精选浙江省杭州市高一上期末数学试卷((含答案))
2021-2022学年浙江省杭州高级中学钱江校区高一上学期期末考试数学试卷带讲解
B.∀x∈R,f(x)=0或g(x)=0
C.∃x0∈R,f(x0)=0且g(x0)=0
D.∃x0∈R,f(x0)=0或g(x0)=0
D
【详解】试题分析:根据全称命题与存在性命题的互为否定的关系可得:命题 的否定是“ 或 ”故选D.
考点:命题的否定.
6.如果2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为()
(2)利用函数的奇偶性和单调性解不等式即可.
【小问1详解】
因为 为偶函数,且 ,所以 ,解得 ,又 ,所以 , ;
设 ,则 ,因为 ,所以 , ,所以 ,所以 在 上单调递增.
【小问2详解】
因为 为定义在 上的偶函数,且在 上单调递增, ,所以 ,平方得 ,又因为对任意 不等式恒成立,所以 ,解得 .
【详解】A. 时, ,有最大值,无最小值.故选项A错误;
B. ,当且仅当 时,等号成立,即 .而 ,故 无解,即该式无法取得等号.故选项B错误;
C.对于正数 , ,有 ,当且仅当 时,取得等号,即 .故选项C正确;D. , , ,当且仅当 时,取得等号,则 .故选项D正确.
故选:CD
三、填空题:本大题共4小题,每空4分,共16分.
18.(1)化简 ;
(2)已知关于 的方程 的两根为 和 , .求实数 以及 的值.
(1) ;(2) ,
【分析】(1)利用诱导公式化简即可;
(2)利用韦达定理得到 , ,再将 两边平方即可求出 ,最后由 求出 .
详解】解:(1)
,
即 .
(2)因为关于 的方程 的两根为 和 ,
所以 , ,
所以 ,所以 ,
综上可得, 的增区间为 ,减区间为 .
浙江省杭州市高一上学期期末数学试题(解析版)
一、单选题1.若角的终边经过点,则 α()()3,0P a a ≠A . B .C .D .sin 0α>sin 0α<cos 0α>cos 0α<【答案】C【解析】根据三角函数定义可得判断符号即可.sin α=cos α=【详解】解:由三角函数的定义可知,,sin αcos 0α=>故选:C .【点睛】任意角的三角函数值:(1)角与单位圆交点,则; α(,)P x y sin ,cos ,tan (0)yy x x xααα===≠(2)角终边任意一点,则. α(,)P x y sin tan (0)yx xααα===≠2.“a >b 2”是”的( ) b >A .充分条件 B .必要条件 C .充要条件 D .既不充分又不必要条件【答案】A【分析】根据充分条件和必要条件的定义结合不等式的性质判断【详解】若,而不能推出,0,1a b ==-b >201a b=<=b >2a b >当,当 ,所以当时,有2a b >0b ≥b >0b <b b >->2a b >,b >所以“a >b 2”是”的充分不必要条件, b >故选:A3.若扇形的周长为,圆心角为,则扇形的面积为( ) 16cm 2rad A . B . C . D .212cm 214cm 216cm 218cm 【答案】C【分析】设扇形的半径为,则周长为,解得,再计算面积得到答案. R 2216R R +=4R =【详解】设扇形的半径为,则周长为,解得; R 2216R R +=4R =扇形的面积.2124162S =⨯⨯=故选:C4.有一组实验数据如下表所示:t 3.0 6.0 9.0 12.0 15.0 v 1.52.52.93.64.0现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )A .B .C .D .0.5v t =()20.51v t =-0.5log v t =2log v t =【答案】D【分析】根据题设中表格中的数据画出散点图,结合图象和选项,得到答案. 【详解】由表格中的数据,作出数据的散点图,如图所示,数据散点图和对数函数的图象类似,所以选项D 最能反映之间的函数关系. 2log v t =,t v 故选:D.5.已知函数是定义在上的奇函数,且满足,则( ) ()f x R (2)()f x f x +=-(2022)f =A . B .0 C .1 D .20222022-【答案】B【分析】求出函数的周期,利用周期和可得答案. (0)0f =【详解】因为,所以, (2)()f x f x +=-(4)(2)()f x f x f x +=-+=所以的周期为4,()f x 函数是定义在上的奇函数,所以, ()f x R (0)0f =所以,(2)(0)0f f =-=.(2022)(50542)(2)0f f f =⨯+==故选:B. 6.函数的图像如图所示,可以判断a ,b ,c 分别满足( )()ay x b x c =--A .,,B .,, a<00b >0c =0a >0b >0c =C .,,D .,,a<00b =0c >a<00b =0c =【答案】A【分析】分、两种情况讨论即可. 0,0b c =>0,0b c >=【详解】函数的定义域为()ay x b x c =--{},x x b x c ≠≠①当时,, 0,0b c =>ay x x c=-当时,与同号,当时,与同号, ()0,x c ∈y a (),x c ∈+∞y a 与图中信息矛盾; ②当时,,0,0b c >=()ay x b x =-由图可得,当时,,所以, ()x b ∈+∞,0y <a<0然后可验证当,时,图中信息都满足, 0,0b c >=a<0故选:A7.已知,,,则a ,b ,c 的大小关系为( ) 3log 2a =11log 5b =lg 4c =A . B .C .D .a b c <<c<a<b c b a <<a c b <<【答案】B【分析】利用对数的单调性进行判断即可.【详解】因为,所以,235125,11==112311log 5lo 2113g b =>=因为,所以,即,2=233=23332log 2log 33<=23<a因为,即,,4=2310=232lg 4lg103<=23c <因为, 3lg 2lg 2lg 3lg 4lg 2(12lg 3)lg 2(1lg 9)log 2lg 4lg 40lg 3lg 3lg 3lg 3a c ----=-=-===>所以,即, a c >c<a<b 故选:B【点睛】关键点睛:根据对数函数的单调性,结合特殊值法进行比较是解题的关键.8.已知函数,若关于的方程()有三个不()2124,13,1x x x x f x x -⎧--+≤=⎨>⎩x ()()202f x a f x ++=+a R ∈相等的实数根,且,则的值为( )123,,x x x 123x x x <<()()()()()()2123222f x f x f x +++A . B .C .D .42()22a +2a +【答案】A【分析】令,结合函数的图象,将方程()有三个不相等的实()f x t =()()202f x a f x ++=+a R ∈数根,转化为有两个不等的实数根,,进而由123,,x x x ()22220t a t a ++++=10t <205t <<,利用韦达定理求解.()()()()()()2123222f x f x f x +++()()221222tt =++【详解】因为函数图像如下: ()2124, 13, 1xx x x f x x -⎧--+≤=⎨>⎩令,则有两个不等的实数根,,()f x t =()22220t a t a ++++=10t <205t <<由韦达定理知:, 122t t a +=--1222t t a =+则,, ()11f x t =()()232f x f x t ==所以,()()()()()()2123222f x f x f x +++,()()221222t t =++, ()()212[22]t t =++,()()2121224t t t t =+++. ()2224244a a =+--+=故选:A二、多选题9.若,则下列不等式恒成立的有( ) 0,0,2a b a b >>+=A .B 1ab ≤≤C .D .222a b +≥212a b+>【答案】ACD【解析】根据基本不等式依次讨论各选项即可得答案.【详解】解:对于A ,由基本不等式得,则,故A 正确; 2a b =+≥1ab ≤对于B ,令不成立,故B 错误; 1,1a b ==>≤对于C ,由A 选项得,所以,故C 正确;1ab ≤222()2422a b a b ab ab +=+-=-≥对于D ,根据基本不等式的“1”的用法得()1212221a b a b a b a b +⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭12212b a a b ⎛⎫=+++ ⎪⎝⎭,故D 正确; 312313222222b a a b ⎛⎫=++≥+⋅= ⎪⎭>⎝故选:ACD .【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方10.已知非零实数a ,b ,若,为定义在上的周期函数,则( ) ()f x ()g x R A .函数必为周期函数 B .函数必为周期函数 ()f ax b +()af x b +C .函数必为周期函数 D .函数必为周期函数()()f g x ()()f x g x +【答案】ABC【分析】是周期为的函数,A 正确,是周期为的函数,B 正确,是()f ax b +ma()af x b +m (())f g x 周期为的函数,C 正确,当周期为周期为1时,得到矛盾,D 错误,得到答案.n ()f x π,()g x【详解】设周期为周期为,,()f x ,()m g x ,0n m ≠0n ≠对选项A :,故是周期为的函数,正确;()()m f ax b f ax b m f a x b a ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭()f ax b +ma 对选项B :则,所以是周期为的函数,正确; ()()af xb af x m b +=++()af x b +m 对选项C :,所以是周期为的函数,正确;(())(())f g x f g x n =+(())f g x n 对选项D : 当周期为周期为1时,若是周期函数,设周期为 ,则()f x π,()g x ()()f x g x +T ,是无理数,所以上式无解,所以此时不是周期函π1,Z,Z,0,0T k t k t k t ==⨯∈∈≠≠π()()f x g x +数,错误. 故选:ABC11.已知函数为偶函数,点,是图象()()()4sin 10πϕωϕω=+->≤,f x x ()1,1A x -()2,1B x -()f x 上的两点,若的最小值为2,则下列说法正确的是( ) 12x x -A . B . C . D .在上单π2=ωπ2ϕ=()11f =-()f x ()111,1x x -+调递增 【答案】AC【分析】根据三角函数的图像和性质求出函数的解析式,然后分别进行判断即可.【详解】对于A ,由,得,即,的最小值为()1f x =-()4sin 11ωϕ+-=-x ()sin 0x ωϕ+=12x x - 2,,即,即,则,故选项A 正确;22T ∴=4T =2π4ω=π2=ω对于B ,为偶函数,,,时,时,故()f x ππ+,Z 2ϕ∴=∈k k πϕ≤ 0k ∴=π2ϕ=1k =-π2ϕ=-选项B 错误;对于C ,综上或者,()c πππ224sin 14os 12⎛⎫=+-=- ⎪⎝⎭x x x f ()4sin 14cos 1πππ222⎛⎫=--=-- ⎪⎝⎭x x f x 则,故选项C 正确;()11f =-对于D ,,,,即,即是函数的零()1,1- A x ()2,1B x -14cos 11π2-=-x 10π2cos =x 1x πcos 2y x =点,的区间长度为2,是半个周期,则函数在上不具备单调性,故选项()111,1-+ x x ()111,1x x -+D 错误. 故选:AC.12.设函数若存在,使得()()4,,f x x t g x x=+=-[]()12,,......,1,4,N ,3n x x x n n *∈∈≥,则t 的值可能是( )121121()()......()()()()......()()n n n n f x f x f x g x g x g x g x f x --+++=+++A .-7B .-6C .-5D .-4【答案】BCD【分析】根据题意可得,令112211()()()()()()()()n n n n f x g x f x g x f x g x f x g x ---+-+-=- (),结合对勾函数的性质可得函数的单调性,则4()()()F x f x g x x t x=-=++[1,4]x ∈()F x ,进而有,结合4()5t F x t +≤≤+(4)(1)()()(5)(1)n n t n f x g x t n +-≤-≤+-4()()5n n t f x g x t +≤-≤+列出不等式组,解之即可.【详解】由题意得,存在使得*12,,[1,4](N ,3)n x x x n n ∈∈≥ 成立,112211()()()()()()()()n n n n f x g x f x g x f x g x f x g x ---+-+-=- 令,, 4()()()F x f x g x x t x=-=++[1,4]x ∈因为对勾函数在上单调递减,在上单调递增, 4y x x=+(1,2)(2,4)所以函数在上单调递减,在上单调递增, ()F x (1,2)(2,4)由,得,(1)5,(2)4,(4)5F t F t F t =+=+=+4()5t F x t +≤≤+即,*4()()5(N ,)i i t f x g x t i i n +≤-≤+∈≤所以, (4)(1)()()(5)(1)n n t n f x g x t n +-≤-≤+-又,4()()5n n t f x g x t +≤-≤+则,即,4(5)(1)5(4)(1)t t n t t n +≤+-⎧⎨+≥+-⎩952942n t n n t n -⎧≥⎪⎪-⎨-⎪≤⎪-⎩因为, N ,3n n *∈≥951941=56,4432222n n n n n n ----≥--<=-+≤-----解得. 64t -≤≤-故选:BCD.三、填空题13.已知幂函数,则此函数的定义域为________. 3y x αα=-【答案】.()(),00,∞-+∞U 【分析】根据幂函数的定义,求得,得到,进而求得函数的定义域.13a =-y =【详解】由幂函数,可得,解得,即3y x αα=-31α-=13a =-13y x -==则满足,即幂函数的定义域为. 0x ≠3y x αα=-()(),00,∞-+∞U 故答案为:.()(),00,∞-+∞U 14.已知是第二象限角,,则________. θ()3cos π25θ+=tan θ=【答案】2-【分析】根据诱导公式以及二倍角公式,利用同角三角函数之间的基本关系即可求得或tan 2θ=,再根据是第二象限角即可得.tan 2θ=-θtan 2θ=-【详解】由诱导公式可得,所以;()3cos π2cos 25θθ+=-=3cos 25θ=-根据二倍角公式可得, 222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++解得或,tan 2θ=tan 2θ=-又因为是第二象限角,所以. θtan 2θ=-故答案为:2-15.如图所示,摩天轮的直径为,最高点距离地面的高度为,摩天轮按逆时针方向作匀110m 120m 速转动,且每转一圈.若游客甲在最低点坐上摩天轮座舱,则在开始转动后距离地面30min 5min 的高度为________m .【答案】##37.5752【分析】由题意可知,距离地面的高度与时间所满足的关系式为,然后根据h t ()sin h A t k ωϕ=++条件求出解析式可得答案.【详解】由题意可知,距离地面的高度与时间所满足的关系式为, h t ()sin h A t k ωϕ=++因为摩天轮的直径为,最高点距离地面的高度为,110m 120m 所以,解得,12010A k A k +=⎧⎨-+=⎩55,65A k ==因为每转一圈,所以,, 30min 2π30T ω==15πω=当时,,所以,所以可取,0=t 10h =sin 1ϕ=-π2ϕ=-所以,ππ55sin 65152h t ⎛⎫=-+ ⎪⎝⎭所以当时,5t =π55sin 6537.56h ⎛⎫=-+= ⎪⎝⎭故答案为:37.516.设.若当时,恒有,则的取值范围是____. ,a b ∈R ||1x ≤2|()|1x a b -+≤a b +【答案】[【分析】构造函数,则将题目转化为当时,2()()f x x a =-||1x ≤恒有,分,,,讨论,即可得到结果. 1()1b f x b ---≤≤1a ≤-1a ≥10a -<≤01a <<【详解】设函数,则当时,恒有. 2()()f x x a =-||1x ≤1()1b f x b ---≤≤当时,在上递增,1a ≤-()f x [1,1]-则,且,2(1)(1)1f a b =--≤2(1)(1)1f a b -=----≥从而,则,于是,矛盾;22222a a b a a ----≤≤22222a a a a ----≤12a ≥-同理,当,在上递减,1a ≥()f x [1,1]-则,且,2(1)(1)1f a b =-≥--2(1)(1)1f a b -=--≤-从而,则,于是,矛盾; 22222a a b a a -+---≤≤22222a a a a -+-≤--12a ≤当,,则, 10a -<≤212b a a --≤≤22110a a a -≥-⇒≤≤10b -≤≤当,,则, 01a <<212b a a ---≤≤22110a a a --≥-⇒≤≤10b -≤≤由此得,的取值范围是.a b +[当且仅当时,时,. 1a =1b =-a b +=0a b ==0a b +=故答案为:[四、解答题 17.已知.sin cos π30sin cos 2ααααα+⎛⎫=∈ ⎪-⎝⎭,,(1)求的值;tan α(2)若,求角.()sin αβ-=π02β⎛⎫∈ ⎪⎝⎭,β【答案】(1) tan 2α=(2)4πβ=【分析】(1)根据已知化弦为切即可得解;(2)分别求出,,再根据结合两角差的正弦公式即可sin ,cos αα()cos αβ-()sin sin βααβ=--⎡⎤⎣⎦得解.【详解】(1)解:因为,sin cos 3sin cos αααα+=-所以,解得;tan 13tan 1αα+=-tan 2α=(2)解:因为,,tan 2α=π0,2α⎛⎫∈ ⎪⎝⎭则, 22sin 2cos sin cos 1αααα=⎧⎨+=⎩解得, sin αα==又,所以,π02β⎛⎫∈ ⎪⎝⎭,ππ,22αβ⎛⎫-∈- ⎪⎝⎭又因()sin αβ-=()cos αβ-==则 ()sin sin βααβ=--==⎡⎤⎣⎦所以.4πβ=18.已知集合,集合,集合{A x y =={}121B x m x m =+≤≤-.{}310,C x x x Z =≤<∈(1)求的子集的个数;A C (2)若命题“,都有”是真命题,求实数m 的取值范围. x AB ∀∈⋃x A ∈【答案】(1)8个;(2).3m …【解析】(1)求出集合和,再求,根据集合子集的个数{|25}A x x =-……{3,4,5,6,7,8,9}C =A C 2n 可得答案;(2)由题意可得,分和两种情况讨论可得答案. B A ⊆B =∅B ≠∅【详解】(1)由解得,所以,23100x x -++≥25x -……{|25}A x x =-……又因为,所以,{|310,}{3,4,5,6,7,8,9}C x x x =<∈=Z …{3,4,5}A C ⋂=所以的子集的个数为个.A C 328=(2)因为命题“都有”是真命题,所以,即,x A B ∀∈⋃x A ∈A B A ⋃=B A ⊆当时,,解得;B =∅121m m +>-2m <当时,解得,B ≠∅121,12,215,m m m m +-⎧⎪+-⎨⎪-⎩………23m ……综上所述:.3m …19.已知函数,其中常数.()()2sin f x x ω=0ω>(1)若在上单调递增,求的取值范围; ()y f x =π2,π43⎡⎤-⎢⎥⎣⎦ω(2)令,将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来2ω=()y f x =π6的倍,纵坐标不变,再向上平移1个单位,得到函数的图象.若在区间12()y g x =()y g x =[],a b 上至少含有30个零点,求的最小值. b a -【答案】(1) 30,4⎛⎤ ⎥⎝⎦(2) 43π6 【分析】(1)求条件可得,,由此可求的取值范围, π2πππ,[2π,2π]4322x k k ωωω⎡⎤∈-⊆-+⎢⎥⎣⎦Z k ∈ω(2)由函数图象变换结论求函数的解析式,要使最小,则,研究()y g x =b a -130,a x b x ==的零点进而可以求出结果. 1sin 2t =-【详解】(1)由题设,∴,∴, 2ππ11ππ34122T ω+=≤=1211ω≤304ω<≤当时,,则,,解得,. π2π,43x ⎡⎤∈-⎢⎥⎣⎦π2π,43x ωωω⎡⎤∈-⎢⎥⎣⎦ππ2π422ππ2π32k k ωω⎧-≥-⎪⎪⎨⎪≤+⎪⎩Z k ∈3034k ω<≤+Z k ∈综上,的取值范围为. ω30,4⎛⎤ ⎥⎝⎦(2)由题设,将函数的图象向左平移个单位得()2sin 2f x x =()f x π6ππ2sin 263y f x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,再各点的横坐标缩短为原来的倍,纵坐标不变,向上平移1个单位,则. 12()π2sin 413g x x ⎛⎫=++ ⎪⎝⎭令得, ()0g x =π1sin 432x ⎛⎫+=- ⎪⎝⎭令,设在区间上的30个零点分别为, π43t x =+()y g x =[],a b 1230,,,x x x 则,在上有30个零点, 113030ππ4,,433t x t x =+=+ 1sin 2t =-ππ4,433a b ⎡⎤++⎢⎥⎣⎦要使最小,则,b a -130,a x b x ==因为在每个周期内各有两个函数值为,所以15个周期里面有30个零点, sin y t =12-则最小时,若,则b a -113030π7πππ179π4,430π36366t x t x =+==+=-=301ππ86π44333x x ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,所以,即的最小值为. 30143π6x x -=b a -43π620.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群S S %x 0100x <<体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时()30030180029030100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩,,间不受影响,恒为分钟,试根据上述分析结果回答下列问题:x 40(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间? x (2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.S ()g x ()g x 【答案】(1) 时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)见解析. ()45100x ,∈【分析】(1)由题意知求出f (x )>40时x 的取值范围即可;(2)分段求出g (x )的解析式,判断g (x )的单调性,再说明其实际意义.【详解】(1)由题意知,当时,30100x <<, ()180029040f x x x=+->即,2659000x x -+>解得或,20x <45x >∴时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; ()45100x ∈,(2)当时,030x <≤; ()()30%401%4010x g x x x =⋅+-=-当时,30100x <<; ()()218013290%401%585010x g x x x x x x ⎛⎫=+-⋅+-=-+ ⎪⎝⎭∴; ()2401013585010x g x x x ⎧-⎪⎪=⎨⎪-+⎪⎩当时,单调递减;032.5x <<()g x 当时,单调递增;32.5100x <<()g x 说明该地上班族中有小于的人自驾时,人均通勤时间是递减的;S 32.5%有大于的人自驾时,人均通勤时间是递增的;32.5%当自驾人数为时,人均通勤时间最少.32.5%【点睛】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.21.已知函数,. ()1ln f x a x ⎛⎫=+ ⎪⎝⎭R a ∈(1)若方程,恰有一个实根,求实数a 的取值范围;()()ln 324f x a x a =-+-⎡⎤⎣⎦(2)设,若对任意,当,时,满足,求实数a 的取0a >1,14b ⎡⎤∈⎢⎥⎣⎦1x []2,1x b b ∈+()()12ln 4f x f x -≤值范围.【答案】(1). {}31,2,32⎛⎤ ⎥⎝⎦(2) 4,15⎡⎤+∞⎢⎥⎣⎦【分析】(1)依题意可得,讨论二次项系数是否为0以及真数是否大于02(3)(4)10a x a x -+--=即可求解;(2)易知函数为定义域上为减函数,将问题转化成 1()ln()f x a x =+,即对任意成立,再构造()()()()12max min ln4ln4f x f x f x f x -≤⇔-≤233(1)10ab a b ++-≥1,14b ⎡⎤∈⎢⎥⎣⎦二次函数,利用二次函数的单调性即可求解.【详解】(1)由得; []1ln ln (3)24a a x a x ⎛⎫+=-+- ⎪⎝⎭2(3)(4)10a x a x -+--=即[(3)1](1)0a x x --+=当时,,经检验,满足题意;3a ==1x -当时,,经检验,满足题意;2a =121x x ==-当且时,, 2a ≠3a ≠12121,1,3x x x x a ==-≠-若是原方程的解,当且仅当,即, 1x 11230a a x +=->32a >若是原方程的解,当且仅当,即,2x 2110a a x +=-+>1a >故当是原方程的解,不是方程的解,则 ,无解, 1x 2x 32123a a a x ⎧>⎪⎪≤⎨⎪≠≠⎪⎩且当是原方程的解,不是方程的解,则,解得 2x 1x 32123a a a x ⎧≤⎪⎪>⎨⎪≠≠⎪⎩且31,2a ⎛⎤∈ ⎥⎝⎦于是满足题意的. 31,2a ⎛⎤∈ ⎥⎝⎦综上,的取值范围为. a {}31,2,32⎛⎤ ⎝⎦(2)不妨令,则, 121b x x b ≤≤≤+1211a a x x +>+由于单调递增,单调递减, ln y x =1y a x =+所以函数在,上为减函数;,, ()1ln f x a x ⎛⎫=+ ⎪⎝⎭[b 1]b +()max 1ln f x a b ⎛⎫=+ ⎪⎝⎭()min 1ln 1f x a b ⎛⎫=+ ⎪+⎝⎭因为当,,,满足,1x 2[x b ∈1]b +12|()()|ln4f x f x -≤故只需, 11ln ln ln41a a b b ⎛⎫⎛⎫+-+≤ ⎪ ⎪+⎝⎭⎝⎭即对任意成立, 233(1)10ab a b ++-≥1,14b ⎡⎤∈⎢⎥⎣⎦因为,所以函数为开口向上的二次函数,且对称轴为 , 0a >()233(1)1g b ab a b =++-102a a+-<故在上单调递增,当时,有最小值, ()g x 1,14b ⎡⎤∈⎢⎥⎣⎦14b =y 33151(1)1164164a a a ++-=-由,得,故的取值范围为. 1510164a -≥415a ≥a 4,15⎡⎤+∞⎢⎥⎣⎦。
2023-2024学年浙江省杭州高一上册期末数学试题(含解析)
2023-2024学年浙江省杭州高一上册期末数学试题一、单选题1.已知集合{}23M x x =-≤≤,{}ln 1N x x =≥,则M N ⋂=()A .[]2,0-B .[)2,e -C .[]2,e -D .[]e,3【正确答案】D【分析】由对数函数单调性解不等式,化简N ,根据交集运算求解即可.【详解】因为{}ln 1{|e}N x x x x =≥=≥,{}23M x x =-≤≤,所以[e,3]M N ⋂=,故选:D 2.已知02πα<<,02βπ<<,则“αβ=”是“sin 2sin 2αβ=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】A利用充分条件和必要条件的定义直接判断即可.【详解】依题意02πα<<,02βπ<<,若αβ=,则22αβ=,故sin 2sin 2αβ=,即“αβ=”可推出“sin 2sin 2αβ=”;若sin 2sin 2αβ=,结合02απ<<,02βπ<<,则有22αβ=,或者22αβπ+=,故αβ=或2παβ+=,即“sin 2sin 2αβ=”推不出“αβ=”.故“αβ=”是“sin 2sin 2αβ=”的充分不必要条件.故选:A.3.ABC 中,角,A B的对边分别为,a b ,且3A π=,a 4b =,那么满足条件的三角形的个数有()A .0个B .1个C .2个D .无数个【正确答案】C【分析】利用余弦定理求出c 的值即可求解.【详解】因为在ABC 中,3A π=,a =,4b =,由余弦定理可得:2222cos a b c bc A =+-,所以214164c c =+-,也即2420c c -+=,解得:2c =2个,故选.C4.已知曲线12π:sin 23C y x ⎛⎫=+⎪⎝⎭,2:sin C y x =,则下面结论正确的是()A .把2C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π3个单位长度,得到曲线1C B .把2C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移2π3个单位长度,得到曲线1C C .把2C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π3个单位长度,得到曲线1C D .把2C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移2π3个单位长度,得到曲线1C 【正确答案】C【分析】根据函数图像的伸缩变换与平移变换的法则,即可得解.【详解】已知曲线2:sin C y x =,把曲线2C 上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线sin 2y x =,再把曲线sin 2y x =向左平移π3个单位长度,得到曲线π2πsin 2sin 233y x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,即曲线1C .故选:C.5.用二分法判断方程32330x x +-=在区间()0,1内的根(精确度0.25)可以是(参考数据:30.750.421875=,30.6250.24414=)()A .0.825B .0.635C .0.375D .0.25【正确答案】B【分析】设3()233f x x x =+-,由题意可得()f x 是R 上的连续函数,由此根据函数零点的判定定理求得函数()f x 的零点所在的区间.【详解】设3()233f x x x =+-,(0)30f ∴=-<,(1)23320=+-=>f ,3(0.5)20.530.530f =⨯+⨯-< ,()f x ∴在(0,0.5)内有零点,3(0.75)20.7530.7530f =⨯+⨯-> ()f x ∴在(0.5,0.75)内有零点,∴方程32330x x +-=根可以是0.635.故选:B .6.已知函数()()()[)22,,0ln ,0,1,1,x x f x x x x x ∞∞-⎧∈-⎪=∈⎨⎪-∈+⎩,若函数()()g x f x m =-恰有两个零点,则实数m 不可..能.是()A .1-B .-10C .1D .-2【正确答案】C【分析】依题意画出函数图像,函数()()g x f x m =-的零点,转化为函数()y f x =与函数y m =的交点,数形结合即可求出参数m 的取值范围;【详解】因为()()()[)22,,0ln ,0,1,1,x x f x x x x x ∞∞-⎧∈-⎪=∈⎨⎪-∈+⎩,画出函数()f x的图像如下所示,函数()()g x f x m =-的有两个零点,即方程()()0g x f x m =-=有两个实数根,即()f x m =有两个实数根,即函数()y f x =与函数y m =有两个交点,由函数图像可得1m ≤-,所以m 不能为1,故选:C.7.已知sin cos sin cos m αααα+==,则m 的值为()A .1B .1-C .1D .不存在【正确答案】B【分析】由()2sin cos 12sin cos αααα+=+,代入已知条件解方程即可.【详解】()222sin cos sin cos 2sin cos 12sin cos αααααααα+=++=+,由sin cos sin cos m αααα+==,则212m m =+,解得1m =由三角函数的值域可知,sin cos 1αα+=1m =故选:B8.已知22log 2023log 2022a =-,11cos 2023b =-,12022c =,则()A .b a c >>B .c b a >>C .b c a>>D .a c b>>【正确答案】D【分析】比较a c 、,等价成比较()()2log ,1f x x g x x ==-,在20232022x =时的大小,结合函数的单调性,由数形结合即可判断;比较b c 、,构造单位圆A 如图所示,12023BAC Ð=,BD AC ⊥于D ,则比较b c 、转化于比较CD 、 BC的长度即可.【详解】2222033log 2023log 2022log 2022a =-=,203312022c =-,设()()2log ,1f x x g x x ==-,函数图象如图所示,()()f x g x 、均单调递增,且()()()()11,22f g f g ==,结合图象得在()1,2x ∈,()()f x g x >,即()2log 10x x -->,故220332033log 10020222022a c ⎛⎫-->⇒-> ⎪⎝⎭,故a c >;如图,单位圆A 中,BAC θ∠=,BD AC ⊥于D ,则 BC的长度l θ=,sin BD θ=,1cos CD θ=-,则由图易得,l BC BD >>,当π2θ<,则ππ24θC -=>,故tan 1BD C BD CD CD =>Þ>,故当1π20232θ=<时,有11sin 1cos 1cos 20232023BC BD CD θθθ>>Þ>>-Þ>-,∴1111cos 202220232023c b >>-Þ>.综上,a c b >>.故选:D.(1)比较对数式大小,一般可构造函数,根据函数的单调性来比较大小;(2)比较非特殊角三角函数大小,可结合单位圆转化为比较长度,则可由数形结合解答.二、多选题9.在直角坐标系xOy 中,角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边经过点(),2P x -,且tan 2α=,则()A .1x =-B.sin 5α=-C.cos 5α=D .tan02α<【正确答案】ABD【分析】由已知利用任意角的三角函数的定义即可求解.【详解】则题意可得2tan 2xα-==,则1x =-,A 选项正确;sin α=-B选项正确;cos α==,C 选项错误;由()1,2P --,角α的终边在第三象限,即()3π2ππ,2πZ 2k k k α⎛⎫∈++∈ ⎪⎝⎭,则()π3ππ,πZ 224k k k α⎛⎫∈++∈ ⎪⎝⎭,即角2α的终边在二、四象限,所以tan02α<,D 选项正确.故选:ABD.10.下列说法正确的是()A .若()2x k k ππ≠+∈Z ,则1cos 2cos x x+≥B .若x y ≠,则22x y xy +>恒成立C .若正数a ,b 满足8a b ab +=-,则ab 有最小值D .若实数x ,y 满足2sin 1x y +=,则sin x y -没有最大值【正确答案】BC【分析】对A 举反例πx=即可判断,对B 利用配方法即可判断,对C 利用基本不等式得8a b ab +=-≥ab 范围即可,对D ,利用正弦函数的有界性求出x 的范围,再结合二次函数的最值即可判断.【详解】对A ,若πx =,则cos 1x =-,则1cos 22cos x x+=-<,故A 错误;对B ,22223024y x y xy x y ⎛⎫+-=-+≥ ⎪⎝⎭,取等号的条件为2202304y x y ⎧⎛⎫-=⎪ ⎪⎪⎝⎭⎨⎪=⎪⎩,解得00x y =⎧⎨=⎩,但x y ≠,故220x y xy +->恒成立,即22x y xy +>恒成立,故B 正确;对C ,若,0a b >,则8a b ab +=-≥4≥2≤-(舍去)所以16ab ≥,当且仅当4a b ==时等号成立,则()min 16ab =,故C 正确;对D ,2sin 1x y += ,则21sin 1y x =-≤,又1sin 1y -≤≤ ,2111x ∴-≤-≤,解得x ≤,()22215sin 1124x y x xx x x ⎛⎫-=--=+-=+- ⎪⎝⎭,当x =时,()2max 15sin 124x y ⎫-=+-+⎪⎭,故D 错误.故选:BC.11.设函数3()f x x bx c =-+,[,]x a a ∈-,c ∈Z ,若()f x 的最大值为M ,最小值为m ,那么M 和m 的值可能分别为()A .3与1B .4与3-C .8与2D .6与1【正确答案】AC【分析】()f x 可以表示为一个奇函数和常数之和,利用奇函数在对称区间上的最大值加最小值为0进行分析即可.【详解】记3()h x x bx =-,[,]x a a ∈-,定义域关于原点对称,由33()()()()h x x bx x bx h x -=-+=--=-,于是()h x 为奇函数,设()h x 在[,]x a a ∈-上的最大值和最小值分别为,p q ,根据奇函数性质,0p q +=,而()()f x h x c =+,故,M p c m q c =+=+,于是2M m c +=,注意到c ∈Z ,经检验,AC 选项符合故选:AC12.已知函数()()()sin 0f x x ωϕω=+>,且()f x 在区间2π5π,36⎛⎫⎪⎝⎭上单调递减,则下列结论正确的有()A .()f x 的最小正周期是π3B .若2π5π036f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则3π04f ⎛⎫= ⎪⎝⎭C .若()π3f x f x ⎛⎫+≥ ⎪⎝⎭恒成立,则满足条件的ω有且仅有1个D .若π6ϕ=-,则ω的取值范围是22[1,2]4,5⎡⎤⎢⎥⎣⎦【正确答案】BCD【分析】利用单调区间长度不超过周期的一半,求出周期范围,判断A ,根据中心对称即可求值,知B 正确,由周期的范围求出ω的范围,利用函数平移求出周期,判断C ,结合已知单调区间得出ω范围后判断D.【详解】对于A ,因为函数()f x 在区间2π5π,36⎛⎫⎪⎝⎭上单调递减,所以5π2ππ2636T ≥-=,所以()f x 的最小正周期π3T ≥,即()f x 的最小正周期的最小值为π3,故A 错误;对于B ,因为2π5π036f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图像关于点3π,04⎛⎫⎪⎝⎭对称,所以3π04f ⎛⎫= ⎪⎝⎭,故B 正确;对于C ,若()π3f x f x ⎛⎫+≥ ⎪⎝⎭恒成立,则π3为函数()f x 的周期或周期的倍数,所以2ππ3k ω⨯=,所以6k ω=,因为π3T ≥,所以2π6Tω=≤,又0ω>,所以06ω<≤,所以6ω=,即满足条件的ω有且仅有1个,故C 正确;对于D ,由题意可知2π5π,36⎛⎫⎪⎝⎭为()πsin 6f x x ω⎛⎫=- ⎪⎝⎭单调递增区间的子集,所以2πππ2π3625ππ3π2π662k k ωω⎧-≥+⎪⎪⎨⎪-≤+⎪⎩,其中Z k ∈,解得123125k k ω+≤≤+,k ∈Z ,当0k =时,12ω≤≤,当0k =时,2245ω≤≤,故ω的取值范围是22[1,2]4,5⎡⎤⎢⎥⎣⎦,故D 正确.故选:BCD三、填空题13.设函数()()2log 12,22,2x x x f x x ⎧-+<=⎨≥⎩,则()()2f f -=______.【正确答案】12【分析】根据分段函数解析式,利用指数式和对数式的运算规则代入求值即可.【详解】函数()()2log 12,22,2x x x f x x ⎧-+<=⎨≥⎩,则()222lo 3g f -=+,2322log +>,()()()223log 2o 22l 3g 2log 222341232f f f +-===⨯==+⨯.故12.14.一艘轮船按照北偏东40°方向,以18海里/小时的速度直线航行,一座灯塔原来在轮船的南偏东20°方向上,经过20分钟的航行,轮船与灯塔的距离为原来的距离为_______海里.【正确答案】4【分析】先结合条件找出已知角及线段长,然后结合余弦定理即可直接求解.【详解】设轮船的初始位置为A ,20分钟后轮船位置为B ,灯塔位置为C,如图所示由题意得,120BAC ∠= ,11863AB =⨯=,BC =由余弦定理得222cos1202AB AC BC AB AC︒+-=⋅,即213676212AC AC +--=,解得4AC =.则灯塔与轮船原来的距离为4海里故4.15.已知函数()log ,021,2a x x f x x x<≤⎧⎪=⎨>⎪⎩.若函数()f x 存在最大值,则实数a 的取值范围是______.【正确答案】(]1,4【分析】分段求出函数在不同区间内的范围,然后结合()f x 存在最大值即可求解【详解】当01a <<时,函数不存在最大值,故1a >,当02x <≤时,()log a f x x =在区间(]0,2上单调递增,所以此时()(],log 2a f x ∞∈-;当2x >时,()1f x x =在区间()2,+∞上单调递减,所以此时()10,2f x ⎛⎫∈ ⎪⎝⎭,若函数()f x 存在最大值,则1log 22a ≥,解得4a ≤,又1a >,所以a 的取值范围为(]1,4故(]1,416.已知π,0,2x y ⎛⎫∈ ⎪⎝⎭,且tan tan tan sin sin 1x y x y x +-≤,则222(1)x y --的最大值为________.【正确答案】2π2π22-+【分析】由tan tan tan sin sin 1x y x y x +-≤,通过研究函数tan sin y x x =+单调性可得02πx y <+≤,后设x y m +=,则222(1)x y --()22422y m y m =-+-+-,其中02π,y ⎛⎫∈ ⎪⎝⎭,π02m <≤.【详解】因tan tan tan sin sin 1x y x y x +-≤,则1122sin ππtan sin cos tan sin tan tan x y y x x x x x ⎛⎫⎛⎫++≤=+=-+- ⎪ ⎪⎝⎭⎝⎭.因函数tan ,sin y x y x ==均在π0,2⎛⎫ ⎪⎝⎭上单调递增,则函数tan sin y x x =+在π0,2⎛⎫ ⎪⎝⎭上单调递增,故有.02πx y <+≤设x y m +=,其中π02m <≤,则()()22222(1)21x y m y y --=---()()()()2222242222121y m y m y m m m ⎡⎤=-+-+-=---+-≤-⎣⎦,当且仅当2y m =-时取等号,则此时022πm <-<,得222ππm -<≤又函数()()221f m m =-在212π,m ⎛⎤∈- ⎥⎝⎦时单调递减,在12π,m ⎛⎤∈ ⎥⎝⎦时单调递增,222ππf f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()()22212222πππf m m f ⎛⎫=-≤=-+ ⎪⎝⎭,此时222π,π-y x =-=.故2π2π22-+关键点点睛:本题涉及构造函数,含参二次函数的最值,难度较大.对于所给不等式,分离含x ,y 式子后,通过构造函数得到02πx y <+≤.后将问题化为求含参二次函数的最值问题.四、解答题17.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )sin 3sin b c B C a A b C ++=+.(1)求角A 的大小;(2)若a =ABCABC 的周长.【正确答案】(1)π3(2)+【分析】(1)由()(sin sin )sin 3sin b c B C a A b C ++=+,根据正弦定理化简得22()3b c a bc +=+,利用余弦定理求得1cos 2A =,即可求解;(2)由ABC 4bc =,结合余弦定理,求得b c +=.【详解】(1)由题意及正弦定理知22()3b c a bc +=+,222a b c bc ∴=+-,2221cos 22b c a A bc +-∴==,0πA << ,π3A ∴=.(2)a = ,226b c bc ∴+-=①又1=sin 2S bc A = ,4bc ∴=②由①,②可得b c +=所以ABC 的周长为+.18.已知π02α<<,π02β-<<,tan 7α=,sin 5β=-.(1)求()cos αβ-的值;(2)求tan(2)αβ-的值,并确定2αβ-的大小.【正确答案】(1)10(2)1-,3π4【分析】(1)由tan α解得sin ,cos αα,由sin β求出cos β,利用两角差的余弦公式求解()cos αβ-的值;(2)由sin β,cos β求出tan β,再求tan 2β,利用两角差的正切公式计算tan(2)αβ-的值,并得到2αβ-的大小.【详解】(1)π02α<< ,由22sin tan 7cos sin cos 1ααααα⎧==⎪⎨⎪+=⎩,sin 10α∴=,cos 10α=,又π02β-<<,sin 5β=,cos β∴,cos()cos cos sin sin αβαβαβ∴-=+(2)由(1)可知,1tan 2β=-,22tan 4tan 231tan βββ∴==--,tan tan 2tan(2)11tan tan 2αβαβαβ-∴-==-+,3π022αβ<-< ,3π24αβ∴-=.19.已知函数2()2sin cos 26f x x x π⎛⎫=-+ ⎪⎝⎭.(1)求函数()f x 的最小正周期和单调递增区间;(2)当02x π≤≤时,求()f x 的值域.【正确答案】(1)π,单调递增区间为()2,36k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z (2)30,2⎡⎤⎢⎥⎣⎦【分析】(1)由三角恒等变换化简解析式,由余弦函数的性质求解;(2)由余弦函数的性质得出()f x 的值域.【详解】(1)()11cos 2cos 21cos 2sin 2cos 2cos 213223f x x x x x x x ππ⎛⎫⎛⎫=--+=--+=++ ⎪ ⎪⎝⎭⎝⎭ ,T π∴=,由2223k x k ππππ-≤+≤可得236k x k ππππ-≤≤-,k ∈Z ,即()f x 的最小正周期为π,单调递增区间为()2,36k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z .(2)02x π≤≤ ,42333x πππ∴≤+≤,1cos(2)1,32x π⎡⎤+∈-⎢⎣⎦故()f x 的值域为30,2⎡⎤⎢⎥⎣⎦.20.为了迎接亚运会,滨江区决定改造一个公园,准备在道路AB 的一侧建一个四边形花圃种薰衣草(如图).已知道路AB 长为4km ,四边形的另外两个顶点C ,D 设计在以AB 为直径的半圆O 上.记02COB παα⎛⎫∠=<< ⎪⎝⎭.(1)为了观赏效果,需要保证3COD π∠=,若薰衣草的种植面积不能少于(3+km 2,则α应设计在什么范围内?(2)若BC =AD ,求当α为何值时,四边形ABCD 的周长最大,并求出此最大值.【正确答案】(1)62ππα≤<(2)3πα=,10km【分析】(1)由ABCD OBC OCD OAD S S S S =++ ,利用三角形面积公式得到πsin 62α⎛⎫+≥ ⎪⎝⎭求解;(2)由BC =AD 得到,π2AOD COB COD αα∠=∠=∠=-,进而得到AB BC CD DA +++=28sin 8sin 822αα-++,利用二次函数的性质求解.【详解】(1)解:11π1222sin 22sin 22sin π22323ABCD OBC OCD OAD S S S S αα⎛⎫=++=⋅⋅⋅+⋅⋅⋅+⋅⋅⋅- ⎪⎝⎭,π2sin sin 26αααα⎛⎫=++=+ ⎪⎝⎭,由题意,π36α⎛⎫+≥+ ⎪⎝⎭,sin()6πα+因为02πα<<,所以ππ2π363α≤+<,解得ππ62α≤<;(2)由BC =AD 可知,,π2AOD COB COD αα∠=∠=∠=-,故π2422sin 22sin 22sin 48sin 4cos 2222AB BC CD DA ααααα-+++=+⋅+⋅+⋅=++,222148sin 412sin 8sin 8sin 88sin 10222222ααααα⎛⎫⎛⎫=++-=-++=--+ ⎪ ⎪⎝⎭⎝⎭,从而四边形ABCD 周长最大值是10km ,当且仅当1sin22α=,即π3α=时取到.21.已知函数11()1x x f x axa -=-++,其中a 为常数,且1a >.(1)若()f x 是奇函数,求a 的值;(2)证明:()f x 在(0,)+∞上有唯一的零点;(3)设()f x 在(0,)+∞上的零点为0x ,证明.011log 2a x a ⎛⎫->- ⎪⎝⎭【正确答案】(1)2a =(2)证明见解析(3)证明见解析【分析】(1)()f x 是奇函数,由()()f x f x -=-恒成立,求a 的值;(2)()f x 在(0,)+∞上是连续增函数,结合由零点存在定理可证;(3)把零点代入函数解析式,有00001+1=(1)11x ax a a x x =+--,由零点所在区间得011(1)221x a a a +>+=-,化简变形可得结论.【详解】(1)由题意,0x ∀≠,()()f x f x -=-恒成立,即1111()11x x x x ax axa a -----+=--+-++,化简得21a=,解得2a =.(2)由题意,111()1x f x ax a a =--++,∵1a >,∴11x a -+和1ax-在(0,)+∞上都是连续增函数,∴()f x 在(0,)+∞上是连续增函数,又1(1)01f a =-<+,22211(1)(2)0212(1)a f a a a a -=-+=++,所以,由零点存在定理可知()f x 在(0,)+∞上有唯一的零点.(3)由0()0f x =可知0001101x x ax a --+=+,即00001+1=(1)11x ax a a x x =+--,由(2)可知012x <<,∴011(1)221x a a a +>+=-,021x a a ∴>-,即0log (21)a x a >-,所以011log (2)a x a->-.思路点睛:第3问的证明,可以从结论出发,经过变形,对数式换指数式,寻找与已知条件的关联.22.已知函数()f x 满足:对x ∀∈R ,都有1(3)()2f x f x +=-,且当[0,3]x ∈时,2()f x x x m =--+.函数3()log (54)x x g x =-.(1)求实数m 的值;(2)已知22()3h x x x λλ=-+-+,其中[0,1]x ∈.是否存在实数λ,使得()()()()g h x f h x >恒成立?若存在,求出实数λ的取值范围;若不存在,请说明理由.【正确答案】(1)8(2)存在,01λ<<【分析】(1)根据题意代入0x =,运算求解即可;(2)先根据对数函数的定义求得1λ-<<,进而可得当1λ-<<时,则可得0()3h x <≤对任意[]0,1x ∈时恒成立,结合恒成立问题结合函数单调性分析可得()0h x >恒成立,列式运算求解.【详解】(1)由题意可得:1(3)(0)2f f =-,则21332m m --+=-,解得m =8.(2)令540x x ->,可得5(14x >,即0x >,∴()g x 定义域为(0,)+∞,∵5544()14x x x x ⎡⎤-=-⎢⎥⎣⎦,则对()12,0,x x ∀∈+∞,且12x x <,可得112255()1()14044,04x x x x <<<-<-,故11225504(14()144x x x x ⎡⎤⎡⎤<-<-⎢⎥⎢⎥⎣⎦⎣⎦,即112205454x x x x <-<-,且3log y x =在(0,)+∞是增函数,则()()112233log 54log 54x x x x -<-,即12()()<g x g x ,∴3()log (54)x x g x =-在(0,)+∞是增函数,若要使(())(())g h x f h x >恒成立,则首先要满足()0h x >恒成立,则22(0)30(1)130h h λλλ⎧=-+>⎨=-+-+>⎩,解得1λ-<,则22233()(333244h x x λλλ=---+≤-+≤,故当1λ-<<时,则0()3h x <≤对任意[]0,1x ∈时恒成立,令()t h x =(03)t <≤,则()()g t f t >恒成立,即()()0g t f t ->恒成立,而()g t 在(0,3]上是增函数,()f t 在(0,3]上是减函数,∴()()g t f t -在(0,3]上是增函数,又32()log (54()8)t t f t t g t t =+-+--,(2)(2)0g f -=,故只需2t >恒成立,则22(0)32(1)132h h λλλ⎧=-+>⎨=-+-+>⎩,解得01λ<<,综上所述:存在01λ<<满足条件.方法点睛:函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.。
高一数学上册期末试卷(含答案)
高一数学上册期末试卷(含答案)高一数学上册期末试卷(含答案)第Ⅰ卷一.选择题(本大题共12小题,每小题5分,共60分)1.如果集合A={x|ax2-2x-1=0}只有一个元素则a的值是( )A.0B.0或1C.-1D.0或-12. 的值为( )A. B. C. D.3.若tan α=2,tan β=3,且α,β∈0,π2,则α+β的值为( )A.π6B.π4C.3π4D.5π44.已知,则 ( )A. B. C. D. 或5.设则( )A B C D6.若x∈[0,1],则函数y=x+2-1-x的值域是( )A.[2-1,3-1]B.[1,3 ]C.[2-1,3 ]D.[0,2-1]7若,则 ( )A. B. C.- D.8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点成中心对称,,则 ( )A. B. C. D.9.已知函数的值域为R,则实数的范围是( )A. B. C. D.10.将函数y=3sin2x+π3的图像向右平移π2个单位长度,所得图像对应的函数( )A.在区间π12,7π12上单调递减B.在区间π12,7π12上单调递增C在区间-π6,π3上单调递减 D在区间-π6,π3上单调递增11.函数的值域为( )A.[1,5]B.[1,2]C.[2,5]D.[5,3]12.设是定义在上的偶函数,对,都有,且当时,,若在区间内关于的方程恰有3个不同的实数根,则的取值范围是( )A. B. C. D.第II卷(非选择题,共70分)二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)13.已知则的值为------14.3tan 12°-34cos212°-2sin 12°=________.15.已知 ,试求y= 的`值域—16.设(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤fπ6对一切x∈R恒成立,则以下结论正确的是_____(写出所有正确结论的编号).① ;② ≥ ;③f(x)的单调递增区间是kπ+π6,kπ+2π3(k∈Z);④f(x)既不是奇函数也不是偶函数;17.(本题满分8分)已知:,,,,求18.(本题满分10分)已知函数,且(Ⅰ)求的值; (Ⅱ)判断并证明函数在区间上的单调性.19.(本题满分10分)已知函数 ((1)若是最小正周期为的偶函数,求和的值;(2)若在上是增函数,求的最大值.20(本题满分12分)已知函数,,( )(1)当≤ ≤ 时,求的最大值;(2)若对任意的,总存在,使成立,求实数的取值范围;(3)问取何值时,方程在上有两解?21.(附加题)(本题满分10分)已知函数(1)求函数的零点;(2)若实数t满足,求的取值范围.高一数学参考答案一.选择题:DBCBA CCCCB AC二.填空题:13. 0 14. 15. 16. ①②④ .17.解:,,∴ ,∴ = = = ......8分18.【解答】解:(Ⅰ)∵ ,,由,∴ ,又∵a,b∈N*,∴b=1,a=1;………………3分(Ⅱ)由(1)得,函数在(﹣1,+∞)单调递增.证明:任取x1,x2且﹣1<x1<x2,< p="">= ,∵﹣1<x1<x2,< p="">∴ ,∴ ,即f(x1)<f(x2),< p="">故函数在(﹣1,+∞)上单调递增.………………10分19.解:(1)由 =2 (∵ …………又是最小正周期为的偶函数,∴ ,即,…………3分且,即……6分,∴ 为所求;…………………………………………………5分(2)因为在上是增函数,∴ ,…………………………………………7分∵ ,∴ ,∴ ,于是,∴ ,即的最大值为,………此时……10分20.试题分析:(1) 设,则∴ ∴当时,……4分(2)当∴ 值域为当时,则有①当时,值域为②当时,值域为而依据题意有的值域是值域的子集则或∴ 或 8分(3) 化为在上有两解,令则t∈ 在上解的情况如下:①当在上只有一个解或相等解,有两解或∴ 或②当时,有惟一解③当时,有惟一解故或……12分21.(1) 的零点分别为和 2分(2)由题意,当时,,同理,当时,,,所以函数是在R上的偶函数,…5分所以,由,.………………时,为增函数,,即 .………10分。
杭州市部分重点中学高一上学期期末考试数学试卷(共五套)
2021——2022学年杭州市部分重点中学高一上学期期末考试数学试卷(一)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0B .1C .2D .32.下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y =B .3y x =C .cos y x =D .||y ln x =3.已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -4.已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x=的图象可能是( )A .B .C .D .5.已知函数()1x f x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( ) A .()0,2B .[]0,2C .(1D .1⎡+⎣6.某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( )A .20B .40C .60D .807.已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(,2)-∞D .(,2]-∞8. “a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要9.定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .810.已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫< ⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( )A .50,12π⎛⎤ ⎥⎝⎦B .50,6π⎛⎤ ⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.函数lg(2)y x =-的定义域是______.12.已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______. 13.已知tan()24πα-=,则sin(2)4πα-的值等于__________.14.里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍. 15.已知34a =,2log 3b =,则ab =________;4b =________. 16.设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 17.已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan2α=________. 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.计算下列各式的值:(1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭; (2)941451log log 3log 5log 272⋅--+.19.已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.20.(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值. (2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β.21.已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.22.已知函数2()21x x af x a -=⋅+为奇函数,其中a 为实数.(1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t的取值范围.【答案解析】第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0 B .1C .2D .3【答案】B 【解析】{}1013M =-,,,,{}13N =-,{}1M N ∴⋂= 故选:B2.下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y = B .3y x =C .cos y x =D .||y ln x =【答案】D 【解析】根据题意,依次分析选项:对于A ,2x y =,为指数函数,其定义域为R ,不是偶函数,不符合题意; 对于B ,3y x =,为幂函数,是奇函数,不符合题意;对于C ,cos y x =,为偶函数,在(0,)+∞不是增函数,不符合题意;对于D ,,0(),0lnx x y ln x ln x x ⎧==⎨-<⎩,为偶函数,且当0x >时,y lnx =,为增函数,符合题意; 故选:D .3.已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -【答案】B 【解析】0((1))(0)1f f f e ===,故选:B4.已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x=的图象可能是( )A .B .C .D .【答案】B 【解析】lg lg 0,lg 0a b ab +=∴=,即1ab =.∵函数()f x 为指数函数且()f x 的定义域为R ,函数()g x 为对数函数且()g x 的定义域为()0,∞+,A 中,没有函数的定义域为()0,∞+,∴A 错误;B 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递增,即01b <<,ab 可能为1,∴B 正确;C 中,由图象知指数函数()f x 单调递减,即01a <<,()g x 单调递增,即01b <<,ab 不可能为1,∴C 错误;D 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递减,即1b >,ab 不可能为1,∴D 错误. 故选:B.5.已知函数()1x f x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( ) A .()0,2B .[]0,2C .(1D .1⎡+⎣【答案】C 【解析】()11x f x e =->-,所以,()221g b b b =-+>-,整理得2210b b --<,解得11b <<+故选:C.6.某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20 B .40C .60D .80【答案】B 【解析】设此矩形面向河的一边的边长为x ,相邻的一边设为y , 由题意得200xy =, 设围栏总长为l 米,则240l x y =+≥=, 当且仅当2x y =时取等号, 此时20,10x y ==; 则围栏总长最小需要40米; 故选:B.7.已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】||y x =为偶函数,y x =为奇函数 ()||f x x x ∴=奇函数当0x 时,2()f x x =为增函数,由奇函数在对称区间上单调性相同可得函数()f x 在R 上增函数又不等式(2)4()f x t f x +>可化为(2)|2|4||2|2|(2)x t x t x x x x f x ++>== 故当[,2]x t t ∈+时,不等式(2)4()f x t f x +>恒成立, 即当[,2]x t t ∈+时,不等式22x t x +>恒成立 即2x t <恒成立 即22t t +< 解得2t >故实数t 的取值范围是(2,)+∞ 故选:A8. “a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要【答案】A 【解析】∵1log log log log a b a a b a b b+=+,又1,1a b >>,∴log 0a b >,即1log 2log a a b b +≥=当且仅当a b =时等号成立,而11,28a b ==时有110log log log 2log 3a b aa b a b b +=+=>,显然1,1a b >>不一定成立;综上,所以有1,1a b >>是log log 2a b b a +≥充分不必要条件. 故选:A9.定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .8【答案】B 【解析】∵集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭, 集合{2,4,6}S =,|1,{0,1,2}2k T x x k S ⎧⎫==-∈=⎨⎬⎩⎭, ∴{}1,2,3,4,6ST =, ∴{}0,1,2,3,4,6ST T=. ∴集合STT ⋃元素的个数为6个.故选:B.10.已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫< ⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( )A .50,12π⎛⎤ ⎥⎝⎦B .50,6π⎛⎤ ⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦【答案】D由t π=,可得2=2ππωω=⇒因为3y f x π⎛⎫=- ⎪⎝⎭是奇函数所以sin 23x πϕ⎛⎫+- ⎪⎝⎭是奇函数,即,3k k z πϕπ-=∈又因为()06f f π⎛⎫< ⎪⎝⎭,即()2sin sin 3k k ππππ⎛⎫+<+ ⎪⎝⎭所以k 是奇数,取k=1,此时43πϕ=所以函数()5sin 2sin 233f x x x ππ⎛⎫⎛⎫=+=-⎪ ⎪⎝⎭⎝⎭ 因为()f x 在[)0,t 上没有最小值,此时2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭所以此时432,332t πππ⎛⎤-∈ ⎥⎝⎦解得511,612t ππ⎛⎤∈ ⎥⎝⎦. 故选D.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.函数lg(2)y x =-的定义域是______. 【答案】(,2)-∞ 【解析】由题设有20x ->,解得2x <,故函数的定义域为(),2-∞,填(),2-∞.12.已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______. 【答案】2()g x 的零点即为()0g x =的解.当1x ≤时,令322x -=,解得12x =,符合;当1x >,令22x =,解得x ()g x 的零点个数为2. 13.已知tan()24πα-=,则sin(2)4πα-的值等于__________.【答案】10【解析】由tan 1tan()241tan πααα--==+,解得tan 3α=-,因为22sin(2)(sin 2cos 2)(2sin cos cos sin )422πααααααα-=-=-+2222222sin cos cos sin 2tan 1tan cos sin 1tan ααααααααα-+-+==++222(3)1(3)1(3)⨯--+-==+-. 14.里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍. 【答案】6,10000 【解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA ﹣lgA 0=lg1000﹣lg0.001=3﹣(﹣3)=6. 设9级地震的最大的振幅是x ,5级地震最大振幅是y , 9=lgx+3,5=lgy+3,解得x=106,y=102,∴62101000010x y ==. 故答案耿:6,10000.15.已知34a =,2log 3b =,则ab =________;4b =________. 【答案】2 9 【解析】因为34a =,所以3log 4a =,又2log 3b =, 因此32lg 4lg 3log 4log 32lg 3lg 2ab =⋅=⋅=;222log 32log 3log 944229b ====. 故答案为:2;9.16.(设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 【答案】121- 【解析】根据题意,得3212A B A B ⎧-=⎪⎪⎨⎪+=-⎪⎩,解得1,12A B ==-.故答案为:1,12-17.已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan2α=________. 【答案】35247【解析】由已知得3cos 5α==-,所以445tan 335α==--,242243tan 27413α⎛⎫⨯- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭. 故答案为:35;247. 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.计算下列各式的值:(1)()22230327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭; (2)941451log log 3log 5log 272⋅--+. 【答案】(1)3;(2)174. 【解析】(1)根据指数幂的运算法则,可得()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭222333333(24441399)1[()]22--⎛⎫=--+ -⎪⎝-+⎭==.(2)根据对数的运算法则,可得941451log log 3log 5log 272⋅--+ 325211111log 2log log 5log 2414224341722=-⨯+-+=-+-+=.19.已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.【答案】(1)奇函数,证明见解析;(2)()0,1. 【解析】()1要使函数有意义,则{1010x x +>->,即{11x x >-<,即11x -<<, 即函数的定义域为()1,1-,则()()()()()()log 1log 1log 1log 1a a a a f x x x x x f x ⎡⎤-=-+-+=-+--=-⎣⎦, 则函数()f x 是奇函数.()2若1a >,则由()0.f x >得()()log 1log 10a a x x +-->,即()()log 1log 1a a x x +>-, 即11x x +>-,则0x >, 定义域为()1,1-,01x ∴<<,即不等式的解集为()0,1.20.(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值. (2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 【答案】(1)12sin 13α=,12tan 5α=-(2)3πβ=【解析】 (1)55cos 132x α==-⇒=-, ∴5,62P ⎛⎫- ⎪⎝⎭∴12sin 13α==,612tan 552α==--; (2)由1cos 7α=,02πα<<,得sin 7α=, 由13cos()14αβ-=,02πβα<<<,得02παβ<-<,得sin()αβ-=所以cos cos[()]cos cos()sin sin()βααβααβααβ=--=-+-11317142=⨯+=,又02πβ<<,∴3πβ=.21.已知函数2()cos cos f x x x x =-.(1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.【答案】(1)T π=;单调递增区间为[,]63k k ππππ-+,k Z ∈;单调递减区间为5[,]36k k ππππ++,k Z ∈; (2)6x k ππ=+或2x k π=+π,k Z ∈.【解析】(1)2()cos cos f x x x x =-cos 21222x x +=-1sin 262x π⎛⎫=-- ⎪⎝⎭,即()1sin 262f x x π⎛⎫=-- ⎪⎝⎭,所以()f x 的最小正周期22T ππ==. 因为sin y x =的单调增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,令222262k x k πππππ-≤-≤+,解得63k xk ππππ,k Z ∈.因为sin y x =的单调减区间为32,222k k ππππ⎡⎤+⎢⎥⎣⎦+,k Z ∈,令3222262k x k πππππ-++≤≤, 解得536k x k ππππ++≤≤,k Z ∈.所以()f x 的单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦ ,k Z ∈.(2)函数1()sin 262f x x π⎛⎫=-- ⎪⎝⎭的零点,令1sin(2)062x π--=,即1sin(2)62x π-=.2266x k πππ-=+或52266x k πππ-=+,k Z ∈ 解得6x k ππ=+或2x k π=+π,k Z ∈所以()f x 的零点为6x k ππ=+或2x k π=+π,k Z ∈22.已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t的取值范围.【答案】(1)±1;(2)1,5⎛⎫-∞- ⎪⎝⎭.【解析】(1)由函数2()21x xaf x a -=⋅+为奇函数,可得()()f x f x -=-, 代入可得:222121x x x x a aa a ----=⋅+⋅++,整理可得:2222(2)1(2)x a a x -=-,所以21a =, 解得:1a =±;(2)若0a >,由(1)知1a =,所以212()12121x x x f x -==-++,由2x 为增函数,21x u =+为增函数且210x u =+>,又因为2u 为减函数,所以2u-为增函数,所以()f x 为增函数, 又因为()f x 为奇函数,由()(())20xf f x f t +⋅<可得:()20x f x t +⋅<,即21+2021x x x t -⋅<+在[1,1]x ∈-上恒成立, 若0t ≥,1x =时不成立,故0t <,令2x s =,则1(,2)2s ∈,整理可得:2(1)10t s t s ⋅++-<, 令2()(1)1g s t s t s =⋅++-,若1122t t +-≤或122t t +-≥ 需131()0242g t =-<,(2)610g t =+<,可得1156t -≤<-或12t ≤-,若11222t t +<-<,需1()02t g t+-<, 解得1125t -<<-, 综上可得:实数t 的取值范围为1,5⎛⎫-∞- ⎪⎝⎭.2021——2022学年杭州市部分重点中学高一上学期期末考试数学试卷(二)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合U =R ,{|1A x x =<-或2}x >,则UA( )A .(,1)(2,)-∞-+∞B .[1,2]-C .(,1][2,)-∞-+∞D .(1,2)-2.设函数212(2)()5(2)x x f x x x x ⎧-=⎨-->⎩,则()3f f ⎡⎤⎣⎦等于( ) A .1-B .1C .5-D .53.下列命题中正确的是( ) A .()0,x ∃∈+∞,23x x > B .()0,1x ∃∈,23log log x x <C .()0,x ∀∈+∞,131log 2xx ⎛⎫> ⎪⎝⎭D .10,3x ⎛⎫∀∈ ⎪⎝⎭,131log 2x x ⎛⎫> ⎪⎝⎭4.函数153()sin 2152x x f x x π-⎛⎫=⋅+ ⎪+⎝⎭的图象大致为( ) A . B .C .D .5.函数的单调递增区间是( ) A . B . C . D .6.已知,,则等于( )12()log (2)f x x =-(,2)-∞(,0)-∞(2,)+∞(0,)+∞2παπ<<1sin cos 5αα+=tan αA.B. 或C.或 D.7.设sin 5a π=,b =2314c ⎛⎫= ⎪⎝⎭,则( )A .a c b <<B .b a c <<C .c a b <<D .c b a <<8.已知奇函数在上是增函数,若,,,则的大小关系为( )A .B .C .D .9.已知225sin sin 240αα+-=,α在第二象限内,那么cos2α的值等于( )A .35± B .35C .35D .以上都不对10.关于函数()()()1sin 1sin 2cos f x x x x =-++,[]π,πx ∈-,有以下四个结论: ①()f x 是偶函数②()f x 在[]π,0-是增函数,在[]0,π是减函数 ③()f x 有且仅有1个零点 ④()f x 的最小值是1-,最大值是3 其中正确结论的个数是( ). A .1B .2C .3D .4第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.函数lg(2)y x =-的定义域是______.12.已知函数()()3,0,0xx f x f x x ⎧≤⎪=⎨->⎪⎩,则()3log 2f =________.13.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为34-34-43-344335()f x R 21log 5a f ⎛⎫=- ⎪⎝⎭()2log 4.1b f =()0.82c f =,,a b c a b c <<b a c <<c b a <<c a b <<___________.14.设α是第一象限角,3sin 5α=,则tan α=______.cos2=α______. 15.某地一天中6时至14时的温度变化曲线近似满足函数sin()T A t bωϕ=++2πϕπ⎛⎫<< ⎪⎝⎭,6时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天6时至14时温差的最大值是_______°C;图中曲线对应的函数解析式是________.16.十六、十七世纪之交,随着天文、航海、工程、贸易及军事的发展,改进数字计算方法成了当务之急,约翰•纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数,后来天才数学家欧拉发现了对数与指数的关系,即log b a a N b N =⇔=,现已知2log 6,336b a ==,则12a b+=____,2=ab _____.17.设函数2(),0()1,0x a x f x x x x ⎧-≤⎪=⎨+>⎪⎩,当a =1时,f (x )的最小值是________;若2()f x a ≥恒成立,则a 的取值范围是_________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知,() (1)当时,若和均为真命题,求的取值范围: (2)若和的充分不必要条件,求的取值范围.19.已知函数,先将的图象向左平移个单位长度后,再将所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象.(1)当时,求函数的值域; (2)求函数在上的单调递增区间. 20.已知函数. (1)求函数的单调增区间;(2)若,,求的值.21.已知是定义在上的奇函数,且当时,(为常数).(1)当时,求的解析式;(2)若关于x 的方程在上有解,求实数m 的取值范围.22.已知函数,.(Ⅰ)解不等式;(Ⅱ)用表示,中的较大值,当时,求函数的最小值.:p 1<:q 2221x x a -<-0a >2a =p q x p q a ()4sin 33f x x π⎛⎫=- ⎪⎝⎭()f x 12π()g x 2,3x ππ⎡⎤∈⎢⎥⎣⎦()f x ()g x [0,2]π()2sin cos 2f x x x x =+()f x ()035f x =0ππ,63x ⎡⎤∈⎢⎥⎣⎦0cos2x ()f x [3,3]-[0,3]x ∈()43x x f x a =+⋅a [3,0)x ∈-()f x 1()23x x f x m --=⋅+[2,1]--()22f x x x =+()24g x ax a =+()()f x g x ≥{}max ,p a p q 0a >()()(){}max ,H x f x g x =【答案解析】第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合U =R ,{|1A x x =<-或2}x >,则UA( )A .(,1)(2,)-∞-+∞B .[1,2]-C .(,1][2,)-∞-+∞D .(1,2)-【答案】B 【解析】因为U =R ,{|1A x x =<-或2}x >, 所以UA {|12}x x -≤≤.故选:B2.设函数212(2)()5(2)x x f x x x x ⎧-=⎨-->⎩,则()3f f ⎡⎤⎣⎦等于( ) A .1- B .1 C .5- D .5【答案】A 【解析】2(3)3359351f =--=--=,1(1)121f =-=-,即()3(1)1f f f ==-⎡⎤⎣⎦. 故选:A.3.下列命题中正确的是( ) A .()0,x ∃∈+∞,23x x > B .()0,1x ∃∈,23log log x x <C .()0,x ∀∈+∞,131log 2xx ⎛⎫> ⎪⎝⎭D .10,3x ⎛⎫∀∈ ⎪⎝⎭,131log 2xx ⎛⎫> ⎪⎝⎭【答案】B 【解析】0x >时,22133xx x ⎛⎫=< ⎪⎝⎭,∴23x x <,A 错;(0,1)x ∈时,lg 0x <,lg3lg 20>>,因此11lg 2lg 3>,∴lg lg lg 2lg 3x x<,即23log log x x <,B 正确;13x =时,13112⎛⎫< ⎪⎝⎭,131log 13=,即131log 2xx ⎛⎫< ⎪⎝⎭,C 错; 10,3x ⎛⎫∈ ⎪⎝⎭时,112x⎛⎫< ⎪⎝⎭,11331log log 13x >=,∴131log 2xx ⎛⎫< ⎪⎝⎭,D 错误. 故选:B .4.函数153()sin 2152x x f x x π-⎛⎫=⋅+ ⎪+⎝⎭的图象大致为( ) A . B .C .D .【答案】D 【解析】由题意得,15()cos 215xxf x x -=-⋅+, 15()cos(2)15x xf x x ---∴-=-⋅-=+51cos 2()51x x x f x --⋅=-+,则函数()f x 为奇函数,排除AC ;又33152cos 03315f ππππ-⎛⎫=-⋅< ⎪⎝⎭+,排除B. 故选:D. 5.函数的单调递增区间是( )A .B .C .D .【答案】A 【解析】由,得到,令,则在上递减,而在上递减,由复合函数单调性同增异减法则,得到在上递增, 故选:A6.已知,,则等于( ) A. B. 或 C. 或D.【答案】A 【解析】∵,, ∴平方可得,即, ∴,,∵可得:,解得:,或(舍去), ∴,可得:. 故选:A . 7.设sin5a π=,b =2314c ⎛⎫= ⎪⎝⎭,则( )12()log (2)f x x =-(,2)-∞(,0)-∞(2,)+∞(0,)+∞20x ->2x <2t x =-2t x =-(,2)-∞12log y t =(0,)+∞12()log (2)f x x =-(,2)-∞2παπ<<1sin cos 5αα+=tan α34-34-43-3443352παπ<<1sin cos 5αα+=112sin cos 25αα+=12sin cos 025αα=-<sin 0α<cos 0α>22sin cos 1αα+=221cos cos 15αα⎛⎫-+= ⎪⎝⎭4cos 5α=35-143sin 555α=-=-3tan 4α=-A .a c b <<B .b a c <<C .c a b <<D .c b a <<【答案】C 【解析】由对数函数y x =在()0,∞+单调递增的性质得:1b =>=,由指数函数12xy ⎛⎫= ⎪⎝⎭在R 单调递减的性质得:2413311142212c ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=<=,由三角函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增的性质得1sin sin 562a ππ=>=.所以c a b <<. 故选:C.8.已知奇函数在上是增函数,若,,,则的大小关系为( )A .B .C .D .【答案】C 【解析】由题意:,且:,据此:,结合函数的单调性有:,即. 本题选择C 选项.9.已知225sin sin 240αα+-=,α在第二象限内,那么cos2α的值等于( )A .35±B .35C .35D .以上都不对【答案】A()f x R 21log 5a f ⎛⎫=- ⎪⎝⎭()2log 4.1b f =()0.82c f =,,a b c a b c <<b a c <<c b a <<c a b <<()221log log 55a f f ⎛⎫=-= ⎪⎝⎭0.822log 5log 4.12,122>><<0.822log 5log 4.12>>()()()0.822log 5log 4.12f f f >>,a b c c b a >><<【解析】α在第二象限内,sin 0α∴>,cos 0α<, 由225sinsin 240αα+-=得:()()25sin 24sin 10αα-+=,解得:24sin 25α=,7cos 25α∴==-,即272cos 1225α-=-,29cos 225α∴=, α在第二象限内,2α∴为第一或第三象限角,3cos25α∴=±. 故选:A .10.关于函数()()()1sin 1sin 2cos f x x x x =-++,[]π,πx ∈-,有以下四个结论: ①()f x 是偶函数②()f x 在[]π,0-是增函数,在[]0,π是减函数 ③()f x 有且仅有1个零点 ④()f x 的最小值是1-,最大值是3 其中正确结论的个数是( ). A .1 B .2 C .3 D .4【答案】C 【解析】函数()()()()221sin 1sin 2cos cos 2cos cos 11f x x x x x x x =-++=+=+-,()()()()22cos 2cos cos 2cos x x f x f x x x -=-+-=+=,故()f x 是偶函数,①正确; 令cos t x =在[]π,0-是增函数,在[]0,π是减函数,()()22211y f t t t t ==+=+-在[]1,1t ∈-上递增,根据复合函数单调性可知()f x 在[]π,0-是增函数,在[]0,π是减函数,②正确;()()211y f t t ==+-,[]1,1t ∈-,则1t =-时,最小值为-1,1t =时,最大值为3,④正确;令()()2110f t t =+-=得0t =或2t =-(舍去),即cos 0t x ==,则2()2x k k Z ππ=+∈,()f x 有无数个零点,故③错误.所以有3个正确结论.故选:C.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.函数lg(2)y x =-的定义域是______. 【答案】(,2)-∞ 【解析】由题设有20x ->,解得2x <,故函数的定义域为(),2-∞,填(),2-∞.12.已知函数()()3,0,0x x f x f x x ⎧≤⎪=⎨->⎪⎩,则()3log 2f =________.【答案】12【解析】由对数函数性质知333log 1log 2log 3<<,即30log 21<<,则3log 20-<故()()()331log 2log 21331log 2log 23322f f ---=-====. 故答案为:12. 13.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.【答案】37[2,2],44k k k Z ++∈【解析】 由图象知:22||T πω==, 15()()044f f ==, ∴()f x 的单调递增区间为37[2,2],44k k k Z ++∈,故答案为:37[2,2],44k k k Z ++∈14.设α是第一象限角,3sin 5α=,则tan α=______.cos2=α______. 【答案】34 725【解析】∵α是第一象限角,3sin 5α=,∴4cos 5α==,∴sin 35tan cos 4534ααα===. ∴2237cos 212sin 12525αα⎛⎫=-=-⨯= ⎪⎝⎭.故答案为:34,725.15.某地一天中6时至14时的温度变化曲线近似满足函数sin()T A t bωϕ=++2πϕπ⎛⎫<< ⎪⎝⎭,6时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天6时至14时温差的最大值是_______°C;图中曲线对应的函数解析式是________.【答案】20 310sin 2084y x ππ⎛⎫=++⎪⎝⎭,[6,14]x ∈. 【解析】由图可知,这段时间的最大温差是30°C -10°C=20°C ;图中从6~14时的图象是函数sin()y A x b ωϕ=++的半个周期的图象,得1(3010)102A =-=,1(3010)202b =+=,因为121462πω⋅=-,所以8πω=,从而得10sin 208y x πϕ⎛⎫=++ ⎪⎝⎭,将6x =,10y =代入,得10sin 620108ϕπ⎛⎫⨯++= ⎪⎝⎭,即3sin 14πϕ⎛⎫+=- ⎪⎝⎭,由于2ϕπ<<π,可得34πϕ=. 故所求解析式为310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭,[6,14]x ∈. 故答案为:20;310sin 2084y x ππ⎛⎫=++⎪⎝⎭,[6,14]x ∈. 16.十六、十七世纪之交,随着天文、航海、工程、贸易及军事的发展,改进数字计算方法成了当务之急,约翰•纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数,后来天才数学家欧拉发现了对数与指数的关系,即log b a a N b N =⇔=,现已知2log 6,336b a ==,则12a b+=____,2=ab _____.【答案】 【解析】由题意知2log 6,336ba ==,可得33log 362log 6b ==,所以66231121log 2,log 3log 6log 6a b ====, 所以66612log 2log 3log (23)1a b +=+=⨯=,又由2223log 61log 3log 2log 62a b ===,所以log 22ab ==故答案为:1.17.设函数2(),0()1,0x a x f x x x x ⎧-≤⎪=⎨+>⎪⎩,当a =1时,f (x )的最小值是________;若2()f x a ≥恒成立,则a 的取值范围是_________.【答案】1 [0] 【解析】当a =1时,当0x ≤时,2()(1)1f x x =-≥,当0x >时,1()f x x x =+2≥=,当且仅当1x =时,等号成立.所以()f x 的最小值为1.当0x ≤时,2()f x a ≥,即22()x a a -≥,即(2)0x x a -≥恒成立,所以2x a -0≤恒成立,即2a x ≥恒成立,所以20a ≥,即0a ≥. 当0x >时,2()f x a ≥,即21x a x +≥恒成立,因为1x x+2≥=,当且仅当1x =时,等号成立,所以22a ≤,所以a ≤≤综上所述:a的取值范围是. 故答案为:1;三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知,() (1)当时,若和均为真命题,求的取值范围: (2)若和的充分不必要条件,求的取值范围.:p 1<:q 2221x x a -<-0a >2a =p q x p q a【答案】(1);(2). 【解析】对于命题,所以,解得, 对于命题因为,所以解得, (1)当时,因为和均为真命题,所以,解得,故的取值范围为; (2)因为是的充分不必要条件,所以 ,即,解得,故的取值范围为.结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若是的必要不充分条件,则对应集合是对应集合的真子集; (2)若是的充分不必要条件,则对应集合是对应集合的真子集; (3)若是的充分必要条件,则对应集合与对应集合相等;(4)若是的既不充分又不必要条件,则对应的集合与对应集合互不包含.19.已知函数,先将的图象向左平移个单位长度后,再将所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象.(1)当时,求函数的值域;(2)求函数在上的单调递增区间.【答案】(1);(2)单调递增区间为和. 【解析】(1)当时,,,[2,3)[2,)+∞:p 1<20log (1)1x ≤-<23x ≤<:q 2221x x a -<-22210x x a -+-<11a x a -<<+2a =:13q x -<<p q 2313x x ≤<⎧⎨-<<⎩23x ≤<x [2,3)p q [2,3)(1,1)a a -+1213a a -<⎧⎨+≥⎩2a ≥a [2,)+∞p q q p p q p q p q p q p q q p ()4sin 33f x x π⎛⎫=- ⎪⎝⎭()f x 12π()g x 2,3x ππ⎡⎤∈⎢⎥⎣⎦()f x ()g x [0,2]π4⎡⎤-⎣⎦70,18π⎡⎤⎢⎥⎣⎦1931,1818ππ⎡⎤⎢⎥⎣⎦2,3x ππ⎡⎤∈⎢⎥⎣⎦583,333x πππ⎡⎤-∈⎢⎥⎣⎦sin 332x π⎡⎤⎛⎫∴-∈-⎢⎥ ⎪⎝⎭⎣⎦.(2)由题意得,将的图像向左平移个单位长度后,得到的图像,再将所得图像上各点的横坐标伸长到原来的2倍,得到.令,,解得,,函数的单调递增区间为. 又,故所求单调递增区间为和. 20.已知函数. (1)求函数的单调增区间;(2)若,,求的值.【答案】(1);(2). 【解析】(1)由题意,函数,令,解得, 所以函数的单调增区间为. (2)由,可得, 因为,可得,所以, ()[f x ∴∈-()f x 12π4sin 31212f x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭3()4sin 212g x x π⎛⎫=- ⎪⎝⎭32222122k x k πππππ-+-+k ∈Z 5474183183k k xππππ-++k ∈Z ∴()g x 5474,()183183k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z [0,2]x π70,18π⎡⎤⎢⎥⎣⎦1931,1818ππ⎡⎤⎢⎥⎣⎦()2sin cos 2f x x x x =+()f x ()035f x =0ππ,63x ⎡⎤∈⎢⎥⎣⎦0cos2x 5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈410()2sin cos 2f x x x x =+πsin 23x ⎛⎫=+ ⎪⎝⎭π222,232k x k k ππ-+π≤+≤+π∈Z 5,1212k x k k Z ππππ-+≤≤+∈()f x 5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈()035f x =0π3sin 235x 0,63x ππ⎡⎤∈⎢⎥⎣⎦022,33x πππ⎡⎤+∈⎢⎥⎣⎦04cos 235x π⎛⎫+=- ⎪⎝⎭21.已知是定义在上的奇函数,且当时,(为常数).(1)当时,求的解析式; (2)若关于x 的方程在上有解,求实数m 的取值范围.【答案】(1),;(2). 【解析】 (1)是定义在上的奇函数,且当时,,,解得,当时,. 则当时,,, ,. (2)由(1)知,当时,, 可化为, 整理得.令,根据指数函数的单调性可得,在是增函数. ,又关于x 的方程在上有解,故实数m 的取值范围是.22.已知函数,.(Ⅰ)解不等式;00cos 2cos 233x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦00cos 2cos sin 2sin 3333x x ππππ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭()f x [3,3]-[0,3]x ∈()43xxf x a =+⋅a [3,0)x ∈-()f x 1()23xxf x m --=⋅+[2,1]--11()34x x f x =-[3,0)x ∈-17,52⎡⎤--⎢⎥⎣⎦()f x [3,3]-[0,3]x ∈()43x x f x a =+⋅00(0)4310f a a ∴=+⋅=+=1a =-[0,3]x ∈()43xxf x =-[3,0)x ∈-(0,3]x -∈11()43()43x x x x f x f x --∴-=-=-=-11()34x xf x ∴=-[3,0)x ∈-[2,1]x ∈--11()34x xf x =-1()23x x f x m --∴=⋅+1112334x xx xm ---=⋅+12223xxm ⎛⎫⎛⎫=--⋅ ⎪ ⎪⎝⎭⎝⎭12()223xxg x ⎛⎫⎛⎫=--⋅ ⎪ ⎪⎝⎭⎝⎭()g x [2,1]--17()52g x ∴-≤≤-1()23x x f x m --=⋅+[2,1]--17,52⎡⎤--⎢⎥⎣⎦()22f x x x =+()24g x ax a =+()()f x g x ≥(Ⅱ)用表示,中的较大值,当时,求函数的最小值.【答案】(Ⅰ)答案见解析;(Ⅱ)最小值为0. 【解析】(Ⅰ)由,得,即.当时,解不等式可得:或;当时,不等式可化为,显然恒成立,所以解集为; 当时,解不等式可得:或; 综上,当时,不等式的解集为; 当时,不等式的解集为;当时,不等式的解集为.(Ⅱ)由(Ⅰ)可知,.当或时,是开口向上的二次函数,且对称轴为,所以在上单调递减,在上单调递增, 又,,所以;当时,. 综上,的最小值为0.2021——2022学年杭州市部分重点中学高一上学期期末考试数学试卷(三)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选{}max ,p a p q 0a >()()(){}max ,H x f x g x =()()f x g x ≥()22240x a x a +--≥()()220x x a +-≥1a <-2x a ≤2x ≥-1a =-()220x +≥R 1a >-2x -≤2x a ≥1a <-(][),22,a -∞⋃-+∞1a =-R 1a >-(][),22,a -∞-⋃+∞()(][)()22,,22,24,2,2x x x a H x ax a x a ⎧+∈-∞-⋃+∞⎪=⎨+∈-⎪⎩2x -≤2x a ≥()22H x x x =+1x =-()22H x x x =+(],2-∞-[)2,a +∞()20H -=()()2244410H a a a a a =+=+>()min 0H x =22x a -<<()()24220H x ax a a x =+=+>()H x项中,只有一项是符合题目要求的.1.已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ). A .{}1,2B .{}0C .{}0,1,2D .{}0,12.已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.若偶函数在区间上是增函数,则( ) A .B .C .D .4.设2313a ⎛⎫= ⎪⎝⎭,532b =,21log 3c =,则( ) A .b a c << B .a b c << C .c a b << D .b c a <<5.已知角α的终边经过点()3,4P ,则πcos 24α⎛⎫+= ⎪⎝⎭( )A.50-B.50C.50-D.506.函数()f x 在[)0,+∞单调递增,且()3f x +关于3x =-对称,若()21f -=,则()21f x -≤的x 的取值范围( )A .[]22-,B .(][),22,-∞-+∞C .()[),04,-∞+∞D .[]0,47.对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法:①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈ ⎪⎝⎭ ()f x (]1-∞-,3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1 B .2C .3D .48.函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8B .6C .4D .29.已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .[2,0)-C .(1,0)-D .[1,0)-10.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2log 1f x x =+,则不等式()2f x ≤的解集是( ).A .[]3,3-B .[]4,4-C .(][),33,-∞-+∞ D .(][),44,-∞-⋃+∞第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.12.设2log 3a =,则4a =______(用数值表示),lg 36lg 4=______.(用a 表示) 13.某移动公司规定,使用甲种卡,须付“基本月租费”(每月需交的固定费用)30元,在国内通话时每分钟另收话费0.10元;使用乙种卡,不收“基本月租费”,但在国内通话时每分钟话费为0.2元.若某用户每月手机费预算为50元,则使用__________种卡才合算;若要使用甲种卡合算,则该用户每月手机费预算(元)的区间为__________.14.设函数()112,1,1x e x f x x x -⎧<⎪=⎨⎪≥⎩则()3f x ≤成立的x 的取值范围为______.15.摩天轮是一种大型转轮状的机械建筑设施,稳坐于永乐桥之上的“天津之眼”作为世界上唯一一座建在桥上的摩天轮,其巧夺天工和奇思妙想确是当之无愧的“世界第一”.如图,永乐桥摩天轮的直径为110m ,到达最高点时,距离地面的高度为120m ,能看到方圆40km 以内的景致,是名副其实的“天津之眼”.实际上,单从高度角度来看,天津之眼超越了曾大名鼎鼎的伦敦之眼而跃居世界第一.永乐桥摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .游客甲坐上摩天轮的座舱,开始转到min t 后距离地面的高度为m H ,则转到10min 后距离地面的高度为______m ,在转动一周的过程中,H 关于t 的函数解析式为______.16.已知2,0()(),0x x f x f x x ⎧≥=⎨--<⎩,若4log 3a =,则()f a =___________;()1f a -=___________.17.已知(0,)απ∈,且有12sin2cos2αα-=,则cos α=___________. 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.函数是奇函数. 求的解析式;当时,恒成立,求m 的取值范围.()22xx af x =-()1()f x ()2()0,x ∈+∞()24x f x m ->⋅+19.已知函数()22sin cos 22222x x x f x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的最小值及单调减区间.20.已知二次函数()f x 的图象经过点()4,4-,方程()0f x =的解集为{}0,2. (1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出m ,n 的值;若不存在,说明理由.21.已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min 7x x π-=,求ϕ的值.22.设函数()()21x xa t f x a --=(0a >,且1a ≠)是定义域为R 的奇函数.(1)求t 的值;(2)若函数()f x 的图象过点31,2⎛⎫⎪⎝⎭,是否存在正数()1m m ≠,使函数()()22log x xm g x a a mf x -⎡⎤=+-⎣⎦在[]21,log 3上的最大值为0,若存在,求出m 的值;若不存在,请说明理由.【答案解析】第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ). A .{}1,2 B .{}0 C .{}0,1,2 D .{}0,1【答案】C 【解析】由并集定义可得:{}0,1,2M N =.故选:C.2.已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若a b >,则a b b >≥,即a b >,故22a b >. 取1,2a b ==-,此时22a b >,但a b <, 故22a b >推不出a b >, 故选:A.3.若偶函数在区间上是增函数,则( ) A .B .C .D .【答案】D 【解析】函数为偶函数,则.又函数在区间上是增函数. 则,即 ()f x (]1-∞-,3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭()f x ()()22f f =-()f x (]1-∞-,()()3122f f f ⎛⎫<-<- ⎪⎝⎭-()()3212f f f ⎛⎫<-<- ⎪⎝⎭。
杭州学军中学2019-2020学年第一学期期末考试高一数学试题(含答案)
杭州学军中学2019学年第一学期期末考试高一数学试卷命题人:何玲娜 审题人:王加义一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U =R ,集合2{|1},{|1}M x x P x x =>=>则下列关系中正确的是( ▲ )A.P M =B.M P M =UC.M P M =ID.()U C M P =∅I 2.若0.52a =,lg 2b =,ln(sin 35)c ︒=,则( ▲ )A .a c b >>B .b a c >>C .c a b >>D . a b c >>3.下列四个函数:①3y x =-;②12x y -=;③2ln y x =;④⎪⎩⎪⎨⎧>≤=0103x x x x y 其中定义域与值域相同的函数有( ▲ )A.1个B.2个C.3个D.4个4.对任意向量→→b a ,,下列关系式中不恒成立的是( ▲ )A .→→→→≤⋅b a b a B . 22→→→→+=⎪⎭⎫ ⎝⎛+b a b a C .→→→→-≤-ba b aD . 22→→→→→→-=⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛+b a b a b a 5.设)(x f 是定义域为R ,最小正周期为π3的函数,且在区间]2,(ππ-上的表达式为⎩⎨⎧≤≤-≤≤=0cos 20sin )(x x x x x f ππ,则=+-)6601()3308(ππf f ( ▲ ) A .3 B .3- C .1 D .1- 6. 函数,则使得成立的的取值范围是( ▲ ) A . B . C . D . 7. 已知单位向量b a ,的夹角为ο60,若向量c 满足3|2|≤+-c b a ,则||c 的最大值为( ▲ ) A.3 B.33+ C.31+ D.331+21()ln(1||)1f x x x =+-+()(21)f x f x >-x 1,13⎛⎫ ⎪⎝⎭()1,1,3⎛⎫-∞+∞ ⎪⎝⎭U 11,33⎛⎫- ⎪⎝⎭11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U8.已知实数a <b <c ,设方程0111=-+-+-cx b x a x 的两个实根分别为)(,2121x x x x <,则下列关系中恒成立的是( ▲ )A .c x b x a <<<<21B .c x b a x <<<<21C .c b x x a <<<<21D .21x c b x a <<<<9.记{}{},0)1)((|B ,,)sin()(|<---=+==a x a x x x x f A 为正整数为偶函数ωωθθ 对任意实数a 满足B I A 中的元素不超过两个,且存在实数a 使B I A 中含有两个元素,则ω的最大值为( ▲ )A .4B .5C .6D .710.若不等式()sin 06x a b x ππ⎛⎫--+≤ ⎪⎝⎭对[]1,1x ∈-上恒成立,则b a +2=( ▲ )A .67B .56C .35D .2 二、填空题:本大题共6小题,多空题每题6分,单空题每题4分,共30分。
浙江省杭州2023-2024学年高一上学期期末数学试题含答案
杭州2023学年第一学期高一年级期末考数学试卷(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个符合题目要求.1.函数()1ln f x x x =-的零点所在的大致区间是()A.()1,2 B.()2,e C.()e,3 D.()e,+∞【答案】A 【解析】【分析】由零点存在定理结合函数单调性得到结论.【详解】因为函数ln y x =在()0+∞,上为增函数,函数1y x=在()0+∞,上为减函数,所以函数1()ln f x x x=-在()0+∞,上为增函数,又(1)ln1110f =-=-<,112211(2)ln 2ln 4ln e 02212f =-=->-=,即(2)0f >,所以零点所在的大致区间(1,2).故选:A.2.设函数()()sin f x x θ=+,则“cos 0θ=”是“()f x 为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】由三角函数的性质求出ππ,Z 2k k θ=+∈,即可判断.【详解】解:由cos 0θ=,得ππ,Z 2k k θ=+∈,由()()sin f x x θ=+为偶函数,得ππ,Z 2k k θ=+∈,则“cos 0θ=”是“()()sin f x x θ=+”为偶函数的充分必要条件.故选:C3.下列四个函数中的某个函数在区间ππ,22⎡⎤-⎢⎥⎣⎦上的大致图象如图所示,则该函数是()A.322xxx xy --=+ B.cos222xxx xy -=+ C.2122xxx y --=+ D.sin222x xx y -=+【答案】B 【解析】【分析】利用题给函数在π0,2⎡⎤⎢⎥⎣⎦上先正值后负值的变化情况排除选项A ;利用题给图象可知函数是奇函数排除选项C ;利用当π2x =时题给函数值为负值排除D ;而选项B 均符合以上要求.【详解】当01x <<时,30x x -<,3022x xx xy --=<+.排除A ;由偶函数定义可得2122x xx y --=+为偶函数,由题给图象可知函数是奇函数,排除C ;当π2x =时,ππ222πn 22si 02y -⎛⎫⎝+ ⎭⨯==⎪.排除D ;cos222x x x x y -=+为奇函数,且当π04x <<时,cos2022x xx x y -=>+,当π2x =时,ππππ2222cos 20π2222ππ222y --⨯==⎛⎫⋅- ⎪⎭<++⎝.B 均符合题给特征.故选:B.4.《九章算术》是一部中国古代的数学专著.全书分为九章,共收有246个问题,内容丰富,而且大多与生活实际密切联系.第一章《方田》收录了38个问题,主要讲各种形状的田亩的面积计算方法,其中将圆环或不足一匝的圆环形天地称为“环田”.书中提到这样一块“环田”:中周九十二步,外周一百二十二步,径五步,如图所示,则其所在扇形的圆心角大小为()(单位:弧度)(注:匝,意为周,环绕一周叫一匝.)A.4B.5C.6D.7【答案】C 【解析】【分析】设中周的半径是1R ,外周的半径是2R ,圆心角为α,根据中周九十二步,外周一百二十二步,径五步,列关系式即可.【详解】设中周的半径是1R ,外周的半径是2R ,圆心角为α,1221921225R R R R αα=⎧⎪=⎨⎪-=⎩,解得6α=.故选:C 5.已知π3cos(124θ-=,则πsin(2)3θ+=()A.716-B.18-C.18D.716【答案】C 【解析】【分析】利用诱导公式,结合二倍角的余弦公式计算即得.【详解】当π3cos()124θ-=时,2πππππ1sin(2)sin(2)cos 2()2cos ()136212128θθθθ+=-+=-=--=.故选:C6.已知函数()()cos f x x ωϕ=+π0,2ωϕ⎛⎫><⎪⎝⎭的部分图象如图所示,1x ,2x 是()f x 的两个零点,若214x x =,则下列不为定值的量是()A.ϕB.ωC.1x ω D.1x ωϕ【答案】B 【解析】【分析】求函数()f x 的周期,估计1x 的范围,再求函数()f x 的零点,由此确定1x ,2x ,结合条件化简可得结论.【详解】函数()()cos f x x ωϕ=+()0ω>的周期为2πω,由图象可得1π02x ω<<,令()0f x =,可得:ππ,Z 2x k k ωϕ+=+∈,所以ππ2k x ϕω+-=,即2ππ22k x ϕω+-=,又π0,2ωϕ><,所以1π22x ϕω-=,23π22x ϕω-=,又因为214x x =,所以3π2π2422ϕϕωω--=⨯,所以π6ϕ=,1π2ππππ22263x ϕωωϕω-=⨯=-=-=,1π32π6xωϕ==为定值.故选:B7.已知0x >,0y >,且311x y +=,则2x x y y++的最小值为()A.9B.10C.12D.13【答案】D 【解析】【分析】借助基本不等式中“1”的妙用即可得.【详解】()31322261x x y x x x y x y y x y y x y y⎛⎫++=+++=++++ ⎪⎝⎭337713y x x y =++≥+,当且仅当33y xx y=,即4x y ==时,等号成立.故选:D.8.若关于x 的方程()()2221151x m x xx +-+=+恰有三个不同的实数解1x ,2x ,3x ,且1230x x x <<<,其中m ∈R ,则123x x x ++的值为()A.32B.12C.1D.2【答案】A 【解析】【分析】利用换元法化简题目所给方程,结合二次函数零点分布、对勾函数的性质等知识求得正确答案.【详解】由题知0x ≠,由()()2221151x m x x x +-+=+,得到12301m x m x x x+-+-=+,令1t x x =+,由对勾函数的图像与性质知,2t ≤-或2t ≥,且1t x x =+图像如图,则230mt m t-+-=,即2(3)20t m t m +--=,又方程()()2221151x m x xx +-+=+恰有三个不同的实数解1x ,2x ,3x ,且1230x x x <<<,所以2(3)20t m t m +--=有两根12,t t ,且122,2t t =->,故42620m m -+-=,得到52m =,代入2(3)20t m t m +--=,得到21502t t --=,解得2t =-或52t =,由12x x +=-,得到=1x -,由152x x +=,得到22520x x -+=,所以2352x x +=,所以12353122x x x ++=-+=,故选:A.【点睛】方法点晴:对于复杂方程的根有关的问题求解,可根据题目所给已知方程进行转化,转化的方向是熟悉的函数类型,即将不熟悉的问题转化为熟悉的问题来进行求解.对钩函数是函数题目中常见的函数,对其性质要注意总结.二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题正确的是()A.设α是第一象限角,则2α为第一或第三象限角B.cos 2sin 3πααα⎛⎫+=+ ⎪⎝⎭C.在ABC 中,若点O 满足0OA OB OC ++=,则O 是ABC 的重心D.()a b c a b c⋅ ≤【答案】ACD 【解析】【分析】对A ,根据象限角的概念可判断;对B ,根据辅助角公式化简即可;对C ,取BC 中点D ,得出2OA OD =-,根据重心的性质可判断;对D ,根据cos ,a b a b a b ⋅=⋅⋅,结合向量数乘运算性质即可判断.【详解】对A ,因为α是第一象限角,所以π2π2π,2k k k α<<+∈Z ,则πππ,24k k k α<<+∈Z ,其为第一或第三象限角,故A 正确;对B 1cos 2sin cos 2sin 226πααααα⎛⎫⎛⎫+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,故B 错误;对C ,取BC 中点D ,则2OB OC OD +=,又0OA OB OC ++= ,所以2OA OD =-,所以O 在中线AD 上,且2OA OD =,所以O 为ABC 的重心,故C 正确;对D ,因为cos ,a b a b a b ⋅=⋅⋅ ,cos ,1a b ≤,所以a b a b ⋅≤ ,所以()a b c a b c a b c ⋅=⋅≤,故D 正确.故选:ACD .10.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-,那么下列命题中正确的是()A.函数{}x 的值域为[]1,0-B.函数{}x ⎡⎤⎣⎦的值域为{}1,0-C.函数{}x 是周期函数D.函数{}x 是减函数【答案】BC 【解析】【分析】结合函数性质逐项判断即可得.【详解】对A :当x ∈Z ,则{}[]0x x x x x =-=-=,当x ∉Z ,则{}[]()1,0x x x =-∈-,故函数{}x 的值域为(]1,0-,故A 错误;对B :当x ∈Z ,则{}[]0x x x x x =-=-=,{}0x ⎡⎤=⎣⎦,当x ∉Z ,则{}[]()1,0x x x =-∈-,{}1x ⎡⎤=-⎣⎦,即函数{}x ⎡⎤⎣⎦的值域为{}1,0-,故B 正确;对C :{}[][]{}111x x x x x x +=+--=-=,故函数{}x 是周期函数,故C 正确;对D :由函数{}x 是周期函数,故函数{}x 不是减函数,故D 错误.故选:BC.11.已知函数()()2sin 1f x x ωϕ=++π02,ωϕ⎛⎫>< ⎪⎝⎭,满足()π23f x f x ⎛⎫+--= ⎪⎝⎭,且对任意x ∈R ,都有()5π12f x f ⎛⎫≥-⎪⎝⎭,当ω取最小值时,则下列正确的是()A.()f x 图象的对称中心为ππ,1Z 26k k ⎛⎫-∈⎪⎝⎭B.()f x 在ππ,126⎡⎤-⎢⎥⎣⎦上的值域为1,3⎤+⎦C.将2sin 21y x =+的图象向左平移π6个单位长度得到()f x 的图象D.()f x 在ππ,62⎡⎤⎢⎥⎣⎦上单调递减【答案】ACD 【解析】【分析】由题意可得()f x 的图象关于π(,1)6-对称,()f x 在5π12x =-处取得最小值,推得ϕ,ω的值,可得函数解析式()π2sin 213f x x ⎛⎫=++ ⎪⎝⎭,结合正弦函数的对称中心、值域和图象变换、单调性,可得结论.【详解】函数()()2sin 1f x x ωϕ=++π02,ωϕ⎛⎫>< ⎪⎝⎭,满足()π23f x f x ⎛⎫+--= ⎪⎝⎭,可得()f x 的图象关于π(,1)6-对称,故11ππ(Z)6k k ωϕ-+=∈,即11(Z)ππ6k k ϕω∈=+,由于对任意x ∈R ,都有()5π12f x f ⎛⎫≥- ⎪⎝⎭,可得()f x 在5π12x =-处取得最小值,即225ππ2π(Z)122k k ωϕ-+=-+∈,可得22π5π2π(Z)212k k ϕω=-++∈,则21π5ππ2ππ2126k k ϕωω=-++=+,化简得1224(2)πk k ω=+-12(2Z)k k -∈,因为0ω>,当ω取最小值时,1220k k -=,可得2ω=,则11ππ(Z)3k k ϕ=+∈且π2ϕ<,得π3ϕ=,所以()π2sin 213f x x ⎛⎫=++ ⎪⎝⎭,对于A ,令π2π3x k +=,Z k ∈,解得ππ62k x =-+,则()f x 图象的对称中心为ππ,1Z 26k k ⎛⎫-∈⎪⎝⎭,故A 正确;对于B ,当ππ,126x ⎡⎤∈-⎢⎣⎦时,ππ2π2,363x ⎡⎤+∈⎢⎥⎣⎦,可得π1sin 2,132x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以()f x 在ππ,126⎡⎤-⎢⎥⎣⎦上的值域为[]2,3,故B 不正确;对于C ,将2sin 21y x =+的图象向左平移π6个单位长度得到ππ2sin 2(12sin(21()63y x x f x =++=++=的图象,故C 正确;对于D ,当ππ,62x ⎡⎤∈⎢⎥⎣⎦时,π2π4π2,333x ⎡⎤+∈⎢⎥⎣⎦,所以()f x 在ππ,62⎡⎤⎢⎥⎣⎦上单调递减,故D 正确;故选:ACD.12.如图所示,在边长为3的等边三角形ABC 中,23AD AC =,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,若BP xBA yBC =+,则()A.1233BD BA BC=+ B.x y +的最大值为13+C.BP BC ⋅ 最大值为9 D.1BO DO ⋅=【答案】AC 【解析】【分析】对于AD ,将,,BD BO DO 分别用,BA BC表示,再结合数量积的运算律即可判断;对于BC ,以点O 为原点建立平面直角坐标系,设()[]cos ,sin ,π,2πP ααα∈,根据平面向量的坐标表示及坐标运算即可判断.【详解】对于A ,因为23AD AC =,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,所以113OA OD DC AC ====,则()11123333BD BC CD BC CA BC BA BC BA BC =+=+=+-=+,故A 正确;对于B ,()22213333BO BC CO BC CA BC BA BC BA BC =+=+=+-=+,211211333333DO BO BD BA BC BA BC BA BC ⎛⎫=-=+-+=- ⎪⎝⎭,则2211212113333999DO BO BA BC BA BC BA BC BA BC⎛⎫⎛⎫⋅=-⋅+=--⋅ ⎪ ⎪⎝⎭⎝⎭1112133922=--⨯⨯⨯=,故D 错误;对于C ,如图,以点O 为原点建立平面直角坐标系,则()()1331,0,,,2,022A B C ⎛⎫- ⎪ ⎪⎝⎭,因为点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,所以点P 的轨迹方程为221x y +=,且在x 轴的下半部分,设()[]cos ,sin ,π,2πP ααα∈,则133333333cos ,sin ,,,,222222BP BC BA αα⎛⎫⎛⎫⎛⎫=--=-=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以333327πcos 3cos 624243BP BC ααα⎛⎫⋅=--+=++ ⎪⎝⎭ ,因为[]π,2πα∈,所以π4π7π,333α⎡⎤+∈⎢⎥⎣⎦,所以当π2π3α+=时,BP BC ⋅ 取得最大值9,故C 正确;因为BP xBA yBC =+ ,所以133333333cos ,sin ,,222222x y αα⎛⎫⎛⎫⎛⎫--=--+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()()133333cos ,sin ,2222x y x y αα⎛⎫⎛⎫--=---+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()3333sin 22x y α-=-+,所以23sin 19x y α+=-+,因为[]π,2πα∈,所以当3π2α=时,x y +取得最大值2319+,故B 错误.故选:AC.三、填空题:本题共4小题,每小题5分,共20分.13.函数tan y x =的定义域为_____________.【答案】,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭【解析】【详解】函数tan y x =的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭故答案为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭14.若sin1a =,ln sin1b =,sin1e c =,则a ,b ,c 三数中最小数为_________.【答案】b 【解析】【分析】根据给定条件,利用指数函数、对数函数的单调性,结合sin1的范围比较大小即得.【详解】依题意,0sin11<<,ln sin1ln10b =<=,10sin 1e e c >==,所以,,a b c 三数中最小数为b .故答案为:b15.在解析几何中,设()111,P x y ,()222,P x y 为直线l 上的两个不同的点,则我们把12PP及与它平行的非零向量都称为直线l 的方向向量,把与直线l 垂直的向量称为直线l 的法向量,常用n表示,此时120P P n ⋅=.若点P l ∉,则可以把PP 在法向量n上的投影向量的模叫做点P 到直线l 的距离.现已知平面直角坐标系中,()2,2P --,()12,1P ,()21,3P -,则点P 到直线l 的距离为__________.【答案】13【解析】【分析】先求出直线方程,后利用点到直线的距离公式求解即可.【详解】设l 的斜率为k ,点P 到直线l 的距离为d ,则3123k -==--1-2,l 的直线方程为2370x y +-=,由点到直线的距离公式得31d ==.故答案为:1316.对于非空集合M ,定义()0,Φ1,M x M x x M ∉⎧=⎨∈⎩,若sin 2A x x ⎧⎪=≥⎨⎪⎪⎩⎭,(),2B a a =,且存在x ∈R ,()()2A B x x Φ+Φ=,则实数a 的取值范围是_____________.【答案】π3π9π,,848∞⎛⎫⎛⎫⋃+ ⎪ ⎪⎝⎭⎝⎭##π3π84a <<或9π8a >【解析】【分析】首先解三角不等式求出集合A ,依题意A B ⋂≠∅,则π2a ≥时一定满足,再考虑π02a <<时,求出A B ⋂≠∅时参数的取值范围,即可得解.【详解】因为sin 2A x x ⎧⎪=≥⎨⎪⎪⎩⎭,所以π3{|2}ππ2π4Z 4()A x k x k k =+∈<<+,因为(),2B a a =,B ≠∅,所以2a a >,所以0a >,因为()()2A B x x Φ+Φ=,所以1A B Φ=Φ=,所以A B ⋂≠∅,此时区间长度π2a ≥时一定满足,故下研究π02a <<时,此时02πa a <<<,因此满足题意的反面情况024πa a <<≤或92443ππa a ≤<≤,解得π02a <≤或834ππ9a ≤≤,因此满足题意a 的范围为π3π9π,,848⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭ .故答案为:π3π9π,,848⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭.【点睛】关键点点睛:本题关键在于考虑π02a <<时,求出A B ⋂≠∅时参数的取值范围.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知角α的始边与x 轴的非负半轴重合,终边与单位圆的交点M 的坐标为04,5y ⎛⎫ ⎪⎝⎭,且3π,2π2α⎛⎫∈ ⎪⎝⎭.(1)求cos α,sin α的值;(2)求()()πcos πcos 2πsin tan π2αααα⎛⎫+++ ⎪⎝⎭⎛⎫-⋅- ⎪⎝⎭的值.【答案】(1)35-(2)13-【解析】【分析】(1)根据任意角三角函数定义和同角基本关系式可解;(2)利用诱导公式化简即可求值.【小问1详解】∵角α的终边与单位圆的交点为04,5M y ⎛⎫⎪⎝⎭,∴4cos 5α=,∵3π,2π2α⎛⎫∈⎪⎝⎭∴sin 0α<,∴3sin 5α==-.【小问2详解】原式()cos sin cos sin 1cos tan sin 3ααααααα--+===-⋅-.18.如图所示,设Ox ,Oy 是平面内相交成60︒角的两条数轴,1e ,2e分别是与x 轴,y 轴正方向同向的单位向量,若向量()12,OP xe ye x y =+∈R ,则把有序数对(),x y 叫做向量OP在坐标系xOy 中的坐标.(1)设()0,3OM = ,()4,0ON = ,求OM ON ⋅的值;(2)若()3,4OP =,求OP 的大小.【答案】(1)6(2【解析】【分析】(1)根据平面向量数量积的定义进行求解即可;(2)根据平面向量数量积的运算性质进行求解即可.【小问1详解】∵23OM e = ,14ON e = ,∴121212cos 606OM ON e e ⋅=⋅=︒=;【小问2详解】∵()222212112234924162524cos 6037OP e e e e e e =+=+⋅+=+︒= ,∴OP =19.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且向量(),m c a b =-,()sin sin ,sin sin n B C A B =-+ ,m n ⊥ .(1)求角A 的大小;(2)若2a =,ABC 的周长为l ,面积为S ,求Sl的最大值.【答案】(1)π3A =(2)6【解析】【分析】(1)利用平面向量数量积的坐标表示,结合正弦定理的边角变换与余弦定理即可得解;(2)利用(1)中结论与三角形面积公式将Sl表示为b c +的表达式,再利用基本不等式求得b c +的最大值,从而得解.【小问1详解】因为m n ⊥,故()(),sin sin ,sin sin 0m n c a b B C A B ⋅=-⋅-+=,即()()()sin sin sin sin 0c B C a b A B -+-+=,由正弦定理得,()()()0c b c a b a b -+-+=,整理得到222a b c bc =+-,则221cos 22b c bc A bc +-==,又()0,πA ∈,故π3A =.【小问2详解】由(1)知222a b c bc =+-,则224b c bc =+-,所以()243b c bc =+-,即()2143bc b c ⎡⎤=+-⎣⎦,因为1sin 24S bc A bc ==,2l b c =++,所以()()()()243324212212b c S b c l b c b c ⎡⎤+-⎣⎦===+-++++,又()24b c bc +≤,所以()()22434b c b c bc +=+-≥,所以4b c +≤,当且仅当2b c ==时,等号成立,所以)()33324212126S b c l =+-⨯-=≤,即S l 的最大值为36.20.如图所示,有一条“L ”,河道均足够长.现过点D 修建一条栈道AB ,开辟出直角三角形区域(图中OAB )养殖观赏鱼,且π02OAB θθ⎛⎫∠=<<⎪⎝⎭.点H 在线段AB 上,且OH AB ⊥.线段OH 将养殖区域分为两部分,其中OH 上方养殖金鱼,OH 下方养殖锦鲤.(1)养殖区域面积最小时,求θ值,并求出最小面积;(2)若游客可以在栈道AH 上投喂金鱼,在河岸OB 与栈道HB 上投喂锦鲤,且希望投喂锦鲤的道路长度不小于投喂金鱼的道路长度,求θ的取值范围.【答案】(1)π6θ=,(2)ππ,62⎡⎫⎪⎢⎣⎭【解析】【分析】(1)求出养殖观赏鱼的面积13tan tan OAB S θθ=++ ,再由基本不等式求解;(2)由题意BH OB AH +≥,则11sin 1cos tan cos tan cos sin ≥≥θθθθθθθ++⇔即可求解.【小问1详解】过D 作DM ,DN 垂直于OA ,OB ,垂足分别为M ,N ,则DM ON ==DN OM ==tan tan DM AM θθ==,tan BN DN θθ==,养殖观赏鱼的面积)1113tan 22tan tan OAB S OA OB θθθθ⎫=⋅=+=++⎪⎪⎭,由π0,2θ⎛⎫∈ ⎪⎝⎭可得tan 0θ>,则13tan tan θθ+≥,当且仅当tan 3θ=即π6θ=时取等号,故π6θ=时,OAB S 最小=.【小问2详解】由2AOB OHA π∠=∠=,可得BOH θ∠=,则tan OH AH θ=,tan BH OH θ=,cos OHOB θ=,由题意BH OB AH +≥,则()2211sin 1cos tan sin 1sin cos 1sin cos tan cos sin θθθθθθθθθθθ++≥⇔≥⇔+≥=-,则1sin 1sin sin 2θθθ-⇔≥≥,结合π02θ<<,则ππ,62θ⎡⎫∈⎪⎢⎣⎭.21.设a ∈R ,函数()2sin cos f x x x a =--,π,π2x ⎛⎫∈⎪⎝⎭.(1)讨论函数()f x 的零点个数;(2)若函数()f x 有两个零点1x ,2x ,试证明:12121tan tan 31tan tan x x x x --≤.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)利用分离参数法分类讨论函数()f x 的零点个数;(2)利用根与系数关系和三角函数单调性证明123ππ2x x <+<,即()12cos 0x x +<,令1201tan tan x x λ=<-,则将原命题转化为证明2210λλ++≥,显然成立,进而原命题成立得证.【小问1详解】()2cos cos 1f x x x a =---+,令()0f x =,即2cos cos 1x x a +=-+,当π,π2x ⎛⎫∈⎪⎝⎭时,令()cos 1,0t x =∈-,所以21,04t t ⎡⎫+∈-⎪⎢⎣⎭,则()0f x =即21t t a +=-+,所以当10a -+≥或114a -+<-时,即1a ≤或54a >时,21t t a +=+无解;当114a -+=-时,即54a =时,21t t a +=+仅有一解;当1104a -<-+<即514a <<时,21t t a +=+有两解,综上,1a ≤或54a >时,()f x 无零点;54a =时,()f x 有一个零点;514a <<时,()f x 有两个零点.【小问2详解】若()f x 有两个零点1x ,2x ,令11cos t x =,22cos t x =,则1t ,2t 为21t t a +=+两解,则121t t +=-,则12cos cos 1x x +=-,则1222211c cos 2c o os os c s x x x x ++=,由12π,,π2x x ⎛⎫∈⎪⎝⎭可得1cos 0x <,2cos 0x <,则120c 2os cos x x >,所以2212cos cos 1x x +<,所以2221223πcos sin cos 2x x x ⎛⎫<=-⎪⎝⎭,由2π,π2x ⎛⎫∈⎪⎝⎭可得23,22πππx ⎛⎫-∈ ⎪⎝⎭,所以23πcos 02x ⎛⎫-<⎪⎝⎭,则123πcos cos 2x x ⎛⎫>- ⎪⎝⎭,由cos y x =在π,π2⎛⎫⎪⎝⎭递减,可得123π2x x <-,所以123ππ2x x <+<,所以()12cos 0x x +<令121tan tan x x λ=-,则()1212121212cos cos cos sin sin 0cos cos cos cos x x x x x x x x x x λ+-==<要证12121tan tan 31tan tan x x x x --≤成立,即证:1132λλλ--=--≤;即证:2210λλ++≥,因为()222110λλλ++=+≥显然成立,故原式成立.【点睛】函数零点的求解与判断方法:(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[],a b 上是连续不断的曲线,且()()0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.。
高一第一学期数学期末考试试卷(含答案)
高一第一学期期末考试试卷考试时间:120分钟;学校:___________姓名:___________班级:___________考号:___________ 注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.问答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时.将答案写在答题卡上。
写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合,则=()A.B.C.D.2。
的分数指数幂表示为()A. B. a 3C.D.都不对3.下列指数式与对数式互化不正确的一组是( )A。
B.C. D。
4.下列函数中,满足“对任意的,当时,总有"的是A. B. C. D.5。
已知函数是奇函数,当时,则的值等于()A.C.D.-6.对于任意的且,函数的图象必经过点 ( )A。
B。
C。
D.7.设a=,b=,c=,那么()A.a〈b〈c B.b<a<c C.a〈c<b D.c〈a〈b8.下列函数中哪个是幂函数()A.B.C.D.9。
函数的图象是( )10.已知函数在区间上的最大值为,则等于( )A.-B.C.-D.-或-11..函数的零点所在的区间是()A. B。
C。
D.12。
在一个倒置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是( )第Ⅱ卷本卷包括必考题和选考题两部分。
第13题-第21题为必考题,每个试题考生都必须作答,第22—24题为选考题,考生根据要求作答。
二.填空题:本大题共4小题,每小题5分。
2020-2020学年浙江省杭州市高一上期末数学试卷(含答案解析)
2020-2020学年浙江省杭州市高一(上)期末数学试卷一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣ C.D.﹣3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)4.(3分)函数f(x)=log3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1]D.(,1]6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.38.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.29.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤513.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为()A.(﹣∞,0]B.(﹣∞,1]C.(﹣∞,2]D.(﹣∞,3]二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N=,∁U M=.16.(3分)()+()=;log412﹣log43=.17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是.19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a 的值为.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为.三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k 的取值范围.23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.2020-2020学年浙江省杭州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣【解答】解:因为sin120°=sin(90°+30°)=cos30°=.故选C.2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣ C.D.﹣【解答】解:∵sinα=,且α为第二象限的角,∴cosα=﹣=﹣.故选:D.3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)【解答】解:∵集合A={x∈R|x2﹣4x<0}={x|0<x<4},B={x∈R|2x<8}={x|x<3},∴A∩B={x|0<x<3}=(0,3).故选:A.4.(3分)函数f(x)=log3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)【解答】解:∵函数f(x)=log3x+x﹣3,定义域为:x>0;函数是连续函数,∴f(2)=log32+2﹣3<0,f(3)=log33+3﹣3=1>0,∴f(2)•f(3)<0,根据函数的零点的判定定理,故选:C.5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1]D.(,1]【解答】解:要使函数有意义,则log0.5(3x﹣2)≥0,即0<3x﹣2≤1,得<x≤1,即函数的定义域为(,1],故选:D6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.【解答】解:患者服用某种药物后心率立刻明显减慢,则函数的图象应呈下降趋势,之后随着药力的减退,心率再次慢慢升高,则函数的图象应一直呈上升趋势,但上升部分的图象比下降的图象要缓,排除AB,根据正常人的心率约为65,可排除D,只有C符合,故选:C7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.3【解答】解:∵函数f(x)=,∴f(5)=f(3)=f(1)=2.故选:C.8.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.2【解答】解:∵函数y=f(2x)+2x是偶函数,∴设g(x)=f(2x)+2x,则g(﹣x)=f(﹣2x)﹣2x=g(x)=f(2x)+2x,即f(﹣2x)=f(2x)+4x,当x=1时,f(﹣2)=f(2)+4=1+4=5,故选:A9.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【解答】解:f(﹣x)=|sin(﹣x)+cos(﹣x)|+|sin(﹣x)﹣cos(﹣x)|=|﹣sinx+cosx|+|﹣sinx﹣cosx|=|six+cosx|+|sinx﹣cosx|=f(x),则函数f(x)是偶函数,∵f(x+)=|sin(x+)+cos(x+)|+|sin(x+)﹣cos(x+)|=|cosx﹣sinx|+|cosx+sinx|=|sinx+cosx|+|sinx﹣cosx|=f(x),∴函数f(x)的周期是,故选:D10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c【解答】解:如图所示,∵>π﹣2>1>0,∴sin2=sin(π﹣2)>sin1,∵,∴sin1=sin(π﹣1)>sin3.综上可得:sin2>sin1>sin3.故选B.11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:∵y=cos(2x﹣)=cos(﹣2x)=sin(2x+)=sin[2(x+)],∴将函数y=sin2x的图象向左平移个单位即可得到函数y=cos(2x﹣)的图象.故选:B.12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤5【解答】解:函数在(﹣∞,+∞)上是增函数,可得:,解得:1<a≤3.故选:B.13.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.【解答】解:根据定义作出函数f(x)的图象如图:(蓝色曲线),其中A(1,1),B(3,3),即f(x)=,当f(x)=时,当x≥3或x≤1时,由3﹣|x﹣3|=,得|x﹣3|=,即x C=或x G=,当f(x)=时,当1<x<3时,由x2﹣3x+3=,得x E=,由图象知若f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为x E﹣x C=﹣=,故选:B.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为()A.(﹣∞,0]B.(﹣∞,1]C.(﹣∞,2]D.(﹣∞,3]【解答】解:对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m⇔m≤f (x)max,x∈[1,4].令u(x)=﹣ax,∵a>0,∴函数u(x)在x∈[1,4]单调递减,∴u(x)max=u(1)=4﹣a,u(x)min=1﹣4a.①a≥4时,0≥4﹣a>1﹣4a,则f(x)max=4a﹣1≥15.②4>a>1时,4﹣a>0>1﹣4a,则f(x)max={4﹣a,4a﹣1}max>3.③a≤1时,4﹣a>1﹣4a≥0,则f(x)max=4﹣a≥3.综上①②③可得:m≤3.∴实数m的取值范围为(﹣∞,3].故选:D.二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5} ,∁U M={1,5,6} .【解答】解:集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5};∁U M={1,5,6},故答案为:{2,3,4,5},{1,5,6}16.(3分)()+()=3;log412﹣log43=1.【解答】解:()+()==;log412﹣log43=.故答案为:3,1.17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.【解答】解:由正切函数的周期公式得函数的周期T=;由f(x)>1得tan(2x﹣)>1,得+kπ<2x﹣<+kπ,得+<x<+,k∈Z,即不等式的解集为;故答案为:,;18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是(﹣4,﹣2)∪(0,2).【解答】解:设h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g (x)=﹣h(x),∴h(x)是奇函数,由图象可知:当﹣4<x<﹣2时,f(x)>0,g(x)<0,即h(x)>0,当0<x<2时,f(x)<0,g(x)>0,即h(x)<0,∴h(x)<0的解为(﹣4,﹣2)∪(0,2).故答案为(﹣4,﹣2)∪(0,2)19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a 的值为﹣1.【解答】解:∵x∈(﹣a,+∞),∴当﹣a<x<1﹣a时,y=ln(x+a)<0,当x>1﹣a时,y=ln(x+a)>0,又(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,①若a>0,y=ax+2与y=ln(x+a)均为定义域上的增函数,在x∈(﹣a,+∞)上,可均大于0,不满足题意;②若a=0,则2lnx)≤0对x∈(0,+∞)不恒成立,不满足题意;∴a<0.作图如下:由图可知,当且仅当方程为y=ln(x+a)的曲线与方程为y=ax+2的直线相交于点A,即满足时,(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,解方程得,解得a=﹣1.故答案为:﹣1.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为16.【解答】解:∵令t=f(x),则y=g(x)=f2(x)﹣af(x)+2a=t2﹣at+2a,∵g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,故t2﹣at+2a=0有两个根t1,t2,且t1+t2=a,t1t2=2a,且f(x1),f(x2),f(x3),f(x4)恰两两相等,为t2﹣at+2a=0的两根,不妨令f(x1)=f(x2)=t1,f(x3)=f(x4)=t2,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]=(2﹣t1)•(2﹣t1)•(2﹣t2)•(2﹣t2)=[(2﹣t1)•(2﹣t2)]2=[4﹣2(t1+t2)+t1t2]2=16.故答案为:16三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.【解答】(1)解:由得,,所以;(2)证明:定义域是[0,+∞),设任意的x2>x1≥0,则,∵,∴f(x2)>f(x1),函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k 的取值范围.【解答】解:(1)周期T=π,所以ω=2,当时,,(2分)得,又﹣π<φ<0,所以取k=﹣1,得(2分)所以,(1分)由,得,k∈Z所以函数y=f(x)的单调递增区间是得(k∈Z),(2分)(2)当时,,所以,(2分)所以log2k=﹣f(x)∈[﹣1,2],得.(3分)23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.【解答】解:(1)阴影部分的面积为:50+70+90+60=270,表示汽车在4小时内行驶的路程为270 km.(4分)(2)∵这辆汽车在行驶该段路程前里程表的读数是8018km,汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式为:(4分)图象如下图:(4分)24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.【解答】解:(1)方法一:当a=﹣1时,(2 分)由f(x)=1得或(2 分)解得x=0,1,﹣2,即解集为{0,1,﹣2}.(2分)方法二:当a=﹣1时,由f(x)=1得:(x﹣1)|x+1|﹣(x﹣1)=0(x﹣1)(|x+1|﹣1)=0(3分)∴得x=1或|x+1|=1∴x=1或x=0或x=﹣2即解集为{0,1,﹣2}.(3分)(2)当x≥a时,令x2﹣(a+2)x﹣a=0,∵,∴△=a2+8a+4=(a+4)2﹣12>0得,(2分)且先判断2﹣a,与大小:∵,即a<x1<x2,故当x≥a时,f(x)存在两个零点.(2分)当x<a时,令﹣x2+ax﹣3a=0,即x2﹣ax+3a=0得∵,∴△=a2﹣12a=(a﹣6)2﹣36>0得,同上可判断x3<a<x4,故x<a时,f(x)存在一个零点.(2分)综上可知当时,f(x)存在三个不同零点.且设,易知g(a)在上单调递增,故g(a)∈(0,2)∴x1+x2+x3∈(0,2).(2分)。
2023-2024学年浙江省杭州二中高一(上)期末数学试卷【答案版】
2023-2024学年浙江省杭州二中高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个符合题目要求.1.函数f(x)=lnx −1x的零点所在的大致区间是( )A .(1,2)B .(2,e )C .(e ,3)D .(e ,+∞)2.设函数f (x )=sin (x +θ),则“cos θ=0”是“f (x )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.下列四个函数中的某个函数在区间[−π2,π2]上的大致图象如图所示,则该函数是( )A .y =x 3−x 2x +2−xB .y =xcos2x2x +2−x C .y =1−x 22x +2−x D .y =sin2x 2x +2−x 4.《九章算术》是一部中国古代的数学专著.全书分为九章,共收有246个问题,内容丰富,而且大多与生活实际密切联系.第一章《方田》收录了38个问题,主要讲各种形状的田亩的面积计算方法,其中将圆环或不足一匝的圆环形田地称为“环田”.书中提到这样一块“环田”:中周九十二步,外周一百二十二步,径五步,如图所示,则其所在扇形的圆心角大小为( )(单位:弧度)(注:匝,意为周,环绕一周叫一匝.)A .3B .4C .5D .65.已知cos(θ−π12)=34,则sin(2θ+π3)=( ) A .−716B .−18C .18D .7166.已知函数f (x )=cos (ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,x 1,x 2是f (x )的两个零点,若x 2=4x 1,则下列不为定值的量是( )A .φB .ωC .ωx 1D .ωx 1φ7.已知x >0,y >0,且3x +1y=1,则2x +y +xy 的最小值为( )A .9B .10C .12D .138.若关于x 的方程(x+1)2x+m(x−1)2x 2+1=5恰有三个不同的实数解x 1,x 2,x 3,且x 1<0<x 2<x 3,其中m ∈R ,则x 1+x 2+x 3的值为( ) A .32B .12C .1D .2二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列命题正确的是( )A .设α是第一象限角,则α2为第一或第三象限角B .√3sinα+cosα=2sin(α+π3)C .在△ABC 中,若点O 满足OA →+OB →+OC →=0→,则O 是△ABC 的重心 D .|(a →⋅b →)c →|≤|a →||b →||c →|10.符号[x ]表示不超过x 的最大整数,如[π]=3,[﹣1.08]=﹣2,定义函数{x }=[x ]﹣x ,那么下列命题中正确的是( )A .函数{x }的值域为[﹣1,0]B .函数[{x )]的值域为{﹣1,0}C .函数{x }是周期函数D .函数{x }是减函数11.已知函数f(x)=2sin(ωx +φ)+1(ω>0,|φ|<π2),满足f(x)+f(−π3−x)=2,且对任意x ∈R ,都有f(x)≥f(−5π12),当ω取最小值时,则下列正确的是( ) A .f (x )图象的对称中心为(kπ2−π6,1)k ∈Z B .f (x )在[−π12,π6]上的值域为[√3+1,3] C .将函数y =2sin2x +1的图象向左平移π6个单位长度得到f (x )的图象D .f (x )在[π6,π2]上单调递减12.如图所示,在边长为3的等边三角形ABC 中,AD →=23AC →,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,若BP →=xBA →+yBC →,则( )A .BD →=13BA →+23BC →B .x +y 的最大值为1+√33C .BP →⋅BC →最大值为9D .BO →⋅DO →=1三、填空题:本题共4小题,每小题5分,共20分. 13.函数y =tan x 的定义域为 .14.若a =sin1,b =ln sin1,c =e sin1,则三数a ,b ,c 中最小数为 .15.在解析几何中,设P 1(x 1,y 1),P 2(x 2,y 2)为直线l 上的两个不同的点,则我们把P 1P 2→及与它平行的非零向量都称为直线l 的方向向量,把与直线l 垂直的向量称为直线l 的法向量,常用n →表示,此时P 1P 2→⋅n →=0.若点P ∉l ,则可以把PP →在法向量n →上的投影向量的模叫做点P 到直线l 的距离.现已知平面直角坐标系中,P (﹣2,﹣2),P 1(2,1),P 2(﹣1,3),则点P 到直线l 的距离为 . 16.对于非空集合M ,定义Φ(x)={0,x ∉M 1,x ∈M,若A ={x|sinx ≥√22},B =(a ,2a ),且存在x ∈R ,ΦA (x )+ΦB (x )=2,则实数a 的取值范围是 .四、解答题:本题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)已知角α的始边与x 轴的非负半轴重合,终边与单位圆的交点M 的坐标为(45,y 0),且α∈(3π2,2π). (1)求cos α,sin α的值; (2)cos(π+α)+cos(π2+α)sin(π2−α)⋅tan(π−α)的值. 18.(12分)如图所示,设Ox ,Oy 是平面内相交成60°角的两条数轴,e 1→,e 2→分别是与x 轴,y 轴正方向同向的单位向量,若向量OP →=xe 1→+ye 2→(x ,y ∈R),则把有序数对(x ,y )叫做向量OP →在坐标系xOy 中的坐标.(1)设OM →=(0,3),ON →=(4,0),求OM →⋅ON →的值; (2)若OP →=(3,4),求|OP →|的大小.19.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且向量m →=(c ,a −b),n →=(sinB −sinC ,sinA +sinB),m →⊥n →. (1)求角A 的大小;(2)若a =2,△ABC 的周长为l ,面积为S ,求Sl的最大值.20.(12分)如图所示,有一条“L ”形河道,其中上方河道宽√2m ,右侧河道宽√6m ,河道均足够长.现过点D 修建一条栈道AB ,开辟出直角三角形区域(图中△OAB )养殖观赏鱼,且∠OAB =θ(0<θ<π2),点H 在线段AB 上,且OH ⊥AB .线段OH 将养殖区域分为两部分,其中OH 上方养殖金鱼,OH 下方养殖锦鲤.(1)当养殖区域面积最小时,求θ的值,并求出最小面积;(2)若游客可以在栈道AH 上投喂金鱼,在河岸OB 与栈道HB 上投喂锦鲤,且希望投喂锦鲤的道路长度不小于投喂金鱼的道路长度,求θ的取值范围.21.(12分)设a ∈R ,函数f (x )=sin 2x ﹣cos x ﹣a ,x ∈(π2,π).(1)讨论函数f (x )的零点个数;(2)若函数f (x )有两个零点x 1,x 2,试证明:11−tanx 1tanx 2≤tanx 1tanx 2−3.2023-2024学年浙江省杭州二中高一(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个符合题目要求.1.函数f(x)=lnx −1x的零点所在的大致区间是( )A .(1,2)B .(2,e )C .(e ,3)D .(e ,+∞)解:∵y =lnx 在(0,+∞)上单调递增,y =−1x 在(0,+∞)上单调递增,∴函数f(x)=lnx −1x在(0,+∞)上单调递增,又f (1)=ln 1﹣1=﹣1<0,f (2)=ln 2−12=ln 2﹣ln √e >0,∴由零点存在性定理得函数f(x)=lnx −1x的零点所在的大致区间是(1,2),故选:A .2.设函数f (x )=sin (x +θ),则“cos θ=0”是“f (x )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解:若f (x )=sin (x +θ)为偶函数,则θ=k π+π2(k ∈Z ),故cos θ=0,反之亦然,故cos θ=0”是“f (x )为偶函数”的充分必要条件. 故选:C .3.下列四个函数中的某个函数在区间[−π2,π2]上的大致图象如图所示,则该函数是( )A .y =x 3−x2x +2−xB .y =xcos2x 2x +2−xC .y =1−x 22x +2−xD .y =sin2x 2x +2−x 解:由偶函数定义可得y =1−x 22x +2−x 为偶函数,由题给图象可知函数是奇函数,排除C ; 当0<x <1时,x 3﹣x <0,y =x 3−x2x +2−x <0.排除A ; 当x =π2时,y =sin(2×π2)2π2+2−π2=0.排除D ;y =xcos2x 2x +2−x 为奇函数,且当0<x <π4时,y =xcos2x 2x +2−x >0, 当x =π2时,y =π2⋅cos(2×π2)2π2+2−π2=−π22π2+2−π2<0.B 均符合题给特征. 故选:B .4.《九章算术》是一部中国古代的数学专著.全书分为九章,共收有246个问题,内容丰富,而且大多与生活实际密切联系.第一章《方田》收录了38个问题,主要讲各种形状的田亩的面积计算方法,其中将圆环或不足一匝的圆环形田地称为“环田”.书中提到这样一块“环田”:中周九十二步,外周一百二十二步,径五步,如图所示,则其所在扇形的圆心角大小为( )(单位:弧度)(注:匝,意为周,环绕一周叫一匝.)A .3B .4C .5D .6解:设所在扇形圆心角为α,中周对应的半径为r 步,则外周对应的半径为(r +5)步, 则{αr =92α(r +5)=122,解得α=6,r =463,所以扇形的圆心角为6.故选:D . 5.已知cos(θ−π12)=34,则sin(2θ+π3)=( ) A .−716B .−18C .18D .716解:已知cos(θ−π12)=34,则cos(2θ−π6)=2cos 2(θ−π12)−1=18, 则sin(2θ+π3)=sin(2θ−π6+π2)=cos(2θ−π6)=18.故选:C .6.已知函数f (x )=cos (ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,x 1,x 2是f (x )的两个零点,若x 2=4x 1,则下列不为定值的量是( )A .φB .ωC .ωx 1D .ωx 1φ解:函数f (x )=cos (ωx +φ),ω>0的周期为2πω,令f(x)=0,可得ωx+φ=kπ+π2,k∈Z,所以x=kπ+π2−φω,即x=2kπ+π−2φ2ω,k∈Z,又ω>0,|φ|<π2,所以0<φ<π2,x1=π−2φ2ω,x2=3π−2φ2ω,又x2=4x1,所以3π−2φ2ω=4×π−2φ2ω,所以φ=π6,ωx1=π−2φ2ω•ω=π2−φ=π2−π6=π3,ωx1φ=π3π6=2,∴不为定值的量是ω.故选:B.7.已知x>0,y>0,且3x +1y=1,则2x+y+xy的最小值为()A.9B.10C.12D.13解:因为x>0,y>0,且3x +1y=1,两边同时乘以x,可得xy=x﹣3,所以2x+y+xy=2x+y+x﹣3=3x+y﹣3=(3x+y)(3x+1y)﹣3=9+1+3yx+3xy−3≥7+2√3yx⋅3xy=13,当且仅当3yx=3xy,即x=y=4时取等号,所以2x+y+xy的最小值为13.故选:D.8.若关于x的方程(x+1)2x+m(x−1)2x2+1=5恰有三个不同的实数解x1,x2,x3,且x1<0<x2<x3,其中m∈R,则x1+x2+x3的值为()A.32B.12C.1D.2解:依题意可知x≠0,由(x+1)2x+m(x−1)2x2+1=5整理得x+1x+m﹣3﹣2m•1x+1x=0,①即关于x的方程恰有三个不同的实数解x1,x2,x3,且x1<0<x2<x3,令t=x+1x,则t≤﹣2或t≥2,则①转化为:t+m﹣3﹣2m⋅1t=0,即t2+(m﹣3)t﹣2m=0,Δ=(m﹣3)2+8m=m2+2m+9>0,根据对勾函数的性质可知t =x 1+1x 1=−2是方程t 2+(m ﹣3)t ﹣2m =0的一个根,此时x 1=﹣1, 所以(﹣2)2+(m ﹣3)×(﹣2)﹣2m =0,m =52,所以t 2−12t ﹣5=0,解得t =﹣2或t =52,所以x 2,x 3是方程x +1x =52的根,即x 2−52x +1=0的根,所以x 2+x 3=52,所以x 1+x 2+x 3=﹣1+52=32.故选:A .二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列命题正确的是( )A .设α是第一象限角,则α2为第一或第三象限角B .√3sinα+cosα=2sin(α+π3)C .在△ABC 中,若点O 满足OA →+OB →+OC →=0→,则O 是△ABC 的重心 D .|(a →⋅b →)c →|≤|a →||b →||c →|解:对于A :由于α是第一象限角,故2kπ<α<2kπ+π2,(k ∈Z ),故kπ<α2<kπ+π4,(k ∈Z ),当k =0时,0<α2<π4,当k =1时,π<π2<5π4,故α2为第一或第三象限角,故A 正确;对于B :√3sinα+cosα=2sin(α+π6),故B 错误;对于C :在△ABC 中,设点D 为AB 的中点,若点O 满足OA →+OB →+OC →=0→,整理得OC →=−OA →−OB →,即OC →=−2OD →,则O 是△ABC 的重心,故C 正确;对于D :由于|a →⋅b →|≤|a →||b →|,所以|(a →⋅b →)⋅c →|≤|a →||b →||c →|,故D 正确. 故选:ACD .10.符号[x ]表示不超过x 的最大整数,如[π]=3,[﹣1.08]=﹣2,定义函数{x }=[x ]﹣x ,那么下列命题中正确的是( )A .函数{x }的值域为[﹣1,0]B .函数[{x )]的值域为{﹣1,0}C .函数{x }是周期函数D .函数{x }是减函数解:对于A ,若{x }=﹣1,即[x ]﹣x =﹣1,所以x =[x ]+1∈Z ,所以[x ]=[[x ]+1]=[x ]+1,矛盾,故A 错误;对于B,当x∈Z时,则{x}=0;当x∉Z时,﹣1<[x]﹣x<0,所以[{x}]=﹣1,所以函数[{x)]的值域为{﹣1,0},故B正确;对于C,{x+1}=[x+1]﹣(x+1)=[x]+1﹣(x+1)=[x]﹣x,所以函数{x}是周期函数,故C正确;对于D,取x=1,则{1}=[1]﹣1=0,{2}=[2]﹣2=0,所以函数{x}不是减函数,故D错误.故选:BC.11.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|<π2),满足f(x)+f(−π3−x)=2,且对任意x∈R,都有f(x)≥f(−5π12),当ω取最小值时,则下列正确的是()A.f(x)图象的对称中心为(kπ2−π6,1)k∈ZB.f(x)在[−π12,π6]上的值域为[√3+1,3]C.将函数y=2sin2x+1的图象向左平移π6个单位长度得到f(x)的图象D.f(x)在[π6,π2]上单调递减解:函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|<π2),满足f(x)+f(−π3−x)=2,可得f(x)的图象关于点(−π6,1)对称,即有−π6ω+φ=kπ,k∈Z,即φ=kπ+π6ω,k∈Z,由对任意x∈R,都有f(x)≥f(−5π12),可得f(x)在x=−5π12处取得最小值,所以−5π12ω+φ=2mπ−π2,m∈Z,即有π6ω−5π12ω=(2m﹣k)π−π2,即有ω=4(k﹣2m)+2,k﹣2m∈Z,因为ω>0,|φ|<π2,又ω能取最小值,所以k﹣2m=0,可得ω=2,则φ=kπ+π3<π2,解得k=0,φ=π3,所以f(x)=2sin(2x+π3)+1,由2x+π3=kπ+π2,k∈Z,可得x=kπ2+π12,k∈Z,即有f(x)的对称轴方程为x=kπ2+π12,k∈Z,故A错误; 当x ∈[−π12,π6]时,2x +π3∈[π6,2π3],可得sin (2x +π3)∈[12,1],则f (x )的值域为[2,3],故B 错误; 将函数y =2sin2x +1的图象向左平移π6个单位长度得到函数y =2sin (2x +π6)+1的图象,故C 正确;当x ∈[π6,π2]时,2x +π3∈[2π3,4π3]是f (x )的减区间,故D 正确.故选:CD .12.如图所示,在边长为3的等边三角形ABC 中,AD →=23AC →,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,若BP →=xBA →+yBC →,则( )A .BD →=13BA →+23BC →B .x +y 的最大值为1+√33C .BP →⋅BC →最大值为9D .BO →⋅DO →=1解:对于选项A ,∵AD →=23AC →,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,∴OA =OD =DC =13AC ,∴BD →=BC →+CD →=BC →+13CA →=BC →+13(BA →−BC →)=13BA →+23BC →,故A 正确;对于选项B ,∵BP →=xBA →+yBC →,∴(cosα−12,sinα−3√32)=(−32(x −y),−3√32(x +y)),∴sinα−3√32=−3√32(x +y), ∴x +y =−2√39sinα+1, 又∵α∈[π,2π], ∴当α=3π2时,x +y 取得最大值2√39+1,故B 错误; 对于选项C ,以点O 为原点建立平面直角坐标系,如图所示:则A(−1,0),B(12,3√32),C(2,0),∵点P 在以AD 的中点O 为圆心,OA 为半径的半圆上, ∴点P 的轨迹方程为x 2+y 2=1,且在x 轴的下半部分, 设P (cos α,sin α),α∈[π,2π],则BP →=(cosα−12,sinα−3√32),BC →=(32,−3√32),BA →=(−32,−3√32),∴BP →⋅BC →=32cosα−34−3√32sinα+274=3cos(α+π3)+6,又∵α∈[π,2π],∴α+π3∈[4π3,7π3], ∴当α+π3=2π时,BP →⋅BC →取得最大值9,故C 正确; 对于选项D ,∵BO →=BC →+CO →=BC →+23CA →=BC →+23(BA →−BC →)=23BA →+13BC →,∴BD →⋅BO →=(13BA →+23BC →)⋅(23BA →+13BC →)=29BA →2+29BC →2+59BA →⋅BC →=2+2+59×3×3×12=132,故D 错误. 故选:AC .三、填空题:本题共4小题,每小题5分,共20分. 13.函数y =tan x 的定义域为 {x |x ≠k π+π2,k ∈Z } .解:根据正切函数y =tan x 的定义知,其定义域为{x |x ≠k π+π2,k ∈Z }.故答案为:{x|x ≠kπ+π2,k ∈Z}.14.若a =sin1,b =ln sin1,c =e sin1,则三数a ,b ,c 中最小数为 b . 解:因为0<sin1<sin π3<1,ln sin1<ln 1<0,e sin1>e 0,所以0<a <1,b <0,c >1, 所以最小的数是b . 故答案为:b .15.在解析几何中,设P 1(x 1,y 1),P 2(x 2,y 2)为直线l 上的两个不同的点,则我们把P 1P 2→及与它平行的非零向量都称为直线l 的方向向量,把与直线l 垂直的向量称为直线l 的法向量,常用n →表示,此时P 1P 2→⋅n →=0.若点P ∉l ,则可以把PP →在法向量n →上的投影向量的模叫做点P 到直线l 的距离.现已知平面直角坐标系中,P (﹣2,﹣2),P 1(2,1),P 2(﹣1,3),则点P 到直线l 的距离为 17√1313. 解:由题意得,P 1P 2→=(﹣3,2),所以与P 1P 2→垂直的向量n →可取为(2,3),即直线l 的一个法向量为n →=(2,3), 又PP 1→=(4,3),所以点P 到直线l 的距离d =|PP 1→⋅n →||n →|=8+9√4+9=17√1313.故答案为:17√1313. 16.对于非空集合M ,定义Φ(x)={0,x ∉M 1,x ∈M,若A ={x|sinx ≥√22},B =(a ,2a ),且存在x ∈R ,ΦA (x )+ΦB (x )=2,则实数a 的取值范围是 (π8,3π4)∪(9π8,+∞) .解:A ={x |sin x ≥√22}={x |π4+2k π≤x ≤2k π+3π4,k ∈Z }, 存在x ∈R ,ΦA (x )+ΦB (x )=2,即存在x ∈R ,ΦA (x )=1且ΦB (x )=1, 即存在x ∈R ,使得x ∈A 且x ∈B , 即A ∩B ≠∅,显然a >0,①当0<a <π4时,则2a >π4,即有π8<a <π4;②当π4≤a <3π4时,显然满足A ∩B ≠∅; ③当a ≥3π4时,则2a >9π4,即有9π8<a <11π4; ④当a ≥11π4时,2a ﹣a =a >2π,满足题意. 综上所述,实数a 的取值范围是(π8,3π4)∪(9π8,+∞).故答案为:(π8,3π4)∪(9π8,+∞).四、解答题:本题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)已知角α的始边与x 轴的非负半轴重合,终边与单位圆的交点M 的坐标为(45,y 0),且α∈(3π2,2π). (1)求cos α,sin α的值;(2)cos(π+α)+cos(π2+α)sin(π2−α)⋅tan(π−α)的值. 解:(1)∵α∈(3π2,2π) ∴y 0<0,∵(45)2+y 02=1, ∴y 0=−35,∴sin α=y 0=−35,cos α=x 0=45;(2)cos(π+α)+cos(π2+α)sin(π2−α)⋅tan(π−α)=−cosα−sinαcosα⋅(−tanα) 由(1)知:sin α=−35,cos α=45,所以tan α=−34,所以=−cosα−sinαcosα⋅(−tanα)=−45+3545×34=−1535=−13.18.(12分)如图所示,设Ox ,Oy 是平面内相交成60°角的两条数轴,e 1→,e 2→分别是与x 轴,y 轴正方向同向的单位向量,若向量OP →=xe 1→+ye 2→(x ,y∈R),则把有序数对(x ,y )叫做向量OP →在坐标系xOy中的坐标.(1)设OM →=(0,3),ON →=(4,0),求OM →⋅ON →的值; (2)若OP →=(3,4),求|OP →|的大小.解:(1)由题意知,OM →=3e 2→,ON→=4e 1→,所以OM →⋅ON →=12e 1→⋅e 2→=12cos60°=6.(2)因为OP →=(3,4), 所以OP →=3e 1→+4e 2→,所以|OP →|2=(3e 1→+4e 2→)2=9|e 1→|2+24e 1→⋅e 2→+16|e 2→|2=25+24cos60°=37, 所以|OP →|=√37.19.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且向量m →=(c ,a −b),n →=(sinB −sinC ,sinA +sinB),m →⊥n →. (1)求角A 的大小;(2)若a =2,△ABC 的周长为l ,面积为S ,求Sl的最大值.解:(1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且向量m →=(c ,a −b),n →=(sinB −sinC ,sinA +sinB),m →⊥n →,因为m →⊥n →,所以m →⋅n →=(c ,a −b)⋅(sinB −sinC ,sinA +sinB)=0,即c (sin B ﹣sin C )+(a ﹣b )(sin A +sin B )=0,故c (b ﹣c )+(a ﹣b )(a +b )=0, 整理得到a 2=b 2+c 2﹣bc ,即cosA =12,又A ∈(0,π),故A =π3,则角A 的大小为π3;(2)若a =2,△ABC 的周长为l ,面积为S ,由余弦定理,得a 2=b 2+c 2﹣2bc cos A ,即4=b 2+c 2﹣bc , 所以4=(b +c )2﹣3bc ,即bc =13[(b +c)2−4],因为S =12bcsinA =√34bc ,l =b +c +2,所以S l =√3bc 4(b+c+2)=√3[(b+c)2−4]12(b+c+2)=√312(b +c −2),又bc ≤(b+c)24(当且仅当b =c 时取等号),所以4=(b +c)2−3bc ≥(b+c)24(当且仅当b =c =2时取等号),所以b +c ≤4(当且仅当b =c =2时取等号),所以S l =√312(b +c −2)≤√312×(4−2)=√36(当且仅当b =c =2时取等号),即Sl 的最大值为√36(当且仅当b =c =2时取等号). 20.(12分)如图所示,有一条“L ”形河道,其中上方河道宽√2m ,右侧河道宽√6m ,河道均足够长.现过点D修建一条栈道AB,开辟出直角三角形区域(图中△OAB)养殖观赏鱼,且∠OAB=θ(0<θ<π2),点H在线段AB上,且OH⊥AB.线段OH将养殖区域分为两部分,其中OH上方养殖金鱼,OH 下方养殖锦鲤.(1)当养殖区域面积最小时,求θ的值,并求出最小面积;(2)若游客可以在栈道AH上投喂金鱼,在河岸OB与栈道HB上投喂锦鲤,且希望投喂锦鲤的道路长度不小于投喂金鱼的道路长度,求θ的取值范围.解:(1)如图,过D作DM,DN垂直于OA,OB,垂足分别为M,N,则DM=ON=√2,DN=OM=√6,AM=DMtanθ=√2tanθ,BN=DNtanθ=√6tanθ,养殖观赏鱼的面积S△OAB=12OA⋅OB=12(√6+√2tanθ)(√2+√6tanθ)=2√3+1tanθ+3tanθ,由θ∈(0,π2)可得tanθ>0,则1tanθ+3tanθ⩾2√3,当且仅当tanθ=√33即θ=π6时取等号,故θ=π6时,S△OAB最小=4√3;(2)由∠AOB=∠OHA=π2,可得∠BOH=θ,则AH=OHtanθ,BH=OHtanθ,OB=OHcosθ,由题意BH+OB⩾AH,则tanθ+1cosθ⩾1tanθ⇔sinθ+1cosθ⩾cosθsinθ⇔(sinθ+1)sinθ⩾cos2θ=1−sin2θ,则sinθ⩾1−sinθ⇔sinθ⩾1 2,则θ∈[π6,π2).21.(12分)设a∈R,函数f(x)=sin2x﹣cos x﹣a,x∈(π2,π).(1)讨论函数f(x)的零点个数;(2)若函数f(x)有两个零点x1,x2,试证明:11−tanx1tanx2≤tanx1tanx2−3.解:(1)由f(x)=sin2x﹣cos x﹣a,x∈(π2,π),得f(x)=﹣cos2x﹣cos x﹣a+1,令f(x)=0,则cos2x+cos x=﹣a+1,当x∈(π2,π)时,t=cos x∈(﹣1,0),则t2+t∈[−14,0),所以t2+t=﹣a+1,所以﹣a+1≥0或−a+1<−14,解得a≤1或a>54时,t2+t=a+1无解;−a+1=−14,即a=54时,t2+t=a+1仅有一解;−14<−a+1<0,即1<a<54时,t2+t=a+1有两解,综上,当a≤1或a>54时,f(x)无零点;当a=54时,f(x)有一个零点;当1<a<54时,f(x)有两个零点.(2)证明:令t1=cos x1,t2=cos x2,f(x)有两个零点,则t1,t2为t2+t=a+1两解,所以t1+t2=﹣1,所以cos x1+cos x2=﹣1,所以cos2x1+2cosx1cosx2+cos2x2=1,由x1,x2∈(π2,π),可得cos x1<0,cos x2<0,所以2cos x1cos x2>0,所以cos2x1+cos2x2<1,所以cos2x1<sin2x2=cos2(3π2−x2),由x2∈(π2,π),可得3π2−x2∈(π2,π),cos(3π2−x2)<0,所以cosx1>cos(3π2−x2),由y=cos x在(π2,π)递减,可得x1<3π2−x2,所以π<x1+x2<3π2⇒cos(x1+x2)<0.令λ=1−tanx1tanx2=cosx1cosx2−sinx1sinx2cosx1cosx2=cos(x1+x2)cosx1cosx2<0,即证1λ≤1−λ−3=−λ−2,即证λ2+2λ+1≥0,显然λ2+2λ+1≥0成立,故原式成立.。
浙江省杭州市余杭区高一数学上学期期末试卷(含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市余杭区高一(上)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合U={1,2,3,4,5,6,7},集合A={2,4,5},则∁U A=()A.∅B.{1,3,5} C.{1,3,6,7} D.{1,3,5,7}2.当a>1时,在同一坐标系中,函数y=a x与y=log a x的图象是()A.B.C.D.3.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是()A.y=log2x B.y=x﹣C.y=﹣x3D.y=tanx4.把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式()A.y=sin(3x﹣)B.y=sin(3x+)C.y=sin(3x﹣)D.y=sin(3x+)5.若cosθ=(﹣<θ<0),则cos(θ﹣)的值是()A. B.C. D.6.函数f(x)=5|x|的值域是()A.(﹣∞,1] B.[1,+∞)C.(0,1] D.(0,+∞)7.函数f(x)=的最大值是()A.1 B.2 C.3 D.48.已知函数f(x)是R上的增函数,对实数a,b,若a+b>0,则有()A.f(a)+f(b)>f(﹣a)+f(﹣b) B.f(a)+f(b)<f(﹣a)+f(﹣b)C.f(a)﹣f(b)>f(﹣a)﹣f(﹣b)D.f(a)﹣f(b)<f(﹣a)﹣f(﹣b)9.若log a2<log b2<0,则a,b满足的关系是()A.1<a<b B.1<b<a C.0<a<b<1 D.0<b<a<110.函数y=sinx+tanx,x∈[﹣,]的值域是()A.[﹣,] B.[﹣2,2] C.[﹣﹣1,] D.[﹣﹣1,+1]11.若sin(α+β)=,则为()A.5 B.﹣1 C.6 D.12.已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,则满足f[f(a)+]=的实数a的个数为()A.2 B.4 C.6 D.8二.填空题(本大题共6小题,单空每小题6分,多空每小题6分,共28分,将答案填在答题卷的相应位置.)13.若函数f(x)=3sin(x+),则f(x)的周期是;f(π)=.14.若tanα=2,则=;sinα•cosα=.15.已知某扇形的周长是16,圆心角是2弧度,则该扇形的面积是.16.若函数f(x)=3x2﹣5x+a的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值X围是.17.已知f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,则a的取值X围是.18.已知定义在R上的函数f(x)满足:f(x+1)=,当x∈(0,1]时,f(x)=2x,则f(log29)等于.三.解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或验算步骤.)19.函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)图象的一段如图所示(1)求此函数的解析式;(2)求函数f(x)在区间上的最大值和最小值.20.已知函数f(x)=为奇函数.(1)某某数a的值;(2)试判断函数的单调性并加以证明;(3)对任意的x∈R,不等式f(x)<m恒成立,某某数m的取值X围.21.已知函数f(x)=2x﹣1(x∈R).(1)求函数f(x)的单调递减区间;(2)若f(x0)=,,求cos2x0的值.22.如图,正方形ABCD的边长为1,P,Q分别为AB,DA上动点,且△APQ的周长为2,设 AP=x,AQ=y.(1)求x,y之间的函数关系式y=f(x);(2)判断∠PCQ的大小是否为定值?并说明理由;(3)设△PCQ的面积分别为S,求S的最小值.2015-2016学年某某省某某市余杭区高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合U={1,2,3,4,5,6,7},集合A={2,4,5},则∁U A=()A.∅B.{1,3,5} C.{1,3,6,7} D.{1,3,5,7}【考点】补集及其运算.【专题】计算题;定义法;集合.【分析】由全集U及A,求出A的补集即可.【解答】解:∵集合U={1,2,3,4,5,6,7},集合A={2,4,5},∴∁U A={1,3,6,7},故选:C.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.2.当a>1时,在同一坐标系中,函数y=a x与y=log a x的图象是()A.B.C.D.【考点】对数函数的图象与性质.【专题】作图题;函数思想;定义法;函数的性质及应用.【分析】根据底数与指数(对数)函数单调性即可判断.【解答】解:a>1时,函数y=a x与y=log a x的均为增函数,故选:B.【点评】本题考查的知识是对数函数的图象与性质,指数函数的图象与性质,熟练掌握底数与指数(对数)函数单调性的关系是解答本题的关键.3.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是()A.y=log2x B.y=x﹣C.y=﹣x3D.y=tanx【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数思想;综合法;函数的性质及应用.【分析】由奇函数的图象关于原点对称便可判断出A错误,可判断y=x和y=在(0,1)内单调递增便可判断B错误,而根据奇函数和减函数的定义即可判断出C正确,根据y=tanx 的图象便可判断出D错误.【解答】解:A.根据y=log2x的图象知该函数不是奇函数,∴该选项错误;B.y=x和在(0,1)内都单调递增,∴在(0,1)内单调递增,∴该选项错误;C.y=﹣x3为奇函数,且x增大时,y减小,∴该函数在(0,1)内单调递减,∴该选项正确;D.由y=tanx的图象知该函数在(01,1)内单调递增,∴该选项错误.故选C.【点评】考查奇函数图象的对称性,一次函数和反比例函数的单调性,奇函数和减函数的定义,清楚y=log2x和y=tanx的图象.4.把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式()A.y=sin(3x﹣)B.y=sin(3x+)C.y=sin(3x﹣)D.y=sin(3x+)【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合;分析法;三角函数的图像与性质.【分析】根据函数y=Asin(ωx+φ)的图象变换规律即可求解.【解答】解:把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式为y=sin[3(x﹣)]=sin(3x﹣).故选:A.【点评】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,属于基础题.5.若cosθ=(﹣<θ<0),则cos(θ﹣)的值是()A. B.C. D.【考点】两角和与差的余弦函数.【专题】函数思想;综合法;三角函数的求值.【分析】由同角三角函数基本关系可得sinθ,代入两角差的余弦公式计算可得.【解答】解:∵﹣<θ<0且cosθ=,∴sinθ=﹣=﹣,∴cos(θ﹣)=cosθ+sinθ=+=.故选:C.【点评】本题考查两角和与差的三角函数,涉及同角三角函数基本关系,属基础题.6.函数f(x)=5|x|的值域是()A.(﹣∞,1] B.[1,+∞)C.(0,1] D.(0,+∞)【考点】指数函数的图象变换.【专题】数形结合;数形结合法;函数的性质及应用.【分析】在x上加绝对值的图象表明去掉绝对值后的原函数图象只保留x>0部分,然后关于y轴对称后得到的图象就是填绝对值的图象.【解答】解:∵y=5x为指数函数,且其图象是过(0,1),单调递增的,而y=5|x|的左侧图象是指数函数y=5x的图象中y轴右侧的图象关于y轴对称后产生的新的图象,具体图象如下:故选:B.【点评】本题主要考查指数函数图象,和在x上填绝对值后的图象特点.属于基础题.7.函数f(x)=的最大值是()A.1 B.2 C.3 D.4【考点】简单线性规划.【专题】数形结合;数形结合法;不等式.【分析】作出分段函数的图象,数形结合可得.【解答】解:作出分段函数f(x)=的图象(如图),数形结合可得最大值为4,故选:D.【点评】本题考查函分段函数图象,准确作图是解决问题的关键,属中档题.8.已知函数f(x)是R上的增函数,对实数a,b,若a+b>0,则有()A.f(a)+f(b)>f(﹣a)+f(﹣b) B.f(a)+f(b)<f(﹣a)+f(﹣b)C.f(a)﹣f(b)>f(﹣a)﹣f(﹣b)D.f(a)﹣f(b)<f(﹣a)﹣f(﹣b)【考点】函数单调性的性质.【专题】证明题.【分析】先利用不等式的性质将a+b>0转化为两实数的大小形式,再利用函数f(x)的单调性,比较函数值的大小,最后利用同向不等式相加性得正确不等式【解答】解:∵a+b>0,∴a>﹣b,b>﹣a∵函数f(x)是R上的增函数∴f(a)>f(﹣b),f(b)>f(﹣a)∴f(a)+f(b)>f(﹣a)+f(﹣b)故选 A【点评】本题考查了不等式的基本性质,利用函数的单调性比较大小的方法,转化化归的思想方法9.若log a2<log b2<0,则a,b满足的关系是()A.1<a<b B.1<b<a C.0<a<b<1 D.0<b<a<1【考点】对数值大小的比较.【专题】计算题;方程思想;综合法;函数的性质及应用.【分析】利用对数函数的性质求解.【解答】解:∵log a2<log b2<0=log a1,∴0<a<1,0<b<1,∵2>1,要使log b2<0∴0<b<1∵log a2<log b2<0,∴a>b,且0<a<1,∴0<b<a<1.故选:D.【点评】本题考查两个数的大小的比较,是基础题,解题时要认真审题,注意对数函数的性质的合理运用.10.函数y=sinx+tanx,x∈[﹣,]的值域是()A.[﹣,] B.[﹣2,2] C.[﹣﹣1,] D.[﹣﹣1,+1]【考点】函数的值域.【专题】计算题;函数思想;函数的性质及应用;三角函数的图像与性质.【分析】直接利用函数的单调性求得函数值域.【解答】解:∵函数y=sinx+tanx在x∈[﹣,]上为增函数,∴,.故选:D.【点评】本题考查函数值域的求法,训练了利用函数单调性求函数的值域,是基础题.11.若sin(α+β)=,则为()A.5 B.﹣1 C.6 D.【考点】三角函数的恒等变换及化简求值.【专题】计算题.【分析】由两角和差的正弦公式,解得sinαcosβ=,cosαsinβ=,相除求得的值.【解答】解:由题意可得sinαcosβ+cosαsinβ=,sinαcosβ﹣cosαsinβ=,解得sinαcosβ=,cosαsinβ=,∴=5,故选A.【点评】本题考查两角和差的正弦公式,同角三角函数的基本关系,求出sinαcosβ=,cosαsinβ=,是解题的关键.12.已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,则满足f[f(a)+]=的实数a的个数为()A.2 B.4 C.6 D.8【考点】根的存在性及根的个数判断;函数奇偶性的性质.【专题】数形结合;分类讨论;转化法;函数的性质及应用.【分析】利用换元法将函方程转化为f(t)=,利用数形结合进行求解即可.【解答】解:设t=f(a)+,则条件等价为f(t)=,若x≤0,则﹣x≥0,∵当x≥0时,f(x)=﹣(x﹣1)2+1,∴当﹣x≥0时,f(﹣x)=﹣(﹣x﹣1)2+1=﹣(x+1)2+1,∵f(x)为偶函数,∴f(﹣x)=﹣(x+1)2+1=f(x),即f(x)=﹣(x+1)2+1,x≤0,作出函数f(x)的图象如图:当x≥0时,由﹣(x﹣1)2+1=,得(x﹣1)2=,则x=1+或x=1﹣,∵f(x)为偶函数,∴当x<0时,f(x)=的解为x3=﹣1﹣,x4=﹣1+;综上所述,f(t)=得解为t1=1+或t2=1﹣,t3=﹣1﹣,t4=﹣1+;由t=f(a)+得,若t1=1+,则f(a)+=1+,即f(a)=+>1,此时a无解,若t2=1﹣,则f(a)+=1﹣,即f(a)=﹣﹣∈(﹣∞,0),此时a有2个解,若t3=﹣1﹣,则f(a)+=﹣1﹣,即f(a)=﹣﹣∈(﹣∞,0),此时a有2个解,若t4=﹣1+,则f(a)+=﹣1+,即f(a)=﹣+∈(﹣∞,0),此时a有2个解,故共有2+2+2=6个解.故选:C.【点评】本题主要考查函数与方程的应用,利用换元法结合数形结合进行求解是解决本题的关键.综合性较强,有一定的难度.二.填空题(本大题共6小题,单空每小题6分,多空每小题6分,共28分,将答案填在答题卷的相应位置.)13.若函数f(x)=3sin(x+),则f(x)的周期是4π;f(π)=.【考点】正弦函数的图象.【专题】计算题;函数思想;分析法;函数的性质及应用.【分析】利用三角函数的周期公式可求周期,利用特殊角的三角函数值即可计算得解.【解答】解:∵f(x)=3sin(x+),∴f(x)的周期T==4π,f(π)=3sin(+)=3sin=3sin=.故答案为:4π,.【点评】本题主要考查了三角函数的周期公式,特殊角的三角函数值的应用,属于基础题.14.若tanα=2,则=2;sinα•cosα=.【考点】同角三角函数基本关系的运用;三角函数的化简求值.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用同角三角函数的基本关系,求得要求式子的值.【解答】解:∵tanα=2,则==tanα=2,sinα•cosα===,故答案为:2;.【点评】本题主要考查同角三角函数的基本关系,属于基础题.15.已知某扇形的周长是16,圆心角是2弧度,则该扇形的面积是16.【考点】扇形面积公式.【专题】计算题;方程思想;综合法;三角函数的求值.【分析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积.【解答】解:设扇形的半径为:R,所以2R+2R=16,所以R=4,扇形的弧长为:8,半径为4,扇形的面积为:S=×8×4=16故答案为:16.【点评】本题是基础题,考查扇形的面积公式的应用,考查计算能力.16.若函数f(x)=3x2﹣5x+a的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值X围是(﹣12,0).【考点】二分法求方程的近似解.【专题】计算题;转化思想;定义法;函数的性质及应用.【分析】根据函数f(x)=3x2﹣5x+a的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,得到,解得即可.【解答】解:∵f(x)=3x2﹣5x+a的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,∴,即解得﹣12<a<0,故a的取值X围为(﹣12,0),故答案为:(﹣12,0).【点评】本题考查函数零点的判断定理,理解零点判定定理的内容,将题设条件转化为关于参数的不等式组是解本题的关键.17.已知f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,则a的取值X围是﹣4<a<0.【考点】对数函数的图象与性质;复合函数的单调性.【专题】计算题;转化思想;函数的性质及应用.【分析】若f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,则内函数t=4﹣ax在区间[﹣1,3]上是增函数,且恒为正,进而得到答案.【解答】解:∵f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,故内函数t=4﹣ax在区间[﹣1,3]上是增函数,且恒为正,故,解得:﹣4<a<0,故答案为:﹣4<a<0.【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质是解答的关键.18.已知定义在R上的函数f(x)满足:f(x+1)=,当x∈(0,1]时,f(x)=2x,则f(log29)等于.【考点】函数的周期性;函数的值.【专题】计算题;函数的性质及应用.【分析】根据题意,算出f(x+2)=f(x),得f(x)是最小正周期为2的周期函数.从而算出f(log29)=f(log2).由x∈(0,1]时f(x)=2x,结合f(x+1)f(x)=1算出f(log2)==,即可得到所求的函数值.【解答】解:∵f(x+1)=,∴f(x+2)===f(x),可得f(x)是最小正周期为2的周期函数∵8<9<16,2>1∴log28<log29<log216,即log29∈(3,4)因此f(log29)=f(log29﹣2)=f(log2)∵f(log2)==而f(log2)==,∴f(log29)=f(log2)==故答案为:【点评】本题给出函数满足的条件,求特殊自变量对应的函数值.着重考查了函数的周期性及其证明、对数的运算法则和函数性质的理解等知识,属于中档题.三.解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或验算步骤.)19.函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)图象的一段如图所示(1)求此函数的解析式;(2)求函数f(x)在区间上的最大值和最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【专题】函数思想;数形结合法;三角函数的图像与性质.【分析】(1)由图象可得A值,由周期公式可得ω,代点结合角的X围可得φ,可得解析式;(2)由和三角函数的最值可得.【解答】解:(1)由图象可得A=,由=﹣﹣(﹣)=可得周期T=π,∴ω==2,∴f(x)=sin(2x+φ),∵,∴又0<φ<π,∴,故,可得,∴此函数的解析式为:;(2)∵,∴,∴f(x)在即x=0时取得最大值,f(x)在即时取得最小值.【点评】本题考查三角函数的图象和解析式,涉及三角函数的最值,属中档题.20.已知函数f(x)=为奇函数.(1)某某数a的值;(2)试判断函数的单调性并加以证明;(3)对任意的x∈R,不等式f(x)<m恒成立,某某数m的取值X围.【考点】函数奇偶性的性质;函数单调性的判断与证明;函数恒成立问题.【专题】证明题;综合题;函数思想;函数的性质及应用.【分析】(1)解f(0)=0可得a值;(2)由单调性的定义可得;(3)由(1)(2)可得函数f(x)为增函数,当x趋向于正无穷大时,f(x)趋向于1,可得m≥1.【解答】解:(1)由函数为奇函数可得f(0)==0,解得a=﹣1;(2)由(1)可得f(x)===1﹣,可得函数在R上单调递增,下面证明:任取实数x1<x2,则f(x1)﹣f(x2)=﹣=<0,∴函数f(x)=R上的增函数;(3)∵函数f(x)为增函数,当x趋向于正无穷大时,f(x)趋向于1,要使不等式f(x)<m恒成立,则需m≥1【点评】本题考查函数的奇偶性和单调性以及恒成立问题,属中档题.21.已知函数f(x)=2x﹣1(x∈R).(1)求函数f(x)的单调递减区间;(2)若f(x0)=,,求cos2x0的值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【专题】计算题;转化思想;分析法;三角函数的求值;三角函数的图像与性质.【分析】(1)由三角函数恒等变换的应用化简函数可得解析式f(x)=2sin(2x+),由2kπ≤2x+≤2kπ+,即可解得f(x)的单调递减区间.(2)由(1)及,则可求,由,可求2x0+∈[,],解得cos(2x0+)=﹣,利用两角差的余弦函数公式即可计算得解.2分)【解答】(本题满分为12分)解:(1)由f(x)=2x﹣1得:f(x)=(2sinxcosx)+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+).…由2kπ≤2x+≤2kπ+得k≤x≤k,(k∈Z).所以函数f(x)的单调递减区间是[k,k],(k∈Z).…(2)由(1)知,,又由已知,则.…因为,则2x0+∈[,],因此,所以cos(2x0+)=﹣,…于是cos2x0=cos[(2x0+)﹣]=cos(2x0+)cos+sin(2x0+)sin=(﹣)×+=.…【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,两角差的余弦函数公式的应用,考查了计算能力和转化思想,属于中档题.22.如图,正方形ABCD的边长为1,P,Q分别为AB,DA上动点,且△APQ的周长为2,设 AP=x,AQ=y.(1)求x,y之间的函数关系式y=f(x);(2)判断∠PCQ的大小是否为定值?并说明理由;(3)设△PCQ的面积分别为S,求S的最小值.【考点】基本不等式在最值问题中的应用;函数解析式的求解及常用方法.【专题】综合题;方程思想;综合法;函数的性质及应用;不等式.【分析】(1)由已知可得PQ=2﹣x﹣y,根据勾股定理有(2﹣x﹣y)2=x2+y2,即可求x,y之间的函数关系式y=f(x);(2)求得∴∠DCQ+∠BCP=,即可判断∠PCQ的大小;(3)表示△PCQ的面积,利用基本不等式求S的最小值.【解答】解:(1)由已知可得PQ=2﹣x﹣y,根据勾股定理有(2﹣x﹣y)2=x2+y2,…化简得:y=(0<x<1)…(2)tan∠DCQ=1﹣y,tan∠BCP=1﹣x,…tan(∠DCQ+∠BCP)==1 …∵∠DCQ+∠BCP∈(0,),∴∠DCQ+∠BCP=,∴∠PCQ=﹣(∠DCQ+∠BCP)=,(定值)…(3)S=1﹣﹣(1﹣x)﹣(1﹣y)=(x+y﹣xy)=•…令t=2﹣x,t∈(1,2),∴S=•(t+)﹣1,∴t=时,S的最小值为﹣1.…【点评】本题考查三角函数知识,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.。
(完整版)高一上学期期末数学试卷(含答案)
高一上学期期末数学试卷一、选择题(每小题5分,共50分)1.(5分)设集合A={x|﹣4<x<3},B={x|x≤2},则A∪B=()A.(﹣4,3)B.(﹣4,2]C.(﹣∞,2]D.(﹣∞,3)2.(5分)设,则tan(π+x)等于()A.0B.C.1D.3.(5分)函数y=log3(x﹣1)+的定义域为()A.(1,2]B.(1,+∞)C.(2,+∞)D.(﹣∞,0)4.(5分)已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表x123456y124.435﹣7414.5﹣56.7﹣123.6则函数y=f(x)在区间上的零点至少有()A.2个B.3个C.4个D.5个5.(5分)角α满足条件sinα•cosα>0,sinα+cosα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限6.(5分)如图所示,在菱形ABCD中,∠BAD=120°,则下列说法中错误说法的个数是()①图中所标出的向量中与相等的向量只有1个(不含本身)②图中所标出的向量与的模相等的向量有4个(不含本身)③的长度恰为长度的倍④与不共线.A.4B.3C.1D.07.(5分)函数f(x)是定义域为R的奇函数,当x>0时,f(x)=﹣x+1,则当x<0时,f(x)=()A.﹣x﹣1B.﹣x+1C.x+1D.x﹣18.(5分)把函数y=cos(x+π)的图象向右平移φ(φ>0)个单位,所得到的函数图象正好关于y轴对称,则φ的最小值为()A .πB .πC.D .π9.(5分)函数y=a x ﹣(a>0,a≠1)的图象可能是()A.B.C.D.10.(5分)已知函数f(x)=,若对任意x x≠x2,都有<0成立,则a的取值范围是()A.(0,]B .(,1)C.(1,2)D.(﹣1,2)二、填空题(每小题4分,共20分)11.(4分)已知函数f(x)=,则f(0)+f(1)=.12.(4分)如果角α的终边过点(2sin30°,﹣2cos30°),则sinα的值等于.13.(4分)设a=log33,b=log43,c=,则a,b,c之间的大小关系是.14.(4分)已知表示“向东方向航行1km”,表示“向南方向航行1km”,则﹣表示“”15.(4分)当0<x <时,函数f(x)=的最大值是.三、解答题16.(8分)已知集合A={x|﹣2≤x≤5},B={x|m﹣1≤x≤m+1}(1)若m=5,求A∩B(2)若B⊆A,求实数m的取值范围.17.(8分)已知=(6,1),=(x,8),=(﹣2,﹣3)(1)若,求x的值(2)若x=﹣5,求证:.18.(10分)某桶装水经营部每天的房租、员工工资等固定成本为200元,每桶水的进价为5元,销售单价与日均销售量的关系如表所示:销售价格/元6789101112日均销售量/桶480440400360320280240(1)设经营部在进价基础上增加x元进行销售,则此时的日均销售量为多少桶?(2)在(1)中,设日均销售净利润(除去固定成本)为y元,试求y的最大值及其对应的销售单价.19.(10分)设=(1,),=(cos2x,sin2x),f(x)=2(1)求函数f(x)的单调递增区间(2)若x,求函数f(x)的最大值、最小值及其对应的x的值.20.(14分)若函数f(x)在定义域D内某区间1上是增函数,而F(x)=在1上是减函数,则称寒素y=f(x)在1上是“弱增函数”(1)请分析判断函数f(x)=x﹣4,g(x)=﹣x2+4x在区间(1,2)上是否是“弱增函数”,并简要说明理由(2)若函数h(x)=x2﹣(sinθ﹣)x﹣b(θ,b是常数),在(0,1]上是“弱增函数”,请求出θ及b应满足的条件.高一上学期期末数学试卷一、选择题(每小题5分,共50分)1.(5分)设集合A={x|﹣4<x<3},B={x|x≤2},则A∪B=()A.(﹣4,3)B.(﹣4,2]C.(﹣∞,2]D.(﹣∞,3)考点:并集及其运算.专题:集合.分析:直接利用并集的运算法则求解即可.解答:解:集合A={x|﹣4<x<3},B={x|x≤2},则A∪B={x|﹣4<x<3}∪{x|x≤2}={x|x<3},故选:D.点评:本题考查集合的并集的求法,考查并集的定义以及计算能力.2.(5分)设,则tan(π+x)等于()A.0B.C.1D.考点:运用诱导公式化简求值.专题:计算题.分析:先利用诱导公式化简tan(π+x),将x的值代入,求出正切值.解答:解:∵tan(π+x)=tanx∴时,tan(π+x)=tan=故选B.点评:给角的值求三角函数值时,应该先利用诱导公式化简三角函数,在将x的值代入求出值.3.(5分)函数y=log3(x﹣1)+的定义域为()A.(1,2]B.(1,+∞)C.(2,+∞)D.(﹣∞,0)考点:函数的定义域及其求法.专题:函数的性质及应用.分析:由对数式的真数大于0,根式内部的代数式大于等于0联立不等式组,求解x的取值集合得答案.解答:解:由,解得:1<x≤2.∴函数y=log3(x﹣1)+的定义域为(1,2].故选:A.点评:本题考查了函数的定义域及其求法,考查了不等式组的解法,是基础题.4.(5分)已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表x123456y124.435﹣7414.5﹣56.7﹣123.6则函数y=f(x)在区间上的零点至少有()A.2个B.3个C.4个D.5个考点:函数的零点.专题:函数的性质及应用.分析:根据根的存在定理,判断函数值的符号,然后判断函数零点个数即可.解答:解:依题意,∵f(2)>0,f(3)<0,f(4)>0,f(5)<0,∴根据根的存在性定理可知,在区间(2,3)和(3,4)及(4,5)内至少含有一个零点,故函数在区间上的零点至少有3个,故选B.点评:本题主要考查函数零点个数的判断,用二分法判断函数的零点的方法,比较基础.5.(5分)角α满足条件sinα•cosα>0,sinα+cosα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限考点:三角函数值的符号.专题:三角函数的图像与性质.分析:sinα•cosα>0得到sinα和cosα同号;再结合sinα+cosα<0即可得到sinα<0,cosα<0;进而得到结论.解答:解:因为sinα•cosα>0∴sinα和cosα同号.又∵sinα+cosα<0∴sinα<0,cosα<0.即α的正弦和余弦值均为负值.故α的终边在第三象限.故选:C.点评:本题主要考查三角函数值的符号和象限角.是对基础知识的考查,要想做对,需要熟练掌握三角函数值的符号的分布规律.6.(5分)如图所示,在菱形ABCD中,∠BAD=120°,则下列说法中错误说法的个数是()①图中所标出的向量中与相等的向量只有1个(不含本身)②图中所标出的向量与的模相等的向量有4个(不含本身)③的长度恰为长度的倍④与不共线.A.4B.3C.1D.0考点:命题的真假判断与应用.专题:平面向量及应用;简易逻辑.分析:①利用向量相等与菱形的性质即可判断出正误;②利用菱形的性质、模相等的定义即可判断出正误;③利用菱形的性质、直角三角形的边角关系即可判断出正误.④利用向量共线定理即可判断出与共线,即可判断出正误.解答:解:①图中所标出的向量中与相等的向量只有1个,(不含本身),正确;②图中所标出的向量与的模相等的向量有4个,,,(不含本身),正确;③利用菱形的性质、直角三角形的边角关系可得:的长度恰为长度的倍,正确.④与共线,因此不正确.因此说法中错误说法的个数是1.故选:C.点评:本题考查了向量相等、菱形的性质、模相等的定义、直角三角形的边角关系、向量共线定理、简易逻辑的判定,考查了推理能力,属于基础题.7.(5分)函数f(x)是定义域为R的奇函数,当x>0时,f(x)=﹣x+1,则当x<0时,f(x)=()A.﹣x﹣1B.﹣x+1C.x+1D.x﹣1考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:根据题意,x<0时,﹣x>0,求出f(﹣x)的表达式,再利用奇函数求出f(x)的表达式.解答:解:∵函数f(x)是定义域为R的奇函数,且x>0时,f(x)=﹣x+1,∴当x<0时,﹣x>0,∴f(﹣x)=﹣(﹣x)+1=x+1;又f(﹣x)=﹣f(x),∴﹣f(x)=x+1,∴f(x)=﹣x﹣1.故选:A.点评:本题考查了利用函数的奇偶性求函数解析式的应用问题,是基础题目.8.(5分)把函数y=cos(x+π)的图象向右平移φ(φ>0)个单位,所得到的函数图象正好关于y轴对称,则φ的最小值为()A .πB.πC.D .π考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,可得结论.解答:解:把函数y=cos(x+π)的图象向右平移φ(φ>0)个单位,所得到的函数图象对应的函数的解析式为y=cos(x﹣φ+),由于所得图象正好关于y轴对称,则﹣φ+=kπ,k∈z,即φ=﹣kπ,故φ的最小值为,故选:C.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于基础题.9.(5分)函数y=a x ﹣(a>0,a≠1)的图象可能是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:讨论a与1的大小,根据函数的单调性,以及函数恒过的定点进行判定即可.解答:解:函数y=a x ﹣(a>0,a≠1)的图象可以看成把函数y=a x 的图象向下平移个单位得到的.当a>1时,函数y=a x ﹣在R上是增函数,且图象过点(﹣1,0),故排除A,B.当1>a>0时,函数y=a x ﹣在R上是减函数,且图象过点(﹣1,0),故排除C,故选D.点评:本题主要考查了指数函数的图象变换,指数函数的单调性和特殊点,体现了分类讨论的数学思想,属于基础题.10.(5分)已知函数f(x)=,若对任意x x≠x2,都有<0成立,则a的取值范围是()A.(0,]B.(,1)C.(1,2)D.(﹣1,2)考点:函数单调性的性质.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:由条件可得,f(x)在R上是单调递减函数,则0<a<1①,a﹣2<0,即a<2②,a0≥(a﹣2)×0+2a③,求出它们的交集即可.解答:解:由于对任意x1≠x2,都有<0成立,则f(x)在R上是单调递减函数,当x<0时,y=a x为减,则0<a<1;①当x≥0时,y=(a﹣2)x+5a为减,则a﹣2<0,即a<2;②由于f(x)在R上是单调递减函数,则a0≥(a﹣2)×0+2a,解得a ≤.③由①②③得,0<a ≤.故选A.点评:本题考查分段函数及运用,考查分段函数的单调性,注意各段的单调性,以及分界点的情况,属于中档题和易错题.二、填空题(每小题4分,共20分)11.(4分)已知函数f(x)=,则f(0)+f(1)=1.考点:函数的值.专题:函数的性质及应用.分析:直接利用分段函数,化简求解函数值即可.解答:解:函数f(x)=,则f(0)+f(1)=(0﹣1)+(1+1)=1;故答案为:1.点评:本题考查分段函数以及函数值的求法,考查计算能力.12.(4分)如果角α的终边过点(2sin30°,﹣2cos30°),则sinα的值等于.考点:三角函数的化简求值.专题:计算题.分析:先利用角α的终边求得tanα的值,进而利用点(2sin30°,﹣2cos30°)判断出α的范围,进而利用同角三角函数的基本关系求得sinα的值.解答:解:依题意可知tanα==﹣∵,﹣2cos30°<0,2sin30°>0∴α属于第四象限角∴sinα=﹣=﹣故答案为:﹣点评:本题主要考查了同角三角函数的基本关系的运用.解题的关键是利用α的范围确定sinα的正负.13.(4分)设a=log33,b=log43,c=,则a,b,c之间的大小关系是c<b<a.考点:对数值大小的比较.专题:函数的性质及应用.分析:根据对数函数的性质进行计算即可.解答:解:∵=<<1=;∴c<b<a,故答案为:c<b<a.点评:本题考查了对数函数的性质,是一道基础题.14.(4分)已知表示“向东方向航行1km”,表示“向南方向航行1km”,则﹣表示“向东北方向航行km;”考点:向量的几何表示.专题:平面向量及应用.分析:根据平面向量表示的几何意义,画出图形,进行解答即可.解答:解:∵表示“向东方向航行1km”,表示“向南方向航行1km”,∴﹣表示“向北方向航行1km”,∴﹣表示“向东北方向航行km”如图所示.故答案为:向东北方向航行km.点评:本题考查了平面向量的几何意义,是基础题目.15.(4分)当0<x <时,函数f(x)=的最大值是﹣.考点:函数最值的应用.专题:函数的性质及应用.分析:根据1的代换,利用换元法将函数进行转化,利用一元二次函数的性质进行求解.解答:解:f(x)===tanx﹣(tanx)2﹣1,设t=tanx,∵0<x <,∴0<tanx<1,即0<t<1,则函数f(x)等价为y=﹣t2+t﹣1=﹣(t ﹣)2﹣,∴当t=时,函数取得最大﹣,故答案为:﹣点评:本题主要考查函数最值的求解,根据条件利用换元法结合一元二次函数的单调性的性质是解决本题的关键.三、解答题16.(8分)已知集合A={x|﹣2≤x≤5},B={x|m﹣1≤x≤m+1}(1)若m=5,求A∩B(2)若B⊆A,求实数m的取值范围.考点:交集及其运算;集合的包含关系判断及应用.专题:集合.分析:(1)若m=5,求出集合B,即可求A∩B(2)若B⊆A,根据集合关系即可求实数m的取值范围.解答:解:(1)因为m=5,所以B={x|4≤x≤6}.…(1分)所以A∩B={x|4≤x≤6}…(3分)(2)易知B≠∅,…(4分)所以由B⊆A 得…(7分)得﹣1≤m≤4…(8分)点评:本题主要考查集合的基本运算和集合关系的应用,要求熟练掌握集合的交并补运算,比较基础.17.(8分)已知=(6,1),=(x,8),=(﹣2,﹣3)(1)若,求x的值(2)若x=﹣5,求证:.考点:数量积判断两个平面向量的垂直关系;平行向量与共线向量.专题:平面向量及应用.分析:(1)由可得﹣3x=﹣2×8,解方程可得;(2)当x=﹣5时,可得的坐标,可得=0,可判垂直.解答:解:(1)∵=(x,8),=(﹣2,﹣3)又∵,∴﹣3x=﹣2×8,解得x=(2)当x=﹣5时,=++=(4+x,6)=(﹣1,6),∵=(6,1),∴=﹣1×6+6×1=0∴.点评:本题考查数量积与向量的垂直关系和平行关系,属基础题.18.(10分)某桶装水经营部每天的房租、员工工资等固定成本为200元,每桶水的进价为5元,销售单价与日均销售量的关系如表所示:销售价格/元6789101112日均销售量/桶480440400360320280240(1)设经营部在进价基础上增加x元进行销售,则此时的日均销售量为多少桶?(2)在(1)中,设日均销售净利润(除去固定成本)为y元,试求y的最大值及其对应的销售单价.考点:根据实际问题选择函数类型.专题:函数的性质及应用.分析:(1)利用表格的特征变化规律,推出关系式,即可在经营部在进价基础上增加x元进行销售,求出此时的日均销售量的桶数.(2)在(1)中,设日均销售净利润(除去固定成本)为y元,求出函数的解析式,利用二次函数的最值求解最大值及其对应的销售单价.解答:解:(1)由表可以看出,当销售单价每增加1元时,日均销售量将减少40桶.…(2分)当经营部在进价基础上增加x元进行销售时,此时的日均销售量为:480﹣40(x﹣1)=520﹣40x(桶)…(5分)(2)因为x>0,且520﹣40x>0,所以0<x<13…(6分)所以y=(520﹣40x)x﹣200=﹣40x2+520x﹣200,0<x<13.…(8分)易知,当x=6.5时,y有最大值1490元.即只需将销售单价定为11.5元,就可获得最大净利润1490元.…(10分)(本题改编自教科书104页例5)点评:本题考查函数的最值,实际问题的应用,考查分析问题解决问题的能力.19.(10分)设=(1,),=(cos2x,sin2x),f(x)=2(1)求函数f(x)的单调递增区间(2)若x,求函数f(x)的最大值、最小值及其对应的x的值.考点:两角和与差的正弦函数;三角函数的最值.专题:计算题;三角函数的图像与性质.分析:(1)由两角和与差的正弦函数公式化简可得f(x)=4sin(2x+),由2k≤2x+≤2k(k∈Z)可解得函数f(x)的单调递增区间.(2)由x,可得2x+∈,由正弦函数的图象和性质即可求函数f(x)的最大值、最小值及其对应的x的值.解答:解:(1)f(x)=2(cos2x+sin2x)=4(cos2x+sin2x)=4sin(2x+)…(3分)由2k≤2x+≤2k(k∈Z)可解得:kπ﹣≤x≤k π(k∈Z)故函数f(x)的单调递增区间是:(k∈Z)…(5分)(2)∵x,∴2x+∈,…(6分)∴当x=时,函数f(x)的最大值为4…(8分)当x=时,函数f(x)的最大值为﹣2…(10分)点评:本题主要考查了两角和与差的正弦函数公式的应用,考查了正弦函数的图象和性质,属于基本知识的考查.20.(14分)若函数f(x)在定义域D内某区间1上是增函数,而F(x)=在1上是减函数,则称寒素y=f(x)在1上是“弱增函数”(1)请分析判断函数f(x)=x﹣4,g(x)=﹣x2+4x在区间(1,2)上是否是“弱增函数”,并简要说明理由(2)若函数h(x)=x2﹣(sinθ﹣)x﹣b(θ,b是常数),在(0,1]上是“弱增函数”,请求出θ及b应满足的条件.考点:利用导数研究函数的单调性.专题:函数的性质及应用;导数的综合应用;三角函数的图像与性质.分析:(1)根据“弱增函数”的定义,判断f(x)、g(x)在(1,2)上是否满足条件即可;(2)根据“弱增函数”的定义,得出①h(x)在(0,1)上是增函数,在(0,1)上是减函数,列出不等式组,求出b与θ的取值范围.解答:解:(1)由于f(x)=x﹣4在(1,2)上是增函数,且F(x)==1﹣在(1,2)上也是增函数,所以f(x)=x﹣4在(1,2)上不是“弱增函数”…(2分)g(x)=﹣x2+4x在(1,2)上是增函数,但=﹣x+4在(1,2)上是减函数,所以g(x)=﹣x2+4x在(1,2)上是“弱增函数”…(4分)(2)设h(x)=x2﹣(sinθ﹣)x﹣b(θ、b是常数)在(0,1)上是“弱增函数”,则①h(x)=x2﹣(sinθ﹣)x﹣b在(0,1)上是增函数,由h(x)=x2﹣(sinθ﹣)x﹣b在(0,1)上是增函数得≤0,…(6分)∴sin θ≤,θ∈(k∈Z);…(8分)②H(x)==x ﹣+﹣sinθ在(0,1)上是减函数,记G(x)=x﹣,在(0,1)上任取0<x1<x2≤1,则G(x1)﹣G(x2)=(x1x2+b)>0恒成立,…(11分)又∵<0,∴x1x2+b<0恒成立,而当0<x1<x2≤1时,0<x1x2<1,∴b≤﹣1;(如果直接利用双沟函数的结论扣2分)∴b≤﹣1;且θ∈(k∈Z)时,h (x)在(0,1]上是“弱增函数”.…(14分)点评:本题考查了三角函数的图象与性质的应用问题,也考查了函数与导数的应用问题,考查了新定义的应用问题,考查了分析与解决问题的能力,是综合性题目.。
浙江省杭州市高一上期末数学试卷有答案【精编】.doc
2019-2020学年浙江省杭州市高一(上)期末数学试卷一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B. C. D.﹣2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣C.D.﹣3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3)B.(3,4)C.(0,4)D.(﹣∞,3)x+x﹣3的零点所在的区间是()4.(3分)函数f(x)=log3A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1] D.(,1]6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.38.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.29.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a 的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤513.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.∈[1,4],使得f 14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x)≥m,则实数m的取值范围为()(xA.(﹣∞,0] B.(﹣∞,1] C.(﹣∞,2] D.(﹣∞,3]二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N= ,∁UM= .16.(3分)()+()= ;log412﹣log43= .17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是.19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a的值为.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x 2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为.三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k的取值范围.23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.2019-2020学年浙江省杭州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B. C. D.﹣【解答】解:因为sin120°=sin(90°+30°)=cos30°=.故选C.2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣C.D.﹣【解答】解:∵sinα=,且α为第二象限的角,∴cosα=﹣=﹣.故选:D.3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3)B.(3,4)C.(0,4)D.(﹣∞,3)【解答】解:∵集合A={x∈R|x2﹣4x<0}={x|0<x<4},B={x∈R|2x<8}={x|x<3},∴A∩B={x|0<x<3}=(0,3).故选:A.x+x﹣3的零点所在的区间是()4.(3分)函数f(x)=log3A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)x+x﹣3,定义域为:x>0;函数是连续函数,【解答】解:∵函数f(x)=log3∴f(2)=log32+2﹣3<0,f(3)=log33+3﹣3=1>0,∴f(2)•f(3)<0,根据函数的零点的判定定理,故选:C.5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1] D.(,1]【解答】解:要使函数有意义,则log0.5(3x﹣2)≥0,即0<3x﹣2≤1,得<x≤1,即函数的定义域为(,1],故选:D6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A. B.C.D.【解答】解:患者服用某种药物后心率立刻明显减慢,则函数的图象应呈下降趋势,之后随着药力的减退,心率再次慢慢升高,则函数的图象应一直呈上升趋势,但上升部分的图象比下降的图象要缓,排除AB,根据正常人的心率约为65,可排除D,只有C符合,故选:C7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.3【解答】解:∵函数f(x)=,∴f(5)=f(3)=f(1)=2.故选:C.8.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.2【解答】解:∵函数y=f(2x)+2x是偶函数,∴设g(x)=f(2x)+2x,则g(﹣x)=f(﹣2x)﹣2x=g(x)=f(2x)+2x,即f(﹣2x)=f(2x)+4x,当x=1时,f(﹣2)=f(2)+4=1+4=5,故选:A9.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【解答】解:f(﹣x)=|sin(﹣x)+cos(﹣x)|+|sin(﹣x)﹣cos(﹣x)|=|﹣sinx+cosx|+|﹣sinx﹣cosx|=|six+cosx|+|sinx﹣cosx|=f(x),则函数f(x)是偶函数,∵f(x+)=|sin(x+)+cos(x+)|+|sin(x+)﹣cos(x+)|=|cosx﹣sinx|+|cosx+sinx|=|sinx+cosx|+|sinx﹣cosx|=f(x),∴函数f(x)的周期是,故选:D10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c【解答】解:如图所示,∵>π﹣2>1>0,∴sin2=sin(π﹣2)>sin1,∵,∴sin1=sin(π﹣1)>sin3.综上可得:sin2>sin1>sin3.故选B.11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:∵y=cos(2x﹣)=cos(﹣2x)=sin(2x+)=sin[2(x+)],∴将函数y=sin2x的图象向左平移个单位即可得到函数y=cos(2x﹣)的图象.故选:B.12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a 的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤5【解答】解:函数在(﹣∞,+∞)上是增函数,可得:,解得:1<a≤3.故选:B.13.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.【解答】解:根据定义作出函数f(x)的图象如图:(蓝色曲线),其中A(1,1),B(3,3),即f(x)=,当f(x)=时,当x≥3或x≤1时,由3﹣|x﹣3|=,得|x﹣3|=,即xC =或xG=,当f(x)=时,当1<x<3时,由x2﹣3x+3=,得xE=,由图象知若f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为xE﹣xC=﹣=,故选:B.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x∈[1,4],使得f(x)≥m,则实数m的取值范围为()A.(﹣∞,0] B.(﹣∞,1] C.(﹣∞,2] D.(﹣∞,3]【解答】解:对任意的正实数a,总存在x0∈[1,4],使得f(x)≥m⇔m≤f(x)max,x∈[1,4].令u(x)=﹣ax,∵a>0,∴函数u(x)在x∈[1,4]单调递减,∴u(x)max =u(1)=4﹣a,u(x)min=1﹣4a.①a≥4时,0≥4﹣a>1﹣4a,则f(x)max=4a﹣1≥15.②4>a>1时,4﹣a>0>1﹣4a,则f(x)max ={4﹣a,4a﹣1}max>3.③a≤1时,4﹣a>1﹣4a≥0,则f(x)max=4﹣a≥3.综上①②③可得:m≤3.∴实数m的取值范围为(﹣∞,3].故选:D.二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N= {2,3,4,5} ,∁UM= {1,5,6} .【解答】解:集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5};∁UM={1,5,6},故答案为:{2,3,4,5},{1,5,6}16.(3分)()+()= 3 ;log412﹣log43= 1 .【解答】解:()+()==;log412﹣log43=.故答案为:3,1.17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.【解答】解:由正切函数的周期公式得函数的周期T=;由f(x)>1得tan(2x﹣)>1,得+kπ<2x﹣<+kπ,得+<x<+,k∈,即不等式的解集为;故答案为:,;18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是(﹣4,﹣2)∪(0,2).【解答】解:设h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),∴h(x)是奇函数,由图象可知:当﹣4<x<﹣2时,f(x)>0,g(x)<0,即h(x)>0,当0<x<2时,f(x)<0,g(x)>0,即h(x)<0,∴h(x)<0的解为(﹣4,﹣2)∪(0,2).故答案为(﹣4,﹣2)∪(0,2)19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a的值为﹣1 .【解答】解:∵x∈(﹣a,+∞),∴当﹣a<x<1﹣a时,y=ln(x+a)<0,当x>1﹣a时,y=ln(x+a)>0,又(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,①若a>0,y=ax+2与y=ln(x+a)均为定义域上的增函数,在x∈(﹣a,+∞)上,可均大于0,不满足题意;②若a=0,则2lnx)≤0对x∈(0,+∞)不恒成立,不满足题意;∴a<0.作图如下:由图可知,当且仅当方程为y=ln(x+a)的曲线与方程为y=ax+2的直线相交于点A,即满足时,(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,解方程得,解得a=﹣1.故答案为:﹣1.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x 2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为16 .【解答】解:∵令t=f(x),则y=g(x)=f2(x)﹣af(x)+2a=t2﹣at+2a,∵g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,故t2﹣at+2a=0有两个根t1,t2,且t1+t2=a,t1t2=2a,且f(x1),f(x2),f(x3),f(x4)恰两两相等,为t2﹣at+2a=0的两根,不妨令f(x1)=f(x2)=t1,f(x3)=f(x4)=t2,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]=(2﹣t1)•(2﹣t1)•(2﹣t2)•(2﹣t2)=[(2﹣t1)•(2﹣t2)]2=[4﹣2(t1+t2)+t1t2]2=16.故答案为:16三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f (x )=x α(α∈R ),且.(1)求函数f (x )的解析式;(2)证明函数f (x )在定义域上是增函数. 【解答】(1)解:由得,,所以;(2)证明:定义域是[0,+∞),设任意的x 2>x 1≥0, 则,∵,∴f (x 2)>f (x 1),函数f (x )在定义域上是增函数.22.(12分)已知函数f (x )=2sin (ωx +φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f (x )的单调递增区间; (2)若关于x 的方程f (x )+log 2k=0在区间上总有实数解,求实数k 的取值范围.【解答】解:(1)周期T=π,所以ω=2,当时,,(2分) 得,又﹣π<φ<0,所以取k=﹣1,得(2分)所以,(1分)由,得,k ∈所以函数y=f (x )的单调递增区间是得(k ∈),(2分)(2)当时,,所以,(2分)所以logk=﹣f(x)∈[﹣1,2],得.(3分)223.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.【解答】解:(1)阴影部分的面积为:50+70+90+60=270,表示汽车在4小时内行驶的路程为270 km.(4分)(2)∵这辆汽车在行驶该段路程前里程表的读数是8018km,汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式为:(4分)图象如下图:(4分)24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.【解答】解:(1)方法一:当a=﹣1时,(2 分)由f(x)=1得或(2 分)解得 x=0,1,﹣2,即解集为{0,1,﹣2}.(2分)方法二:当a=﹣1时,由f(x)=1得:(x﹣1)|x+1|﹣(x﹣1)=0(x﹣1)(|x+1|﹣1)=0(3分)∴得x=1或|x+1|=1∴x=1或x=0或x=﹣2即解集为{0,1,﹣2}.(3分)(2)当x≥a时,令x2﹣(a+2)x﹣a=0,∵,∴△=a2+8a+4=(a+4)2﹣12>0得,(2分)且先判断2﹣a,与大小:∵,即a<x1<x2,故当x≥a时,f(x)存在两个零点.(2分)当x<a时,令﹣x2+ax﹣3a=0,即x2﹣ax+3a=0得∵,∴△=a2﹣12a=(a﹣6)2﹣36>0得,同上可判断x3<a<x4,故x<a时,f(x)存在一个零点.(2分)综上可知当时,f(x)存在三个不同零点.且设,易知g(a)在上单调递增,故g(a)∈(0,2)∴x1+x2+x3∈(0,2).( 2分)。
高一数学上学期期末考试试卷含答案(共3套)
高一级第一学期期末考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列四组函数,表示同一函数的是()A. B.C. D.2. 平行于同一平面的两条直线的位置关系是()A. 平行B. 相交C. 异面D. 平行、相交或异面3. 已知集合,,则()A. B. C. D.4. 图中的直线的斜率分别是,则有()A. B. C. D.5. 设,,则()A. B. C. D.6. 方程在下面哪个区间内有实根()A. B. C. D.7. 一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8. 一圆锥的侧面展开图是一个半圆,则这个圆锥的母线与底面所成角是()A. B. C. D.9. 若函数的值域为,则实数的取值范围是()A. B. C. D.10. 如图,二面角的大小是,线段,,与所成的角为,则与平面所成的角的余弦值是()A. B. C. D.11. 正四面体中,是棱的中点,是点在底面内的射影,则异面直线与所成角的余弦值为()A. B. C. D.12. 已知函数在闭区间上的值域为,则满足题意的有序实数对在坐标平面内所对应点组成图形为()A. B.C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.14. 已知两条平行直线分别过点,,且的距离为5,则直线的斜率是__________.15. 已知函数,若函数有3个零点,则实数的取值范围是__________.16. 如图,将一边为1的正方体沿相邻三个面的对角线截出一个棱锥,则三棱锥的内切球半径是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 求值或化简:(1);(2).18. 如图,正三角形的边长为6,,,点分别在边上,且,,相交于.(1)求点的坐标;(2)判断和是否垂直,并证明.19. 已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并证明你的结论;(3)在函数图像上是否存在两个不同的点,使直线垂直轴,若存在,求出两点坐标;若不存在,说明理由.20. 如图,在四棱锥中,底面,,,,为棱的中点.(1)求证:;(2)试判断与平面是否平行?并说明理由.21. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金(扣除三险一金后)所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额个人所得税计算公式:应纳税额=工资-三险一金=起征点. 其中,三险一金标准是养老保险8%、医疗保险2%、失业保险1%、住房公积金8%,此项税款按下表分段累计计算:(1)某人月收入15000元(未扣三险一金),他应交个人所得税多少元?(2)某人一月份已交此项税款为1094元,那么他当月的工资(未扣三险一金)所得是多少元?22. 设,函数,其中.(1)求的最小值;(2)求使得等式成立的的取值范围.参考答案1【答案】D【解析】试题分析:A.,对应法则不同;B.,定义域不同;C.,定义域不同;故选D。
高一数学第一学期期末考试试卷(共5套,含参考答案)
高一第一学期期末考试数学试卷 满分:150分 时间: 120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则AB 的元素的个数为( )A.3B.4C.5D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x =的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.57.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分)在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA ,D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.1A A1B B1C COD22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围; (3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一第一学期期末考试 数学试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 1 14. 2 15. 16. 316.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f(x)=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.答案:3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)∵⎩⎨⎧>->+0302x x ∴23x -<<…………………………………3分∴A=(-2,3) ∴(][)23u C A =-∞-+∞,,……………………………5分 (2)当0≤a 时,φ=B 满足A B A = ……………………………6分当0>a 时,)(a a B ,-= ∵AB A = ∴A B ⊆[]∴⎪⎩⎪⎨⎧≤-≥-32a a , ∴40≤<a ……………………………9分 综上所述:实数a 的范围是4≤a ……………………………………10分18.解:(1)由0)(=x f 得,⎪⎩⎪⎨⎧=-≤02)21(0x x 或⎩⎨⎧=-+>01)1(log 02x x ,解得1-=x 或1=x .所以,函数)(x f 的零点是—1,1..................................6分(2)由()0f x >得,01()202xx ≤⎧⎪⎨->⎪⎩或20log (1)10x x >⎧⎨+->⎩,解得1x <-或1x >.所以,不等式1)(>x f 的解集是{x |1x <-或1x >}.................................12分19.(1) 证明:∵平面EBD ⊥平面BDC ,且平面EBD ∩平面BDC =BD ,CD ⊥BD , ∴CD ⊥平面EBD , ∵CD 平面EDC ,∴平面EBD ⊥平面EDC.……………………………6分 (2) 解:如答图,连接EA ,取BD 的中点M ,连接AM ,EM , ∵AD ∥BC ,∴∠EDA 即为ED 与BC 所成的角. 又∵AD =AB ,∴ED =EB. ∴EM ⊥BD ,∴EM ⊥平面ABCD.设AB =a ,则ED =AD =a ,EM =MA , ∴AE =a ,∴∠EDA =60°.即ED 与BC 所成的角为60°……………………………12分20.(12分)解 (1)设所截等腰三角形的底边边长为x cm. 在Rt △EOF 中,EF =5 cm ,OF =12x cm ,所以EO =25-14x 2.于是V =13x225-14x 2(cm 3).依题意函数的定义域为{x|0<x<10}.……………………………6分(2)正视图为等腰三角形,腰长为斜高,底边长=AB =6, 底边上的高为四棱锥的高=EO =25-14x 2=4,S =4×62=12(cm 2).……………………………12分21.解:(1),由 得又即又又BD 与CO 交于O 点,又……………………………6分(2),,又AB=1,可得,由得……………………………12分22.解析:(1)(1)(1)f f -=,即144log (41)log (41)k k -+-=++444512log log 5log 144k ∴=-==- ∴12k =- ………………………………………………………………………… ………5分(2)由题意知方程411log (41)22x x x a +-=+即方程4=log (41)x a x +-无解, 令4()log (41)x g x x =+-,则函数()y g x =的图象与直线y a =无交点444411()log 41)log log (1)44x x x xg x x +=+-==+( 任取1x 、2x ∈R ,且12x x <,则12044x x <<,121144x x ∴>. 12124411()()log 1log 1044x x g x g x ⎛⎫⎛⎫∴-=+-+> ⎪ ⎪⎝⎭⎝⎭,()g x ∴在(),-∞+∞上是单调减函数.1114x +>, 41()log 104xg x ⎛⎫∴=+> ⎪⎝⎭. ∴a 的取值范围是(],0.-∞ ……………………………………………………………… 9分注意:如果从复合函数角度分析出单调性,给全分。
浙江省杭州市高一上学期期末考试数学试题(含答案)(2020届)
第一学期萧山五校高一期末教学质量检测数学(学科)试题卷考生须知:1.本卷满分100分,考试时间90分钟;2.答题前,在答题卷密封区内填写学校、班级、姓名、学号、试场号、座位号; 3.所有答案必须写在答题卷上,写在试卷上无效,考试结束只需上交答题卷。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.设全集U =R ,集合}41|{<<=x x A ,集合}52|{<≤=x x B ,则=)(B C A U ( )A .{}|12x x ≤<B .}2|{<x xC .}5|{≥x xD .{}|12x x << 2.函数1()lg(1)1f x x x=++-的定义域是( ) A .(),1-∞- B .()()1,11,-+∞ C . ()1,+∞ D .(),-∞+∞3.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是( ) A .12log y x = B .1y x-=C .3y x =- D .x y tan = 4.三个数 3.3320.99,log ,log 0.8π的大小关系为( ) A . 3.323log 0.80.99log π<< B . 3.323log 0.8log 0.99π<<C . 3.3230.99log 0.8l og π<< D . 3.332log 0.99log 0.8π<<5.函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭ C .11,42⎛⎫ ⎪⎝⎭ D .13,24⎛⎫ ⎪⎝⎭6.已知角α的终边与单位圆相交于点P (sin ,cos ),则sinα=( )A.2-B.12- C. D.7.将函数sin()4y x π=+的图象上各点的横坐标伸长到原来2的倍,再向左平移2π个单位,所得图象的函数解析式是( ) A.sin(2)4y x π=-+B. cos 2xy =C. 3sin(2)4y x π=+D.3sin()24x y π=+ 8.已知()f x 在R 上是奇函数,且满足()()4f x f x +=,当()0,2x ∈时,()22f x x =,则()7f =( )A .2-B .2C .98-D .98 9.函数2lg ()=xf x x的大致图像为 ( )10.函数11()(sin cos )sin cos 22f x x x x x =+--,则()f x 的值域是( )A .[]1,1-B .⎡⎤⎢⎥⎣⎦C .⎡-⎢⎣⎦D .1,⎡-⎢⎣⎦二、填空题(本大题共7小题,每小题4分,共28分.)11.已知集合{}(),,,411a B x x A ∞-=≤-<=若B A ⊆,则实数a 的取值范围是 .12.已知幂函数)(x f y =的图象过点(2,,则(9)f = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省杭州市高一(上)期末检测数学试卷一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣C.D.﹣3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)4.(3分)函数f(x)=log3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1] D.(,1]6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.38.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.29.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤513.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为()A.(﹣∞,0] B.(﹣∞,1] C.(﹣∞,2] D.(﹣∞,3]二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N= ,∁U M= .16.(3分)()+()= ;log412﹣log43= .17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是.19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a的值为.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为.三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k的取值范围.23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.2019-2020学年浙江省杭州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣【解答】解:因为sin120°=sin(90°+30°)=cos30°=.故选C.2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣C.D.﹣【解答】解:∵sinα=,且α为第二象限的角,∴cosα=﹣=﹣.故选:D.3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)【解答】解:∵集合A={x∈R|x2﹣4x<0}={x|0<x<4},B={x∈R|2x<8}={x|x<3},∴A∩B={x|0<x<3}=(0,3).故选:A.4.(3分)函数f(x)=log3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)【解答】解:∵函数f(x)=log3x+x﹣3,定义域为:x>0;函数是连续函数,∴f(2)=log32+2﹣3<0,f(3)=log33+3﹣3=1>0,∴f(2)•f(3)<0,根据函数的零点的判定定理,故选:C.5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1] D.(,1]【解答】解:要使函数有意义,则log0.5(3x﹣2)≥0,即0<3x﹣2≤1,得<x≤1,即函数的定义域为(,1],故选:D6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.【解答】解:患者服用某种药物后心率立刻明显减慢,则函数的图象应呈下降趋势,之后随着药力的减退,心率再次慢慢升高,则函数的图象应一直呈上升趋势,但上升部分的图象比下降的图象要缓,排除AB,根据正常人的心率约为65,可排除D,只有C符合,故选:C7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.3【解答】解:∵函数f(x)=,∴f(5)=f(3)=f(1)=2.故选:C.8.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.2【解答】解:∵函数y=f(2x)+2x是偶函数,∴设g(x)=f(2x)+2x,则g(﹣x)=f(﹣2x)﹣2x=g(x)=f(2x)+2x,即f(﹣2x)=f(2x)+4x,当x=1时,f(﹣2)=f(2)+4=1+4=5,故选:A9.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【解答】解:f(﹣x)=|sin(﹣x)+cos(﹣x)|+|sin(﹣x)﹣cos(﹣x)|=|﹣sinx+cosx|+|﹣sinx﹣cosx|=|six+cosx|+|sinx﹣cosx|=f(x),则函数f(x)是偶函数,∵f(x+)=|sin(x+)+cos(x+)|+|sin(x+)﹣cos(x+)|=|cosx﹣sinx|+|cosx+sinx|=|sinx+cosx|+|sinx﹣cosx|=f(x),∴函数f(x)的周期是,故选:D10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c【解答】解:如图所示,∵>π﹣2>1>0,∴sin2=sin(π﹣2)>sin1,∵,∴sin1=sin(π﹣1)>sin3.综上可得:sin2>sin1>sin3.故选B.11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:∵y=cos(2x﹣)=cos(﹣2x)=sin(2x+)=sin[2(x+)],∴将函数y=sin2x的图象向左平移个单位即可得到函数y=cos(2x﹣)的图象.故选:B.12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤5【解答】解:函数在(﹣∞,+∞)上是增函数,可得:,解得:1<a≤3.故选:B.13.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.【解答】解:根据定义作出函数f(x)的图象如图:(蓝色曲线),其中A(1,1),B(3,3),即f(x)=,当f(x)=时,当x≥3或x≤1时,由3﹣|x﹣3|=,得|x﹣3|=,即x C=或x G=,当f(x)=时,当1<x<3时,由x2﹣3x+3=,得x E=,由图象知若f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为x E﹣x C=﹣=,故选:B.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为()A.(﹣∞,0] B.(﹣∞,1] C.(﹣∞,2] D.(﹣∞,3]【解答】解:对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m⇔m≤f(x)max,x∈[1,4].令u(x)=﹣ax,∵a>0,∴函数u(x)在x∈[1,4]单调递减,∴u(x)max=u(1)=4﹣a,u(x)min=1﹣4a.①a≥4时,0≥4﹣a>1﹣4a,则f(x)max=4a﹣1≥15.②4>a>1时,4﹣a>0>1﹣4a,则f(x)max={4﹣a,4a﹣1}max>3.③a≤1时,4﹣a>1﹣4a≥0,则f(x)max=4﹣a≥3.综上①②③可得:m≤3.∴实数m的取值范围为(﹣∞,3].故选:D.二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N= {2,3,4,5} ,∁U M= {1,5,6} .【解答】解:集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5};∁U M={1,5,6},故答案为:{2,3,4,5},{1,5,6}16.(3分)()+()= 3 ;log412﹣log43= 1 .【解答】解:()+()==;log412﹣log43=.故答案为:3,1.17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.【解答】解:由正切函数的周期公式得函数的周期T=;由f(x)>1得tan(2x﹣)>1,得+kπ<2x﹣<+kπ,得+<x<+,k∈Z,即不等式的解集为;故答案为:,;18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是(﹣4,﹣2)∪(0,2).【解答】解:设h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h (x),∴h(x)是奇函数,由图象可知:当﹣4<x<﹣2时,f(x)>0,g(x)<0,即h(x)>0,当0<x<2时,f(x)<0,g(x)>0,即h(x)<0,∴h(x)<0的解为(﹣4,﹣2)∪(0,2).故答案为(﹣4,﹣2)∪(0,2)19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a的值为﹣1 .【解答】解:∵x∈(﹣a,+∞),∴当﹣a<x<1﹣a时,y=ln(x+a)<0,当x>1﹣a时,y=ln(x+a)>0,又(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,①若a>0,y=ax+2与y=ln(x+a)均为定义域上的增函数,在x∈(﹣a,+∞)上,可均大于0,不满足题意;②若a=0,则2lnx)≤0对x∈(0,+∞)不恒成立,不满足题意;∴a<0.作图如下:由图可知,当且仅当方程为y=ln(x+a)的曲线与方程为y=ax+2的直线相交于点A,即满足时,(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,解方程得,解得a=﹣1.故答案为:﹣1.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为16 .【解答】解:∵令t=f(x),则y=g(x)=f2(x)﹣af(x)+2a=t2﹣at+2a,∵g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,故t2﹣at+2a=0有两个根t1,t2,且t1+t2=a,t1t2=2a,且f(x1),f(x2),f(x3),f(x4)恰两两相等,为t2﹣at+2a=0的两根,不妨令f(x1)=f(x2)=t1,f(x3)=f(x4)=t2,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]=(2﹣t1)•(2﹣t1)•(2﹣t2)•(2﹣t2)=[(2﹣t1)•(2﹣t2)]2=[4﹣2(t1+t2)+t1t2]2=16.故答案为:16三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.【解答】(1)解:由得,,所以;(2)证明:定义域是[0,+∞),设任意的x2>x1≥0,则,∵,∴f(x2)>f(x1),函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k的取值范围.【解答】解:(1)周期T=π,所以ω=2,当时,,(2分)得,又﹣π<φ<0,所以取k=﹣1,得(2分)所以,(1分)由,得,k∈Z所以函数y=f(x)的单调递增区间是得(k∈Z),(2分)(2)当时,,所以,(2分)所以log2k=﹣f(x)∈[﹣1,2],得.(3分)23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.【解答】解:(1)阴影部分的面积为:50+70+90+60=270,表示汽车在4小时内行驶的路程为270 km.(4分)(2)∵这辆汽车在行驶该段路程前里程表的读数是8018km,汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式为:(4分)图象如下图:(4分)24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.【解答】解:(1)方法一:当a=﹣1时,(2 分)由f(x)=1得或(2 分)解得x=0,1,﹣2,即解集为{0,1,﹣2}.(2分)方法二:当a=﹣1时,由f(x)=1得:(x﹣1)|x+1|﹣(x﹣1)=0(x﹣1)(|x+1|﹣1)=0(3分)∴得x=1或|x+1|=1∴x=1或x=0或x=﹣2即解集为{0,1,﹣2}.(3分)(2)当x≥a时,令x2﹣(a+2)x﹣a=0,∵,∴△=a2+8a+4=(a+4)2﹣12>0得,(2分)且先判断2﹣a,与大小:∵,即a<x1<x2,故当x≥a时,f(x)存在两个零点.(2分)当x<a时,令﹣x2+ax﹣3a=0,即x2﹣ax+3a=0得∵,∴△=a2﹣12a=(a﹣6)2﹣36>0得,同上可判断x3<a<x4,故x<a时,f(x)存在一个零点.(2分)综上可知当时,f(x)存在三个不同零点.且设,易知g(a)在上单调递增,故g(a)∈(0,2)∴x1+x2+x3∈(0,2).(2分)。