过程中,数学能力和数学素养得到提高.。
简单的线性规划教学设计
简单的线性规划一教学目标1 知识与技能:了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。
2 过程与方法:培养学生的形象思维能力、绘图能力和探究能力;强化数形结合的数学思想方法;提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力3 情感态度与价值观:在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;在运用求解线性规划问题的图解方法中,感受动态几何的魅力;在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。
模型、解决简单实际优化问题的能力二教学重点。
难点重点:突出根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解。
难点:借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;用数学语言表述运用图解法求解线性规划问题的过程。
三教学方法:启导教学法、引探教学法四、教学过程设计1 例题讲解【设计思路】本环节的教学设计意在实现:①选择应用型问题引入课题,体现新课程中突出数学应用意识的理念;②通过引例既帮助学生复习如何从实际问题中抽象出约束条件并用平面区域表示,又通过添加优化问题转入新知识的学习;③引例向学生展现了线性规划应用问题的第一种类型题:在人力、物力、资金等资源一定的情况下,如何合理规划才能完成最多的任务,即该例属于目标函数求最大值的情况,同时引例展现的可行域属于为有界区域;【例1】某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件并耗时1 h,每生产一件乙产品使用4个B配件并耗时2 h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8 h计算,该厂所有可能的日生产安排是什么?若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排获得的利润最大?解:设甲、乙两种产品的日生产分别为,x y件时,工厂获得的利润为z万元,则,x y 满足约束条件为28416412,0x y x y x y +≤⎧⎪≤⎪⎨≤⎪⎪≥⎩, 作出约束条件所表示的可行域,如右图所示目标函数为23z x y =+,可变形为233zy x =-+,如图,作直线0:230l x y +=,当直线0l 平移经过可行域时,在点M 处达到y 轴上截距3z的最大值,即此时z 有最大值.解方程组4280x x y =⎧⎨+-=⎩,得点(4,2)M ,max 2314z x y ∴=+=当每天安排生产4件甲产品,2件乙产品时,工厂获利最大为14万元。
简单的线性规划教案
简单的线性规划教案简单的线性规划教案简单的线性规划教案教学目标巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点理解二元一次不等式表示平面区域是教学重点.如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.【线性规划】先讨论下面的问题设,式中变量x、y满足下列条件①求z的最大值和最小值.我们先画出不等式组①表示的平面区域,如图中内部且包括边界.点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上.作一组和平等的直线可知,当l在的右上方时,直线l上的点满足.即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t最大,以经过点的直线,所对应的t最小,所以在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的最大值和最小值问题.线性约束条件除了用一次不等式表示外,有时也有一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.【应用举例】例1 解下列线性规划问题:求的最大值和最小值,使式中的x、y 满足约束条件解:先作出可行域,见图中表示的区域,且求得.作出直线,再将直线平移,当的平行线过B点时,可使达到最小值,当的平行线过C点时,可使达到最大值.通过这个例子讲清楚线性规划的步骤,即:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找出最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值.例2 解线性规划问题:求的最大值,使式中的x、y满足约束条件.解:作出可行域,见图,五边形OABCD表示的平面区域.作出直线将它平移至点B,显然,点B的坐标是可行域中的最优解,它使达到最大值,解方程组得点B的坐标为(9,2).这个例题可在教师的指导下,由学生解出.在此例中,若目标函数设为,约束条件不变,则z的最大值在点C(3,6)处取得.事实上,可行域内最优解对应的点在何处,与目标函数所确定的直线的斜率有关.就这个例子而言,当的斜率为负数时,即时,若(直线的斜率)时,线段BC上所有点都是使z取得最大值(如本例);当时,点C处使z取得最大值(比如:时),若,可请同学思考.随堂练习1.求的最小值,使式中的满足约束条件2.求的最大值,使式中满足约束条件答案:1.时,.2.时,.总结提炼1.线性规划的概念.2.线性规划的问题解法.布置作业1.求的最大值,使式中的满足条件2.求的最小值,使满足下列条件答案:1.2.在可行域内整点中,点(5,2)使z最小,探究活动利润的线性规划[问题]某企业1997年的利润为5万元,1998年的利润为7万元,1999年的利润为81元,请你根据以上信息拟定两个不同的利润增长直线方程,从而预2001年企业的利润,请问你帮该企业预测的利润是多少万?[分析]首先应考虑在平面直角坐标系中如何描述题中信息:“1997年的利润为5万元,1998年的利润为7万元,1999年的利润为8万元”,在确定这三点坐标后,如何运用这三点坐标,是仅用其中的两点,还是三点信息的综合运用,运用时要注意有其合理性、思考的方向可以考虑将通过特殊点的直线、平行某个线段的直线、与某些点距离最小的直线作为预测直线等等.建立平面直角坐标系,设1997年的利润为5万元对应的点为(0,5),1998年的利润为7万元及1999年的利润为8万元分别对应点(1,7)和(2,8),那么①若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为13万元.②若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为11万元.③若将过两点的直线作为预测直线,其方程为:,这样预测2001年的'利润为10万元.④若将过及线段的中点的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.⑤若将过及的重心(注:为3年的年平均利润)的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.⑥若将过及的重心的直线作为预测直线,其方程为:,这样预测2001年的利润为10.667万元.⑦若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为9万元.⑧若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为11.5万元.⑨若将过点且以线段的斜率为斜率的直线,作为预测直线,则预测直线的方程为;,这样预测2001年的利润为12万元.⑩若将过且以线段的斜率与线段的斜率的平均数为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为12万元.如此这样,还有其他方案,在此不—一列举.[思考](1)第⑤种方案与第④种方案的结果完全一致,这是为什么?(2)第⑦种方案中,的现实意义是什么?(3)根据以上的基本解题思路,请你思考新的方案.如方案⑥中,过的重心,找出以为斜率的直线中与两点的距离的平方和最小的直线作为预测直线.(4)根据以上结论及你自己的答案估计一下利润的范围,你预测的利润频率出现最多的是哪一个值?你认为将你预测的结论作怎样的处理,使之得到的利润预测更为有效?如果不要求用线性预测,你能得出什么结果?。
线性规划教案精选全文
可编辑修改精选全文完整版线性规划教案【线性规划教案】一、教学目标1. 了解线性规划的基本概念和应用领域;2. 掌握线性规划的数学模型的建立方法;3. 学会使用线性规划的求解方法,解决实际问题;4. 培养学生的逻辑思维能力和问题解决能力。
二、教学内容1. 线性规划的基本概念a. 线性规划的定义和特点;b. 线性规划的应用领域。
2. 线性规划的数学模型a. 决策变量的定义和约束条件的建立;b. 目标函数的确定。
3. 线性规划的求解方法a. 图形法求解;b. 单纯形法求解。
4. 实际问题的线性规划建模和求解a. 生产计划问题;b. 运输问题;c. 投资组合问题。
三、教学过程1. 线性规划的基本概念a. 引入线性规划的背景和定义,让学生了解线性规划的基本概念;b. 通过实例,介绍线性规划在生产、运输、投资等领域的应用。
2. 线性规划的数学模型a. 介绍决策变量的概念和约束条件的建立方法,让学生掌握数学模型的建立过程;b. 解释目标函数的概念和确定方法,让学生理解目标函数在线性规划中的作用。
3. 线性规划的求解方法a. 详细介绍图形法的步骤和求解过程,通过实例演示图形法的应用;b. 详细介绍单纯形法的步骤和求解过程,通过实例演示单纯形法的应用。
4. 实际问题的线性规划建模和求解a. 通过实际生产计划问题,引导学生进行线性规划建模和求解;b. 通过实际运输问题,引导学生进行线性规划建模和求解;c. 通过实际投资组合问题,引导学生进行线性规划建模和求解。
四、教学方法1. 讲授法:通过讲解线性规划的基本概念、数学模型和求解方法,让学生掌握相关知识;2. 实例演示法:通过实际问题的演示,让学生理解线性规划在实际问题中的应用;3. 讨论交流法:引导学生参与讨论,共同解决线性规划问题,培养学生的合作和交流能力;4. 练习和作业:布置练习和作业,巩固学生的知识和能力。
五、教学评价1. 学生课堂表现:观察学生的听讲和参与情况,评价学生的学习态度和积极性;2. 学生作业完成情况:检查学生的练习和作业完成情况,评价学生的掌握程度;3. 学生实际问题求解能力:通过实际问题的求解,评价学生的问题解决能力和应用能力。
简单的线性规划教案
简单的线性规划【教学目标】1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题; 2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。
【教学重点】用图解法解决简单的线性规划问题 【教学难点】准确求得线性规划问题的最优解 【教学过程】 1.课题导入 [复习提问]1、二元一次不等式0>++C By Ax 在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵。
2.讲授新课在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。
1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ (1)(2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。
(3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大? (4)尝试解答:设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少? 把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z的直线。
简单的线性规划教学教案
简单的线性规划教学教案教学目标:1.理解线性规划的概念和应用。
2.学会构建线性规划模型。
3.掌握常用的线性规划求解方法。
教学重点:1.线性规划的基本概念和原理。
2.如何根据实际问题构建线性规划模型。
3.线性规划的常用求解方法。
教学难点:1.如何确定线性规划模型的约束条件。
2.如何进行线性规划问题的求解。
教学准备:1.教师准备PPT、教学案例和练习题。
2.学生准备纸笔和计算器。
教学过程:一、导入(10分钟)1.引入线性规划的概念,简单介绍线性规划的应用背景和目标。
2.提问:你知道线性规划吗?它有什么应用领域?二、概念讲解(20分钟)1.讲解线性规划的基本定义和特点。
解释什么是线性规划问题,以及如何区分线性规划和非线性规划。
2.介绍线性规划的基本假设和约束条件。
三、模型构建(30分钟)1.通过实际案例,讲解线性规划的模型构建过程。
2.以一个简单的生产问题为例,引导学生如何根据给定的条件构建线性规划模型。
3.引导学生讨论和思考,如何确定目标函数和约束条件。
四、线性规划问题的求解方法(30分钟)1.介绍线性规划问题的常用求解方法,包括图形法、单纯形法等。
2.以图形法为例,演示如何利用图形法求解线性规划问题。
3.引导学生通过练习题熟练掌握线性规划问题的求解方法。
五、案例分析(20分钟)1.给出一个较为复杂的线性规划问题,引导学生分组进行讨论和求解。
2.学生展示解题过程和结果,并进行讨论和总结。
六、总结与拓展(10分钟)1.整理本节课的主要内容,进行总结。
2.引导学生扩展拓展线性规划的应用领域。
教学延伸:1.鼓励学生通过实际案例进行线性规划模型的构建和求解。
2.将线性规划与其他数学知识结合,如代数、数学建模等。
教学反思:1.这节课应该增加更多的实例分析,帮助学生更好地理解线性规划的构建和求解过程。
2.可以设计更多的练习题,帮助学生巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的线性规划教案
●教学目标
(一)教学知识点
用图解法解决简单的线性规划问题. (二)能力训练要求
能应用线性规划的方法解决一些简单的实际问题. (三)德育渗透目标 1.增强学生的应用意识.
2.培养学生理论联系实际的观点. ●教学重点
线性规划的两类重要实际问题:第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大;第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小.
●教学难点
根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.尤其是最优解是整数解.
●教学方法 讲练结合法
结合典型的实际问题讲解怎样用图解法解决线性规划的两类重要实际问题. ●教具准备
投影片三张(或多媒体课件) 第一张:记作§7.4.3 A 内容:课本P 62图7—24. 第二张:记作§7.4.3 B 内容:课本P 63图7—25. 第三张:记作§7.4.3 C 内容如下:
解:设每天应配制甲种饮料x 杯,乙种饮料y 杯.则,
⎪⎪⎪⎩⎪
⎪⎪⎨⎧≥≥≤+≤+≤+0
03000103200054360049y x y x y x y x 作出可行域:
目标函数为:z =0.7x +1.2y
作直线l :0.7x +1.2y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点
C ,且与原点距离最大,此时z =0.7x +1.2y 取最大值.
解方程组⎩⎨
⎧=+=+,
3000103,
200054y x y x
得点C 的坐标为(200,240).
所以,每天应配制甲种饮料200杯,乙种饮料240杯,能使该咖啡馆获利最大. ●教学过程 Ⅰ.课题导入
上节课,我们一起探讨了如何运用图解法解决简单的线性规划问题. 生产实际中有许多问题都可以归结为线性规划问题,其中有两类重要实际问题,下面我们就结合这两类问题的典型例题来探讨一下如何解决线性规划的实际问题.
Ⅱ.讲授新课
第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大?
例如:某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?
产品 消耗量 资源
甲产品(1 t ) 乙产品(1 t) 资源限额(t ) A 种矿石(t ) 10 4 300 B 种矿石(t)
5 4 200 煤(t) 4 9 360 利润(元)
600
1000
那么⎪⎪⎪⎩⎪
⎪⎪⎨⎧≥≥≤+≤+≤+;
0,0,36094,20045,300410y x y x y x y x
目标函数为:z =600x +1000y .
作出以上不等式组所表示的平面区域(或打出投影片§7.4.3 A ),即可行域.
作直线l :600x +1000y =0, 即直线l :3x +5y =0,
把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z =600x +1000y 取最大值.
解方程组⎩⎨
⎧=+=+,
36094,
20045y x y x
得M 的坐标为x =
29360
≈12.4,y =29
1000
≈34.4. 答:应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.
第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小.
例如:要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:
规格类型 钢板类型 A 规格 B 规格 C 规格 第一种钢板 2 1 1 第二种钢板
1
2
3
今需要、、三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?
解:设需截第一种钢板x 张,第二种钢板y 张,根据题意可得:
⎪⎪⎪⎩⎪
⎪⎪⎨⎧≥≥≥+≥+≥+.
0,0,273,182,152y x y x y x y x 作出以上不等式组所表示的平面区域(或打出投影片§7.4.3 B ),即可行域:
目标函数为z =x +y ,
作出在一组平行直线x +y =t (t 为参数)中经过可行域内的点且和原点距离最近的直线,
此直线经过直线x +3y =37和直线2x +y =15的交点A (
539,518)
,直线方程为x +y =5
57
. 由于
539
518和都不是整数,而最优解(x ,y )中,x 、y 必须满足x ,y ∈Z ,所以,可行域内点(5
39
,518)不是最优解.
经过可行域内的整点(横坐标和纵坐标都是整数的点)且与原点距离最近的直线是x +y =12,经过的整点是B (3,9)和C (4,8),它们是最优解.
答:要截得所需规格的三种钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张,两种方法都最少要截得两种钢板共12张.
[师]下面,请同学们结合上述两例子总结归纳一下解决这类问题的思路和方法. [生甲]先要画出可行域. [生乙]先要找到目标函数. [生丙]图解法.
[师]这些同学讲得都不错,但是都不尽完善.其实,解决实际问题的关键是数学建模,即根据题意首先将实际问题转化为数学问题.也就是同学们刚才所说的,先要找到约束条件和目标函数.然后用图解法求得数学模型的解.
最后,还需要将数学问题的解还原为实际问题的解.即根据实际情况找得最优解.如上述例2,需找得整点.才是最优解.
下面,请同学们打开课本P 64. Ⅲ.课堂练习
生(自练)练习2.
[师]提示学生将已知数据列为下表:
[师]结合学生所做进行讲评. Ⅳ.课时小结
通过本节学习,需掌握线性规划的两类重要实际问题的解题思路:
首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.
然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解.
最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.
Ⅴ.课后作业
(一)课本P65习题7.4 3、4.
(二)1.预习内容:课本P66~67
2.预习提纲:
(1)如何将我们所学知识应用于实际生活?(2)我们身边常会遇到哪些相关问题?
●板书设计。