2020最新高二数学上册期末考试试卷及答案
2020-2021学年人教版高二上册数学期末数学试卷带答案
2020-2021学年高二(上)期末数学试卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合A={x|(x−7)(x+12)<0},B={x|x+6>0},则A∩B=( )A.{x|−6<x<12}B.{x|−6<x<7}C.{x|x>−12}D.{x|6<x<7}2. “四边形ABCD是菱形”是“四边形ABCD的对角线互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 双曲线x2−4y2=−8的渐近线方程为()A.y=±2xB.y=±12x C.y=±√2x D.y=±√22x4. “一尺之棰,日取其半,万世不竭”这句话出自《庄子•天下篇》,其意思为“一根一尺长的木棰,每天截取其一半,永远都取不完”.设第一天这根木棰被截取一半剩下a1尺,第二天被截取剩下的一半剩下a2尺,…,第五天被截取剩下的一半剩下a5尺,则a1+a2a5=()A.18B.20C.22D.245. 已知抛物线C的焦点到准线的距离大于2,则C的方程可能为()A.y2=4xB.y2=−3xC.x2=6yD.y=−8x26. 如图,在正方体ABCD−A1B1C1D1中,E为BB1的中点,若O为底面A1B1C1D1的中心,则异面直线C1E与AO所成角的余弦值为()A.√3015B.√3030C.815D.2√3015|PQ|=|PF2|,则动点Q的轨迹方程为( )A.(x+2)2+y2=34B.(x+2)2+y2=68C.(x−2)2+y2=34D.(x−2)2+y2=688. 如图,某人在一条水平公路旁的山顶P处测得小车在A处的俯角为30∘,该小车在公路上由东向西匀速行驶7.5分钟后,到达B处,此时测得俯角为45∘.已知小车的速度是20km/ℎ,且cos∠AOB=−3√38,则此山的高PO=()A.1kmB.√22km C.√3km D.√2km二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.)9. 设命题p:∀n∈N,6n+7为质数,则()A.¬p为假命题B.¬p:∃n∈N,6n+7不是质数C.¬p为真命题D.¬p:∀n∈N,6n+7不是质数10. 设S n是等差数列{a n}的前n项和,且a1=2,a3=8,则()A.a5=12B.公差d=3C.S2n=n(6n+1)D.数列{1a n a n+1}的前n项和为n6n+411. 已知a>b>0,且a+3b=1,则()A.ab的最大值为112B.ab的最小值为112C.1 a +3b的最小值为16 D.a2+15b2的最小值为58轴上,直线AP 与直线y =−3交于点C ,直线BP 与直线y =−3交于点D .设直线AP 的斜率为k ,则满足|CD|=36的k 的值可能为( )A.1B.−17C.110D.−7+2√109三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.)13. 设向量AB →=(1,2,4),CD →=(m,1,1),AB →⊥CD →,则实数m =________.14. 若双曲线x 26−y 2m =1的虚轴长为6√2,则该双曲线的离心率为________.15. 在△ABC 中,若B =π3,tan C =2√3,AC =2,则AB =________.16. 已知点P (m,n )是抛物线x 2=−8y 上一动点,则√m 2+n 2+4n +4+√m 2+n 2−4m +2n +5的最小值为________.四、解答题.本大题共6小题,共70分,解答应写出文字说期、证时过程或演算步骤.)17. △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2−a 2=58bc ,sin C =2sin B .(1)求cos A ;(2)若△ABC 的周长为6+√15,求△ABC 的面积.18. 如图,在直三棱柱ABC −A 1B 1C 1中,AC ⊥BC ,AC =AA 1=2BC ,E ,F 分别为侧棱BB 1,CC 1的中点.(1)证明:BF//平面A 1C 1E ;(2)求B1C与平面A1C1E所成角的正弦值.19. 已知数列{a n}的首项为4.(1)若数列{a n−2n}是等差数列,且公差为2,求{a n}的通项公式;(2)在①a3−a2=48且a2>0,②a3=64且a4>0,③a2021=16a2a2017这三个条件中任选一个,补充在下面的问题中并解答.问题:若{a n}是等比数列,________,求数列{(3n−1)a n}的前n项和S n.注:如果选择多个条件分别解答,则按第一个解答计分.20. 如图,平面ABCDE⊥平面CEFG,四边形CEFG为正方形,点B在正方形ACDE的外部,且AB=BC=√5,AC=4.(1)证明:AD⊥CF;(2)求平面BFG与平面ABCDE所成锐二面角的余弦值.−y2=1有相同的焦点F.21. 已知抛物线C:y2=2px(p>0)与双曲线x23(1)求C的方程,并求其准线l的方程;(2)如图,过F且斜率存在的直线与C交于不同的两点A(x1,y1),B(x2,y2),直线OA与准线l交于点N,过点A作l的垂线,垂足为M.证明:y1y2为定值,且四边形AMNB为梯形.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为2√55,且焦距为8.(1)求C的方程;(2)设直线l的倾斜角为π3,且与C交于A,B两点,点O为坐标原点,求△AOB面积的最大值.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】可求出集合A,B,然后进行交集的运算即可.2.【答案】A【解析】利用充分条件和必要条件的定义,结合平面几何知识进行判断,即可得到答案.3.【答案】B【解析】根据题意,将双曲线的方程变形为标准方程,分析可得其焦点位置以及a、b的值,利用双曲线的渐近线方程计算可得答案.4.【答案】D【解析】设这根木棰的长度为1尺,分别计算每一次截取的量可得剩余的量,可得答案.5.【答案】C【解析】利用已知条件推出p>2,然后判断选项的正误即可.6.【答案】D【解析】建立空间直角坐标系,利用向量夹角计算公式即可得出.7.【答案】B【解析】由椭圆的方程求出a,b,c的值,由此可得|PF1|+|PF2|=2a=2√17,再由已知可|QF1|=2√17,进而可以求解.8.【答案】设OP=x,由题意可得:Rt△OBP中,∠PBO=45∘;在Rt△OAP中,∠PAO=30∘,即可得出OB,OA.AB=×20=2.5.在△OAB中,利用余弦定理即可得出.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.【答案】B,C【解析】先判断命题p为真命题,然后利用含有一个量词的命题的否得到¬p,利用命题的否定与原命题的真假相反得到答案.10.【答案】B,C,D【解析】本题先设等差数列{a n}的公差为d,根据已知条件即可计算出d的值,判断选项B,然后根据通项公式计算出a5的值,判断选项A,再根据等差数列的求和公式计算出S2n的表达式,判断选项C,最后计算出等差数列{a n}的通项公式,进一步计算出数列{}的通项公式,运用裂项相消法计算出数列{}的前n项和,判断选项D.11.【答案】A,C,D【解析】根据基本不等式的性质分别判断A,B,C,根据二次函数的性质判断D即可.12.【答案】A,D【解析】设出点P的坐标,求出直线PA,PB的斜率的乘积,然后再设出直线PA,PB的方程,进而可以求出点C,D的横坐标,进而可以求出|CD|,即可求解.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.【答案】−6【解析】由题意利用两个向量垂直的性质,两个向量的数量积公式,计算求得m的值.14.【答案】215.【答案】8√1313【解析】由已知利用同角三角函数基本关系式可求sin C的值,进而根据正弦定理即可求解AB的值.16.【答案】3【解析】抛物线的准线为y=2,焦点F坐标为(0, −2),表示点P(m, n)与点F(0, −2)的距离与点P(m, n)与点A(2, −1)的距离之和,由抛物线的定义和两点之间线段最短可得最小值,进而可得结论.四、解答题.本大题共6小题,共70分,解答应写出文字说期、证时过程或演算步骤.17.【答案】解:(1)∵b2+c2−a2=58bc,∴cos A=b2+c2−a22bc =58bc2bc=516.(2)∵sin C=2sin B,∴c=2b.由余弦定理,得a2=b2+c2−2bc cos A=154b2,∴a=√152b.∵△ABC的周长为6+√15,∴3b+√152b=6+√15,解得b=2,∴S△ABC=12bc sin A=12×b×2b√1−(516)2=12×2×4×√23116=√2314.【解析】(1)由已知利用余弦定理即可求解cos A的值.(2)由已知利用正弦定理化简可得c=2b,由余弦定理得a=√152b,根据△ABC的周长,可求b的值,进而利用三角形的面积公式即可计算得解.18.(1)证明:在三棱柱ABC −A 1B 1C 1中,∵ BB 1=CC 1,BB 1//CC 1,E ,F 分别为侧棱BB 1,CC 1的中点, ∴ BE//FC 1,BE =FC 1,∴ 四边形BEC 1F 是平行四边形,∴ BF//EC 1 .∵ C 1E ⊂平面A 1C 1E ,BF ⊄平面A 1C 1E , ∴ BF//平面A 1C 1E .(2)解:以C 为坐标原点,CA →的方向为x 轴的正方向, 建立如图所示的空间直角坐标系C −xyz ,设BC =1,则A 1(2,0,2),C 1(0,0,2),E(0,1,1),B 1(0,1,2),C(0,0,0), C 1A 1→=(2,0,0),EC 1→=(0,−1,1) ,CB 1→=(0,1,2) . 设平面A 1C 1E 的法向量为n →=(x,y,z ),则{n →⋅C 1A 1→=2x =0,n →⋅EC 1→=−y +z =0,令y =1,得n →=(0,1,1),则sin <CB 1→⋅n →>=|cos <CB 1→⋅n →>|=3√5⋅√2=3√1010, 故B 1C 与平面A 1C 1E 所成角的正弦值为3√1010. 【解析】(1)推导出BE C 1F ,从而四边形BEC 1F 是平行四边形,进而BF // EC 1,由此能证明BF // 平面A 1C 1E .(2)以C 为原点,CA 为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系,利用向量法能求出B 1C 与平面A 1C 1E 所成角的正弦值. 19.【答案】解:(1)因为a 1=4,所以a n−2n=2+2(n−1)=2n,所以a n=2n+2n.(2)选①:a3−a2=48且a2>0;由题意,设数列{a n}的公比为q.由a3−a2=48,得4q2−4q=48,解得q=4或q=−3,又a2>0,所以q=4.所以a n=4×4n−1=4n,所以(3n−1)a n=(3n−1)4n,所以S n=2×4+5×42+⋯+(3n−1)×4n,4S n=2×42+5×43+⋯+(3n−1)×4n+1,两式相减,得−3S n=8+3(42+43+⋯+4n)−(3n−1)4n+1,+(1−3n)4n+1=(2−3n)4n+1−8,即−3S n=8+3×42−4n+11−4.所以S n=(3n−2)4n+1+83选②:a3=64且a4>0;由题意,设数列{a n}的公比为q.由a3=64,得4q2=64,解得q=±4,又a2>0,所以q=4.所以a n=4×4n−1=4n,所以(3n−1)a n=(3n−1)4n.所以S n=2×4+5×42+⋯+(3n−1)×4n,4S n=2×42+5×43+⋯+(3n−1)×4n+1,两式相减,得−3S n=8+3(42+43+⋯+4n)−(3n−1)4n+1,+(1−3n)4n+1=(2−3n)4n+1−8,即−3S n=8+3×42−4n+11−4所以S n=(3n−2)4n+1+8.3选③:a2021=16a2a2017;由题意,设数列{a n}的公比为q.由a2021=16a2a2017,得a2021=16a1a2018=64a2018,则q3=64,解得q=4,所以a n=4×4n−1=4n,所以(3n−1)a n=(3n−1)4n.所以S n=2×4+5×42+⋯+(3n−1)×4n,4S n=2×42+5×43+⋯+(3n−1)×4n+1,两式相减,得−3S n=8+3(42+43+⋯+4n)−(3n−1)4n+1,+(1−3n)4n+1=(2−3n)4n+1−8,即−3S n=8+3×42−4n+11−4.所以S n=(3n−2)4n+1+83(1)直接利用已知条件求出数列的通项公式,再得到{a n }的通项公式;(2)根据条件分别求出数列的通项公式,然后利用错位相减法,求出数列{(3n −1)a n }的前n 项和.20.【答案】(1)证明:∵ 四边形ACDE 为正方形,∴ AD ⊥CE .∵ 平面ABCDE ⊥平面CEFG ,平面ABCDE ∩平面CEFG =CE ,∴ AD ⊥平面FECG .又CF ⊂平面FECG ,∴ AD ⊥CF .(2)解:以C 为坐标原点,CD →的方向为x 轴的正方向,建立如图所示的空间直角坐标系C −xyz .∵ AB =BC =√5,AC =4, ∴ 点B 到AC 的距离为1,∴ G(0,0,4√2),F(4,4,4√2),B (−1,2,0),GF →=(4,4,0),BG →=(1,−2,4√2).设平面BFG 的一个法向量为n →=(x,y,z ),则n →⋅GF →=n →⋅BG →=0,即4x +4y =x −2y +4√2z =0,令y =4√2,得n →=(−4√2,4√2,3).取m →=(0,0,1)为平面ABCDE 的一个法向量,∴ cos ⟨m →,n →⟩=m →⋅n →|m →||n →|=3√73=3√7373, ∴ 平面BFG 与平面ABCDE 所成锐二面角的余弦值为3√7373.【解析】(1)由四边形ACDE 为正方形,可得AD ⊥CE ,再由面面垂直的性质可得AD ⊥平面FECG ,从而得到AD ⊥CF ;(2)以E 为坐标原点,建立空间直角坐标系A −xyz ,利用向量法能求出平面BFG 与平面ABCDE 所成锐二面角的余弦值.21.【答案】(1)解:∵ 双曲线x 23−y 2=1的右焦点为F (2,0),∴ p 2=2, 解得p =4,∴ C 的方程为y 2=8x ,其准线l 的方程为x =−2.(2)证明:由题意可知,直线AB 过点F 且斜率存在,设直线AB 的方程为y =k (x −2)(k ≠0),联立{y =k (x −2),y 2=8x,整理,得ky 2−8y −16k =0,则Δ=64+64k 2>0恒成立,y 1y 2=−16k k =−16,故y 1y 2为定值.由题意,得点N 在准线l 上,设点N (−2,m ),由k OA =k ON ,得y 1x 1=m −2, 又∵ y 2=−16y 1,∴ m =−2y 1x 1=−2y 1y 128=−16y 1=y 2,∴ BN//x 轴//AM .又∵ x 1≠x 2,|AM|≠|BN|,∴ 四边形AMNB 为梯形.【解析】(1)根据题意可得双曲线的右焦点为(2, 0),则,解得p ,进而可得C 的方程和准线l 的方程;(2)设直线AB 方程为y =k(x −2)(k ≠0),联立直线AB 与抛物线的方程得关于y 的一元二次方程,由韦达定理可得y 1∗y 2为定值;设点N 为(−2, m),由k OA =k ON ,推出可得m =y 2,进而可得BN // x 轴 // AM ,|AM|≠|BN ,即可得证.22.【答案】解:(1)依题意可知{e =c a =2√55,2c =8,a 2=b 2+c 2,解得a =2√5,c =4,故C 的方程为x 220+y 24=1.(2)依题意可设直线l 的方程为y =√3x +m .联立{y =√3x +m,x 220+y 24=1,整理得16x 2+10√3mx +5m 2−20=0,则Δ=300m2−64(5m2−20)>0,解得−8<m<8.设A(x1, y1),B(x2, y2),则x1+x2=−5√3m8,x1x2=5m2−2016,|AB|=√1+3√(x1+x2)2−4x1x2=√−5m2+3204,原点到直线l的距离d=√1+3=|m|2,则△AOB的面积S=12d⋅|AB|=12×|m|2×√−5m2+3204=√−5(m2−32)2+512016,当且仅当m2=32,即m=±4√2时,△AOB的面积有最大值2√5.【解析】(1)根据椭圆的离心率和焦距列方程组,解得a,b,c,进而可得椭圆的方程.(2)依题意可设直线l的方程为,联立直线l与椭圆的方程,得关于x的一元二次方程,可得△>0,解得−8<m<8.设A(x1, y1),B(x2, y2),由韦达定理可得x1+x2,x1x2,由点到直线的距离公式可得原点到直线l的距离d,再计算三角形AOB的面积最大值,即可.。
2020-2021学年人教版高二上册数学期末数学试卷(文科)带答案
2020-2021学年高二(上)期末数学试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若a<b<0,那么下列不等式中正确的是()A.ab<b2B.ab>a2C.1a <1bD.1a>1b2. 抛物线y=−4x2的准线方程为()A.y=−116B.y=116C.x=−1D.x=13. 下列求导结果正确的是()A.(cosπ6)′=−sinπ6B.(3x)′=x⋅3x−1C.(log2x)′=log2exD.(sin2x)′=cos2x4. 已知命题p:∃x0∈(1, +∞),使得;命题q:∀x∈R,2x2−3x+5> 0.那么下列命题为真命题的是()A.p∧qB.(¬p)∨qC.p∨(¬q)D.(¬p)∧(¬q)5. 已知在△ABC中,角A,B,C的对边分别为a,b,c.若,则B=()A. B. C. D.6. 若变量x,y满足约束条件,则z=2x+y的最小值为()A. B.6 C. D.47. 等比数列{a n}的前n项和为S n,若S2n=4(a1+a3+...+a2n−1)(n∈N∗),a1a2a3=−27,则a5=()A.81B.24C.−81D.−248. 已知a>0,b>0,且3a+2b=ab,则a+b的最小值为()A. B. C. D.9. 已知双曲线的一条渐近线平行于直线,且该双曲线的一个焦点在直线l上,则此双曲线的方程为()A. B. C. D.10. 若函数f(x)=e x−2ax2+1有两个不同的极值点,则实数a的取值范围是()A. B. C. D.二、选择题:(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多项是符合题目要求的,把正确答案的选项涂在答题卡上.全部选对的得5分,部分选对的得2分,有选错的得0分.))11. 已知在数列{a n}中,a5=4,其前n项和为S n,下列说法正确的是()A.若{a n}为等差数列,a2=1,则S10=45B.若{a n}为等比数列,a1=1,则a3=±2C.若{a n}为等差数列,则a1a9≤16D.若{a n}为等比数列,则a2+a8≥812. 已知曲线C:mx2+ny2=1,下列说法正确的是()A.若m=n>0,则C是圆,其半径为.B.若m>0,n=0,则C是两条直线.C.若n>m>0,则C是椭圆,其焦点在y轴上.D.若mn<0,则C是双曲线,其渐近线方程为.三、填空题(每题5分,满分20分,将答案填在答题纸上))13. 设等差数列{a n}的前n项和为S n,若2a5=a3+4,则S13=________.14. 设点P是曲线上的任意一点,曲线在点P处的切线的倾斜角为α,则α的取值范围是________.(用区间表示)15. 若△ABC的三边长分别为3,5,7,则该三角形的内切圆半径等于________.16. 设椭圆的左焦点为F,直线x=m与椭圆C相交于A,B两点.当△ABF的周长最大时,△ABF的面积为b2,则椭圆C的离心率e=________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.))17. 设命题p:实数x满足x2−4mx+3m2<0(m>0);命题q:实数x满足.若¬p是¬q的充分不必要条件,求实数m的取值范围.18. 已知数列{a n}的前n项和为S n,且2S n=3a n−3.(Ⅰ)求数列{a n}的通项公式;a n,,求数列{c n}的前n项和T n.(Ⅱ)设b n=log319. 已知函数f(x)=x3−2x2+x.(1)求曲线y=f(x)在点(−1, −4)处的切线方程;(2)求曲线y=f(x)过点(1, 0)的切线方程.20. 已知在△ABC中,角A,B,C的对边分别为a,b,c,且a+b+c=12.(Ⅰ)若a=2,b=5,求cos A的值;(Ⅱ)若sin A cos2=2sin C,且△ABC的面积为10sin C,试判断△ABC的形状并说明理由.21. 已知椭圆经过如下四个点中的三个,,P2(0, 1),,.(Ⅰ)求椭圆M的方程;(Ⅱ)设直线l与椭圆M交于A,B两点,且以线段AB为直径的圆经过椭圆M的右顶点C (A,B均不与点C重合),证明:直线l过定点.22. 已知函数f(x)=ln x+ax2+(2a+1)x+1.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当a<0时,证明:f(x)≤−−1.参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】利用不等式的基本性质即可判断出.2.【答案】B【解析】利用抛物线的标准方程及其性质即可得出.3.【答案】C【解析】根据基本初等函数和复合函数的求导公式对每个选项的函数求导即可.4.【答案】B【解析】根据条件判断命题p,q的真假,结合复合命题真假关系进行判断即可.5.【答案】A【解析】利用正弦定理以及同角三角函数的关系式,直接求角B的大小6.【答案】C【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.7.【答案】C【解析】设等比数列{a n}的公比为q,由S2n=4(a1+a3+...+a2n−1)(n∈N∗),令n=1,则S2=4a1,可得a2=3a1,根据a1a2a3=−27,可得a23=−27,解得a2.利用等比数列的通项公式即可得出.8.【答案】B【解析】将3a+2b=ab变形为,再由“乘1法”,即可得解.9.【答案】B【解析】根据渐近线的方程和焦点坐标,利用a、b、c的关系和条件列出方程求出a2、b2,代入双曲线的方程即可.10.【答案】C【解析】由导数与极值的关系知可转化为方程f′(x)=0在R上有两个不同根,结合函数的性质可求.二、选择题:(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多项是符合题目要求的,把正确答案的选项涂在答题卡上.全部选对的得5分,部分选对的得2分,有选错的得0分.)11.【答案】A,C【解析】对于A,利用等差数列通项公式列出方程组,求出a1=0,d=1,由此能求出S10;对于B,利用等比数列能通项公式求出q2=2,进而能求出a3;对于C,利用等差数列通项公式得a1+a9=2a5=8,当a1,a9一正一负时,a1a9≤16成立,当a1,a9均大于0时,则a1a9≤()2=16;对于D,{a n}为等比数列时,a2a8==16,当a2,a8均大于0时,a2+a8≥2=8,当a2,a8均小于0时,a2+a8=−(−a2−a8)≤−2=−(8)12.【答案】A,B,D【解析】通过m,n的取值,判断曲线的形状,即可判断选项.三、填空题(每题5分,满分20分,将答案填在答题纸上)13.【答案】52【解析】利用等差数列{a n}的通项公式列方程求得a1+6d=4,再由S13==13(a1+6d),能求出结果.14.【答案】【解析】求出原函数的导函数,利用配方法求得导函数的值域,再由直线的斜率等于倾斜角的正切值,即可求得曲线在点P处的切线的倾斜角α的范围.15.【答案】【解析】由已知结合余弦定理可求C,易得三角形的面积,所以内切圆半径满足关系:S=(a+b+c)r.16.【答案】【解析】判断三角形周长取得最大值时,求出m的值,利用三角形的面积,列出方程,求解椭圆的离心率即可.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【答案】由x2−4mx+5m2<0,得(x−m)(x−5m)<0,又m>0,所以m<x<3m,由,得0<4−x<5因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件.设A=(3, m)B=(2,则B是A的真子集,故或即.【解析】求出命题p,q为真命题的等价条件,根据¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件,进行转化求解即可.18.【答案】(1)当n=1时,2a6=2S1=2a1−1,∴a8=1当n≥2时,8a n=2S n−2S n−2=(3a n−3)−(8a n−1−3)即:,∴数列{a n}为以3为首项,4为公比的等比数列.∴(2)由(Ⅰ)知,a n=n,所以b n=log3故.即①所以②①②得所以.【解析】(Ⅰ)直接利用数列的递推关系式求出数列的通项公式;(Ⅱ)利用乘公比错位相减法的应用求出数列的和.19.【答案】解:(1)由题意得f′(x)=3x2−4x+1,∴f′(−1)=8,∴曲线y=f(x)在点(−1, −4)处的切线方程为y+4=8(x+1),即8x−y+4=0.(2)设切点为(x0, y0),∵切点在函数图象上,∴y0=x03−2x02+x0,故曲线在该点处的切线为y −(x 03−2x 02+x 0)=(3x 02−4x 0+1)(x −x 0).∵ 切线过点(1, 0),∴ 0−(x 03−2x 02+x 0)=(3x 02−4x 0+1)(1−x 0)即(x 0−1)2(2x 0−1)=0,解得x 0=1或x 0=12,当x 0=1时,切点为(1,0),∵ f ′(1)=0,∴ 切线方程为y −0=0⋅(x −1)即y =0.当x 0=12时,切点为(12,18), ∵ f ′(12)=−14, ∴ 切线方程为y −0=−14(x −1)即x +4y −1=0.综上可得,切线方程为y =0或x +4y −1=0.【解析】(Ⅰ)求出原函数的导函数,得到函数在x =−1处的导数,再由直线方程的点斜式得答案;(Ⅱ)设出切点坐标,得到函数在切点处的切线方程,代入已知点的坐标,求得切点坐标,进一步求解过点(1, 0)的切线方程.利用导数研究某一点的切线方程问题(含参问题).20.【答案】(1)∵ a +b +c =12,a =2,∴ c =5. ∴ -(2)∵ △ABC 为直角三角形,, ∴,即sin A +sin B +sin A cos B +cos A sin B =4sin C ,∴ sin A +sin B +sin (A +B)=4sin C ,∵ A +B +C =π,A +B =π−C .∴ sin A +sin B =3sin C ,由正弦定理得a +b =3c ,∵ a +b +c =12,可得8c =12.从而a +b =9.又∵ △ABC 的面积为10sin C ,∴.即ab=20,∴a=5,b=5,又∵c=6,可得cos B==,可得B为直角,∴△ABC为直角三角形.【解析】(1)由题意可求c的值,进而根据余弦定理即可求解cos A的值.(2)由已知利用三角函数恒等变换的应用化简已知等式可得sin A+sin B=3sin C,由正弦定理得a+b=3c,解得c,可得a+b=9,利用三角形的面积公式可求ab=20,解得a,b的值,即可判断得解.21.【答案】(1);由题意,点与点,根据椭圆的对称性且椭圆过其中的三个点可知,点和点,又因为点与点,即椭圆过点,P3(,),P7(0, 1),所以,且,故a6=4,b2=3,所以,椭圆M的方程为.(2)证明:直线l恒过点.由题意,可设直线AB的方程x=ky+m(m≠2),联立消去x2+4)y2+2kmy+m2−4=0,设A(x1, y8),B(x2, y2),则有,①又以线段AB为直径的圆过椭圆的右顶点C,∴,由,,得(x2−2)(x2−8)+y1y2=5,将x1=ky1+m,x6=ky2+m代入上式得,将①代入上式求得或m=2(舍),则直线l恒过点.【解析】(Ⅰ)由椭圆的对称性可得椭圆过点,,P2(0, 1),代入椭圆的方程,列方程组,解得a,b,进而可得椭圆的方程.(Ⅱ)设直线AB的方程x=ky+m(m≠2),A(x1, y1),B(x2, y2),联立直线AB与椭圆的方程可得关于y的一元二次方程,由韦达定理可得y1+y2,y1y2,由线段AB为直径的圆过椭圆的右顶点C,得,用坐标表示,可得m,进而可得答案.22.【答案】(1)因为f(x)=ln x+ax2+(2a+5)x+1,所以,当a≥7时,f′(x)≥0恒成立,+∞)上单调递增;当a<0时,令f′(x)>5,所以,令f′(x)<0,则2ax+2<0,所以f(x)的增区间为,减区间为.综上:当a≥3时,f(x)的增区间为(0;当a<0时,f(x)的增区间为.(2)证明:由(Ⅰ)知,当a<0时max=f(−),,令g(t)=ln t−t+3(t>0),则,令g′(t)>0,则5<t<1,则t>1,所以g(t)在(6, 1)上单调递增,+∞)上单调递减,故g(t)max=g(1)=0,所以ln t−t+3≤0又因为,所以则,从而,所以.【解析】(Ⅰ)对f(x)求得,对a分类讨论,利用导数与单调性的关系求解即可;(Ⅱ)由(Ⅰ)可知f(x)max=f(−),,令g(t)=ln t−t+1(t>0),利用导数可得g(t)的最大值为0,可得,从而可得.。
宁夏2020学年高二数学上学期期末考试试题文(含解析)
高二数学上学期期末考试试题 文(含解析)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|20}A x x x =--<,集合{|14}B x x =<<,则AB =( )A. {|12}x x <<B. {|24}x x <<C. {|11}x x -<<D. {|14}x x -<<【答案】D 【解析】 【分析】解集合A 得集合A 的解集,根据并集运算求解即可. 【详解】解不等式得集合{|12}A x x =-<< 集合{|14}B x x =<< 则{|14}A B x x ⋃=-<< 所以选D【点睛】本题考查了并集的基本运算,属于基础题. 2.命题“x R ∀∈,2240x x -+≤”的否定为( )A. 0x R ∃∈,200240x x -+>B. x R ∀∈,2240x x -+≥C. x R ∀∉,2240x x -+≤D. 0x R ∃∉,200240x x -+>【答案】A 【解析】 【分析】根据全称命题的否定是特称命题得到答案.【详解】命题“x R ∀∈,2240x x -+≤”的否定为:0x R ∃∈,200240x x -+>故选:A【点睛】本题考查了全称命题的否定,属于简单题. 3.抛物线24y x =的焦点到准线的距离为( )A. 2B. 1C.14D.18【答案】D 【解析】 由24y x =有214x y =,所以112,48p p ==,即抛物线的焦点到准线的距离为18,选D. 4.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A. 必要不充分条件 B. 充分不必要条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】根据必要不充分条件的判定方法,即可作差判定,得到答案.【详解】由题意可知,“攻破楼兰”不一定“返回家乡”,但“返回家乡”一定是“攻破流量”,所以“攻破楼兰”是“返回家乡”的必要不充分条件,故选A.【点睛】本题主要考查了充分条件和必要条件的定义及判定,其中解答中熟记充分条件和必要条件的定义,合理、准确盘判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A. 3 B. 4C. 5D. 6【答案】B 【解析】 【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1b a++1a b +=a b a b ab +++ =2()a b +≥ 4= .当且仅当1a b == 时,等号成立.故选B .【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.6.已知双曲线C :()222210,0x y a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ) A. 22145x y -=B. 2211210x y -=C. 22154x y -=D. 22143x y -= 【答案】A 【解析】 【分析】根据渐近线得到b a =,计算椭圆焦点得到答案.【详解】双曲线C :()222210,0x y a b a b -=>>的一条渐近线方程为y x =,故b a =221123x y +=的焦点为()3,0±,故2,a b == 故选:A【点睛】本题考查了双曲线的标准方程,渐近线知识,椭圆的焦点,意在考查学生的计算能力.7.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A. 58 B. 88C. 143D. 176【答案】B 【解析】 试题分析:等差数列前n项和公式1()2n n n a a s +=,481111111()11()111688222a a a a s ++⨯====.考点:数列前n 项和公式. 【此处有视频,请去附件查看】8.设a<b,函数2()()y x a x b=--的图象可能是( )A. B. C. D.【答案】C【解析】/()(32)y x a x a b=---,由/0y=得2,3a bx a x+==,∴当x a=时,y取极大值0,当23a bx+=时y取极小值且极小值为负.故选C.【此处有视频,请去附件查看】9.若x、y满足约束条件3020x yx yy+-<⎧⎪-≥⎨⎪≥⎩,则43z x y=-的最小值为()A. 0B. -1C. -2D. -3【答案】C【解析】【分析】画出可行解域,画出直线4:3l y x=,平移直线l,找到使直线4:33zl y x=-在y轴截距最大的点,把坐标代入即可求出43z x y=-的最小值.【详解】画出可行解域如下图:平移直线 04:3l y x =,当经过3020x y x y +-=⎧⎨-=⎩交点(1,2)A 时,直线4:33zl y x =- 在y 轴截距最大,即43z x y =-有最小值,最小值为2-,故本题选C . 【点睛】本题考查了线性规划问题,解决此类问题的关键是画出正确的可行解域. 10.若函数f(x)=x 3-2cx 2+x 有极值点,则实数c 的取值范围为A. 32⎫+∞⎪⎪⎣⎭ B. 33,22⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎦⎣⎭C. 3,2⎛⎫+∞ ⎪ ⎪⎝⎭D. 33,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】函数f(x)=x 3-2cx 2+x 有极值点,则'()f x 有两个不同的根,>0∆ ,得解.【详解】因为f(x)=x 3-2cx 2+x 有极值点,'()f x 值有正有负,所以2'()341f x x cx =-+=0有两个不同的根,()24120c ∆=->,解得:3322c -, 故选D .【点睛】本题考查了函数极值点的概念,抓住概念列不等式求解.11.已知抛物线y 2=2px (p >0)的焦点F 恰好是双曲线22221,(0,0)x y a b a b-=>>的右焦点,且两曲线的交点连线过点F ,则该双曲线的离心率为( )C. 1D. 1【答案】C 【解析】由题意可设两曲线的交点为(,)(,2)2p p c c ±∴±在双曲线22221x y a b-=上,即2222222222244122c c c b b ac c a ac a b b a-=⇒=⇒=⇒-=221011e e e e ⇒--=>∴=+ C.【此处有视频,请去附件查看】12.已知点(0,2)A ,抛物线C :2y ax =(0)a >的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若:FM MN =a 的值等于A. 4B.12C. 1D.14【答案】A 【解析】 【分析】根据抛物线的定义,可得出射线FA 的斜率,根据点斜式得出射线FA 的方程,令0y =求得焦点坐标,从而求得a 的值.【详解】根据抛物线的定义可知,FM 的值等于M 到准线的距离,故射线FA 的斜率为2=-,由于()0,2A ,故射线FA 的方程为22y x =-+,令0y =,解得1x =,故焦点坐标为()1,0F ,故1,44aa ==.所以选A. 【点睛】本小题主要考查抛物线定义,考查直线的方程以及抛物线标准方程的求法,属于中档题. 直线方程的常用形式有点斜式和斜截式,已知直线上一个点的坐标和直线的斜率,就可以求出直线的方程.抛物线的定义是动点到定点的距离等于到定直线的距离的点的轨迹,解有关抛物线的题目时,这个知识点是经常要利用上的. 二、填空题:(本大题共4小题,每小题5分.共20分) 13.函数2()ln f x x x =在点()1,0处的切线方程为___.【答案】10x y --= 【解析】 【分析】由题意,函数()f x 的导数为()f x ',得到()11k f '==,再由直线的点斜式方程,即可求解切线的方程.【详解】由题意,函数()2ln f x x x =的导数为()2ln f x x x x '=+,所以()11f '=,即函数()2ln f x x x =在点(1,0)处的切线的斜率为1k =,由直线的点斜式方程可知,切线的方程为1y x =-,即10x y --=.【点睛】本题主要考查了利用导数求解曲线在某点处的切线的方程,其中解答中根据导数四则运算的法则,正确求解函数的导数,得出曲线在某点处的切线的斜率,再利用点斜式求解切线的方程是解答的关键,着重考查了推理与运算能力,属于基础题.14.已知函数()2sin f x x x =-,当[]0,1x ∈时,函数()y f x =的最大值为_______ . 【答案】2sin1- 【解析】 【分析】对函数进行求导,判断单调性,求出函数的最大值.【详解】因为'()2cos 0f x x =->,所以函数()2sin f x x x =-是R 上增函数,故当[]0,1x ∈时,函数()y f x =的最大值为(1)2sin1f =-.【点睛】本题考查了利用导数判断函数的单调性,求函数的最大值问题.15.若双曲线22221x y a b-=的一条渐近线方程为y =,则其离心率为_________.【解析】【分析】根据渐近线计算得到ba=,再计算离心率得到答案. 【详解】双曲线22221x y a b-=的一条渐近线方程为y =故b c e a a ===【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力.16.若圆C :22(1)x y n ++=的圆心为椭圆M :221x my +=的一个焦点,且圆C 经过M 的另一个焦点,则nm=____. 【答案】8 【解析】211110(11)4,8.2nm n n m m-=∴=++=∴=∴= 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.17.斜率为1的直线l 经过抛物线2y x =的焦点,且与抛物线相交于A ,B 两点,求线段AB 的长. 【答案】2 【解析】 【分析】先计算抛物线的焦点和直线方程,联立方程利用韦达定理得到1232x x +=,12116x x ⋅=,再计算AB 得到答案.【详解】解:抛物线2y x =的焦点坐标1,04F ⎛⎫ ⎪⎝⎭,直线l 的方程为14y x =-, 设()11,A x y ,()22,B x y ,214y x y x ⎧=-⎪⎨⎪=⎩可得2310216x x -+=,>0∆,1232x x +=,12116x x ⋅=,12122AB x x =++=. 【点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力.18.设函数()365f x x x =-+,x ∈R ,求()f x 的单调区间和极值.【答案】单调增区间(,-∞,)+∞.单调减区间(.5y =极大值,5y =-极小值.【解析】 【分析】求导根据导数的正负得到单调区间,再计算极值得到答案.【详解】解:()2'36f x x =-,令()'0f x =得1x =2x =()'f x ,()f x 随x 的变化如下表:由上表知()y f x =的单调增区间(,-∞,)+∞.单调减区间(.(5y f ==极大值,5y f ==-极小值.【点睛】本题考查了利用导数求函数的单调区间和极值,属于常考题型,需要熟练掌握.19.已知椭圆()222210x y a b a b +=>>的离心率为2,且短轴长为2.(1)求椭圆的方程;(2)若直线l :y x m =+与椭圆交于A ,B 两点,O 为坐标原点,且23OA OB ⋅=,求ABO ∆的面积.【答案】(1)2212x y +=(2)23【解析】 【分析】(1)根据离心率和短轴长计算得到答案.(2)联立方程利用韦达定理得到21212422,33m m x x x x -+=-=,根据23OA OB ⋅=得到22m =,再计算1212AOB S m x x ∆=-得到答案. 【详解】(1)短轴长22b =,1b =,c e a ==,又222a b c =+,所以a =1c = 所以椭圆的方程为2212x y +=.(2)设()()1122,,,A x y B x y 联立方程2212x y y x m ⎧+=⎪⎨⎪=+⎩ 得到2234220x mx m ++-=故21212422,33m m x x x x -+=-=121223OA OB x x y y ⋅=+=,即234233m -=,即22m =.122132AOB S m x x ∆===-.【点睛】本题考查了椭圆方程,椭圆内面积问题,意在考查学生的计算能力和转化能力. 20.已知数列{}n a 是公差不为0的等差数列,首项11a =,且124,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足2n an n b a =+,求数列{}n b 的前n 项和n T【答案】(1)n a n =;(2)()11222n n n +++- 【解析】 【分析】(1)根据条件“124,,a a a 成等比数列”列关于公差的方程,解得结果,(2)根据分组求和法,将原数列的和分为等差与等比数列的和.【详解】(1)设数列{a n }的公差为d ,由已知得,a =a 1a 4, 即(1+d)2=1+3d ,解得d =0或d =1. 又d≠0,∴d=1,可得a n =n. (2)由(1)得b n =n +2n ,∴T n =(1+21)+(2+22)+(3+23)+…+(n +2n )=(1+2+3+…+n)+(2+22+23+…+2n )=()12n n ++2n +1-2.【点睛】本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和. 分组转化法求和的常见类型主要有分段型(如,2,n n n n a n ⎧=⎨⎩为奇数为偶数 ),符号型(如2(1)n n a n =- ),周期型 (如πsin3n n a = ) 21.已知函数()2x f x e x a =-+,x ∈R 的图像在点0x =处的切线为y bx =.(1)求函数()f x 的解析式;(2)当x ∈R 时,求证:()2f x x x ≥-+. 【答案】(1)()21x f x e x =--(2)见证明 【解析】【分析】(1)求导得到()2x f x e x a =-+,根据()()010'01f a f b ⎧=+=⎪⎨==⎪⎩解得答案. (2)令()()2g x f x x x =+-,求导得到()'10x g x e =-=,得到函数的单调区间,再计算()()min 00g x g ==得到证明.详解】(1)()2x f x e x a =-+,()'2xf x e x =-. 由已知()()010'01f a f b ⎧=+=⎪⎨==⎪⎩,解得11a b =-⎧⎨=⎩,故()21x f x e x =--. (2)令()()21xg x f x x x e x =+-=--,由()'10xg x e =-=得0x =. 当(),0x ∈-∞时,()'0g x <,()g x 单调递减;当()0,x ∈+∞时,()'0g x >,()g x 单调递增.∴()()min 00g x g ==,从而()2f x x x ≥-+. 【点睛】本题考查了根据切线求解析式,证明不等式,构造函数()()2g x f x x x =+-是解题的关键.22.已知函数()ln f x x x =.(1)求函数()y f x =的单调区间;(2)若函数()()g x f x ax =+在区间)2,e ⎡+∞⎣上为增函数,求实数a 的取值范围. 【答案】(1)见解析 (2)[)3,-+∞【解析】【分析】(1)求导得到()'ln 1f x x =+,根据导数的正负得到函数的单调区间.(2)求导()()''ln 1g x f x a x a =+=++单调递增,化简为1ln a x ≥--,设()ln 1h x x =--,求函数的最大值得到答案.【详解】(1)函数()y f x =的值域()0,x ∈+∞.()'ln 1f x x =+,令()'0f x =得1x e =, ()'f x ,()f x 随x 的变化情况如下表:故()y f x =的单调减区间为10,e ⎛⎫ ⎪⎝⎭,单调增区间为1,e ⎛⎫+∞ ⎪⎝⎭ (2)()()''ln 1g x f x a x a =+=++.∵函数()g x 在区间)2,e ⎡+∞⎣上为增函数, ∴当)2,x e ⎡∈+∞⎣时,()'0g x ≥,即ln 10x a ++≥在)2,e ⎡+∞⎣上恒成立. ∴1ln a x ≥--.令()ln 1h x x =--,∴()max a h x ≥,当)2,x e ⎡∈+∞⎣时,[)ln 2,x ∈+∞,∴()(],3h x ∈-∞-,∴3a ≥-, 即实数a 的取值范围是[)3,-+∞.【点睛】本题考查了函数的单调区间,根据单调性求参数,化简得到1ln a x ≥--是解题的关键.1、在最软入的时候,你会想起谁。
2020年高二数学上册期末考试试卷及答案
精选教育类应用文档,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!祝同学们期末考出好成绩!欢迎同学们下载,希望能帮助到你们!2020年高二数学上册期末考试试卷及答案试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知命题p:∀x∈R,sinx≤1,则( C)A.⌝p:∃x∈R,sinx≥1B.⌝p:∀x∈R,sinx≥1C.⌝p:∃x∈R,sinx>1 D.⌝p:∀x∈R,sinx>12.等差数列{a n}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( B).A.160 B.180 C.200 D.2203.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c.若a=3,b=4,∠C=60°,则c的值等于( C ).A.5 B.13 C.13D.374.若双曲线x2a 2-y2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( D)A.73B.54C.43D.535.在△ABC中,能使sinA>32成立的充分不必要条件是( C)A.A∈⎝⎛⎭⎪⎫0,π3B.A∈⎝⎛⎭⎪⎫π3,2π3C.A∈⎝⎛⎭⎪⎫π3,π2D.A∈⎝⎛⎭⎪⎫π2,5π66.△ABC中,如果Aatan=Bbtan=Cctan,那么△ABC是( B).A.直角三角形B.等边三角形C.等腰直角三角形D.钝角三角形7. 如图,PA⊥平面ABCD,四边形ABCD为正方形,E是CD的中点,F是AD上一点,当BF⊥PE 时,AF∶FD的值为( B)A.1∶2 B.1∶1 C.3∶1 D.2∶18.如图所示,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线A B1夹角的余弦值为( A)A.55B. 53C.255 D. 359.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( D ). A .(-∞,2] B .[2,+∞)C .[3,+∞)D .(-∞,3]10.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =kx +34分为面积相等的两部分,则k 的值是( A ).A .73B .37C .43D .3411.若关于x 的不等式2x 2-8x -4-a ≥0在1≤x ≤4内有解,则实数a 的取值范围是( A )A .a ≤-4B .a ≥-4C .a ≥-12D .a ≤-1212.定义域为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2(x -3)2,若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则a 的取值范围为 ( B )A. ⎝ ⎛⎭⎪⎪⎫0,22B. ⎝ ⎛⎭⎪⎪⎫0,33C. ⎝ ⎛⎭⎪⎪⎫0,55D.⎝ ⎛⎭⎪⎪⎫0,66解析 由于定义为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),得f (-1+2)=f (-1)-f (1)=0,即f (1)=0,故f (x +2)=f (x ),可知f (x )的周期T =2,图象以x =2为对称轴,作出f (x )的部分图象,如图,∵y =log a (x +1)的图象与f (x )的图象至少有三个交点,即有log a (2+1)>f (2)=-2且0<a <1,解得a ∈⎝ ⎛⎭⎪⎪⎫0,33。
吉林省吉林高二上期末数学试卷(文)(附答案解析)(2020届)
吉林省吉林高二(上)期末数学试卷(文科)一、选择题(共12个小题,每小题5分,合计60分,每题只有一个正确的选项!) 1.(5分)等差数列{a n }中,a 3=4,a 7=10,则a 6=( ) A .B .C .D .2.(5分)在△ABC 中,a=18,B=60°,C=75°,则b=( ) A .6B .9C .4D .93.(5分)不等式(x+5)(1﹣x )≥8的解集是( ) A .{x|x ≤1或x ≥﹣5} B .{x|x ≤﹣3或x ≥﹣1}C .{x|﹣5≤x <1}D .{x|﹣3≤x ≤﹣1}4.(5分)已知焦点在y 轴上,对称轴为坐标轴的椭圆,半短轴长为3,焦距为4,则该椭圆的标准方程为( ) A .B .C .D .5.(5分)等比数列{a n }中,a 1a 2a 3=3,a 10a 11a 12=24,则a 13a 14a 15=( ) A .48 B .72 C .144 D .1926.(5分)在△ABC 中,sin 2A+sin 2B+sinAsinB=sin 2C ,则角C 等于( ) A .30°B .60°C .120°D .150°7.(5分)已知x >0,y >0,且+=2,则x+y 的最小值为( ) A .6B .7C .8D .98.(5分)已知两定点F 1(0,﹣5),F 2(0,5),平面内动点 P 到F 1、F 2的距离之差的绝对值是6,则点P 的轨迹方程为( ) A .B .C .D .9.(5分)在△ABC 中,A=60°,AB=4,S △ABC =2,则BC 边等于( )A .2B .2C .D .310.(5分)已知数列{a n }满足a 1=1,a n+1=a n +2n ,则a 10=( ) A .1024B .1023C .2048D .204711.(5分)函数f (x )=2x 2﹣4lnx 的单调减区间为( )A.(﹣1,1)B.(1,+∞)C.(0,1) D.[﹣1,0)12.(5分)抛物线y=x2+bx+c在点(1,2)处的切线n的倾斜角是135度,则过点(b,c)且与切线n垂直的直线方程为()A.x﹣y+3=0 B.x﹣y+7=0 C.x﹣y﹣1=0 D.x﹣y﹣3=0二、填空题(共4个小题,每个小题5分,合计20分,要求:答案书写时规范、标准.)13.(5分)已知x、y满足约束条件,则z=2x+4y的最小值是.14.(5分)函数y=的定义域为R,则k的取值范围.15.(5分)已知点P到点F(0,1)的距离比它到直线y=﹣5的距离小4,若点P的轨迹与直线x﹣4y+2=0的交点为A、B,则线段AB的中点坐标为.16.(5分)函数f(x)=x3﹣x2﹣x+k的图象与x轴刚好有三个交点,则k的取值范围是.三、解答题(共6个小题,第17题10分,第18--22题,每小题10分,合计70分.要求:书写规范,步骤清晰,按步骤赋分,没有过程,不给评分)17.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2﹣a2=c(b﹣c),a=4,(1)若b=,求B;(2)若△ABC面积为4,求b与c的值.18.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=2a(1)求角B的大小.(2)若b=4,sinAcosB+cosAsinB=2sinA,求△ABC的面积.19.(12分)已知等差数列{an }中,a7=9,S7=42(1)求a15与S20(2)数列{cn }中cn=2n an,求数列{cn}的前n项和Tn.20.(12分)已知数列{an }的前n项和为Sn,若Sn=n2+5n.(1)证明数列{an}是等差数列;(2)求数列{}的前n项和Tn.21.(12分)已知椭圆的中心在原点,焦点在x轴上,离心率为,若抛物线y2=4x的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.且斜率为1,交椭圆于A、B两点,求弦长|AB|.(2)若直线m椭圆左焦点F122.(12分)已知函数f(x)=lnx+kx2+(2k+1)x(1)讨论f(x)的单调性;(2)当k<0时,证明f(x).2019-2020学年吉林省吉林高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(共12个小题,每小题5分,合计60分,每题只有一个正确的选项!) 1.(5分)等差数列{a n }中,a 3=4,a 7=10,则a 6=( ) A .B .C .D .【解答】解:∵等差数列{a n }中,a 3=4,a 7=10,∴,解得, ∴a 6=1+5×=.故选:C .2.(5分)在△ABC 中,a=18,B=60°,C=75°,则b=( ) A .6B .9C .4D .9【解答】解:∵在△ABC 中,a=18,B=60°,C=75°, ∴A=45°,由正弦定理=得:b===9,故选:C .3.(5分)不等式(x+5)(1﹣x )≥8的解集是( ) A .{x|x ≤1或x ≥﹣5} B .{x|x ≤﹣3或x ≥﹣1} C .{x|﹣5≤x <1} D .{x|﹣3≤x ≤﹣1}【解答】解:∵(x+5)(1﹣x )≥8, ∴(x+3)(x+1)≤0, 解得:﹣3≤x ≤﹣1, 故选:D .4.(5分)已知焦点在y 轴上,对称轴为坐标轴的椭圆,半短轴长为3,焦距为4,则该椭圆的标准方程为( ) A .B .C .D .【解答】解:根据题意,要求椭圆的半短轴长为3,焦距为4, 即b=3,2c=4, 解可得b=3,c=2; 则a==,又由椭圆的焦点在y 轴上,则椭圆的方程为+=1;故选:D .5.(5分)等比数列{a n }中,a 1a 2a 3=3,a 10a 11a 12=24,则a 13a 14a 15=( ) A .48 B .72 C .144 D .192【解答】解:设等比数列{a n }的公比为q ,∵a 1a 2a 3=3,a 10a 11a 12=24,∴(q 9)3==8,解得:q 9=2.则a 13a 14a 15=q 36•a 1a 2a 3=24×3=48, 故选:A .6.(5分)在△ABC 中,sin 2A+sin 2B+sinAsinB=sin 2C ,则角C 等于( ) A .30°B .60°C .120°D .150°【解答】解:∵sin 2A+sin 2B+sinAsinB=sin 2C , 由正弦定理可得,a 2+b 2+ab=c 2,由余弦定理可得,cosC===﹣,∴由C ∈(0°,180°),可得:C=120°. 故选:C .7.(5分)已知x >0,y >0,且+=2,则x+y 的最小值为( ) A .6B .7C .8D .9【解答】解:∵x >0,y >0,且+=2,∴+=1,∴x+y=(x+y )(+)=5++≥5+2=5+3=8,当且仅当y=3x=6时取等号.故选:C .8.(5分)已知两定点F 1(0,﹣5),F 2(0,5),平面内动点 P 到F 1、F 2的距离之差的绝对值是6,则点P 的轨迹方程为( ) A .B .C .D .【解答】解:根据题意,两定点F 1(0,﹣5),F 2(0,5),则|F 1F 2|=10, 若动点 P 到F 1、F 2的距离之差的绝对值是6,则有6<10,则P 的轨迹是以F 1(0,﹣5),F 2(0,5)为焦点的双曲线,其中c=5,a=3, 则b==4,则双曲线的方程为:﹣=1;故选:C .9.(5分)在△ABC 中,A=60°,AB=4,S △ABC =2,则BC 边等于( )A .2B .2C .D .3【解答】解:∵A=60°,AB=4,S △ABC =2=AB•AC•sinA=,∴AC=2,∴由余弦定理可得:BC===2.故选:B .10.(5分)已知数列{a n }满足a 1=1,a n+1=a n +2n ,则a 10=( )A .1024B .1023C .2048D .2047【解答】解:∵数列{a n }满足a 1=1,a n+1=a n +2n , ∴a n =a 1+(a 2﹣a 1)+…+(a n ﹣a n ﹣1)=1+21+22+…+2n ﹣1==2n ﹣1.(n ∈N *).∴a 10=210﹣1=1023. 故选B .11.(5分)函数f (x )=2x 2﹣4lnx 的单调减区间为( ) A .(﹣1,1) B .(1,+∞) C .(0,1) D .[﹣1,0) 【解答】解:f (x )的定义域是(0,+∞), f′(x )=4x ﹣=,令f′(x )<0,解得:0<x <1, 故选:C .12.(5分)抛物线y=x 2+bx+c 在点(1,2)处的切线n 的倾斜角是135度,则过点(b ,c )且与切线n 垂直的直线方程为( )A .x ﹣y+3=0B .x ﹣y+7=0C .x ﹣y ﹣1=0D .x ﹣y ﹣3=0 【解答】解:令f (x )=x 2+bx+c ,则f′(x )=2x+b , ∴f (x )在(1,2)处的切线斜率为k=f′(1)=2+b , ∴2+b=tan135°=﹣1, ∴b=﹣3.又f (x )过点(1,2),∴1﹣3+c=2,即c=4. ∴过(﹣3,4)且与n 垂直的直线方程为: y ﹣4=x+3,即x ﹣y+7=0. 故选B .二、填空题(共4个小题,每个小题5分,合计20分,要求:答案书写时规范、标准.)13.(5分)已知x、y满足约束条件,则z=2x+4y的最小值是﹣6 .【解答】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最小,此时z最小,由,解得,即A(3,﹣3),此时z=2×3+4×(﹣3)=﹣6,故答案为:﹣6.14.(5分)函数y=的定义域为R,则k的取值范围[0,2] .【解答】解:要使函数y=的定义域为R,则kx2﹣4kx+6≥0对任意x∈R恒成立.当k=0时,不等式化为6≥0恒成立;当k≠0时,则,解得0<k≤2.综上,k的取值范围是[0,2].故答案为:[0,2].15.(5分)已知点P 到点F (0,1)的距离比它到直线y=﹣5的距离小4,若点P 的轨迹与直线x ﹣4y+2=0的交点为A 、B ,则线段AB 的中点坐标为 (,) . 【解答】解:∵点P 到F (0,1)的距离比它到直线y=﹣5的距离小4, ∴点P 在直线l 的上方,点P 到F (0,1)的距离与它到直线y=﹣1的距离相等 ∴点M 的轨迹C 是以F 为焦点,y=﹣1为准线的抛物线, ∴曲线C 的方程为x 2=4y ,设A (x 1,y 1),B (x 2,y 2),AB 的中点为(x 0,y 0) 将直线x ﹣4y+2=0代入x 2=4y ,可得x 2=x+2, 解得x 1=2或x 2=﹣1, 则y 1=1或y 2=,∴x 0=(2﹣1)=,y 0=(1+)=, ∴AB 的中点为(,),故答案为:(,)16.(5分)函数f (x )=x 3﹣x 2﹣x+k 的图象与x 轴刚好有三个交点,则k 的取值范围是 (﹣,1) .【解答】解:f′(x )=3x 2﹣2x ﹣1, 令f′(x )=0得x=﹣或x=1,∴当x <﹣或x >1时,f′(x )>0,当﹣<x <1时,f′(x )<0,∴f (x )在(﹣∞,﹣)上单调递增,在(﹣,1)上单调递减,在(1,+∞)上单调递增, ∴当x=﹣时,f (x )取得极大值f (﹣)=+k ,当x=1时,f (x )取得极小值f (1)=k﹣1.∵f (x )的图象与x 轴刚好有三个交点,∴,解得:﹣<k<1.故答案为:(﹣,1).三、解答题(共6个小题,第17题10分,第18--22题,每小题10分,合计70分.要求:书写规范,步骤清晰,按步骤赋分,没有过程,不给评分)17.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b2﹣a2=c(b﹣c),a=4,(1)若b=,求B;(2)若△ABC面积为4,求b与c的值.【解答】解:(1)由b2﹣a2=c•(b﹣c)得:a2=b2+c2﹣bc根据余弦定理:a2=b2+c2﹣2bccosA得:又:△ABC中,0°<A<180°,则A=60,由正弦定理:结合解出:又:△ABC中,0°<B<180°﹣60°,则B=45,(2)由a=4,A=60°写出余弦定理:a2=b2+c2﹣2bccosA得:b2+c2﹣bc=16①再由面积公式:及已知得:bc=16②联立①②,且b>0,c>0解得:b=4,c=4.18.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=2a(1)求角B的大小.(2)若b=4,sinAcosB+cosAsinB=2sinA,求△ABC的面积.【解答】解:(1)化为:,由正弦定理,得:,又三角形中,sinA>0,化简,得:即:,又:△ABC中,0°<B<180°,得:B=60°;(2)把sinAcosB+cosAsinB=2sinA化为:sin(A+B)=2sinA,由三角形内角和定理A+B+C=180°,得:sin(A+B)=sinC=2sinA,根据正弦定理,得:c=2a,又,结合余弦定理:b2=a2+c2﹣2accosB,即为48=5a2﹣4a2•,解得:a=4,c=8,由面积公式:=×4×8×,得:.19.(12分)已知等差数列{an }中,a7=9,S7=42(1)求a15与S20(2)数列{cn }中cn=2n an,求数列{cn}的前n项和Tn.【解答】解:(1)设等差数列{an }的公差为d,则由a7=9,S7=42联立:,解得:,则数列的通项公式为:an=n+2∴.(2)由(1)知:,则:①∴②,①﹣②得:,,﹣﹣(n+2)•2n+1,整理得:.20.(12分)已知数列{a n }的前n 项和为S n ,若S n =n 2+5n .(1)证明数列{a n }是等差数列;(2)求数列{}的前n 项和T n .【解答】证明:(1)当n=1时,S 1=1+5=6=a 1当n ≥2时,化简,得:a n =2n+4检验,n=1时,代入上式符合. 则;解:(2)由题意知:=,=,解得:.21.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为,若抛物线y 2=4x 的焦点与椭圆一个焦点重合.(1)求椭圆的标准方程.(2)若直线m 椭圆左焦点F 1且斜率为1,交椭圆于A 、B 两点,求弦长|AB|.【解答】解:(1)由题意,设所求椭圆标准方程为:,焦点距为2c ∵抛物线y 2=4x 的焦点为F (1,0),∴c=1,又离心率, 则: 再由b 2=a 2﹣c 2得:b 2=4;所求椭圆标准方程为:,(﹣1,0),直线m的方程为:y﹣0=1(x+1)即y=x+1(2)由(1)知,左焦点为F1联立:消去y得:9x2+10x﹣15=0,则,由弦长公式|AB|=•=•=22.(12分)已知函数f(x)=lnx+kx2+(2k+1)x(1)讨论f(x)的单调性;(2)当k<0时,证明f(x).【解答】(1)解:,化为:,由于原函数定义域为(0,+∞).∴k≥0时,f'(x)>0恒成立,则原函数在定义域内为单调增函数.当k<0时,令f'(x)=0有正数解:;∴在区间上时,f'(x)<0,此时,原函数为减函数.在区间上时,f'(x)>0,此时,原函数为增函数.综上:k≥0时,原函数为增函数,增区间为(0,+∞),k<0时,原函数的增区间为:减区间为:.(2)证明:由(1)知,当k<0时,在时,原函数有极大值,且为最大值.要证明,只需证明:,作差:=,设:,则:,令:ϕ'(t)=0,解得:t=1,且t>1时,ϕ'(t)<0,原函数为减函数,t<1时,ϕ'(t)>0,原函数为增函数,则:ϕ(1)=ln1﹣1+1=0为函数最大值,∴,即.。
2020学年高二上学期数学(文)期末考试卷(详解)(精编版)——精品文档
222y 223x 4932239492x 72y47272572020学年高二上学期数学(文)期末考试卷(精编版)一、选择题(每小题5分,共50分,把每小题的答案对应选项填涂在答题卡上) 1.已知数列{a n }是等比数列,若a 1·a 5 = 9,则a 3= ( )A .±3B .-3C .3D .32.①某高校为了解学生家庭经济收入情况,从来自城镇的150名学生和来自农村的150名学生中抽取100名学生的样本;②某车间主任从100件产品中抽取10件样本进行产品质量检验。
I .随机抽样法;II .分层抽样法. 上述两问题和两方法配对正确的是( ) A .①配I ,②配IIB .①配II ,②配IC .①配Ⅰ,②配1D .①配11,②配II3.己知 - = l 的渐近线方程是 ( ) A .y = ± xB .y = ± xC .y =± xD .y =± x4.下列有关命题的说法错误的是( )A .命题:若x 2-3x +2=0则x =1的逆否命题为:若x ≠ l ,则x 2-3x +2≠0 B .x = 1是x 2-3x +2=0的充分不必要条件 C .若P ∧g 为假命题,则p,q 均为假命题D .对于命题p :要∃x ∈R,使得x 2+ x +1< 0,则-P :∀x ∈R,均有x 2+x +l≥05.已知圆x 2+y 2=1 则y -x 的最大值 ( ) A .1B .2C .2D .36.下图是2007年在广州举行的全国少数民族运动会上,七位评委 为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一 个最低分后,所剩数据的平均数和方差分别为( ) A .84,4.84B .84,1.6C .85,1.6D .85,47.F 1,F 2是椭圆 + =1的两个焦点,A 为椭圆上一点,且∠F 1AF 2= 90°,则⊿AF 1F 2的面积为 ( ) A .7B .C .D .212132y 214161201⎪⎭⎫⎝⎛1,21()2,1()2,28.“m = ”是“直线(m +2)x +3my +1= 0与直线(m -2)x + (m +2)y -3= 0相互垂直”的 ( )。
2020-2021学年湖北省高二(上)期末数学试卷(附答案详解)
2020-2021学年湖北省高二(上)期末数学试卷一、单选题(本大题共8小题,共40.0分)1.若直线l的斜率为−√3,则直线l的倾斜角为()A. 30°B. 60°C. 120°D. 150°2.若等差数列{a n}满足a1+a3=4,a5+a7=−4,则等差数列{a n}的公差d=()A. 2B. 1C. 0D. −13.已知a=20.3,b=0.32,c=log0.32,则()A. b<c<aB. b<a<cC. c<a<bD. c<b<a4.将全班50名同学排成一列,则甲在乙的前面,且丙在乙的后面的概率是()A. 12B. 16C. 13D. 3505.已知数列{a n}的前n项和为S n,若3S n=2a n−1,则a1a3a5=()A. 8B. −8C. 64D. −646.1766年,德国有一位名叫提丢斯的中学数学老师,把数列0,3,6,12,24,48,96,……经过一定的规律变化,得到新数列:0.4,0.7,1,1.6,2.8,5.2,10,……,科学家发现,新数列的各项恰好为太阳系行星与太阳的平均距离,并据此发现了“天王星”、“谷神星”等行星,这个新数列就是著名的“提丢斯−波得定则”.根据规律,新数列的第8项为()A. 14.8B. 19.2C. 19.6D. 20.47.已知抛物线C:x2=2py(p>0)的焦点是F,A,B,D是抛物线C上的点.若△ABD的重心是点(2,3),且|AF|+|BF|+|DF|=15,则p=()A. 4B. 6C. 8D. 128.已知圆M:x2+y2+2x=0,点P是曲线C:y=1x+1(x>−1)上的动点,过点P 作圆M的切线PA,PB,切点为A,B,当四边形PAMB的面积最小时,线段AB 的长为()A. √2B. √3C. 12D. 1二、多选题(本大题共4小题,共20.0分)9.已知直线l:x−ay+1=0(a∈R),则下列说法正确的是()A. 直线l过定点(−1,0)B. 直线l一定不与坐标轴垂直C. 直线l与直线l′:−x+ay+m=0(m∈R)一定平行D. 直线l与直线l′:ax+y+m=0(m∈R)一定垂直10.已知正数x,y满足x+y=2,则下列结论正确的是()A. xy的最大值是1B. 1x +1y的最小值是2C. x2+y2的最小值是4D. 1x +4y的最小值是9211.已知函数f(x)=|√3sin(2x−π6)|,则下列结论正确的是()A. 函数f(x)的最小正周期为πB. 函数f(x)的最大值为√3C. 函数f(x)的图象关于点(π12,0)对称D. 函数f(x)的图象关于直线x=7π12对称12.设数列{a n}、{b n}的前n项和分别为S n、T n,S1=1,S n+1=n+2n S n,且b n=a n+12a n a n+2,则下列结论正确的是()A. a2020=2020B. S n=n(n+1)2C. b n=1−1n(n+2)D. 13≤T n−n<34三、单空题(本大题共4小题,共20.0分)13.已知向量a⃗=(1,−1),b⃗ =(−2,t),若a⃗//b⃗ ,则a⃗⋅b⃗ =______ .14.若方程x2+y2+2ax−2√5y+12a−15=0表示圆,则实数a的取值范围是______ .15.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的离心率为e,直线l:y=x与双曲线C交于M,N两点,若|MN|=√2b,则e的值是______ .16.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36°按35计算,则棱长为6的正二十面体的外接球半径等于______ .四、解答题(本大题共6小题,共70.0分)17.①2bsinA=atanB;②a2+c2+bc−6b=2accosB;③sin2B−sin2C=sinB+sinC4,在这三个条件中任选一个,补充在下面问题中的横线上,并加以解答.在△ABC中,内角A,B,C的对边分别是a,b,c,若a=4,A=π6,且______,求△ABC的面积.18.已知正项数列{a n}的前n项和为S n.若a2=4,S n+1=S n+√a n+1+a n+√a n.(1)求证:数列{√a n}是等差数列;(2)设b n=a a,求数列{b n}的前n项和T n.19.已知α∈(0,π),a⃗=(−1,cos(π2−α)),b⃗ =(sin(3π2+α),1),且a⃗⋅b⃗ =15.(1)求sinα−cosα的值;(2)若β∈(π,2π),tan(α−β)=7,求β的值.20.已知直线l的斜率为−2,且与两坐标轴的正半轴围成的三角形的面积等于1.圆C的圆心在直线l上,且被x轴截得的弦长为4.(1)求直线l的方程;(2)若直线l′:x−2y−1=0与圆C相切,求圆C的方程.21.如图,在四棱锥S−ABCD中,平面SAD⊥平面ABCD,∠ASD=∠ADC=∠BCD=90°,AD.SA=SD且BC=DC=12(1)求证:SC⊥BD;(2)若点M是线段SD的中点,求二面角M−AB−D的余弦值.22.设曲线C:mx2+ny2=1(m>0,n>0)过M(2,3),N(2√2,√6)两点,直线l:y=k(x−2)与曲线C交于P,Q两点,与直线x=8交于点R.(1)求曲线C的方程;(2)记直线MP,MQ,MR的斜率分别为k1,k2,k3,求证:k1+k2=λk3,其中λ为定值.答案和解析1.【答案】C【解析】解:设直线l的倾斜角为α(0≤α<π),∵l的斜率为−√3,∴tanα=−√3,又∵0≤α<π,∴α=120°;故选:C.由直线l的倾斜角α与斜率k的关系:当α≠90°时,斜率k=tanα,当α=90°时,斜率k不存在,求出α的范围.本题考查了利用直线的斜率求倾斜角的问题,是基础题.2.【答案】D【解析】解:∵等差数列{a n}满足a1+a3=4,a5+a7=−4,∴(a5+a7)−(a1+a3)=(a1+a3+8d)−(a1+a3)=8d=−8,解得d=−1.故选:D.利用等差数列通项公式直接求解.本题考查等差数列的公差的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.3.【答案】D【解析】【分析】本题考查三个数的大小的判断,考查对数函数、指数函数的单调性等基础知识,考查运算求解能力,是基础题.利用对数函数、指数函数的单调性直接求解.【解答】解:∵a=20.3>20=1,0<b=0.32<0.30=1,c=log0.32<log0.31=0,∴c<b<a.故选:D.4.【答案】B【解析】解:可以不考虑其他人,则甲、乙、丙三人的不同排法有:(甲,乙,丙),(甲,丙,乙),(乙,丙,甲),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共6种,其中甲在乙的前面,且丙在乙的后面的排法只有1种,.故甲在乙的前面,且丙在乙的后面的概率是p=16故选:B.可以不考虑其他人,利用列举法求出甲、乙、丙三人的不同排法有6种,其中甲在乙的前面,且丙在乙的后面的排法只有1种,由此能求出甲在乙的前面,且丙在乙的后面的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.5.【答案】D【解析】解:当n=1时,3S1=3a1=2a1−1,解得a1=−1,当n≥2时,3S n=2a n−1,3S n−1=2a n−1−1,=−2,两式相减得3a n=2a n−2a n−1,即a na n−1∴a n=−(−2)n−1,a3=−4,a5=−16,∴a1a3a5=a33=−64,故选:D.利用数列的递推关系式求解首项,然后求解通项公式,即可求解a1a3a5.本题考查数列的递推关系式的应用,通项公式的求法,考查转化首项以及计算能力,是中档题.6.【答案】C【解析】解:观察两组数列0,3,6,12,24,48,96,……,0.4,0.7,1,1.6,2.8,5.2,10,……,发现规律是将原数列的每一项加4,再除以10,故第8项为(96×2+4)÷10=19.6.故选:C.利用两组数列,观察它们之间的关系,寻找到规律为将原数列的每一项加4,再除以10,求解即可.本题考查了推理的运用,解题的关键是寻找到两个数列之间的关系,属于基础题.7.【答案】A【解析】解:设A,B,D的坐标分别为(x1,y1),(x2,y2),(x3,y3),=3,由△ABD的重心是点(2,3)得y1+y2+y33p=15,解得p=4,由抛物线的定义可知|AF|+|BF|+|DF|=y1+y2+y3+32故选:A.设A,B,D的坐标分别为(x1,y1),(x2,y2),(x3,y3),利用重心坐标公式,结合抛物线的性质,求解p即可.本题考查抛物线的简单性质,三角形的重心坐标公式的应用,是基础题.8.【答案】A【解析】解:由x2+y2+2x=0,得(x+1)2+y2=1,则M(−1,0),半径为1,)(a>−1),则|PM|2=(a+1)2+设P(a,1a+11≥2,(a+1)2当且仅当(a+1)2=1,即a=0时上式取等号,∴S=|PA|⋅|AM|=|PA|=√|PM|2−|AM|2=√|PM|2−1≥1,四边形PAMB当且仅当|PM|=√2时取等号,此时P为(0,1),四边形PAMB是正方形,故|AB|=√2,故选:A.由题意画出图形,求出曲线C上的点到点M的最小值,写出四边形PAMB的面积,可知当四边形PAMB为正方形时,面积最小,由此求得线段AB的长.本题考查圆与圆锥曲线的综合,训练了利用基本不等式求最值,考查运算求解能力,是中档题.9.【答案】AD【解析】解:对于A:由于直线l:x−ay+1=0(a∈R),−1−a×0+1=0,故A 正确;对于B:当a=0时,直线l与x轴垂直,故B错误;对于C:当m=−1时,两直线重合,故C错误;对于D:因为1×a+1×(−a)=0,故直线l与直线l′一定垂直,故D正确.故选:AD.直接利用直线间的位置关系和直线平行和垂直的充要条件的应用判断A、B、C、D的结论.本题考查的知识要点:直线与直线的位置关系,直线平行的充要条件和垂直的充要条件的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.10.【答案】ABD【解析】解:由x+y=2,得2≥2√xy,所以xy≤1(当且仅当x=y=1时取等号),故A正确;1 x +1y=x+yxy=2xy≥2(当且仅当x=y=1时取等号)故B正确;∵2(x2+y2)≥(x+y)2=4,∴x2+y2≥2(当且仅当x=y=1时取等号),故C错误;1 x +4y=12(1x+4y)(x+y)=12(5+yx+4xy)≥92(当且仅当x=23,y=43时取等号),故D正确.故选:ABD.由基本不等式及其结论分别检验各选项即可判断.本题主要考查了基本不等式及相关结论的应用,解题的关键是公式的灵活利用,属于基础题.11.【答案】BD【解析】解:由题意,将g(x)=√3sin(2x −π6)在x 轴下方的图象沿x 轴翻折(x 轴上方的图象不变),可以得到函数f(x)的图象,对于A :函数f(x)的最小正周期为:g(x)=√3sin(2x −π6)的周期的一半, 即函数g(x)的周期T =2π2=π的一半为π2,故A 错误;对于B :根据函数的性质,函数f(x)的最大值为√3,故B 正确;对于C :由于函数进行了翻折,函数f(x)的图象不是中心对称图形,故C 错误, 对于D :由于f(7π12)=0,得D 正确. 故选:BD .直接利用三角函数的性质和函数的关系式的应用判断A 、B 、C 、D 的结果.本题考查的知识要点:三角函数的关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.12.【答案】ABD【解析】解:由题意得,S n+1S n=n+2n,∴当n ≥2时,S n =S nSn−1⋅S n−1S n−2…S 2S 1⋅S 1=n+1n−1⋅n n−2 (31)⋅1=n⋅(n+1)2,当且当n =1时也成立, ∴S n =n(n+1)2,易得a n =n , ∴a 2020=2020, 故A ,B 正确;∴b n =(n+1)2n(n+2)=1+1n(n+2)=1+12(1n −1n+2),∴T n =n +12(1−13+12−14+13−15+⋯+1n−1−1n+1+1n −1n+2)=n +12(1+12−1n+1−1n+2)=n +34−12(1n+1+1n+2)<n +34, 又T n −n 随着n 的增加而增加,∴T n −n ≥T 1−1=13,∴13≤T n −n <34,C 错误,D 正确,故选:ABD .直接利用叠乘法的应用求出数列的通项公式,进一步利用裂项相消法的应用求出数列的和,进一步判断A 、B 、C 、D 的结论.本题考查的知识要点:数列的递推关系式,叠乘法的应用,裂项相消法在求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.13.【答案】−4【解析】解:由向量a ⃗ =(1,−1),b ⃗ =(−2,t),a ⃗ //b ⃗ 得t =2, 故a ⃗ ⋅b ⃗ =1×(−2)+(−1)×2=−4. 故答案为:−4.通过向量平行,求解t ,然后求解向量的数量积即可.本题考查平面向量的数量积的应用,平行的共线添加的应用,是基础题.14.【答案】(−∞,2)∪(10,+∞)【解析】解:由题意得,a 2−12a +20>0, 解得a <2或a >10.则实数a 的取值范围是:(−∞,2)∪(10,+∞). 故答案是:(−∞,2)∪(10,+∞).利用圆的一般式方程,D 2+E 2−4F >0即可求出a 的范围. 本题考查圆的一般式方程的应用,不等式的解法,考查计算能力.15.【答案】√6【解析】解:不妨设点M(x,y)在第一象限,联立{x 2a 2−y 2b 2=1y =x ,得x 2=y 2=a 2b 2b −a ,又|MN|=√2b ,∴x2+y2=b22,则2a2b2b2−a2=b22,整理得b2=5a2,所以e=√1+b2a2=√6.故答案为:√6.联立直线与双曲线方程,求解|MN|,然后推出椭圆的离心率即可.本题考查双曲线的简单性质的应用,考查转化思想以及计算能力,是基础题.16.【答案】18√1111【解析】解:由图,正二十面体的外接球即为上方正五棱锥的外接球,设其半径为R,正五边形的外接圆半径为r,则3r =sin360=35,得r=5,所以正五棱锥的顶点到底面的距离是√36−25=√11,所以R2=25+(R−√11)2,解得R=18√1111.故答案为:18√1111.根据条件得到3r =sin360=35,得r=5,进而求得球半径即可.本题考查球的半径的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.17.【答案】解:选择①:∵2bsinA=atanB,∴2bsinA=asinBcosB,由正弦定理可得2sinBsinA=sinAsinBcosB,∵sinA≠0,sinB≠0,∴cosB=12,∵B∈(0,π),∴B=π3,C=π2,∵asinA =bsinB,可得412=√32,解得b=4√3,∴S=12absinC=12×4×4√3×1=8√3.选择②:∵a2+c2+bc−6b=2accosB,∴a2+c2+bc−6b=2ac×a2+c2−b22ac,∴b+c=6,又∵a2=b2+c2−2bccosA,∴16=(b+c)2−2bc−√3bc,∴bc=20(2−√3),∴S=12bcsinA=12×20(2−√3)×12=5(2−√3).选择③:∵sin2B−sin2C=sinB+sinC4,∴sinB−sinC=14=12sinA,∴b−c=12a=2,又∵a2=b2+c2−2bccosA,∴16=(b−c)2+2bc−√3bc,∴bc=12(2+√3),∴S=12bcsinA=12×12(2+√3)×12=3(2+√3).【解析】选择①:利用同角三角函数基本关系式,正弦定理化简已知等式,结合sinA≠0,sinB≠0,可求cos B的值,结合B∈(0,π),可求B,C的值,利用正弦定理可求b的值,根据三角形的面积公式即可求解.选择②:由已知利用余弦定理可求bc的值,进而根据三角形的面积公式即可求解.选择③:利用正弦定理化简已知等式可得b−c=12a=2,进而根据余弦定理可求bc的值,根据三角形的面积公式即可计算得解.本题主要考查了同角三角函数基本关系式,正弦定理,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】解:(1)由题意得,S n+1−S n=√a n+1+a n+√a n,则a n+1−a n=√a n+1+√a n,∴√a n+1−√a n=1,由√a2=2可得√a1=1,∴数列{√a n}是首项为1,公差为1的等差数列.(2)由(1)可得√a n=n,∴a n=n2,依题意,b n =a a =2n(n+1)=2(1n −1n+1), ∴T n =2(1−12+12−13+⋯+1n−1n+1)=2(1−1n+1)=2nn+1.【解析】(1)利用数列的递推关系式推出√a n+1−√a n =1,然后判断数列{√a n }是首项为1,公差为1的等差数列.(2)化简b n =a a =2(1n −1n+1),利用裂项消项法,求解数列的和即可.本题考查数列的递推关系式的应用,通项公式的求法,数列求和的方法,考查综合化思想以及计算能力,是中档题.19.【答案】解:(1)由题意得,a ⃗ =(−1,sinα),b ⃗ =(−cosα,1),∴a ⃗ ⋅b ⃗ =sinα+cosα=15,∴1+2sinαcosα=125, ∴2sinαcosα=−2425<0,∴(sinα−cosα)2=1−2sinαcosα=4925, 又∵α∈(0,π), ∴sinα>0,cosα<0, ∴sinα−cosα=75;(2)联立{sinα+cosα=15sinα−cosα=75,解得{sinα=45cosα=−35,∴tanα=sinαcosα=−43, ∴tan(α−β)=tanα−tanβ1+tanαtanβ=7,即−43−tanβ1−43tanβ=7,解得tanβ=1, 又∵β∈(π,2π), ∴β=5π4.【解析】(1)由已知条件求得a ⃗ 、b ⃗ ,然后代入a⃗ ⋅b ⃗ =15求得2sinαcosα=−2425<0,再利用完全平方公式求得(sinα−cosα)2=1−2sinαcosα=4925,结合角的取值范围对所求的结果进行取舍即可;(2)联立方程组并解答求得{sinα=45cosα=−35,然后利用两角和与差的正切三角函数解答.本题考查两角和与差的三角函数,考查计算能力.20.【答案】解:(1)设所求的直线l 的方程为y =−2x +b(b >0),它与两坐标轴的正半轴的交点依次为(0,b),(b2,0),因为直线l 与两坐标轴的正半轴所围成的三角形的面积等于1, 所以12b ×b2=1,解得b =2,所以直线l 的方程是y =−2x +2,即2x +y −2=0. (2)由题意,可设圆C 的圆心为C(a,2−2a),半径为r , 所以圆心C 到直线l′:x −2y −1=0的距离,d =5=√5|a −1|=r ,又圆C 被x 轴截得的弦长等于4, 所以r 2−(2−2a)2=4, 所以5(a −1)2=4+(2−2a)2, 解得:a =−1或a =3,当a =−1时,圆心C(−1,4),r =2√5; 当a =3时,圆心C(3,−4),r =2√5;所以圆C 的方程是(x +1)2+(y −4)2=20或(x −3)2+(y +4)2=20.【解析】(1)设所求的直线l 的方程为y =−2x +b(b >0),由坐标与图形的性质和三角形的面积公式求得b 的值即可;(2)利用圆的圆心到直线的距离与半径相等,列出方程求解即可. 本题考查圆的切线方程,直线与圆的位置关系的应用,考查计算能力.21.【答案】(1)证明:过点S 作SO ⊥AD ,垂足为O ,连接OB ,OC .∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,∴SO ⊥平面ABCD ,∴SO ⊥BD . ∵△SDA 是等腰三角形,∴OD =12AD =BC ,又OD//BC ,∠BCD =90°,∴四边形OBCD 是正方形,∴BD ⊥OC . 又OC ∩SO =O ,SO ⊂平面SOC ,CO ⊂平面SOC , ∴BD ⊥平面SOC ,SC ⊂平面SOC ,∴SC ⊥BD . (2)解:由(1)知,OS ,OA ,OB 两两垂直,以O 为坐标原点,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O −xyz .不妨设BC =1,则B(0,1,0),D(−1,0,0),S(0,0,1),A(1,0,0),M(−12,0,12),∴AB ⃗⃗⃗⃗⃗ =(−1,1,0),AM ⃗⃗⃗⃗⃗⃗ =(−32,0,12),设平面MAB 的法向量为m ⃗⃗⃗ =(x,y,z),则{m ⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅AM ⃗⃗⃗⃗⃗⃗ =0,即{−x +y =0−32x +12z =0,令x =1,得m⃗⃗⃗ =(1,1,3), 平面ABD 的一个法向量为n ⃗ =(0,0,1), ∴cos〈m ⃗⃗⃗ ,n ⃗ 〉=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ ||n ⃗⃗ |=1×√1+1+32=3√1111,即二面角M −AB −D 的余弦值是3√1111.【解析】(1)过点S 作SO ⊥AD ,垂足为O ,连接OB ,OC.证明SO ⊥BD ,BD ⊥OC ,然后证明BD ⊥平面SOC ,推出SC ⊥BD .(2)OS ,OA ,OB 两两垂直,以O 为坐标原点,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O −xyz.求出平面MAB 的法向量,平面ABD 的一个法向量利用空间向量的数量积求解即可.本题考查直线与平面垂直的判断定理的应用,二面角的平面角的求法,考查空间想象能力,转化思想以及计算能力,是中档题.22.【答案】解:(1)由已知得{4m +9n =18m +6n =1,解得{m =116n =112,所以曲线C 的方程为x 216+y 212=1; (2)令x =8,则R(8,6k),联立{x 216+y 212=1y =k(x −2),整理得(4k 2+3)x 2−16k 2x +16(k 2−3)=0,设P(x 1,y 1),Q(x 2,y 2), 则x 1+x 2=16k 24k 2+3,x 1x 2=16(k 2−3)4k 2+3,∴k 1+k 2=y 1−3x 1−2+y 2−3x 2−2=y 1x 1−2+y 2x 2−2−3(1x 1−2+1x 2−2) =2k −3×x 1+x 2−4x 1x 2−2(x 1+x 2)+4=2k −3×16k 24k 2+3−416(k 2−3)4k 2+3−32k 24k 2+3+4=2k −1,又k 3=6k−38−2=k −12,∴k 1+k 2=2k 3,∴λ等于定值2,得证.【解析】(1)通过点满足椭圆方程,然后求解m ,n ,得到椭圆方程.(2)令x =8,则R(8,6k),联立直线与椭圆方程,设P(x 1,y 1),Q(x 2,y 2),利用韦达定理,转化求解斜率的和,然后转化求解证明即可.本题考查直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是难题.。
甘肃省2020学年高二数学上学期期末考试试题理含解析
高二数学上学期期末考试试题 理(含解析)(时间120分钟,分值150分)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上) 1.设集合{}220M x x x =--,{}1|128x N x -=≤≤,则M N ⋂=( )A. (]2,4 B. []1,4C. (]1,4-D. [)4,+∞ 【答案】A 【解析】 【分析】集合M 与集合N 的公共元素构集合M ∩N ,由此利用集合M={x|x 2﹣x ﹣2>0}={x|x<﹣1或x>2},N={x|1x 4≤≤},能求出M ∩N.【详解】∵集合M={x|x 2﹣x ﹣2>0}={x|x<﹣1或x>2}, N={}1|128x x -≤≤={x|1x 4≤≤},∴M∩N={x|2<x 4≤}. 故选A【点睛】本题考查集合的交集及其运算,关键是将两集合的关系转化为元素间的关系,是基础题. 2.不等式1021x x -≤+的解集为 ( ) A. 1,12⎛⎤-⎥⎝⎦ B. 1,12⎡⎤-⎢⎥⎣⎦C. [)1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭D. [)1,1,2⎛⎤-∞-+∞⎥⎝⎦【答案】A 【解析】试题分析:不等式1021x x -≤+等价于(1)(21)0{210x x x -+≤+≠解得112x -<≤,所以选A.考点:分式不等式的解法.3.命题甲:动点P 到两个定点,A B 的距离之和2(PA PB a +=常数0)a >;命题乙:P 点的轨迹是椭圆.则命题甲是命题乙的 A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既非充分也非必要条件 【答案】B 【解析】由题意得,当动点P 到两个定点,A B 的距离之和2(PA PB a AB +=> 常数0)a >时,点P 的轨迹为椭圆,所以甲是乙的必要不充分条件,故选B .4.记等差数列{}n a 的前n 项和为.n S 若141,20,2a S ==则6S = A. 16 B. 24C. 36D. 48【答案】D 【解析】本题考查数列求和公式的简单应用,直接代入即可 由得3d =,故.5.在ABC ∆中,23,22,45a b B ︒==∠=,则∠A 等于( ) A. 30°或150° B. 60°C. 60°或120°D. 30°【答案】C 【解析】 【分析】直接使用正弦定理,即可求得结果. 【详解】根据正弦定理a b sinA sinB=, 23245sin =︒,解得3sinA =A 为60°或120°; 又a b >,则A B >,显然两个结果都满足题意.故选:C.【点睛】本题考查正弦定理的直接使用,属基础题.6.一个等比数列{}n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A. 63 B. 108C. 75D. 83【答案】A 【解析】试题分析:因为在等比数列中,连续相同项的和依然成等比数列,即成等比数列,题中,根据等比中项性质有,则,故本题正确选项为A.考点:等比数列连续相同项和的性质及等比中项.7.已知锐角△ABC 的内角A,B,C 的对边分别为a,b,c,23cos 2A+cos 2A=0,a=7,c=6,则b 等于( ) A. 10 B. 9 C. 8 D. 5【答案】D 【解析】【详解】由题意知,23cos 2A+2cos 2A-1=0, 即cos 2A=125, 又因△ABC 为锐角三角形, 所以cosA=15. △ABC 中由余弦定理知72=b 2+62-2b×6×15, 即b 2-125b-13=0, 即b=5或b=-135(舍去),故选D.8.若抛物线22y x =上有两点,A B ,且AB 垂直于x 轴,若22AB =,则抛物线的焦点到直线AB 的距离为( )A.12B.14C.16D.18【答案】A 【解析】 【分析】设出两点的坐标,根据弦长求得两点的横坐标,即可求解. 【详解】因为AB 垂直于x 轴, 设()()11111,,,(0)A x y B x y y ->、因为AB =,故可得12y =1y =代入抛物线方程,可得11x =,又抛物线的焦点为1,?02⎛⎫ ⎪⎝⎭故抛物线的焦点到直线AB 的距离为11122-=. 故选:A.【点睛】本题考查求抛物线上的点的坐标,以及由抛物线方程求焦点坐标,属基础题. 9.一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴…如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂( ) A. 55986只 B. 46656只 C. 216只 D. 36只【答案】B 【解析】 【分析】先由题得到{a n }是公比为6的等比数列,再利用等比数列的通项求出a 6得解. 【详解】设第n 天所有的蜜蜂都归巢后共有a n 只蜜蜂,则有a n +1=6a n ,a 1=6, 则{a n }是公比为6的等比数列,则a 6=a 1q 5=6×65=46656. 故答案为B【点睛】本题主要考查等比数列性质的判定和等比数列的通项,意在考查学生对这些知识的掌握水平和计算推理能力.10.已知F 为抛物线2y x =的焦点,,A B 是该抛物线上的两点,3AF BF +=,则线段AB 的中点到y 轴的距离为 ( )A.34B. 1C.54D.74【答案】C 【解析】 【分析】抛物线的准线为1:4l x =-,过,A B 作准线的垂线,垂足为,E G ,AB 的中点为M ,过M 作准线的垂线,垂足为MH ,则可利用几何性质得到32MH =,故可得M 到y 轴的距离.【详解】抛物线的准线为1:4l x =-,过,A B 作准线的垂线,垂足为,E G ,AB 的中点为M ,过M 作准线的垂线,垂足为MH ,因为,A B 是该抛物线上的两点,故,AE AF BG BF ==, 所以3AE BG AF BF +=+=,又MH 为梯形的中位线,所以32MH =,故M 到y 轴的距离为315244-=,故选C. 【点睛】本题考查抛物线的几何性质,属于基础题.11.(2016新课标全国Ⅱ理科)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E上,M F 1与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为 A. 2 B.32C. 3D. 2【答案】A 【解析】试题分析:由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.12.已知双曲线22221x y a b-=(0a >,0b >)的两条渐近线与抛物线22y px =(0p >)的准线分别交于A 、B 两点,O 为坐标原点,若223b a =,△AOB 3则p =( ) A. 1 B.32C. 2D. 3【答案】C 【解析】 【分析】求出双曲线的渐近线,利用三角形面积建立方程即可求解【详解】由2222333b bb a a a=⇒=⇒=3y x =,与抛物线的准线交于3322p p p p A ,,B ,⎛⎛-- ⎝⎭⎝⎭,所以AOB ∆的面积为()133022p,p ⨯=>, 解得2p = 故选C【点睛】本题考查抛物线,双曲线的几何性质,属于基础题型第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分.)13.命题若220x y +=,则,x y 都为零的逆否命题是_______.【答案】若,x y 不全为零,则220x y +≠.【解析】因为一个命题的逆否命题,是将原命题逆命题的条件与结论同时否定得到,所以“若220x y +=,则,x y 都为零”的逆否命题是“若,x y 不全为零,则220x y +≠”,故答案为若,x y 不全为零,则220x y +≠.14.已知各项均为正数的等比数列{}n a 中,3813lg()3a a a =,则115a a 的值为______________. 【答案】100 【解析】 【分析】根据等比数列的下标和性质,求得8a ,即可得115a a . 【详解】因为{}n a 是等比数列,故可得()338138a a a a =因为3813lg()3a a a =,故可得81lga =,解得810a =.故115a a ()28100a ==. 故答案为:100.【点睛】本题考查等比数列的下标和性质,属基础题.15.设集合S ={x ||2x -|3>},T ={8x a x a <<+},S ∪T =R ,则a 的取值范围是____________.【答案】()3,1-- 【解析】 【分析】求解绝对值不等式可得集合S ,再根据S ∪T =R ,即可得参数的范围. 【详解】对集合S :23x ->,解得集合()(),15,S =-∞-⋃+∞, 因为S ∪T =R ,故可得1,85a a -+ 解得()3,1a ∈--. 故答案为:()3,1--.【点睛】本题考查由集合之间的关系求参数范围的问题,涉及绝对值不等式的求解.16.过双曲线C :22221x y a b-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .【答案】2 【解析】【详解】双曲线22221x y a b -=的右焦点为(,0)c .不妨设所作直线与双曲线的渐近线b y x a =平行,其方程为()b y x c a =-,代入22221x y a b -=求得点P 的横坐标为222a c x c +=,由2222a c a c+=,得2()410c c a a -+=,解之得2c a =+2c a =(舍去,因为离心率1ca>),故双曲线的离心率为2. 考点:1.双曲线的几何性质;2.直线方程.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在锐角ABC ∆中,,,a b c 分别是角,,A B C 2sin c A =. (1)求角C 的大小;(2)若c =ABC ∆,求+a b 的值. 【答案】(1)60;(2) 5. 【解析】 【分析】(1)由2sin c A =,利用正弦定理可得sin C =,结合C 是锐角可得结果;(2)由1sin 2ab C =6ab =,再利用余弦定理可得结果.【详解】(12sin c A =2sin sin A C A =,因为sin A 0≠,所以sin C =, 因为C 是锐角, 所以60C =.(2)由于1sin 2ab C =6ab ∴=, 又由于2222cos60c a b ab =+-()()227318a b ab a b =+-=+-,()225a b +=,所以5a b +=.【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18.求适合下列条件的曲线的标准方程. (1)经过点15,34⎛⎫⎪⎝⎭,且一条渐近线方程为430x y +=的双曲线; (2)两个焦点坐标分别为()()2,0,2,0-,并且经过点5322⎛⎫- ⎪⎝⎭,的椭圆. 【答案】(1)221916x y -=; (2)221106x y +=.【解析】 【分析】(1)根据渐近线方程,设出双曲线方程,待定系数即可求得; (2)根据椭圆的定义,以及已知条件,即可求得,,a b c .【详解】(1)因渐近线为4x +3y =0,故可设双曲线的方程为16x 2-9y 2=k ,将15,34⎛⎫⎪⎝⎭代入得,k =225-81=144. 代入①并整理得221916x y -=.故所求双曲线的标准方程为221916x y -=.(2)因为椭圆的焦点在x 轴上,所以设它的标准方程为()222210x ya b a b+=>>.又因为椭圆过点5322⎛⎫- ⎪⎝⎭,,不妨设其为P ,则12PF PF +==由椭圆的定义知2a =a =又因为2c =,所以2226b ac =-=, 因此,所求椭圆标准方程为221106x y += .【点睛】本题考查已知双曲线渐近线求双曲线方程,以及已知椭圆上一点及焦点求椭圆方程. 19.已知正项等比数列{}n a ,112a =,2a 与4a 的等比中项为18. (1)求数列{}n a 的通项公式n a ;(2)令n n b na =,数列{}n b 的前n 项和为n S . 【答案】(1)12n n a =; (2)222nn +-. 【解析】 【分析】(1)根据基本量,列方程即可求得等比数列的公式,写出通项公式即可; (2)根据通项公式的特点,利用错位相减法求解数列的前n 项和.【详解】(1)因为正项等比数列{}n a ,所以0n a >,设公比为q ,则0q >. 又因为2a 与4a 的等比中项为18,所以318a =,即2118a q =,由112a =,得12q =,于是,数列{}n a 的通项公式为12n n a =.(2)由题可知,2n nn b =, 于是,231232222n n nS =++++… ① 2341112322222n n nS +=++++… ②由①-②,得23411111112222222n n nn S +=+++++-…111(1)221212n n n +-=--11122n n n +=--, 解得222n n n S +=-【点睛】本题考查由基本量计算等比数列的通项公式,以及利用错位相减法求解数列的前n 项和,属数列基础题.20.如图,港口B 在港口O 正东方120海里处,小岛C 在港口O 北偏东方向和港口B 北偏西方向上,一艘科学考察船从港口O 出发,沿北偏东的OA 方向以每小时20海里的速度驶离港口O ,一艘快艇从港口B 出发,以每小时60海里的速度驶向小岛C ,在C 岛装运补给物资后给考察船送去,现两船同时出发,补给物资的装船时间需要1小时,问快艇驶离港口B 后最少要经过多少时间才能和考察船相遇?【答案】3 【解析】试题分析:由图可知OB=120,BC=60.OC=3快艇从B 到C 需要1小时,然后装物资需要1小时,所以考察船已经走了两小时 设快艇从C 到A 需t 小时; 则OA="40+20t,CA=60t,"30AOC ∠=,由余弦定理可得:222(60)(4020)(603)2603(4020)cos30o t t t =++-⨯+1t =共3小时考点:本题考查余弦定理点评:将应用题的条件标出图上各个边长及角度,然后用余弦定理计算21.已知椭圆C :22221x y a b +=(0a b >>)的离心率为3,(,0)A a ,(0,)B b ,(0,0)O ,OAB∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.【答案】(1)2214x y +=;(2)证明见解析. 【解析】 【分析】(Ⅰ)根据离心率为3,即3c a =,OAB 的面积为1,即,椭圆中列方程组进行求解;(Ⅱ)根据已知条件分别求出的值,求其乘积为定值.【详解】(Ⅰ)由题意得解得.所以椭圆的方程为.(Ⅱ)由(Ⅰ)知,,设,则.当时,直线的方程为.令,得,从而.直线的方程为.令,得,从而.所以. 当时,,所以. 综上,为定值.【考点】椭圆方程、直线与椭圆的位置关系、运算求解能力.【名师点睛】解决定值、定点的方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元思想的运用可有效地简化运算.22.设函数()52f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤恒成立,求a 的取值范围. 【答案】(1)[2,3]-;(2) ][(),62,-∞-⋃+∞. 【解析】【详解】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为|||2|4x a x ++-≥,再根据绝对值三角不等式得|||2|x a x ++-最小值,最后解不等式|2|4a +≥得a 的取值范围. 详解:(1)当1a =时,()24,1,2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于24x a x ++-≥.而22x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥,所以a 的取值范围是][(),62,-∞-⋃+∞.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
宁夏2020学年高二数学上学期期末考试试卷理含解析
高二上学期期末考试数学(理)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线的焦点坐标为()A. B. C. D.【答案】C【解析】双曲线中,且焦点在y轴上,所以,解得.所以双曲线的焦点坐标为.故选C.2.已知命题,,则命题的否定为()A. ,B. ,C. ,D. ,【答案】A【解析】【分析】根据全程命题的否定是特称命题,这一规则书写即可.【详解】全称命题“,”的否定为特称命题,故命题的否定为“,”.故答案为:A.【点睛】这个题目考查了全称命题的否定的写法,换量词否结论,不变条件.3.经过点的抛物线的标准方程为()A. B.C. 或D. 无法确定【解析】【分析】分情况设出抛物线的方程,代入已知点即可得到具体方程。
【详解】由题设知抛物线开口向右或开口向上,设其方程为或,将点代入可得或,所以所求抛物线的标准方程为或.故选.【点睛】这个题目考查了抛物线方程的求法,可成为待定系数法,较为基础.4.已知空间向量,,则“”是“”的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】根据向量垂直的点积运算得到x的值,进而得到结果.【详解】,,或-3.故x=1是的充分不必要条件.故答案为:B.【点睛】这个题目考查了向量垂直的坐标表示,也考查了充分必要条件的判断,题目基础. 判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p 为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.5.已知的周长为10,且,,则顶点的轨迹方程为()A. B.C. D.【答案】D【解析】根据椭圆定义可得到轨迹是椭圆,又因为三点不共线故去掉两个点.【详解】由题6>4,故点的轨迹为焦点在轴上的椭圆,,,故,故椭圆的方程为,又不共线,所以的轨迹方程为.故选.【点睛】求轨迹方程,一般是问谁设谁的坐标然后根据题目等式直接求解即可,而对于直线与曲线的综合问题要先分析题意转化为等式,例如,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助韦达定理求解即可运算此类题计算一定要仔细.6.若命题是真命题,则实数的取值范围是()A. B.C. D.【答案】B【解析】【分析】根据题干得到需满足,解出不等式即可.【详解】命题是真命题,则需满足,解得或. 故选.【点睛】这个题目考查了已知命题的真假,求参的问题.涉及二次函数在R上有解的问题,开口向上,只需要判别式大于等于0即可.7.已知双曲线的一条渐近线方程为,,分别是双曲线的左,右焦点,点在双曲线上,且,则()A. 1B. 17C. 1或17D. 18【答案】B【解析】【分析】根据渐近线的斜率为得到a值,再由双曲线定义得到结果.【详解】依题意,有,所以.因为,所以点在双曲线的左支上,故有,解得.故选.【点睛】这个题目考查了双曲线的标准方程的应用和概念的应用,较为简单.8.在正方体中,直线与平面所成角的正弦值为()A. B. C. D.【答案】C【解析】【分析】通过题干条件得到面的法向量,,求法向量和的夹角即可.【详解】由题知,为平面的一个法向量,又因为,所以.故答案为:C.【点睛】求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可。
北京市西城区2020年高二《数学》上学期期末试题与参考答案
北京市西城区2020年高二《数学》上学期期末试题与参考答案一、选择题本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 已知椭圆的一个焦点为,则的值为A. B. C. D. 答案:A解:由于,所以.2. 已知数列满足,,则A. B. C. D. 答案:B解:依题意.3. 已知命题p :∃x <1,x 2≤1,则¬p 为( )A. ∀x≥1,x 2≤1B. ∃x <1,x 2>1C. ∀x <1,x 2>1D. ∃x≥1,x 2>1答案:C解:命题p :∃x <1,x 2≤1,则¬p :∀x <1,x 2>1;4. 已知,若,则222:1(0)4x y C a a+=>(2,0)a68222a b c =+22428,a a =+=={}n a 12a =12n n a a -=+(,2)n n *∈≥N 3a =5678213224,26a a a a =+==+=,a b R ∈a b <A. B. C. D. 答案:D解:对于A 选项,若,如,但是,即,所以A 选项错误.对于B 选项,若,如,但是,即,所以B 选项错误.对于C 选项,若,如,但是,即,所以C 选项错误.对于D 选项,若,则,则,所以.5. 已知向量,且,那么( )A. B. C. D. 答案:A解:根据题意,向量,2,,,,,且,则设,即,,,2,,则有,则,,则,,,故6. 已知直线a ,b 分别在两个不同的平面,内则“直线a 和直线b 相交”是“平面和平面相交”的 A. 充分不必要条件2a b <2ab b <22a b <33a b <a b <21-<-()122-⨯=-2a b =a b <21-<-()()()2211-⋅->-2ab b >a b <21-<-()()2221->-22a b >a b <0a b -<()()3322a b a b a ab b -=-++()2213024a b a b b ⎡⎤⎛⎫=-++<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦33a b <(1,2,1),(3,,)a b x y =-= //a b||b = 6918(1a =- 1)(3b = x )y //a b b ka =(3x )(1y k =-1)3k =-6x =-3y =-(3b = 6-3)-||b ==αβ.αβ()B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件答案:A解:当“直线a 和直线b 相交”时,平面α和平面β必有公共点,即平面α和平面β相交,充分性成立;当“平面α和平面β相交”,则 “直线a 和直线b 可以没有公共点”,即必要性不成立.7. 已知向量,,,若共面,则等于A.B. C. 或 D. 或答案:B解:由于共面,所以存在,使得,即,所以,所以.8. 德国著名数学家高斯,享有“数学王子”之美誉.他在研究圆内整点问题时,定义了一个函数,其中表示不超过的最大整数,比如. 根据以上定义,当时,数列,,A. 是等差数列,也是等比数列B. 是等差数列,不是等比数列C. 是等比数列,不是等差数列D. 不是等差数列,也不是等比数列(1,,2)a x = (0,1,2)b = (1,0,0)c =,,a b c x 1-111-10,,a b c ,λμa b c λμ=+()()()()1,,20,,2,0,0,,2x λλμμλλ=+=1,,22x μλλ===1x =()[]f x x =[]x x []=3π1x +()x f x -()f x x答案:D解:,所以,所以,即三个.,,所以数列,,不是等差数列,也不是等比数列9. 设有四个数的数列,该数列前项成等比数列,其和为m,后项成等差数列,其和为. 则实数m 的取值范围为A. B. C. D. 答案:B解:设的前项为,由于数列的前项成等比数列,其和为m,后项成等差数列,其和为,所以,由(3)(4)得,所以即,先将(2)代入(1),然后将(3)代入(1)得,整理得.1.732≈()[][][]1.7321 2.7322f x x ==+==()1x f x -=1,1-+114+-=≠)1124+-=≠()x f x -()f x x {}n a 3366m ≥32m ≥6m ≤2m ≥{}n a 4a b c d ,,,{}n a 3362(1)(2)2(3)6(4)a b c m b ac c b d b c d ++=⎧⎪=⎪⎨=+⎪⎪++=⎩36,2c c ==22(1)2(2)4(3)a b m b a b d ++=⎧⎪=⎨⎪=+⎩22(1)(2)24(3)a b m b a b d ++=⎧⎪⎪=⎨⎪=-⎪⎩()()24422d d m -+-+=()21335222m d =-+≥10. 曲线.给出下列结论:①曲线关于原点对称;②曲线上任意一点到原点的距离不小于1;③曲线只经过个整点(即横、纵坐标均为整数的点).其中,所有正确结论的序号是A. ①② B. ②C. ②③ D. ③答案:C解:①,将代入曲线,得,与原方程不相等,所以曲线不关于原点对称,故①错误.②,对于曲线,由于,所以,所以对于任意一个,只有唯一确定的和它对应.函数是单调递减函数.当时,有唯一确定的;当时,有唯一确定的.所以曲线过点,这两点都在单位圆上,到原点的距离等于.当时,,所以.当时,,所以.当时,,且,所以.综上所述,曲线上任意一点到原点的距离不小于1,所以②正确.③,由②的分析可知,曲线过点,这是两个整点.由可得,当且时,若为整数,必定不是某个整数的三次方根,所以曲线只经过两个整点.故③正确.综上所述,正确的为②③.33:1C x y +=C C C 2(),x y --33:1C x y +=331x y +=-C 33:1C x y +=331y x =-y =xy y =0x =1y =1x =0y =C ()()0,1,1,010x <1y>221x y +>>1x >0y<221x y +>>01x <<01y <<()()()()223322221110x y x y x y x x y y -+=+-+=-+-<221x y +>>C C ()()0,1,1,0331x y +=()331x y -=-0x ≠1x ≠x 31x -C二、填空题本大题共6小题,每小题5分,共30分.11. 设是椭圆上的点,到该椭圆左焦点的距离为,则到右焦点的距离为__________.答案:解:依题意,而到该椭圆左焦点的距离为,则到右焦点的距离为.故答案为:12. 不等式的解集为________答案:解:因为所以,即不等式的解集为.13. 能说明“若a ﹥b ,则”为假命题的一组a ,b 的值依次为_________.答案:(答案不唯一)解:分析:举出一个反例即可.详解:当时,不成立,即可填.P 221259x y +=P 2P 85a =P 2P 5228⨯-=801xx <-(0,1)01xx <-,(1)0(0,1)x x x -<⇒∈01xx <-()0,111a b <1 ,1-11a b =>=-1111a b =<=-1,1-14. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的,则其离心率的值是________.答案:2解:因为双曲线的焦点到渐近线即所以,因此15. 某渔业公司今年初用万元购进一艘渔船用于捕捞,已知第一年捕捞工作需各种费用万元,从第二年开始,每年所需费用均比上一年增加万元.若该渔船预计使用年,其总花费(含购买费用)为________ 万元;当______时,该渔船年平均花费最低(含购买费用).答案: ①.②. 解:每年的费用是首项为,公差为的等差数列,所以总费用.平均费用为,当且仅当时,等号成立,也即时,该渔船年平均花费最低.16. 若 表示从左到右依次排列的9盏灯,现制定开灯与关灯的规则如下:(1)对一盏灯进行开灯或关灯一次叫做一次操作;(2)灯在任何情况下都可以进行一次操作;对任意的,要求灯的左边有且只有灯是开灯状态时才可以对灯进行一次操作.如果所有灯都处于开灯状态,那么要把灯关闭最少需要_____次操作;如果除灯外,其余8盏灯都处于开灯状态,那么要使所有灯都开着最少需要_____次操作.xOy 22221(0,0)x y a b a b-=>>(c,0)F (c,0)F ,b y x a=±0bx ay ±=,bcb c=b =22222231,44a c b c c c =-=-=1, 2.2a c e ==10042n n =23100n n ++1042()()214210031002n n S n n n n -=⨯+⨯+=++()1003323S n n n n =++≥=100,10n n n==10n =1239,,,,x x x x 1x {|29}i x x ∈∈≤≤N i x 1i x -i x 4x 6x答案:①. 3 ②. 21解:(1)如果所有灯都处于开灯状态,那么要把灯关闭最少需要的操作如下,设为开灯,0为关灯:初始状态,操作如下,共次.(2)①关闭前个灯最少需要的操作如下,设为开灯,0为关灯:初始状态,操作如下:,共次.②此时前盏灯的状态如下:,操作次,变为,打开.③将步骤①倒过来做一遍,打开前个灯,共次操作.综上所述,如果除灯外,其余8盏灯都处于开灯状态,那么要使所有灯都开着最少需要次操作三、解答题本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤.17. 已知等比数列的公比为,且,,成等差数列.(Ⅰ)求的通项公式;(Ⅱ)设的前项和为,且,求的值.答案:(Ⅰ) . (Ⅱ) 的值是.解:(Ⅰ)因为为公比为的等比数列,所以,,,依题意得 , 即,4x 111111011,0011,001034111111011,0011,0010,1010,1110,0110,0100,1100,1000,000010600001010000116x 4106x 21{}n a 23a 44a +5a {}n a {}n a n n S 62n S =n 2nn a =n 5{}n a 223114a a q a ==418a a =5116a a =4352(4)a a a +=+1112(84)416a a a +=+整理得, 解得.所以数列的通项公式为.(Ⅱ)依题意 ,.所以,整理得,解得所以的值是.18. 已知函数,.(Ⅰ)若,求的取值范围;(Ⅱ)若对恒成立,求的取值范围;(Ⅲ)求关于的不等式的解集.答案:(Ⅰ) 或. (Ⅱ) . (Ⅲ)见解析解:(Ⅰ)由得,整理得, 解得或.(Ⅱ)对恒成立,则,所以, 整理得,解得.(Ⅲ)解,得,148a =12a ={}n a 2nn a =111nn q S a q-=⋅-11222212n n +-=⋅=--12262n +-=1264n +=5.n =n 52()f x x ax =+a R ∈()(1)f a f >a ()4f x ≥-x ∀∈R a x ()0f x >1{|2a a <-1}a >{|44}a a -≤≤()(1)f a f >221a a a +>+2210a a -->1{|2a a <-1}a >()4f x ≥-x ∀∈R min ()4f x ≥-244a -≥-2160a -≤{|44}a a -≤≤20x ax +=120,x x a ==-①当时,即时,或 ; ②当时,即时,或 ; ③当时,即时, .综上,当时,不等式的解集为或;当时,不等式的解集为或;当时,不等式的解集为.19. 已知椭圆的右焦点为,.(Ⅰ)求椭圆的方程;(Ⅱ)设点为椭圆的上顶点,点在椭圆上且位于第一象限,且,求的面积.答案:(Ⅰ) (Ⅱ) 解:(Ⅰ)依题意 ,, 解得,,所以椭圆的方程为.(Ⅱ)设点,因为点在椭圆上,所以…①,因为,所以,得…②,由①②消去得,,解得(舍),, 代入方程②得,所以, 0a ->a<00x <x a >-0a -<0a >x a <-0x >0a -=0a =0x ≠a<0{|0x x <}x a >-0a >{|x x a <-0}x >0a ={|0}x x ≠2222:1x y C a b +=(0)a b >>(1,0)F C A C B 90AFB ∠= AFB ∆2212x y +=131c =c a =222a b c =+a =1b ==C 2212x y +=00(,)B x y B 220012x y +=90AFB ∠=1FA FB k k ⋅=-011yx =-0y 200340x x -=00x =043x =013y =41(,)33B所以又所以的面积20. 如图,四棱锥中,平面,, .,,,是的中点.(Ⅰ)证明:⊥平面;(Ⅱ)若二面角,求的值;(Ⅲ)若,在线段上是否存在一点,使得⊥. 若存在,确定点的位置;若不存在,说明理由.答案:(Ⅰ)见解析 (Ⅱ) . (Ⅲ)不存在,见解析解:(Ⅰ)证明:因为 平面,,所以 平面.又因为 平面,所以 . 在中,,是的中点,所以 .||BF =||AF =AFB ∆111=||||223AFB S AF BF ∆⨯⨯==P ABCD -AD ⊥ABP //BC AD 90PAB ∠=o 2PA AB ==3AD =BC m =E PB AE PBC C AE D --m 2m =AD F PF CE F 1m =AD ⊥PAB //BC AD BC ⊥PAB AE ⊂PAB AE BC ⊥PAB ∆PA AB =E PB AE PB ⊥又因为 ,所以 平面.(Ⅱ)解:因为 平面,所以,.又因 ,所以 如图建立空间直角坐标系.则,,,,,,,.设平面的法向量为.则即 令,则,,于是.因平面,所以. 又,所以平面.BC PB B = ⊥AE PBC AD ⊥PAB AD AB ⊥AD PA ⊥为PA AB ⊥A xyz-(0,0,0)A (0,2,0)B (0,2,)C m (1,1,0)E (2,0,0)P (0,0,3)D (0,2,)AC m = (1,1,0)AE = AEC (,,)n x y z = 0,0,n AC n AE ⎧⋅=⎨⋅=⎩20,0.y mz x y +=⎧⎨+=⎩1x =1y =-2z m =2(1,1,n m =- 为AD ⊥PAB AD PB ⊥PB AE ⊥PB ⊥AED又因为,所以取平面的法向量为.所以,解得.又因为,所以.(Ⅲ)结论:不存在.理由如下:证明:设.当时,.,.由知,,,.这与矛盾.所以,在线段上不存在点,使得.21. 已知抛物线,拋物线C上横坐标为1的点到焦点F的距离为3.(1)求抛物线C的方程及其准线方程;(2)过的直线l交抛物线C于不同的两点A,B,交直线于点E,直线BF交直线于点D,是否存在这样的直线l,使得?若不存在,请说明理由;若存在,求出直线l的方程.答案:(1)抛物线C的方程为,准线方程为;(2)存在直线或(2,2,0)PB=-AED1,)0(1,m=-cos,n mn mn m⋅〈〉==⋅=21m=m>1m=(0,0,)F t(03)t≤≤2m=(0,2,2)C(2,0,)PF t=-(1,1,2)CE=--PF CE⊥0PF CE⋅=220t--=1t=-03t≤≤AD F PF CE⊥()2:20C y px p=>()1,0-4x=-=1x-//DE AF28y x=2x=-1)y x=+.解:(1)因为横坐标为的点到焦点的距离为,所以,解得, 所以,即准线方程为.(2)显然直线的斜率存在,设直线的方程为,.联立得,消去得.由,解得. 所以且.由韦达定理得,.直线的方程为,又,所以,所以,因为,所以直线与直线的斜率相等又,所以.整理得,即,化简得,,即. 所以,整理得,解得经检验,.所以存在这样的直线,直线的方程为或.1)y x =+13132p+=4p =28y x =2x =-l l (1)y k x =+(0)k ≠1122(,),(,)A x y B x y 28(1)y xy k x ⎧=⎨=+⎩y 2222(28)0k x k x k +-+=224(28)40k k ∆=-->k <<k <<0k ≠212282k x x k -+=121=x x BF 22(2)2y y x x =--1D x =-2232D y y x -=-223(1,)2yD x ---//DE AF DE AF (4,3)E k --221133232y k x y x -+-=--121222y y k x x =+--1212(1)(1)22k x k x k x x ++=+--121211122x x x x ++=+--121212122()412()4x x x x x x x x -+-=-++12+7x x =2282=7k k -289k =k =k =l l 1)y x =+1)y x =+22. 若无穷数列满足:对任意两个正整数,与至少有一个成立,则称这个数列为“和谐数列”.(Ⅰ)求证:若数列为等差数列,则为“和谐数列”;(Ⅱ)求证:若数列为“和谐数列”,则数列从第项起为等差数列;(Ⅲ)若是各项均为整数的“和谐数列”,满足,且存在使得,,求p 的所有可能值.答案:(Ⅰ)见解析 (Ⅱ) 见解析 (Ⅲ) .解:(Ⅰ)证明:因为数列为等差数列,所以对任意两个正整数,有 , 所以 .所以 数列为“和谐数列”.(Ⅱ)证明:因为数列为“和谐数列”,所以 当,时,只能成立, 不成立.所以 ,即. 当,时,也只能成立,不成立.所以 ,,,即,所以. 令,则数列满足.123,,,a a a ,i j (3)j i -≥11i j i j a a a a -++=+11i j i j a a a a +-+=+{}n a {}n a {}n a {}n a 3{}n a 10a =*∈p N p a p =123p a a a a p ++++=- 3,5,6,8,12{}n a ,i j (3)j i -≥11i i j j a a a a d +--=-=11i j i j a a a a +-+=+{}n a {}n a 1i =4j =11i j i j a a a a +-+=+11i j i j a a a a -++=+2314a a a a +=+2143a a a a -=-1i =5,6,7,8,9j =L 11i j i j a a a a +-+=+11i j i j a a a a -++=+2415a a a a +=+2516a a a a +=+2617a a a a +=+L 21546576a a a a a a a a -=-=-=-= 21435465a a a a a a a a -=-=-=-= 21a a d -={}n a 1(4)n n a a d n --=≥所以,数列从第3项起为等差数列.(Ⅲ)解:①若,则,与矛盾,不合题意. ②若,则,,但,不合题意③若,则,,由,得, 此时数列为:,符合题意.④若,设,则.所以即 .因为,所以.所以不合题意.所以.因为p 为整数,所以为整数,所以.综上所述,p 的所有可能值为.{}n a 1p =11p a a ==10a =2p =10a =22a =1222a a +=≠-3p =10a =33a =1233a a a ++=-26a =-{}n a 0,6,3,3,9,--- 4p ≥21a a d -=12(2)0[(3)][(4)][]p p a a a d p p d p p d p d p p-+++=++--+--++-+=- ,(1)[(3)][(4)]()()0p p p d p p d p d p p d ---+--++-+++=[()(3)](1)02p d p p d p ++---=10p -≠(3)0p d p p d ++--=4p =228882444p p d p p p -+===+---84p -5,6,8,12p =3,5,6,8,12。
2020年高二(上)期末数学试卷四及参考答案(精品)
2020年高二(上)期末数学试卷四一、选择题(本大题共10小题,共40.0分)1.已知向量a ⃗ =(x,2,−1),b ⃗ =(2,4,−2),如果a ⃗ //b ⃗ ,那么x 等于( ) A. −1 B. 1 C. −5 D. 52.一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本,那么样本中男、女运动员的人数分别为( ) A. 20,8B. 18,10C. 16,12D. 12,163.已知命题p :∃x ∈R ,x 2−1>0,那么¬p 是( ) A. ∃x ∈R ,x 2−1<0 B. ∃x ∈R ,x 2−1≤0 C. ∀x ∈R ,x 2−1<0 D. ∀x ∈R ,x 2−1≤04.从1,2,3,4中任取两个不同的数,则取出的两数之和为5的概率是( ) A. 16B. 14C. 13D. 125.“两个三角形面积相等”是“两个三角形全等”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件6.已知线段MN 的长度为6,在线段MN 上随机取一点P ,则点P 到点M ,N 的距离都大于2的概率为( ) A. 34B. 23C. 12D. 137.双曲线x 24−y 29=−1的渐近线方程是( )A. y =±32x B. y =±23x C. y =±94x D. y =±49x8.在100件产品中,有3件是次品.现从中任意抽取5件,其中至少有2件次品的取法种数为( )A. C 32C 973B. C 32C 973+C 33C 972C. C 1005−C 31C 974D. C 1005−C 9759.若直线的回归方程为y ∧=−2x +1,当变量x 增加一个单位时,则下列说法中正确的是( ) A. 变量y 平均增加2个单位 B. 变量y 平均增加1个单位C. 变量y 平均减少2个单位D. 变量y 平均减少1个单位10.在长方体ABCD −A 1B 1C 1D 1中,DA =DC =1,DD 1=2,分别在对角线A 1D ,CD 1上取点M ,N ,使得直线MN//平面A 1ACC 1,则线段MN 长的最小值为( ) A. 12B. 23C. √22 D. 2二、填空题(本大题共6小题,共24.0分)11.在(2+x)5的展开式中,x 2的系数为______.(用数字作答)12.某篮球运动员在赛场上罚球命中率为23,那么这名运动员在赛场上的2次罚球中,至少有一次命中的概率为______.13.某校为了解学生对本校食堂的满意度,随机抽取部分学生进行调查.根据学生的满意度评分,得到如图所示的频率分布直方图,其中a=______,若这次满意度评分的中位数为b,根据频率分布直方图,估计b______65(填“>”,“<”或“=”)14.设F1,F2分别是椭圆x 29+y25=1的左、右焦点,P为该椭圆上一点,且与左、右顶点不重合,则△F1PF2的周长为______.15.演讲比赛结束后,4名选手与1名指导教师站成一排合影留念.要求指导教师不能站在两端,那么有______种不同的站法.(用数字作答)16.在平面直角坐标系xOy中,抛物线y2=4x的焦点为F.①F的坐标为______;②若M是抛物线上的动点,则|MO||MF|的最大值为______.三、解答题(本大题共4小题,共36.0分)17.已知离散型随机变量X的分布列为:X 0 1 2 3P 0.10.40.3m(Ⅰ)求m的值;(Ⅱ)求P(1≤X≤3);(Ⅲ)求E(X).18.如图,在四棱锥P−ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.(Ⅰ)求证:PB//平面EFH;(Ⅱ)求证:PD⊥平面AHF;(Ⅲ)求二面角H−EF−A的大小.19.某校高一、高二年级的全体学生都参加了体质健康测试,测试成绩满分为100分,规定测试成绩在[85,100]之间为“体质优秀”,在[75,85)之间为“体质良好”,在[60,75)之间为“体质合格”,在[0,60)之间为“体质不合格”.现从两个年级中各随机抽取8名学生,测试成绩如下:(Ⅰ)若该校高一年级有200名学生,试估计高一年级“体质优秀”的学生人数;(Ⅱ)从高一年级抽取的学生中再随机选取3人,求这3人中,恰有1人“体质良好”的概率;(Ⅲ)设两个年级被抽取学生的测试成绩的平均数相等,当高二年级被抽取学生的测试成绩的方差最小时,写出a ,b 的值.(结论不要求证明)20.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M(2,0),离心率e =12,右焦点为F .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 的直线l 与椭圆C 交于A ,B 两点,与y 轴交于点P ,若PA ⃗⃗⃗⃗⃗ =m AF ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ =n BF ⃗⃗⃗⃗⃗ ,求证:m +n 为定值.数学试题答案一、选择题(本大题共10小题,共40.0分)1.【答案】B【解析】解:∵向量a⃗=(x,2,−1),b⃗ =(2,4,−2),a⃗//b⃗ ,∴x2=24=−1−2,解得x=1.故选:B.利用向量与向量平行的性质直接求解.本题考查实数值的求法,考查空间向量平行的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.【答案】C【解析】解:每个个体被抽到的概率等于2856+42=27,则样本中女运动员的人数为42×27=12,样本中男运动员的人数为56×27=16,故选:C.先求出每个个体被抽到的概率,再用男女运动员的人数乘以此概率,即得所求.本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.3.【答案】D【解析】解:∵命题“∃x∈R,x2−1>0”为特称命题,∴根据特称命题的否定是全称命题得到命题的否定为:∀x∈R,x2−1≤0.故选:D.根据特称命题的否定是全称命题,即可得到命题的否定.本题主要考查含有量词的命题的否定,要求熟练掌握特称命题的否定是全称命题,全称命题的否定是特称命题.4.【答案】C【解析】解:从1,2,3,4中任取2个不同的数,基本事件总数n=C42=6,取出的2个数之和为5包含的基本事件有:(1,4),(2,3),∴取出的2个数之和为5的概率是p=26=13.故选:C.基本事件总数n=C42=6,取出的2个数之和为5包含的基本事件有2个,由此能求出取出的2个数之和为5的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.【答案】B【解析】解:由两个三角形全等可得:两个三角形面积相等.反之不成立. ∴“两个三角形面积相等”是“两个三角形全等”的必要不充分条件. 故选:B .由两个三角形全等可得:两个三角形面积相等.反之不成立.即可判断出结论.本题考查了两个三角形全等与两个三角形面积相等之间的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题. 6. 【答案】D【解析】解:如图所示,线段MN 的长度为6,在线段MN 上随机取一点P , 则点P 到点M ,N 的距离都大于2的概率为P =26=13.故选:D .根据题意画出图形,结合图形即可得出结论. 本题考查了几何概型的概率计算问题,是基础题. 7. 【答案】A【解析】解:化已知双曲线的方程为标准方程y 29−x 24=1,可知焦点在y 轴,且a =3,b =2,故渐近线方程为y =±a bx =±32x故选:A .化方程为标准方程,可得a ,b ,代入y =±ab x 可得渐近线方程. 本题考查双曲线的简单性质,涉及渐近线的求解,属基础题. 8. 【答案】B【解析】解:根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,“有2件次品”的抽取方法有C 32C 973种,“有3件次品”的抽取方法有C 33C 972种,则共有C 32C 973+C 33C 972种不同的抽取方法, 故选:B .根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,由组合数公式分别求得两种情况下的抽法数,进而相加可得答案.本题考查组合数公式的运用,解题时要注意“至少”“至多”“最少”“最少”等情况的分类讨论. 9. 【答案】C【解析】解:根据题意,直线的回归方程为y ∧=−2x +1,其中斜率估计值为−2, 当变量x 增加一个单位时,变量y 平均减少2个单位; 故选:C .根据题意,由线性回归方程的意义,分析可得答案.本题考查线性回归方程的应用,关键是掌握线性回归方程的意义. 10. 【答案】B【解析】解:作MM 1⊥AD 于点M 1,作NN 1⊥CD 于点N 1, ∵线段MN 平行于对角面ACC 1A 1,∴M 1N 1//AC . 设DM 1=DN 1=x ,则MM 1=2x ,NN 1=2−2x , 在直角梯形MNN 1M 1中,MN 2=(√2x)2+(2−4x)2=18(x −49)2+49, ∴当x =49时,MN 的最小值为23.故选:B .作MM 1⊥AD 于点M 1,作NN 1⊥CD 于点N 1,则M 1N 1//AC.设DM 1=DN 1=x ,则MM 1=x ,NN 1=1−x ,由此能求出MN 的最小值.本题考查线段长的最小值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想、数形结合思想,考查推理论论能力、空间想象能力,是中档题.二、填空题(本大题共6小题,共24.0分) 11. 【答案】80【解析】解:二项展开式的通项为T r+1=25−r C 5r x r令r =2得x 2的系数为23C 52=80 故答案为:80.利用二项展开式的通项公式求出展开式的通项,令r =2,求出展开式中x 2的系数. 利用二项展开式的通项公式是解决二项展开式的特定项问题的工具.12.【答案】【解析】解:某篮球运动员在赛场上罚球命中率为23, ∴这名运动员在赛场上的2次罚球中,至少有一次命中的概率为p =1−C 20(13)2=89.故答案为:89.利用对立事件概率计算公式直接求解.本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,是基础题. 13.【答案】0.005 >【解析】解:由频率分布直方图得: (a +0.04+0.03+0.02+a)×10=1, 解得a =0.005.评分在[50,70)的频率为:(0.005+0.04)×10=0.45, 评分为[70,80)的频率为:0.03×10=0.3,∴中位数b=70+0.5−0.450.3×10=2153>65.故答案为:0.005,>.由频率分布直方图列方程能求出a;评分在[50,70)的频率为0.45,评分为[70,80)的频率为0.3,由此能求出中位数.本题考查频率的求法、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.14.【答案】10【解析】解:由题意椭圆x 29+y25=1知:a=3,b=√5,c=2,△PF1F2周长=2a+2c=6+4=10.故答案为:10.由题意可知△PF1F2周长=|PF1|+|PF2|+|F1F2|=2a+2c,进而计算可得答案.本小题主要考查椭圆的简单性质、椭圆的定义等基础知识,考查数形结合思想,属于基础题.15.【答案】72【解析】解:根据题意,分2步进行分析:①,指导教师不能站在两端,则指导教师有3个位置可选,有3种站法;②,其4名选手全排列,安排在其他4个位置,有A44=24种情况,则有3×24=72种不同的站法;故答案为:72.根据题意,分2步进行分析:①,指导教师不能站在两端,易得指导教师有3种站法,②,其4名选手全排列,安排在其他4个位置,由分步计数原理计算可得答案.本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.16.【答案】(1,0)2√33【解析】解:①抛物线y2=4x的焦点F的坐标为(1,0),②若M是抛物线上的动点,设M(m,n),即有n2=4m,抛物线的准线方程为x=−1,可得|MF|=m+1,即有|MO||MF|=√m2+n2m+1=√m2+4mm+1,可令m+1=t(t>0),可得m=t−1,√m2+4m m+1=√(t−1)2+4(t−1)t=√1+2t−3t2=√−3(1t −13)2+23,当t=3即m=2时,上式取得最大值2√33.故答案为:(1,0),2√33.①由抛物线的焦点坐标公式可得所求;②求得抛物线的准线方程,设M(m,n),即有n2=4m,可得|MF|=m+1,再令t=m+1,转化为t的函数,配方即可得到所求最大值.本题考查抛物线的定义、方程和性质,考查转化思想和换元法,以及化简运算能力,属于中档题.三、解答题(本大题共4小题,共36.0分) 17.【答案】解:(Ⅰ)根据题意,由随机变量X 的分布列可得:0.1+0.4+0.3+m =1, 解可得m =0.2;(Ⅱ)根据题意,P(1≤X ≤3)=P(X =1)+P(X =2)+P(X =3)=0.4+0.3+0.2=0.9; (Ⅲ)根据题意,E(X)=0×0.1+1×0.4+2×0.3+3×0.2=1.6.【解析】(Ⅰ)根据题意,由分布列的性质可得0.1+0.4+0.3+m =1,解可得m 的值;(Ⅱ)根据题意,分析可得P(1≤X ≤3)=P(X =1)+P(X =2)+P(X =3),结合分布列计算可得答案; (Ⅲ)根据题意,由期望的计算公式计算可得答案.本题考查随机变量的分布列,涉及随机变量的期望、方差的计算. 18.【答案】解法一:(Ⅰ)证明:∵E ,H 分别是线段PA ,AB 的中点, ∴EH//PB .又∵EH ⊂平面EFH ,PB ∉平面EFH , ∴PB//平面EFH .(Ⅱ)解:∵F 为PD 的中点,且PA =AD ,∴PD ⊥AF , 又∵PA ⊥底面ABCD ,BA ⊂底面ABCD ,∴AB ⊥PA . 又∵四边形ABCD 为正方形,∴AB ⊥AD . 又∵PA ∩AD =A ,∴AB ⊥平面PAD . 又∵PD ⊂平面PAD ,∴AB ⊥PD . 又∵AB ∩AF =A ,∴PD ⊥平面AHF .(Ⅲ)∵PA ⊥平面ABCD ,PA ⊂平面PAB ,∴平面PAB ⊥平面ABCD ,∵AD ⊂平面ABCD ,平面PAB ∩平面ABCD =AB ,AD ⊥AB ,∴AD ⊥平面PAB , ∵E ,F 分别是线段PA ,PD 的中点,∴EF//AD ,∴EF ⊥平面PAB . ∵EH ⊂平面PAB ,EA ⊂平面PAB ,∴EF ⊥EH ,∴EF ⊥EA , ∴∠HEA 就是二面角H −EF −A 的平面角.在Rt △HAE 中,AE =12PA =1,AH =12AB =1,∴∠AEH =45∘,所以二面角H −EF −A 的大小为45∘.解法二:建立如图所示的空间直角坐标系A −xyz , ∴A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0), P(0,0,2),E(0,0,1),F(0,1,1),H(1,0,0).(Ⅰ)证明:∵PB ⃗⃗⃗⃗⃗ =(2,0,−2),EH⃗⃗⃗⃗⃗⃗ =(1,0,−1), ∴PB ⃗⃗⃗⃗⃗ =2EH⃗⃗⃗⃗⃗⃗ , ∵PB ∉平面EFH ,且EH ⊂平面EFH , ∴PB//平面EFH .(Ⅱ)解:PD ⃗⃗⃗⃗⃗ =(0,2,−2),AH ⃗⃗⃗⃗⃗⃗ =(1,0,0),AF⃗⃗⃗⃗⃗ =(0,1,1), PD ⃗⃗⃗⃗⃗ ⋅AF⃗⃗⃗⃗⃗ =0×0+2×1+(−2)×1=0, PD ⃗⃗⃗⃗⃗ ⋅AH⃗⃗⃗⃗⃗⃗ =0×1+2×0+(−2)×0=0. ∴PD ⊥AF ,PD ⊥AH ,又∵AF ∩AH =A ,∴PD ⊥平面AHF .(Ⅲ)设平面HEF 的法向量为n ⃗ =(x,y,z),因为EF ⃗⃗⃗⃗⃗ =(0,1,0),EH⃗⃗⃗⃗⃗⃗ =(1,0,−1),则{n ⃗ ⋅EF ⃗⃗⃗⃗⃗ =y =0n⃗ ⋅EH ⃗⃗⃗⃗⃗⃗ =x −z =0取n ⃗ =(1,0,1).又因为平面AEF 的法向量为m ⃗⃗⃗ =(1,0,0), 所以cos <m,⃗⃗⃗⃗ n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ ||n ⃗⃗ |=√2×1=√2=√22, ∴<m,⃗⃗⃗⃗ n ⃗ >=45∘,所以二面角H −EF −A 的大小为45∘.【解析】(Ⅰ)要证PB//平面EFH ,须证PB 平行平面EFH 内的一条直线即可. (Ⅱ)要证PD ⊥平面AHF ,须证PD 垂直面内两条相交直线即可.(Ⅲ)求二面角H −EF −A 的大小.必须找出二面角的平面角,求解即可.本题考查空间直线与平面之间的位置关系,平面与平面之间的位置关系,是中档题. 19.【答案】解:(Ⅰ)该校高一年级有200名学生,则估计高一年级“体质优秀”的学生人数为:200×38=75. (Ⅱ)高一年级被抽取的8名学生中,“优质良好”的有2人, 从高一年级抽取的学生中再随机选取3人, 这3人中,恰有1人“体质良好”的概率P =C 21C 62C 83=1528.(Ⅲ)a =75,b =75.【解析】(Ⅰ)由统计表能估计高一年级“体质优秀”的学生人数.(Ⅱ)高一年级被抽取的8名学生中,“优质良好”的有2人,从高一年级抽取的学生中再随机选取3人,利用古典概型能求出这3人中,恰有1人“体质良好”的概率. (Ⅲ)a =75,b =75.本题考查频数、概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题. 20.【答案】(Ⅰ)解:∵椭圆C :x 2a2+y 2b 2=1(a >b >0)过点M(2,0),∴a =2,又∵e =12,∴c =1,则b =√a 2−c 2=√3. ∴椭圆的方程为x 24+y 23=1;(Ⅱ)证明:方法1、由题意知,F(1,0),可知直线AB 的斜率存在,设其方程为y =k(x −1), 则P(0,−k),设A(x 1,y 1),B(x 2,y 2),则x 1≠1,x 2≠1. 由PA ⃗⃗⃗⃗⃗ =m AF ⃗⃗⃗⃗⃗ ,得(x 1,y 1+k)=m(1−x 1,−y 1),∴m =x 11−x 1, 由PB ⃗⃗⃗⃗⃗ =n BF ⃗⃗⃗⃗⃗ ,得(x 2,y 2+k)=n(1−x 2,−y 2),∴n =x 21−x 2,联立{y =k(x −1)x 24+y 23=1,得(4k 2+3)x 2−8k 2x +4k 2−12=0.∴x 1+x 2=8k 24k 2+3,x 1x 2=4k 2−124k 2+3.故m +n =x 11−x 1+x 21−x 2=x 1+x 2−2x 1x 21−(x1+x 2)+x 1xx 2=8k 24k 2+3−2⋅4k 2−124k 2+31−8k 24k 2+3+4k 2−124k 2+3=24−9=−83;方法2、由题意知,F(1,0),m ≠1,n ≠1, 设A(x 1,y 1),B(x 2,y 2),P(0,y 0), 由PA⃗⃗⃗⃗⃗ =m AF ⃗⃗⃗⃗⃗ ,得(x 1,y 1−y 0)=m(1−x 1,−y 1), ∴x 1=m m+1,y 1=y 0m+1,故A (m m+1,y 0m+1),∵A 点在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,∴14(mm+1)2+13(y0m+1)2=1.整理得:9m 2+24m +12−4y 02=0.同理,由PB ⃗⃗⃗⃗⃗ =n BF ⃗⃗⃗⃗⃗ ,得9n 2+24n +12−4y 02=0.由此可得,m,n是关于x的一元二次方程9x2+24x+12−4y02=0的两个实数根.∴m+n=−249=−83.【解析】(Ⅰ)由已知得a=2,结合离心率求得c,再由隐含条件求得b,则椭圆方程可求;(Ⅱ)方法1、由题意知,F(1,0),可知直线AB的斜率存在,设其方程为y=k(x−1),则P(0,−k),设出A,B的坐标,由已知向量等式可得m,n,联立直线方程与椭圆方程,化为关于x的一元二次方程,利用根与系数的关系即可证明m+n为定值;方法2、由题意知,F(1,0),m≠1,n≠1,设A(x1,y1),B(x2,y2),P(0,y0),由向量等式可得9m2+24m+12−4y02=0,9n2+24n+12−4y02=0.由此可得,m,n是关于x的一元二次方程9x2+24x+12−4y02=0的两个实数根,再由根与系数的关系得m+n=−249=−83为定值.本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,属中档题.。
天津市2020学年高二数学上学期期末考试试题(含解析) (4)
高二数学上学期期末考试试题(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若向量(2,0,1)a =-,向量(0,1,2)b =-,则2a b -=( ) A. (4,1,0)-B. (4,1,4)--C. (4,1,0)-D.(4,1,4)--【答案】C 【解析】 【分析】由111(,,)m x y z =,222(,,)n x y z =,则122212(,,)m n x x x y z z -=---,代入运算即可得解.【详解】解:因为向量(2,0,1)a =-,向量(0,1,2)b =-, 则2(4,0,2)a=-,则2a b -=(4,1,0)-, 故选:C.【点睛】本题考查了向量减法的坐标运算,属基础题.2.设P 是椭圆22221x y a b+=(0)a b >>上的一动点,则P 到该椭圆的两个焦点的距离之和为( ) A. 2b B. 2aC. bD. a【答案】B 【解析】 【分析】由椭圆的定义122PF PF a +=即可得解.【详解】解:设椭圆的两个焦点为12,F F ,点P 为椭圆上的点, 由椭圆的定义有:122PF PF a +=, 故选:B.【点睛】本题考查了椭圆的定义,属基础题.3.抛物线214x y =的准线方程是( ) A. 116x = B. 116x =-C. 2x =-D. 1x =-【答案】D 【解析】 【分析】先将抛物线方程化为标准方程,再求抛物线的准线方程即可. 【详解】解:由抛物线的方程为214x y =, 化为标准式可得24y x =,即抛物线24y x =的准线方程是:1x =-,故选:D.【点睛】本题考查了抛物线的标准方程,重点考查了抛物线的准线方程,属基础题. 4.中心在坐标原心、焦点在x 轴,且长轴长为18、焦距为12的椭圆的标准方程为( )A. 22x y 18172+=B. 22x y 1819+=C. 22x y 18145+=D.22x y 18136+= 【答案】A 【解析】 【分析】根据条件,求得a 、b 、c 的值,进而可得椭圆的标准方程. 【详解】由题可得218a =,26c =,故281a =,272b =,又焦点在x 轴上,所以所求椭圆的标准方程为2218172x y+=,故选A .【点睛】本题考查了椭圆标准方程的求法,注意焦点的位置,属于基础题.5.如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若1,,AB a AA c BC b ===,则BM可表示为( )A. 1122a b c -++ B.1122a b c ++ C. 1122a b c --+D. 1122a b c -+【答案】A 【解析】111111()()2222BM BB B M c BA BC c a b a b c =+=++=+-+=-++,故本题正确答案为.A6.已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 A. 2833x y =B. 233x y =C. 28x y =D.216x y =【答案】D 【解析】由e=c a =2得4=22c a =1+22b a,∴22b a=3.∴双曲线的渐近线方程为3x,抛物线x 2=2py 的焦点是(0,2p), 它到直线3x 的距离d=2=22p±=4p,∴p=8.∴抛物线方程为x 2=16y. 故选D.7.若两个向量()()1,2,3,3,2,1AB AC ==,则平面ABC 的一个法向量为( ) A. ()1,2,1-- B. ()1,2,1C. ()1,2,1-D. ()1,2,1-【答案】A 【解析】 【分析】设平面ABC 的法向量为(,,)n x y z =,根据数量积等于0,列出方程组,即可求解. 【详解】设平面ABC 的法向量为(,,)n x y z =,则00n AB n AC ⎧⋅=⎨⋅=⎩,即230320x y z x y z ++=⎧⎨++=⎩,令1x =-,则2,1y z ==-,即平面ABC 的一个法向量为(1,2,1)n =--,故选A.【点睛】本题主要考查了平面的法向量的求解,其中解答中根据法向量与平面内的两个不共线的向量垂直,列出关于,,x y z 的方程组求解是解答的关键,着重考查了推理与计算能力,属于基础题.8.已知抛物线2:8C x y =的焦点为F ,O 为原点,点P 是抛物线C 的准线上的一动点,点A 在抛物线C 上,且4AF =,则PA PO +的最小值为( ) A. 2 B. 13 C. 13 D. 46【答案】B 【解析】 【分析】求出A 点坐标,作O 关于准线的对称点M ,利用连点之间相对最短得出AM 为PA PO +的最小值.【详解】解:抛物线的准线方程为2y =-,∵4AF =,∴A 到准线的距离为4,故A 点纵坐标为2, 把2y =代入抛物线方程可得4x =±. 不妨设A 在第一象限,则()4,2A ,点O 关于准线2y =-的对称点为()0,4M -,连接AM , 则PO PM =,于是PA PO PA PM AM +=+≥ 故PA PO +的最小值为2246213AM =+=.故选B .【点睛】本题考查了抛物线的简单性质,属于基础题.9.设12F F 、分别为双曲线22221x y a b-=(0,0)a b >>的左、右焦点,A 为双曲线的左顶点,12F F 、为直径的圆交双曲线某条渐近线于M N 、两点,且满足120MAN ︒∠=,则双曲线的离心率为( ) A.3321 C.23D.103【答案】B 【解析】【分析】先求出双曲线的渐近线方程,然后求出(,),(,)M a b N a b --,再利用向量数量积运算即可得解.【详解】解:由双曲线方程为22221x y a b-=,则其渐近线方程为by x a=±, 联立222222x y c b y x a c a b⎧+=⎪⎪=⎨⎪=+⎪⎩,解得x a y b =⎧⎨=⎩或x a y b =-⎧⎨=-⎩,即(,),(,)M a b N a b --, 又(,0)A a -,则(2,)AM a b =,(0,)AN b =-, 则222214()2AM AN b a b b ⋅=-=+-,解得2234b a =,即2223()4c a a -=, 即2237c a =, 即213c e a ==, 故选:B.【点睛】本题考查了双曲线渐近线方程的求法,重点考查了双曲线的离心率,属中档题. 二.填空题:本大题共6小题,每小题5分,多空题只答对一空得3分,共30分. 10.若向量(,1,3)a x =-,向量(2,,6)b y =,且//a b ,则x =_____,y =_____. 【答案】 (1). 1 (2). -2 【解析】 【分析】由题意可得1326x y -==,再求解即可.【详解】解:由向量(,1,3)a x =-,向量(2,,6)b y =,且//a b , 则1326x y -==, 解得:x 1,y 2==-, 故答案为:1,-2.【点睛】本题考查了空间向量共线的坐标运算,属基础题.11.若双曲线221916x y -=上一点P 到左焦点的距离为4,则点P 到右焦点的距离是 .【答案】10 【解析】试题分析:由双曲线方程可知293,26a a a =∴==,由定义122PF PF a -=得210PF =考点:双曲线定义点评:双曲线上的点到两焦点距离之差的绝对值等于2a12.若方程22151x y m m +=--表示焦点在y 轴的椭圆,则实数m 的取值范围是_____.【答案】(3,5) 【解析】 【分析】由椭圆的几何性质可得501015m m m m ->⎧⎪->⎨⎪->-⎩,再解不等式组即可得解.【详解】解:由方程22151x y m m +=--表示焦点在y 轴的椭圆,则501015m m m m->⎧⎪->⎨⎪->-⎩,解得:513m m m <⎧⎪>⎨⎪>⎩,即35m <<,故答案为:(3,5).【点睛】本题考查了椭圆的几何性质,属基础题.13.在空间直角坐标系O xyz -中,(1,2,1)A -,(1,1,1)B ,(0,1,2)C ,则异面直线OA 与BC 所成角的余弦值为______. 3【解析】 【分析】先求出向量OA 与BC 所成角的余弦值,再求异面直线OA 与BC 所成角的余弦值即可. 【详解】解:由(1,2,1)A -,(1,1,1)B ,(0,1,2)C , 则(1,2,1)OA =-,(1,0,1)BC=-,则向量OA 与BC 所成角的余弦值为3362OA BC OA BC⋅==-⨯, 则异面直线OA 与BC 33【点睛】本题考查了空间向量的坐标运算,重点考查了空间向量的应用,属基础题. 14.已知过点M (1,0)的直线AB 与抛物线y 2=2x 交于A ,B 两点,O 为坐标原点,若OA ,OB 的斜率之和为1,则直线AB 方程为______. 【答案】2x +y -2=0 【解析】 【分析】设直线AB 的方程并代入抛物线方程,根据韦达定理以及斜率公式,可得t 的值,进而得到直线的方程.【详解】依题意可设直线AB 的方程为:x=ty+1,代入y 2=2x 得2220y ty --=, 设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-2,y 1+y 2=2t , 所以12121212122()22422OA OB y y y y tk k t x x y y y y ++=+=+===--,∴21t -=,解得12t =-,∴直线AB 的方程为:x=12y -+1,即2x+y-2=0. 故答案为2x+y-2=0.【点睛】本题考查了直线与抛物线的位置关系的应用,以及直线方程的求解,其中设出直线的方程,代入抛物线的方程,利用韦达定理以及斜率公式求解是解答的关键,着重考查了运算与求解能力,属于中档试题.15.在空间直角坐标系O xyz -中,(2,2,2)a x y =--,(3,2,3)b x y x =-,且12a b ⋅=,则222m x y x =++的最小值是________,最大值是__________.【答案】 (1). 0 (2). 8 【解析】 【分析】先利用空间向量数量积运算可得22143x y +=,再利用椭圆的参数方程求最值即可得解.【详解】解:因为(2,2,2)a x y =--,(3,2,3)b x y x =-,且12a b ⋅=, 所以2223(2)(2)(2)(3)3412x x y x x y -++-⨯-=+=,即22143x y +=,设2cos ,3x y θθ==,则22222224cos 3sin 4cos cos 4cos 3(cos 2)1m x y x θθθθθθ=++=++=++=+-,又[]cos 1,1θ∈-, 则min0m =,max 8m =故答案为:0,8.【点睛】本题考查了空间向量数量积运算,重点考查了椭圆的参数方程,属中档题. 三.解答题:本大题共3小题,共34分.解答应写出文字说明,证明过程或演算步骤.16.已知双曲线2222:1(0,0)x y C a b a b -=>>与双曲线22142-=y x 有相同的渐近线,且经过点2,2)M -.(1)求双曲线C 的方程;(2)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.【答案】(1)2212y x -=;(2)实轴长232 【解析】 【分析】(1)由共渐近线双曲线方程的求法求解即可; (2)由双曲线方程及点到直线的距离求解即可.【详解】解:(1)解:在双曲线22142-=y x 中,2a '=,2b '=,则渐近线方程为2a y x x b''=±=,∵双曲线2222:1x y C a b -=与双曲线22142-=y x 有相同的渐近线,2ba∴=, ∴方程可化为222212x y a a -=,又双曲线C 经过点2,2)M ,代入方程,222212a a∴-=,解得1a =,2b = ∴双曲线C 的方程为2212y x -=.(2)解;由(1)知双曲线22:12y C x -=中,1a =,2b =3c =,∴实轴长22a =,离心率为3==ce a,设双曲线C 的一个焦点为(3,0)-,一条渐近线方程为2y x =,|32|221d -⨯∴==+, 即焦点到渐近线的距离为2.【点睛】本题考查了共渐近线双曲线方程的求法,重点考查了点到直线的距离,属基础题.17.如图,四棱锥P ABCD -的底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点.(1)证明://PA 平面BDE ;(2)求二面角B DE C --的余弦值;(3)若点F 在线段PB (不包含端点)上,且直线PB ⊥平面DEF ,求线段DF 的长.【答案】(1)证明见解析(23326 【解析】【分析】(1)建立以D 为坐标原点,分别以DA DC DP 、、所在直线为x 轴、y 轴、z 轴的空间直角坐标系,再标出点的坐标,利用空间向量的应用即可得证;(2)求出平面BDE 的一个法向量,平面DEC 的一个法向量,再利用数量积公式求解即可;(3)假设棱PB 上存在点F ,使PB ⊥平面DEF ,由0PB DF ⋅=求解即可.【详解】证明:(1)以D 为坐标原点,分别以DA DC DP 、、所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设2PD DC ==,则(2,0,0)A ,(0,0,2)P ,(2,2,0)B ,则(2,0,2)PA =-,(0,1,1)DE =,(2,2,0)DB =,设1(,,)n x y z =是平面BDE 的一个法向量,则由1100n DE n DB ⎧⋅=⎪⎨⋅=⎪⎩,得0220y z x y +=⎧⎨+=⎩,取1y =-,得1(1,1,1)n =-. 1220PA n ⋅=-=,1PA n ∴⊥,又PA ⊄平面BDE ,//PA ∴平面BDE .(2)解:由(1)知1(1,1,1)n =-是平面BDE 的一个法向量,又2(2,0,0)n DA ==是平面DEC 的一个法向量.设二面角B DE C --的平面角为θ,由图可知12,n n θ=<>,1122123cos cos ,3n n n n n n θ⋅∴=<>==⋅, 故二面角B DE C --的平面角的余弦值为33. (3)假设棱PB 上存在点F ,使PB ⊥平面DEF ,设(01)PF PB λλ=<<,(,,)F x y z则(,,2)(2,2,2)x y z λ-=-,(2,2,22)F λλλ∴-,(2,2,22)DF λλλ=-,(2,2,2)PB =-, 由0PB DF ⋅=得442(22)0λλλ+--=,解得13λ=, 224,,333F ⎛⎫∴ ⎪⎝⎭, 则22222426||3333DF ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【点睛】本题考查了空间向量的综合应用,重点考查了运算能力,属中档题.18.已知点A(0,-2),椭圆E:22221x ya b+= (a>b>0)的离心率为32,F是椭圆E的右焦点,直线AF的斜率为33,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.【答案】(1)2214xy+=(2)72y x=-【解析】试题分析:设出F,由直线AF的斜率为233求得c,结合离心率求得a,再由隐含条件求得b,即可求椭圆方程;(2)点l x⊥轴时,不合题意;当直线l斜率存在时,设直线:2l y kx=-,联立直线方程和椭圆方程,由判别式大于零求得k的范围,再由弦长公式求得PQ,由点到直线的距离公式求得O到l的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k值,则直线方程可求.试题解析:(1)设(),0F c ,因为直线AF 23()0,2A - 所以2233c =,3c =又22232c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=. (2)解:设()()1122,,,P x y Q x y由题意可设直线l 的方程为:2y kx =-, 联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即3k <或3k > 1212221612,1414k x x x x k k +==++. 所以()22121214PQ k x x x x =++-2222164811414k k k k⎛⎫=+- ⎪++⎝⎭224143k k +-=点O 到直线l 的距离21d k =+所以214432OPQ k S d PQ ∆-== 2430k t -=>,则2243k t =+,24414424OPQ t S t t t∆==≤=++, 当且仅当2t =2432k -=, 解得7k =时取等号, 满足234k > 所以OPQ ∆的面积最大时直线l 的方程为:72y x =-或72y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.1、在最软入的时候,你会想起谁。
高二数学上学期期末考试试题(及答案)
高二数学上学期期末考试试题(及答案)高二数学上学期期末考试试题及答案第I卷(选择题)1.在三角形ABC中,已知a+b=c-2ab,则C=()。
A。
2π/3 B。
π/3 C。
π D。
3π/4改写:在三角形ABC中,已知a+b=c-2ab,求C的大小。
答案:B2.在三角形ABC中,已知cosAcosB=p,求以下条件p的充要条件。
A。
充要条件B。
充分不必要条件C。
必要不充分条件D。
既非充分也非必要条件改写:在三角形ABC中,已知cosAcosB=p,求p的充要条件。
答案:B3.已知等比数列{an}中,a2a10=6a6,等差数列{bn}中,b4+b6=a6,则数列{bn}的前9项和为()。
A。
9 B。
27 C。
54 D。
72改写:已知等比数列{an}和等差数列{bn}的一些条件,求{bn}的前9项和。
答案:C4.已知数列{an}的前n项和Sn=n+2n,则数列{a1}的前n 项和为()。
A。
n^2/(n-1) B。
n(n+1)/(2n+1) C。
3(2n+3)/(2n+1) D。
3(n+1)/(n-1)改写:已知数列{an}的前n项和Sn=n+2n,求数列{a1}的前n项和。
答案:B5.设 2x-2y-5≤2,3x+y-10≥3,则z=x+y的最小值为()。
A。
10 B。
8 C。
5 D。
2改写:已知不等式2x-2y-5≤2和3x+y-10≥3,求z=x+y的最小值。
答案:C6.对于曲线C:x^2/4+y^2/k^2=1,给出下面四个命题:①曲线C不可能表示椭圆;②“14”的必要不充分条件;④“曲线C表示焦点在x轴上的椭圆”是“1<k<5”的充要条件。
其中真命题的个数为()。
A。
0个 B。
1个 C。
2个 D。
3个改写:对于曲线C:x^2/4+y^2/k^2=1,判断下列命题的真假,并统计真命题的个数。
答案:C7.对于曲线C:x^2+y^2=1与直线y=k(x+3)交于点A,B,则三角形ABM的周长为()。
吉林省2020学年高二上学期期末考试数学文试题Word版含答案
注参考公式:()()()1122211nniii ii i nniii i x x yyx y nxyb x x xnx====---==--∑∑∑∑,a y bx =-.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:2p x ≤,:02q x ≤≤,则p 是q 的( )条件A .充要B .充分不必要C .必要不充分D .既不充分也不必要 2.用简单随机抽样的的方法从含有100个个体的总体中抽取一个容量为5的样本,则个体M 被抽到的概率为( ) A .1100 B .199 C .120 D .1503.已知命题:p 若a b >,则22a b >,命题:q 若24x =,则2x =,则下列命题中为真命题的是( )A .p q ∧B .p q ∨C .p ⌝D .q ⌝ 4.把“二进制”数()2101101化为“十进制”数是( ) A .45 B .44 C.43 D .425.天气预报说,在今后的三天中,每一天下雨的概率均为40%,现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每天个随机数作为一组,代表这三天的下雨情况,经随机模拟试验产生了如下20组随机数:据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.15 C.0.20 D .0.256.某班共有学生52名,学号分别为152~号,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号的学生在样本中,那么样本中还有一名学生的学号是( )A .10B .16 C.53 D .32 7.阅读下图的程序框图,则输出的S =( )A .14B .20 C.30 D .558.已知函数()y f x =,其导函数()'y f x =的图象如图所示,则()y f x =( )A .在() 0-∞,上为减函数 B .在0x =处取极小值 C.在()4 +∞,上为减函数 D .在2x =处取极大值 9.双曲线()22216103x y p p-=>的左焦点在抛物线22y px =的准线上,则p =( )A .14 B .12C.2 D .4 10.曲线3ln 2y x x =++在点0P 处切线方程为410x y --=,则点0P 的坐标是( )A .()0 1,B .()1 1-, C.()1 3, D .()1 0, 11.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是( )A .至少有1件次品与至多有1件正品B .恰有1件次品与恰有2件正品 C.至少有1件次品与至少有1件正品 D .至少有1件次品与都是正品 12.圆柱的表面积为S ,当圆柱的体积最大时,圆柱的底面半径为( )A D .3 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.用辗转相除法求108和45的最大公约数为 .14.在区间[]1 5,和[]2 4,上分别各取一个数,记为m 和n ,则方程22221x y m n+=表示焦点在x 轴上的椭圆的概率是 .15.已知一个多项式()765432765432f x x x x x x x x =++++++,用秦九韶算法求3x =时的函数值时,3v = . 16.下列命题中:①命题:p “0x R ∃∈,20010x x -->”的否定p ⌝“x R ∀∈,210x x --≤”; ②汽车的重量和汽车每消耗1升汽油所行驶的平均路程成正相关关系; ③命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”; ④概率是随机的,在试验前不能确定. 正确的有 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)一个盒子中装有5个编号依次为1,2,3,4,5的球,这5个球除号码外完全相同,有放回地连续抽取两次,每次任意地取出一个球. (1)用列举法列出所有可能的结果;(2)求事件A =“取出球的号码之和不小于6的概率”. 18. (本小题满分12分)甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5项预赛,成绩如下: 甲:78 76 74 90 82 乙:90 70 75 85 80 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从平均数、方差的角度考虑,你认为选派哪位学生参加合适?说明理由. 19. (本小题满分12分)在某化学反应的中间阶段,压力保持不变,温度从1︒变化到5︒,反应结果如下表所示(x 代表温度,y 代表结果):(1)求化学反应的结果y 对温度x 的线性回归方程y bx a =+;(2)判断变量x 与y 之间是正相关还是负相关,并预测当温度达到10︒时反应结果为多少? 20. (本小题满分12分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的眇数是5.(1)求第四小组的频率和参加这次测试的学生人数; (2)在这次测试中,学生跳绳次数的中位数落在第几小组内?(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?21. (本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>,两焦点分别为12 F F ,,过1F 的直线交椭圆C 于 M N ,两点,且2MF N △的周长为8. (1)求椭圆C 的方程;(2)过点() 0P m ,作圆221x y +=的切线l 交椭圆C 于 A B ,两点,求弦长AB 的最大值. 22. (本小题满分12分)函数()22ln f x ax x x =-+,a 为常数. (1)当12a =时,求()f x 的最大值; (2)若函数()f x 在区间[]1 2,上为单调函数,求a 的取值范围.2016-2017学年度上学期高二年级数学(文)学科期末试题答案一、选择题1-5:CCBAD 6-10:BCCCDC 11、12:BC 二、填空题 13.9 14.1215.262 16.()()13 三、解答题17.解:(1)所有可能结果为25.列举如下:()()()()()1 1 1 2 1 3 1 4 1 5,,,,,,,,,; ()()()()()2 1 2 2 2 3 2 4 2 5,,,,,,,,,; ()()()()()3 1 3 2 3 3 3 4 3 5,,,,,,,,,; ()()()()()4 1 4 2 4 3 4 4 4 5,,,,,,,,,; ()()()()()5 1 5 2 5 3 5 4 5 5,,,,,,,,,. (2)取出球的号码之和不小于6的是()()()()()()1 5 2 4 2 5 3 3 3 4 3 5,,,,,,,,,,,,()()4 2 4 3,,,,()()4 4 4 5,,,,()()()()()5 1 5 2 5 3 5 4 5 5,,,,,,,,,,共15种, 所以()153255P A ==. 18.解:(1)用茎叶图表示如下:………………3分 (2)80x =甲,80x =乙.………………7分而()()()()()222222178807680748090808280325s ⎡⎤=-+-+-+-+-=⎣⎦甲,()()()()()222222190807080758085808080505s ⎡⎤=-+-+-+-+-=⎣⎦乙,因为x x =甲乙,22s s <甲乙,所以在平均数一样的条件下,甲的水平更为稳定,所以我认为应该派甲去.19.附:线性回归方程y bx a =+中,1221ni ii nii x ynxyb xnx==-=-∑∑,a y bx =-.解:(1)由题意:5n =,51135i i x x ===∑,5117.25i i y y ===∑,又5221155559105i i x x =-=-⨯=∑,515129537.221i i i x y xy =-=-⨯⨯=∑. ∴1221212.110ni ii nii x ynxy b xnx==-===-∑∑,7.2 2.130.9a y bx =-=-⨯=. 故所求的回归方程为 2.10.9y x =+. 因为第一小组的频数为5,其频率为0.1.所以参加这次测试的学生人数为50.150+=(人). (2)0.350 1.5⨯=,0.45020⨯=,0.25010⨯=,则第一、第二、第三、第四小组的频数分别为5,15,20,10. 所以学生跳绳次数的中位数落在第三小组内. (3)跳绳成绩的优秀率为()0.40.2100%60%+⨯=. 21.解:(1)由题得:c a =,48a =,所以2a =,c ,又222b a c =-,所以1b =. 即椭圆C 的方程为2214x y +=.(2)由题意知,1m >,设切线l 的方程为()()y k x m k o =-≠,由()2244y k x m x y ⎧=-⎪⎨+=⎪⎩, 得()22222148440k x k mx k m +-+-=,设()11 A x y ,,()22 B x y ,. 则2480k ∆=>,2122814k m x x k +=+,221224414k m x x k -=+,由过点()() 01P m m ≠±,的直线l 与圆221x y +=相切得1d ==,即2211k m =-,所以2 ABmm ====≤+,当且仅当m=2AB=,所以AB的最大值为2.22.解:(1)当12a=时,()2lnf x x x x=-+,则()f x的定义域为()0 +∞,,∴()()()2111'12x xf x xx x-+-=-+=,由()'0f x>,得01x<<,由()'0f x<,得1x>;∴()f x在()0 1,上是增函数,在()1 +∞,上是减函数,∴()f x的最大值为()10f=.(2)∵()1'22f x a xx=-+,若函数()f x在区间[]1 2,上为单调函数,则()'0f x≥或()'0f x≤在区间[]1 2,上恒成立,∴1220a xx-+≥或1220a xx-+≤在区间[]1 2,上恒成立.即122a xx≥-或122a xx≤-在区间[]1 2,上恒成立.设()12h x xx=-,∵()21'20h xx=+>,∴()12h x xx=-在区间[]1 2,上为增函数,∴()()max722h x h==,()()min11h x h==,∴只需722a≥或21a≤.。
2020-2021学年高二上学期期末考试数学试卷(含解析)
2020-2021学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3324A 10A n n =,则n =( )A .1B .8C .9D .102.期末考试结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有( ) A .192种B .216种C .240种D .288种3.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A .0.1536B .0.1808C .0.5632D .0.97284.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势5.若()2N 1,X σ~,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,已知()21,3X N ~,则(47)P X <≤=( )A .0.4077B .0.2718C .0.1359D .0.04536.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算()200.01P K k ≥=,根据这一数据分析,下列说法正确的是( )A .有1%的人认为该栏目优秀;B .有1%的把握认为该栏目是否优秀与改革有关系;C .有99%的把握认为电视栏目是否优秀与改革有关系;D .没有理由认为电视栏目是否优秀与改革有关系.7.若1021001210)x a a x a x a x =++++,则012310a a a a a -+-++的值为.A 1B 1C .101)D .101)8.关于()72x +的二项展开式,下列说法正确的是( ) A .()72x +的二项展开式的各项系数和为73B .()72x +的二项展开式的第五项与()72x +的二项展开式的第五项相同C .()72x +的二项展开式的第三项系数为4372CD .()72x +的二项展开式第二项的二项式系数为712C9.如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A .528B .514C .29D .1210.三棱锥P ABC -中P A 、PB 、PC 两两互相垂直,4PA PB +=,3PC =,则其体积( ) A .有最大值4B .有最大值2C .有最小值2D .有最小值4二、填空题11.最小二乘法得到一组数据(),(1,2,3,4,5)i i x y i =的线性回归方程为ˆ23yx =+,若5125ii x==∑,则51i i y ==∑___________.12.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种. 13.若随机变量X 的概率分布如表,则表中a 的值为______.14.设随机变量ξ~B (2,p ),若P (ξ≥1)=59,则D (ξ)的值为_________.15.已知等差数列{}n a 中,33a =,则1a 和5a 乘积的最大值是______.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.17.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是_____.18.点A ,B ,C 在球O 表面上,2AB =,BC =90ABC ∠=︒,若球心O 到截面ABC的距离为___________.19.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(℃)求证:1AA ⊥平面;(℃)若点E 是线段的中点,请问在线段是否存在点E ,使得面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由; (℃)求二面角的大小.20.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.三、解答题21.已知集合(){}()12,,,|,1,2,,1nn i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ℃若()1,2A ,()4,6B ,则(),7d A B =;℃在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ℃在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+;(3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.22.今年4月,教育部办公厅印发了《关于加强义务教育学校作业管理的通知》,规定初中学生书面作业平均完成时长不超过90分钟.某市为了更好地贯彻落实“双减”工作要求,作教育决策,该市教育科学研究院就当前全市初三学生每天完成书面作业时长抽样调查,结果是学生书面作业时长(单位:分钟)都在区间[]50,100内,书面作业时长的频率分布直方图如下:(1)若决策要求:在国家政策范围内,若当前初三学生书面作业时长的中位数估计值大于或等于平均数(计算平均数时,同一组中的数据用该区间的中点值代表)估计值,则减少作业时长;若中位数估计值小于平均数,则维持现状.请问:根据这次调查,该市应该如何决策?(2)调查统计时约定:书面作业时长在区间[]90,100内的为A 层次学生,在区间[)80,90内的为B 层次学生,在区间[70,80)内的为C 层次学生,在其它区间内的为D 层次学生.现对书面作业时长在70分钟以上(含70分钟)的初三学生,按作业时长出现的频率用分层抽样的方法随机抽取8人,再从这8人中随机抽取3人作进一步调查,设这3人来自X 个不同层次,求随机变量X 的分布列及数学期望.23.国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查.派出10人的调查组.先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分).他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,请说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率;(3)从对乙城市的打分中任取2个,设这2个分数中不小于80分的个数为X,求X的分布列和期望.参考答案:1.B【分析】根据排列数的运算求解即可.【详解】由332A 10A n n =得,2(21)(22)10(1)(2)n n n n n n --=--,又3,n n *≥∈N ,所以2(21)5(2)n n -=-,解得8n =, 所以正整数n 为8. 故选:B. 2.B【分析】对第一节课的安排进行分类讨论,结合分步乘法计数原理和分类加法计数原理可得结果.【详解】分以下两种情况讨论:℃若第一节课安排语文,则后面五节课的安排无限制,此时共有55A 种;℃若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有444A 种.综上所述,不同的排法共有54544216A A +=种.故选:B. 3.D【详解】设在一个小时内有ξ台机床需要工人照看,则ξ~B (4,0.2),所以P (ξ≤2)=04C (0.8)4+14C (0.8)3×0.2+24C (0.8)2×(0.2)2=0.972 8. 故选D 4.D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D . 5.C【分析】由题意,得(47)(2)P X P X μσμσ<≤=+<≤+,再利用3σ原则代入计算即可.【详解】℃()21,3X N ~,由()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,℃1(47)(2)(0.95450.6827)0.13592P X P X μσμσ<≤=+<≤+=-=.故选:C 6.C【分析】利用独立性检验的基本原理即可求出答案.【详解】解:℃()200.01P K k ≥=表示“电视栏目是否优秀与改革没有关系”的概率,℃有99%的把握认为电视栏目是否优秀与改革有关系, 故选:C .【点睛】本题主要考查独立性检验的基本应用,准确的理解判断方法是解决本题的关键,属于基础题. 7.D【详解】分析:令1021001210())f x x a a x a x a x ==++++,再求f(-1)的值得解.详解:令1021001210())f x x a a x a x a x ==++++,1001210(1)1)f a a a a -==-+++.故答案为D .点睛:(1)本题主要考查二项式定理中的系数求法问题,意在考查学生对这些基础知识 的掌握水平.(2) 二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()?··n n f x a a x a x a x =++++,0123(1)n a a a a a f ++++⋅⋅⋅+=, 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-.8.A【分析】利用赋值法求出展开式各项系数和,即可判断A ,根据二项式展开式的通项,即可判断B 、C 、D ;【详解】解:()72x +展开式的通项为7172rrr r T C x -+=⋅⋅,故第二项的二项式系数为177C =,故D 错误; 第三项的系数为2572C ⋅,故C 错误;()72x +的展开式的第五项为43472C x ⋅⋅,()72x +的展开式的第五项为44372C x ⋅⋅,故B 错误; 令1x =则()7723x +=,即()72x +的二项展开式的各项系数和为73,故A 正确; 故选:A 9.B【解析】将问题抽象成“向左三次,向前两次,向上三次”,计算出总的方法数,然后利用插空法计算出最近的行走路线中不连续向上攀登的事件数,最后根据古典概型概率计算公式,计算出所求概率.【详解】从A 的方向看,行走方向有三个:左、前、上. 从A 到B 的最近的行走线路,需要向左三次,向前两次,向上三次,共8次.所以从A 到B 的最近的行走线路,总的方法数有88332332560A A A A =⋅⋅种. 不连续向上攀登的安排方法是:先将向左、向前的安排好,再对向上的方法进行插空.故方法数有:53563232200A C A A ⨯=⋅.所以最近的行走路线中不连续向上攀登的概率为200556014=. 故选:B【点睛】本小题主要考查古典概型的计算,考查有重复的排列组合问题,考查插空法,属于中档题. 10.B【分析】依题意可得1113332P ABC PABV PC SPA PB -=⋅=⨯⨯⋅再利用基本不等式计算可得; 【详解】解:依题意21111132332222P ABCPABPA PB V PC S PA PB PA PB -+⎛⎫=⋅=⨯⨯⋅=⋅≤= ⎪⎝⎭,当且仅当2PA PB ==时取等号,所以()max 2P ABC V -=, 故选:B11.65【分析】由最小二乘法得到的线性回归方程过点(),x y ,代入即可解决 【详解】由5125i i x ==∑可知,数据的平均数2555x ==, 又线性回归方程ˆ23yx =+过点(),x y , 所以25313y =⨯+=,故51551365i i y y ===⨯=∑故答案为:65 12.42【分析】由题意可知,甲可排在第二、三、四、五个,再根据甲、乙相邻,分别计算. 【详解】由题意可知,甲可排在第二、三、四、五个,当甲排在第二、三、四个时,甲乙相邻,有22A 种排法,将甲乙当做一个整体,剩下三个节目全排列,共3×22A ×33A =36种当甲排在第五个时,甲乙相邻,只有一种排法,剩下三个节目全排列,共33A =6种 综上,编排方案共36+6=42种【点睛】本题考查了分类计数原理,分类时要注意不重不漏;解决排列问题时,相邻问题常用捆绑法,特殊位置要优先考虑. 13.0.2【解析】利用概率和为1可求出答案. 【详解】由随机变量X 的概率分布表得: 0.20.30.31a +++=,解得0.2a =. 故答案为:0.2【点睛】本题考查的是分布列的性质,较简单. 14.49【分析】由二项分布的特征,先求出13p =,套公式即可求出D (ξ). 【详解】因为随机变量ξ~B (2,p ),且P (ξ≥1)=59,所以P (ξ≥1)=()11P ξ-<= ()10P ξ-==()25119p --=. 解得:13p =. 所以D (ξ)()12412339np p =-=⨯⨯=.故答案为:4915.9【分析】设出公差,根据等差数列的性质,表示出15,a a ,再列式即可求得结果. 【详解】因为{}n a 是等差数列,设公差为d ,可得13532,2a a d a a d =-=+,于是得()()2153322949a a a d a d d =-+=-≤,当且仅当d =0,即153a a ==时,取得最大值. 故答案为:9.【点睛】本题考查等差数列的下标和性质,属基础题. 16.1443125##0.04608 【分析】认真分析该选手所有可能的答题情况,是本题的关键【详解】由该选手恰好回答了5个问题就晋级下一轮,说明他第4、第5两个问题是连续答对的,第3个问题没有答对,第1和第2两个问题也没有全部答对,即他答题结果可能有三种情况:⨯⨯⨯√√或⨯√⨯√√或√⨯⨯√√,根据独立事件同时发生的概率公式,可得该选手恰好回答了5个问题就晋级下一轮的概率为0.20.20.20.80.8+0.20.80.20.80.8+0.80.20.20.80.8=0.04608⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯故答案为:0.04608 17.0.74【详解】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.18.【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,BC =90ABC ∠=︒,所以4AC ==,所以三角形外接圆半径22ACr ==,又球心O 到截面ABC 的距离为R =球体积为(334433V R ππ==⨯=.故答案为:.19.(℃)(℃)(℃)见解析【详解】试题分析:(℃)由正方形的性质得1AC AA ⊥,然后由面面垂直的性质定理可证得结果;(℃)当点E 是线段1AB 的中点时,利用中位线定理可得1DE AC ,进而得出DE 面11AAC C ;(℃)利用二面角的定义先确定11C AC ∠是二面角111C A B C --的平面角,易求得11tan C A C ∠,从而求得二面角的平面角为的度数.试题解析:(℃)因为四边形11AAC C 为正方形,所以1AC AA ⊥. 因为平面ABC ⊥平面11AAC C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(℃)当点E 是线段1AB 的中点时,有DE 面11AAC C , 连结1AB 交1AB 于点E ,连结BC ,因为点E 是1AB 中点,点⊄是线段DE 的中点,所以1DE AC . 又因为BC ⊂面11AAC C ,11A C 面11AAC C ,所以DE 面11AAC C .(℃)因为1AA ⊥平面ABC ,所以.又因为,所以面11AAC C ,所以11A B ⊥面11AAC C ,所以11A B ⊥1A C ,11A B ⊥11A C ,所以11C AC ∠是二面角111C A B C --的平面角, 易得,所以二面角111C A B C --的平面角为45°.考点:1、线面垂直的判定;2、线面平行的判定;2、二面角.【方法点睛】立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.解决这类问题时一般根据探索性问题的设问,假设其存在并探索出结论,然后在假设下进行推理,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. 20.12600【详解】问题等价于编号为1,2,3,10的10个小球排列,其中2,3号,4,5,6号,7,8,9,10号的排列顺序是固定的,据此可得:将这些气球都打破的不同打法数是101023423412600A A A A =⨯⨯. 21.(1)℃;(2)证明见解析;(3)125n =,证明见解析.【解析】(1)℃根据新定义直接计算.℃根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;℃由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,℃若()1,2A ,()4,6B ,则(),41627d A B =-+-=,℃正确;℃在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y ,所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,℃错误; ℃在ABC 中,若()(),,d A B d A C =,在℃中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,℃错误.空格处填℃(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥.,(3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,℃04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,℃,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=,现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立. 22.(1)该市应该作出减少作业时长的决策; (2)分布列见解析;期望为167.【分析】(1)根据题意,结合频率分布直方图,分别求出中位数和平均数,即可求解; (2)根据题意,结合分层抽样以及离散型随机变量的分布列与期望求法,即可求解. (1)作业时长中位数的估计值为直方图中等分面积的线对立的值,设为x .0.01100.01100.02100.5⨯+⨯+⨯<. 0.01100.01100.02100.03100.5⨯+⨯+⨯+⨯>,()0.01100.01100.02100.03800.5x ∴⨯+⨯+⨯+⨯-=.解得2503x =,即中位数的故计值2503分钟.又作业时长平均数估计值为0.0110550.0110650.021075⨯⨯+⨯⨯+⨯⨯ 2500.0310850.031095813+⨯⨯+⨯⨯=<. 因为中位数的估计值2503分钟大于平均数估计值81分钟, 所以,根据这次调查,该市应该作出减少作业时长的决策. (2)由题,作业时长在70分钟以上(含70分钟)为[90.100],[80,90),[70,80)三个区间,其频率比为3:3:2,分别对应A ,B ,C 三个层次.根据分层抽样的方法,易知各层次抽取的人数分别为3,3,2, 因此X 的所有可能值为1,2,3.因为333821(1)28C P X C ⨯===,111233389(3)28C C C P X C ⋅⋅===, 121221333232382229(2)14C C C C C C P X C ⨯⋅+⨯⋅+⨯⋅===, 所以X 的分在列为:故数学期望19916()1232814287E X =⨯+⨯+⨯=. 23.(1)乙城市更应该入围“国家文明城市”.理由见解析. (2)425; (3)分布列见解析,期望为1.【分析】(1)根据得分的平均值与方差说明,极差最值也可用来说明;(2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,由()()(|)()()P AC P C P C A P A P A ==计算; (2)X 的可能值是0,1,2,分别求得概率得概率分布列,由期望公式计算出期望. (1)乙城市更应该入围“国家文明城市”. 理由如下:由茎叶图,计算两个城市的得分的均值为 甲:6365987910x +++==,乙:6568927910y +++==,均值相等,方差为甲:222211[(16)(14)19]13610s =-+-++=, 乙:222221[(14)(11)13]59.810s =-+-++=,甲的方差远大于乙的方差,说明乙的得分较稳定,甲极其不稳定,因此乙城市更应该入围“国家文明城市”. (2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,262102()13C P B C =-=,252107()19C P C C =-=,2725()1(1)(1)3927P A =--⨯-=,7()()9P AC P C ==, 所以()()()()749(|)1(|)111252527P AC P C P C A P C A P A P A =-=-=-=-=;(3)乙城市10个人中5个大于80分,5个小于80,X 的可能是0,1,2,252102(0)9C P X C ===,11552105(1)9C C P X C ===,252102(2)9C P X C ===,所以X 的分布列为:52()12199E X =⨯+⨯=.。
2020-2021年人教版高二上册数学期末数学试卷带答案
2020-2021学年高二(上)期末数学试卷一、填空题(本大题共12小题,满分54分,第1-6题每题4分,第7-12题每题5分))1. 复数z 1,z 2在复平面内对应的点关于直线y =x 对称,且z 1=3+2i ,则z 2=________.2. 复数a−2i 1+2i (i 是虚数单位)是纯虚数,则实数a 的值为________.3. 抛物线x 2=16y 的准线方程是________.4. 已知复数z =2+4i ,其中i 是虚数单位,,则|ω|=________.5. 设E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,若AC ⊥BD ,则四边形EFGH 的形状是________.6. 直线l 与抛物线y 2=4x 交于两点A(x 1, y 1),B(x 2, y 2),O 为坐标原点,若,则x 1x 2=________.7. 已知点F 1,F 2分别是椭圆x 2+2y 2=2的左、右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________.8. 设F 1,F 2是双曲线x 25−y 24=1的两个焦点,P 是该双曲线上一点,且|PF 1|:|PF 2|=2:1,则△PF 1F 2的面积等于________9. 已知矩形ABCD 的边AB =a ,BC =2,PA ⊥平面ABCD ,PA =2,现有以下五个数据:(1)a =12;(2)a =1;(3)a =√3;(4)a =2;(5)a =4. 当在BC 边上存在点Q ,使PQ ⊥QD 时,则a 可以取________.(填上一个正确的数据序号即可)10. 在所有经过正方体ABCD −A 1B 1C 1D 1的任意两个顶点的直线中任取k 条,求这k 条直线恰是两两异面,则k 的最大值为________.11. 在平面几何里,有勾股点了“设△ABC的两边AC,AB互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,若三棱锥A−BCD的三个侧面ABC,ACD,ADB两类互相垂直,则有________.=1的右支上一点P,分别向圆C1:(x+4)2+y2=4和圆C2:12. 过双曲线x2−y215(x−4)2+y2=1作切线,切点分别为M,N,则|PM|2−|PN|2的最小值为________.二、选择题(本大题共4小题,满分20分,每题5分))13. “a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件14. 已知平面α与平面β相交,直线m⊥α,则()A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,但必存在直线与m垂直D.β内必存在直线与m平行,却不一定存在直线与m垂直15. 正方体ABCD−A1B1C1D1中,E,F,G,H分别为CC1,BC,CD,BB1的中点,则下列结论正确的是()A.B1G // EFB.A1H⊥EFC.B1G与AE相交D.平面AEF∩平面AA1D1D=AD116. 已知直线l:x+y+2=0与椭圆Γ:=1交于A,B两点,直线l1与椭圆T交于M,N两点,有下列直线l1:①x−y−2=0;②x+y−2=0;③x+y−2=0;④x−y+2=0,其中满足△OAB与△OMN的面积相等的直线l1可以是()A.①②③B.①③④C.②③④D.①②③④三、解答题(本大题共5小题,满分35分))17. 已知复数z1,z2是实系数一元二次方程ax2+bx+c=0的两根,且复数z1在复平面内对应的点在第一象限,若z1+2z2=12−3i,其中i是虚数单位.(1)求复数z1,z2;(2)若复数z满足|z|=1,求|z−z1|的最大值和最小值.18. 唐代诗人李顾的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点A(3, 0)处出发,河岸线所在直线方程为x+y=4,并假定将军只要到达军营孙在区域即为回到军营.(1)若军营所在区域为Ω:x2+y2≤2,求“将军饮马”的最短总路程;(2)若军营所在区域为Ω:|x|+2|y|≤2,求“将军饮马”的最短总路程.19. 如图,已知正方体ABCD−A1B1C1D1的边长为1,点P在底面ABCD(含边界)内运动.(1)证明:BD⊥平面AA1C1C;(2)若A1P和A1B与平面ABCD所成的角相等,求点P的轨迹长度.20. 已知直线l:x=my+1过椭圆的右焦点F,且直线l交椭圆C于A,B两点,点A,F,B在直线l′:x=4上的射影依次为点D,K,E.(1)求椭圆C的方程;(2)若直线l交y轴于点M,且,当m变化时,探究λ1+λ2的值是否为定值?若是,求出λ1+λ2的值;否则,说明理由;(3)连接AE,BD,试探究当m变化时,直线AE与BD是否相交于顶点?若是,请求出定点的坐标,并给予证明;否则,说明理由.21. 已知平面内到定点A(1, 0)的距离与到定直线x=−1的距离之和为3的动点M的轨迹是Γ,(1)求曲线Γ与x轴的交点P的坐标;(2)求曲线Γ的方程;(3)设B(a, 1)(a为常数),求|MA|+|MB|的最小值d(a).参考答案与试题解析一、填空题(本大题共12小题,满分54分,第1-6题每题4分,第7-12题每题5分)1.【答案】2+3i【解析】直接利用对称知识求出复数的代数形式即可.2.【答案】4【解析】化简复数为a +bi(a, b ∈R),然后由复数的实部等于零且虚部不等于0求出实数a 的值. 3.【答案】y =−4【解析】利用抛物线方程直接求解准线方程即可.4.【答案】【解析】求出,求出ω,从而求出|ω|的值即可.5.【答案】矩形【解析】利用三角形中位线定理可得四边形EFGH 是平行四边形.根据AC ⊥BD ,可得EF ⊥EH .即可判断出四边形EFGH 的形状是矩形.6.【答案】4【解析】把点的坐标代入方程,结合向量的数量积化简求解即可.7.【答案】2【解析】求出椭圆的a ,b ,运用中点的向量表示,得到|PF 1→+PF 2→|=2|PO →|,再设P(x, y),运用椭圆方程,以及二次函数的值域即可得到最小值.【答案】12【解析】先由双曲线的方程求出|F 1F 2|=6,再由|PF 1|:|PF 2|=2:1,求出|PF 1|,|PF 2|,由此转化求出△PF 1F 2的面积.9.【答案】(1)或(2)【解析】根据三垂线定理结合PQ ⊥QD ,可得PQ 在底面的射影AQ 也与QD 垂直,由此可得平面ABCD 内满足条件的Q 点应在以AD 为直径的圆上,得出a ≤1即可选出正确选项. 10.【答案】4个【解析】根据异面直线的判断方法,结合正方体的结构特征即可判断.11.【答案】S △ABC 2+S △ACD 2+S △ABD 2=S △BCD 2【解析】由边对应着面,边长对应着面积,由类比可得结果.12.【答案】13【解析】求得两圆的圆心和半径,设双曲线x 2−y 215=1的左右焦点为F 1(−4, 0),F 2(4, 0),连接PF 1,PF 2,F 1M ,F 2N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值.二、选择题(本大题共4小题,满分20分,每题5分)13.【答案】C【解析】直接利用必要条件、充分条件及充分必要条件的判断方法结合椭圆标准方程得答案. 14.【答案】C【解析】作两个相交平面,交线为n ,使直线m ⊥α,然后利用反证法说明,假设β内一定存在直线a 与m 平行,根据面面垂直的判定定理证明α⊥β,这与平面α与平面β相交不一定垂直矛盾,然后根据线面垂直的性质说明β内必存在直线与m 垂直,从而证得结论. 15.【答案】【解析】如图所示,建立空间直角坐标系,不妨取AD=2.A.B1G与EF为异面直线,即可判断出正误;B.计算•与0比较,即可判断出正误;C.根据GE // DC1,DC1 // AB1,可得四边形AB1EG为梯形,即可判断出正误;D.连接BC1,可得BC1 // EF,于是EF // AD1,即可判断出正误.16.【答案】B【解析】根据于椭圆具有轴对称和中心对称的性质,经过平移和旋转即可求出直线l1的方程.三、解答题(本大题共5小题,满分35分)17.【答案】设z1=a+bi,则z2=a−bi(a>5, b>0),由z1+5z2=12−3i,得(a+bi)+4(a−bi)=3a−bi=12−3i,∴3a=12,b=3,b=3.∴z8=4+3i,z7=4−3i;满足|z|=5的复数z在以原点为圆心,以1为半径的圆上,而,∴|z−z1|的最大值为4,最小值为4.【解析】(1)设z1=a+bi,则z2=a−bi(a>0, b>0),代入z1+2z2=12−3i,整理后利用复数相等的条件列式求得a与b的值,则z1,z2可求;(2)满足|z|=1的复数z在以原点为圆心,以1为半径的圆上,求出|z1|,则|z−z1|的最大值和最小值即可.18.【答案】若军营所在区域为Ω:x2+y4≤2,作图如下:设将军饮马点为P,到达营区点为B,则总路程|PB|+|PA|=|PB|+|PA′|,要使得路程最短,只需要|PB|+|PA′|最短,即点A′到军营的距离最短,即点A′到x2+y5≤2的最短距离,为|OA′|−=-若军营所在区域为Ω:|x|+2|y|≤2,作图如下:联立,解得x=4,即B(2,所以点A′到区域Ω最短距离|A′B|==,【解析】设点A(3, 0)关于直线x+y=4的对称点为A′(a, b),由对称性,解得A′(4, 1),作出可行域,结合图形,即可解得答案.19.【答案】证明:连接AC,由正方体的几何特征,得AC⊥BD,AA1⊥平面ABCD,BD⊂平面ABCD,所以AA1⊥BD,又AA3∩AC=A,所以BD⊥平面AA1C1C.A7B与平面ABCD所成的角为∠A1BA,A1P与平面ABCD所成的角为∠A2PA,所以tan∠A1BA=tan∠A1PA,即=,所以AB=AP,所以点P的轨迹为,以A为圆心AB为半径的圆的,所以点P的轨迹长度为×7π×1=.【解析】(1)连接AC,结合正方体的几何特征,得AC⊥BD,AA1⊥平面ABCD,再由线面垂直的判定定理可得BD⊥平面AA1C1C.(2)连接A1P,根据题意可得tan∠A1BA=tan∠A1PA,推出AB=AP,点P的轨迹为,以A为圆心AB为半径的圆的,进而可得点P的轨迹长度.20.【答案】易知椭圆的右焦点为F(1, 0),所以c=3,抛物线x2=4的焦点坐标为(0,),所以b=,a2=b2+c2=3+1=5,所以椭圆C的方程为+=1.易知,m≠7,-),设直线l交椭圆于A(x1, y2),B(x2, y2),由,得(5m2+4)y7+6my−9=7,所以△=(6m)2+36(8m2+4)=144(m3+1)>0,所以y2+y2=-,y5y2=-,又由=λ4,所以(x1,y1+)=λ1(1−x7, −y1),所以λ1=−4−,同理λ2=−1−,所以λ1+λ2=−7−(+),因为+==-)=,所以λ4+λ2=−2−(+)=−2−•,所以λ1+λ3的值为-.由(2)知A(x8, y1),B(x2, y3)所以D(4, y1),E(6, y2),所以直线AE方程为:y−y2=(x−4),当x=时,y=y2+(-====6,所以点N(,5)在直线AE上,同理可证,点N(,所以m变化时,直线AE与直线BD相交于定点(.【解析】(1)根据题意可得c=1,有抛物线x2=4的焦点坐标得b,计算出a2=b2+c2=4,进而可得椭圆C的方程为.(2)根据题意可得l与y轴的交点为M(0,-),设A(x1, y1),B(x2, y2),联立直线l与椭圆的方程,得关于x的一元二次方程,结合韦达定理可得y1+y2,y1y2,用坐标表示=λ1,得λ1=−1−,同理λ2=−1−,再计算化简λ1+λ2即可得出答案.(3)由(2)知A(x1, y1),B(x2, y2),进而可得D(4, y1),E(4, y2),写出直线AE方程,再把x=代入,得y=0,推出点N(,0)在直线AE上,同理可证,点N(,0)也在直线BD上,进而得出结论.21.【答案】设点M坐标为(x, y),因为动点M到定点A(1, 0)的距离到定直线x=−1的距离之和为3,所以√(x−1)2+y2+√(x+1)2=3,当y=0时,代入求得x=±32,所以曲线Γ与x轴的交点P的坐标(±32, 0);由(1)知曲线Γ方程为√(x−1)2+y2+√(x+1)2=3,当x<−4时,因为|x+1|>3,无轨迹,当−4≤x≤−1时,化为√(x−1)2+y2=x+4,化为y2=10x+15(−32≤x≤−1),当x>−1时,化为为√(x−1)2+y2=2−x,化为y2=−2x+3(−1<x≤32),综上可得,曲线方程为y2=10x+15(−32≤x≤−1),或y2=−2x+3(−1<x≤32),当−32≤x≤−1时,曲线Γ化为y2=10x+15,当−1<x≤32时,曲线Γ化为y2=−2x+3,令y=1则10x+15=1或−2x+3=1,解得x=−1.4或x=1,①当a≤1.4或a≥1时,MB+MA≥BA,所以d(a)=|AB|=√(a−1)2+1=√a2−2a+2,②当−1<a<1时,当直线y=1与y2=−2x+3(−1<x≤32)相交时,交点M满足MB+MA取得最小值,因为抛物线准线方程为x=2,所以直线y=1与准线交点坐标为(2, 1),此时d(a)=2−a ,③当−1.4<a ≤−1时,当直线y =1与y 2=10x +15(−32≤x ≤−1)相交时, 交点M 满足MB +MA 取得最小值,此时抛物线准线的方程为形,所以y =1与准线交点坐标为(−4, 1),此时d(a)=a +4,综上所述d(a)={√a 2−2a +2,a ≤−1.4或a ≥1a +4,−1.4<a ≤−12−a,−1<a <1. 【解析】(1)设点M 坐标为(x, y),根据题意可得√(x −1)2+y 2+√(x +1)2=3,令y =0,求得x ,即可得出答案.(2)分类当x <−4时,当−4≤x ≤−1时,当x >−1时,讨论曲线Γ方程.(3)通过分类讨论,在不同范围内,由曲线方程的意义求得最小值.。
2020-2021学年高二上册数学期末数学试卷(理科)含答案
2020-2021学年高二(上)期末数学试卷(理科)一、选择题(共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的))1. 直线y=x+1的倾斜角是()A. B. C. D.2. 命题“∀a∈R,a2>0或a2=0”的否定形式是()A.∀a∈R,a2≤0B.∀a∈R,a2≤0或a2≠0C.∃a0∈R,a02≤0或a02≠0D.∃a0∈R,a02<03. 已知双曲线x2a2−y2b2=1(a>0, b>0)的一条渐近线的斜率为12,则该双曲线的离心率为()A.√3B.√5C.2D.√52 4. 平行线3x+4y−9=0和6x+my+2=0的距离是()A.8 5B.2C.115D.755. 直线ax−y−2a−1=0与x2+y2−2x−1=0圆相切,则a的值是()A.2B.C.1D.6. 已知P是直线x+2y−1=0上的一个动点,定点M(1, −2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是()A.x+2y+1=0B.2x−y+1=0C.x+2y+7=0D.2x−y+7=07. 若条件p:|x−1|≤1,条件q:x≤a,且p是q的充分不必要条件,则a的取值范围是()A.a≥2B.a≤2C.a≥−2D.a≤−28. 过抛物线y2=6x的焦点作一条直线与抛物线交于A(x1, y1),B(x2, y2)两点,若x1+x2=3,则这样的直线()A.有且只有一条B.有且只有两条C.有且只有三条D.有且只有四条9. 已知A(−1, 0),B(1, 0)和圆C:x2+(y−2)2=r2(r>0),若圆C上存在点P满足,则r的取值范围是()A.(0, 1]B.(0, 3]C.[1, 3]D.[1, +∞)10. 执行如图所示的程序框图,若输出的结果为(−4, 0),则菱形判断框内可填入的条件是()A.k≤2B.k>2C.k<4D.k≥411. 如图,是根据某班学生在一次数学考试中的成绩画出的频率分布直方图,若由直方图得到的众数,中位数和平均数(同一组中的数据用该组区间的中点值为代表)分别为a,b,c,则()A.b>a>cB.a>b>cC.D.12. 已知F1,F2分别为双曲线的左,右焦点,过F1的直线交双曲线的左支于A,B两点,若,,则双曲线的离心率e=()A. B. C. D.二、填空题(每小题5分,共20分,将答案填写在答题卡对应的横线上))13. 在空间直角坐标系中,点P的坐标为(−1, 2, −3),过点P作yOz平面的垂线PQ,则垂足Q的坐标是________.14. 已知圆C:(x−1)2+(y−2)2=9,圆C以(−1, 3)为中点的弦所在直线的斜率k=________.15. F是抛物线y2=4x的焦点,过F的直线l交抛物线于A,B两点,O为坐标原点,若|AF|=10,则△OAB的面积为________.16. 已知△ABC中,B(−1, 0),C(1, 0),k1,k2分别是直线AB和AC的斜率.关于点A有如下四个命题:=1上的点,则k1⋅k2=2.①若A是双曲线x2−y22+y2=1上的点.②若k1⋅k2=−2,则A是椭圆x22③若k1⋅k2=−1,则A是圆x2+y2=1上的点.④若|AB|=2|AC|,则A点的轨迹是圆.其中所有真命题的序号是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.))17. 如图,△ABC中,顶点A(1, 2),BC边所在直线的方程为x+3y+1=0,AB边的中点D在y轴上.(1)求AB边所在直线的方程;(2)若|AC|=|BC|,求AC边所在直线的方程.18. 如表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.(1)请根据如表提供的数据,用最小二乘法求出y关于x的线性回归方程;(2)已知该厂技改前,100吨甲产品的生产能耗为70吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?参考公式:=,=-.19. 已知命题p:“存在a∈R,使函数f(x)=x2−2ax+1在[1, +∞)上单调递增”,命题q:“存在a∈R,使∀x∈R,x2−ax+1≠0”.若命题“p∧q”为真命题,求实数a的取值范围.20. 如图,已知以点A(−1, 2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(−2, 0)的动直线l与圆A相交于M,N两点.(1)求圆A的方程;(2)当|MN|=时,求直线l的方程.21. 椭圆过点,离心率为,左、右焦点分别为F1,F2,过F2的直线l交椭圆于A,B两点.(1)求椭圆C的方程;(2)当△F1AB的面积为时,求直线l的斜率.22. 如图,已知抛物线C:y2=2px(p>0),焦点为F,过点G(2p, 0)作直线l交抛物线C 于A,B两点,设A(x1, y1),B(x2, y2).(1)若x1⋅x2=4,求抛物线C的方程;(2)若直线l与x轴不垂直,直线AF交抛物线C于另一点M,直线BF交抛物线C于另一点N.求证:直线l与直线MN斜率之比为定值.参考答案与试题解析一、选择题(共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】B【解析】根据题意,设直线的倾斜角为θ,由直线的方程可得直线的斜率,进而可得tanθ=1,据此分析可得答案.2.【答案】D【解析】根据全称命题的否定是特称命题进行判断即可.3.【答案】D【解析】求出双曲线的渐近线方程,由题意可得a=2b,再由双曲线的a,b,c的关系和离心率公式,计算即可得到.4.【答案】B【解析】利用两直线平行求得m的值,化为同系数后由平行线间的距离公式得答案.5.【答案】C【解析】根据圆的切线到圆心的距离等于半径,利用点到直线的距离公式建立关于a的方程,解之即可得到a的值.6.【答案】C【解析】设P(m, n),Q(x, y),由题意可得M(1, −2)为线段PQ的中点,运用中点坐标公式和代入法,化简可得所求轨迹方程.7.【答案】A【解析】先利用绝对值不等式的解法将条件p等价转化,然后再利用充分条件与必要条件的定义将问题转化为集合关系,求解即可.8.【答案】A【解析】设AB的方程为x=ty+,联立抛物线于直线AB的方程,由x1+x2=t(y1+y2)+3=3,求得t即可判断直线AB的条数.9.【答案】C【解析】利用向量垂直得到点P的轨迹是以A(−1, 0),B(1, 0)为直径的圆,求出圆的方程,由两圆有公共点,列出不等关系,求解即可.10.【答案】B【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出(x, y),模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.11.【答案】B【解析】由频率分布直方图分别求出众数、中位数、平均数,由此能求出结果.12.【答案】C【解析】设|BF1|=m,由双曲线的定义可求得|BF2|和|AF2|,在△ABF2中,由余弦定理可推出m =a,再由勾股定理的逆定理可证得∠ABF2=90∘,然后在Rt△BF1F2中,利用勾股定理可得5a2=2c2,从而得解.二、填空题(每小题5分,共20分,将答案填写在答题卡对应的横线上)13.【答案】(0, 2, −3)【解析】点P(a, b, c)在平面yOz的射影为Q(0, b, c).14.【答案】2【解析】根据题意,求出圆C的圆心的坐标,设P(−1, 3),要求斜率的弦所在的直线为l,求出k CP,由垂径定理分析可得答案.15.【答案】【解析】求出F的坐标,利用抛物线的定义求出点A的坐标,进而求出直线AB的方程,并与抛物线方程联立求出点B的坐标,即可求解.16.【答案】①③④【解析】①求出斜率验证即可;②求出动点轨迹方程对比即可;③求出动点轨迹方程对比即可;④求出动点轨迹方程验证即可.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【答案】因点B在直线x+3y+1=3上,不妨设B(−3a−1,由题意得(−8a−1)+1=7,解得a=0,所以B的坐标为(−1, 4),故AB边所在直线的方程为,即x−y+1=0;因|AC|=|BC|,所以点C在线段AB的中垂线x+y−6=0上由,解得x=2,即C的坐标为(2,又点A(5, 2),∴AC边所在直线的方程为,即3x+y−8=0.【解析】(1)利用点B在直线上,设B(−3a−1, a),利用中点坐标公式,求出点B的坐标,然后再由两点式求出直线方程即可;(2)联立两条直线的方程,求出交点坐标即点C,再由两点式求出直线方程即可.18.【答案】由对应数据,计算得,,=0.5,,所求的回归方程为;取x=100,得,预测生产100吨甲产品的生产能耗比技改前降低70−61=5(吨标准煤).【解析】(1)由已知数据可得与的值,则线性回归方程可求;(2)在(1)中求得的回归方程中,取x=100求得即可.19.【答案】若p为真,则对称轴,+∞)的左侧.若q为真,则方程x2−ax+1=0无实数根.∴△=(−2a)2−4<4,∴−1<a<1.∵命题“p∧q”为真命题,∴命题p,∴−7<a<1.故实数a的取值范围为(−1, 7).【解析】根据条件求出命题为真命题的等价条件,结合复合命题真假关系进行求解即可.20.【答案】设圆A的半径为r.由于圆A与直线相切,∴,∴圆A的方程为(x+5)2+(x−2)2=20.①当直线l与轴x垂直时,易知x=−2不符合题意;②当直线l的斜率存在时,设直线l的方程为y=k(x+2).即kx−y+7k=0.点A到l的距离.∵,∴,则由,得k=1或k=7,故直线l的方程为x−y+2=0或5x−y+14=0.【解析】(1)通过圆A与直线相切,求出圆的半径,然后得到圆的方程.(2)①当直线l与轴x垂直时,验证即可,②当直线l的斜率存在时,设直线l的方程为y=k(x+2).利用点A到l的距离.结合圆的半径,弦心距以及半弦长满足勾股定理,转化求解k,得到直线方程.21.【答案】因为椭圆过点,所以.①又因为离心率为,所以,所以.②解①②得a3=4,b2=2,所以椭圆C的方程为.设直线方程为y=k(x−5),A(x1, y1),B(x5, y2),由得(4k6+3)x2−2k2x+4k3−12=0,则△=42×32(k5+1)>0,且,,所以=|k|∗|x2−x2|===,即25k4−23k5−54=0,解得k2=6或(舍去),所以所求直线的斜率为或.【解析】(1)由椭圆经过点,离心率,列方程组,解得a,b,c,进而可得椭圆的方程.(2)设直线方程为y=k(x−1),A(x1, y1),B(x2, y2),联立直线与椭圆的方程可得关于x的一元二次方程,由韦达定理可得x1x2,x1+x2,再计算=,解得k,即可说得出答案.22.【答案】设直线l的方程为x=my+2p,代入y2=5px得y2−2pmy−3p2=0,则△=4p2(m2+5)>0,且,,得p=1.∴抛物线C的方程为y8=4x.证明:M(x3, y8),N(x4, y4).由(1)同理可得,.又直线l的斜率,直线MN的斜率,∴,又因,∴,故直线l与直线MN斜率之比为定值.【解析】(1)设直线l的方程为x=my+2p,代入y2=2px,得y2−2pmy−4p2=0,利用韦达定理,求解p,推出抛物线方程.(2)M(x3, y3),N(x4, y4).由(1)同理可得,.求解斜率,利用斜率比值关系,化简求解即可.。
高二数学上学期期末考试试卷含答案(共3套)
高二上学期期末考试数学试卷含答案(全卷满分:120 分 考试用时:120 分钟)一、选择题(本大题共12小题,共60分)1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高三年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②那么完成上述两项调查宜采用的抽样方法是( )A. ①用随机抽样法,②用系统抽样法B. ①用系统抽样法,②用分层抽样法C. ①用分层抽样法,②用随机抽样法D. ①用分层抽样法,②用系统抽样法 2.若直线1:(2)10l m x y ---=与直线2:30l x my -=互相平行,则m 的值为( )A. 0或-1或3B. 0或3C. 0或-1D. -1或33.用秦九韶算法求多项式542()42016f x x x x x =++++在2x =-时,2v 的值为( )A. 2B.-4C. 4D. -34.执行右面的程序框图,如果输入的3N =,那么输出的S =( )A. 1B.32C.53D.525.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件) 若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A. 5,5B. 3,5C. 3,7D. 5,7 6.若点P (3,4)和点Q (a ,b )关于直线10x y --=对称,则( )A.5,2a b ==B. 2,1a b ==-C. 4,3a b ==D. 1,2a b ==-7.直线l 过点(0,2),被圆22:4690c x y x y +--+=截得的弦长为l 的方程是( )A.423y x =+ B. 123y x =-+ C. 2y = D. 423y x =+ 或2y = 8.椭圆221169x y +=中,以点(1,2)M 为中点的弦所在直线斜率为( )A.932-B.932C.964D.9169.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国最宝贵的文化遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意的精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是( )C.12πD.14π10.若椭圆22194x y k+=+的离心率为45,则k 的值为( ) A .-21B .21C .-1925或21D.1925或21 11.椭圆221164x y +=上的点到直线x +2y -2=0的最大距离是( ) A .3 B.11 C .2 2D.1012.2=,若直线:12l y kx k =+-与曲线有公共点,则k 的取值范围是( )A.1,13⎡⎤⎢⎥⎣⎦ B.1,13⎛⎫ ⎪⎝⎭ C. )1,1,3⎛⎤⎡-∞⋃+∞ ⎣⎥⎝⎦ D. ()1,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭二、填空题(本大题共4小题,共20分)13.命题“20,0x x x ∀>+>”的否定为______________________________ .14.已知x 与y 之间的一组数据:,已求得关于y 与x 的线性回归方程 1.20.55x =+,则a 的值为______ .15.若,x y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =-的最小值为______.16.椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1、F 2,焦距为2c. 若直线y =3(x +c)与椭圆的一个交点M满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.三、解答题(本大题共6小题,共70分)17.(本小题10分)已知直线l 的方程为210x y -+=. (1)求过点A (3,2),且与直线l 垂直的直线1l 的方程; (2)求与直线l 平行,且到点P (3,0)的距离2l 的方程.18.(本小题12分)设命题:p 实数x 满足22430x ax a -+<(0a >);命题:q 实数x 满足32x x -+<0. (1)若1a =且p ∧q 为真,求实数x 的取值范围;(2)若¬q 是¬p 的充分不必要条件,求实数a 的取值范围.19.(本小题12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1), …[4,4.5]分成9组,制成了如图所示的频率分布直方图. (1)求直方图中的a 值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (3)估计居民月均用水量的中位数.20.(本小题12分)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x 、y . 奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.21.(本小题12分)已知曲线方程为:22240x y x y m +--+=. (1)若此曲线是圆,求m 的取值范围;(2)若(1)中的圆与直线240x y +-=相交于M 、N 两点,且OM⊥ON(O 为坐标原点),求m 的值.22.(本小题12分)已知1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上. (1)求椭圆C 的方程;(2)直线:l y kx m =+(m >0)与椭圆C 有且仅有一个公共点,且与x 轴和y 轴分别交于点M ,N ,当△OMN 面积取最小值时,求此时直线l 的方程.数学参考答案13.20000,0x x x ∃>+≤14. 2.1515. -5117.(1)设与直线l :2x -y +1=0垂直的直线1l 的方程为:x +2y +m =0,-------------------------2分把点A (3,2)代入可得,3+2×2+m =0,解得m =-7.-------------------------------4分 ∴过点A (3,2)且与直线l 垂直的直线1l 方程为:x +2y -7=0;----------------------5分(2)设与直线l :2x -y +1=0平行的直线2l 的方程为:2x -y +c =0,----------------------------7分∵点P (3,0)到直线2l =,解得c =-1或-11.-----------------------------------------------8分∴直线2l 方程为:2x -y -1=0或2x -y -11=0.-------------------------------------------10分18.(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,又a >0,所以a <x <3a ,.------------------------------------------------------2分 当a =1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3.由实数x 满足302x x -<+ 得-2<x <3,即q 为真时实数x 的取值范围是-2<x <3.------4分 若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是1<x <3.---------------------------------------------- 6分(2)¬q 是¬p 的充分不必要条件,即p 是q 的充分不必要条件 -----------------------------8分由a >0,及3a ≤3得0<a ≤1,所以实数a 的取值范围是0<a ≤1.-------------------------------------------------12分19.(1)∵1=(0.08+0.16+a +0.40+0.52+a +0.12+0.08+0.04)×0.5,------------------------2分整理可得:2=1.4+2a ,∴解得:a =0.3-----------------------------------------------------------------4分(2)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量为30万-----6分 则样本中月均用水量不低于3吨的户数为30×0.12=3.6万.---------------------------8分 (3)根据频率分布直方图,得0.08×0.5+0.16×0.5+0.30×0.5+0.40×0.5=0.47<0.5, 0.47+0.5×0.52=0.73>0.5,∴中位数应在(2,2.5]组内,设出未知数x ,---------------------------------------10分 令0.08×0.5+0.16×0.5+0.30×0.5+0.4×0.5+0.5×x =0.5, 解得x =0.06;∴中位数是2+0.06=2.06.--------------------------------------------------------12分 20.(1)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4),共16个, ----------------------------2分 满足xy ≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个, ----------4分∴小亮获得玩具的概率为516; -------------------------------------------------------6分 (2)满足xy ≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个, ----8分∴小亮获得水杯的概率为616; --------------------------------------------------------9分 小亮获得饮料的概率为5651161616--=,----------------------------------------------11分 ∴小亮获得水杯大于获得饮料的概率.-------------------------------------------------12分21.(1)由曲线方程x 2+y 2-2x -4y +m =0.整理得:(x -1)2+(y -2)2=5-m ,------------------------------------------------2分 又曲线为圆,则5-m >0,解得:m <5.------------------------------------------------------------------4分(2)设直线x +2y -4=0与圆:x 2+y 2-2x -4y +m =0的交点为M (x 1,y 1)N (x 2,y 2).则:22240240x y x y x y m +-=⎧⎨+--+=⎩,消去x 整理得:5y 2-16y +8+m =0, 则:1212168,55m y y y y ++==,------------------------------------------------6分 由OM ⊥ON (O 为坐标原点),可得x 1x 2+y 1y 2=0,-------------------------------------8分又x 1=4-2y 1,x 2=4-2y 2,则(4-2y 1)(4-2y 2)+y 1y 2=0.---------------------------------------------------10分 解得:85m =,故m 的值为85.--------------------------------------------------12分 22.(1)∵1(1,0)F -和2(1,0)F 是椭圆22221(0)x y a b a b+=>>的两个焦点,且点3(1,)2P 在椭圆C 上,∴依题意,1c =,又3242a ==,故2a =.---------------------2分由222b c a +=得b 2=3.-----------------------------------------------------------3分故所求椭圆C 的方程为22143x y +=.-----------------------------------------------4分(2)由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消y 得(4k 2+3)x 2+8kmx +4m 2-12=0,由直线l 与椭圆C 仅有一个公共点知,△=64k 2m 2-4(4k 2+3)(4m 2-12)=0,整理得m 2=4k 2+3.-----------------------------6分 由条件可得k ≠0,(,0)mM k-,N (0,m ). 所以.①------------------------------8分将m 2=4k 2+3代入①,得.因为|k |>0,所以,-------------------------------10分当且仅当34k k=,则,即时等号成立,S △OMN 有最小值.-----11分因为m 2=4k 2+3,所以m 2=6,又m >0,解得.故所求直线方程为或.----------------------------12分高二级第一学期期末质量检测数学试卷本试卷分两部分,共4页,满分150分。
天津市2020学年高二数学上学期期末考试试题(含解析) (2)
高二数学上学期期末考试试题(含解析)一、选择题(本大题共8小题)1.命题“x R ∀∈,22340x x -+≥”的否定为 () A. x R ∀∈,22340x x -+< B. x R ∀∈,22340x x -+≤ C. x R ∃∈,22340x x -+< D. x R ∃∈,22340x x -+≤【答案】C 【解析】 【分析】根据全称命题的否定为特称命题解答.【详解】解:根据全称命题的否定为特称命题,故命题“x R ∀∈,22340x x -+≥”的否定为x R ∃∈,22340x x -+<. 故选:C .【点睛】本题考查含有一个量词的命题的否定,属于基础题. 2.“直线与双曲线相切”是“直线与双曲线只有一个公共点”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 【解析】直线与双曲线相切,则直线与双曲线只有一个公共点,反之当直线与双曲线只有一个公共点时除了直线与双曲线相切,还有就是直线和双曲线的渐近线平行的时候;故是充分不必要条件. 故答案为A .3.椭圆22143y x +=的焦点坐标为() A. ()1,0-,()1,0 B. ()2,0-,()2,0 C. ()0,2-,()0,2 D. ()0,1-,()0,1【答案】D【解析】 【分析】利用椭圆的方程求出a ,b ,得到c 即可求解结果.【详解】解:椭圆22143y x +=,焦点在y 轴上,可得2a =,b =1c =,所以椭圆的焦点坐标()0,1±. 故选:D .【点睛】本题考查椭圆的简单性质的应用,是基本知识的考查,属于基础题. 4.抛物线24y x =-的焦点坐标是()A. ()10,B. ()10-,C. ()20,D. ()20-,【答案】B 【解析】根据抛物线的标准方程为24y x =-画出图像可得准线方程为:1,x =故焦点坐标为()10-,. 故答案为B .5.已知△ABC 的顶点B 、C 在椭圆23x +y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )B. 6D. 12【答案】C 【解析】 【分析】根据椭圆定义,椭圆上的点到两焦点距离之和为长轴长即可得解. 【详解】设另一焦点为F ,由题F 在BC 边上,所以ABC ∆的周长l AB BC CA AB BF CF CA =++=+++==故选:C【点睛】此题考查椭圆的几何意义,椭圆上的点到两焦点距离之和为定值,求解中要多观察图形的几何特征,将所求问题进行转化,简化计算.6.已知双曲线C :22221x y a b-=的一条渐近线的倾斜角为60︒,且与椭圆2215x y +=有相等的焦距,则C 的方程为 ()A. 2213x y -=B. 22193x y -=C. 2213y x -=D.22139x y -= 【答案】C 【解析】 【分析】根据题意,由双曲线的方程分析可得其渐近线方程,分析可得有ba=b =,求出椭圆的半焦距,分析可得224a b +=,解可得2a 、2b 的值,将2a 、2b 的值代入双曲线的方程,即可得答案.【详解】解:根据题意,双曲线C :22221x y a b-=的焦点在x 轴上,其渐近线方程为b y x a =±,若其一条渐近线的倾斜角为60︒,则该渐近线的方程为y =,则有ba=b =, 椭圆2215x y +=中,2514c =-=,若双曲线与椭圆有相等的焦距,则有224a b +=, 解可得21a =,23b =,则双曲线的方程为2213y x -=;故选:C .【点睛】本题考查双曲线、椭圆的几何性质,注意分析双曲线的焦点位置,属于基础题.7.已知00(,)M x y 是双曲线C :2212x y -=上的一点,1F ,2F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A. (B. (C. ()33-D.( 【答案】A 【解析】由题知12(F F ,220012x y -=,所以12MF MF ⋅=0000(,),)x y x y -⋅-=2220003310x y y +-=-<,解得033y -<<,故选A. 考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法. 【此处有视频,请去附件查看】8.已知双曲线22221(0,0)x y a b a b-=>>与抛物线24y x =有一个公共的焦点F ,且两曲线的一个交点为P .若52PF =,则双曲线的渐近线方程为( )A. 12y x =±B. 2y x =±C. y =D.y x = 【答案】C 【解析】 【分析】首先由题意确定点P 的坐标,然后列方程确定a,b 的值即可确定渐近线方程. 【详解】∵抛物线24y x =的焦点坐标F(1,0),p=2, 抛物线的焦点和双曲线的焦点相同, ∴p=2c ,即c=1,设P(m,n),由抛物线定义知:53||1,222p PF m m m =+=+=∴=. ∴P点的坐标为3,2⎛⎝. 222219614a b a b ⎧+=⎪∴⎨-=⎪⎩,解得:122a b ⎧=⎪⎪⎨⎪=⎪⎩.则渐近线方程为by x a=±=. 故选C.【点睛】本题主要考查双曲线的渐近线方程的求解,抛物线的几何性质等知识,意在考查学生的转化能力和计算求解能力. 二、填空题(本大题共6小题)9.命题:“2,10x R x ax ∃∈-+<”的否定为____. 【答案】2,10x R x ax ∀∈-+≥ 【解析】 【分析】直接利用特称命题的否定是全称命题写出结果即可.【详解】写命题否定时,除结论要否定外,存在量词与全称量词要互换,因此命题“210x R x ax ∃∈-+<,”的否定是“210x R x ax ∀∈-+≥,”. 故答案为∀x ∈R ,x 2﹣ax +1≥0【点睛】本题考查命题的否定及特称命题与全称命题的关系,属于基本知识的考查. 10.对于常数m 、n ,“0mn >”是方程“221mx ny +=的曲线是椭圆”的__________.【答案】必要不充分条件 【解析】因为0m n =>时,221mx ny +=表示圆,所以“方程“221mx ny +=曲线是椭圆””推不出方程“方程“221mx ny +=的曲线是椭圆”,当方程“221mx ny +=的曲线是椭圆”时,能推出0mn >,所以应该填必要不充分条件.11.已知椭圆G 的中心在坐标原点,焦距为4,且椭圆上一点到椭圆焦点的最小距离为6,则椭圆的离心率为______. 【答案】14【解析】 【分析】利用已知条件列出方程组,求解a 、c ,得到椭圆的离心率.【详解】解:椭圆G 的中心在坐标原点,焦距为4,且椭圆上一点到椭圆焦点的最小距离为6,246c a c =⎧⎨-=⎩,解得8a =,2c =, 所以椭圆的离心率为:14c e a ==. 故答案为:14. 【点睛】本题考查椭圆的简单性质的应用,是基本知识的考查,属于基础题.12.已知点(32)M ,,F 为抛物线22y x =的焦点,点P 在该抛物线上移动,当PM PF +取最小值时,点P 的坐标为_______. 【答案】()2,2 【解析】 【分析】设点M 在准线上的射影为D ,由抛物线的定义把问题转化为求|PM |+|PD |的最小值,同时可推断出当D ,P ,M 三点共线时|PM |+|PD |最小,答案可得.【详解】设点M 在准线上的射影为D ,由抛物线的定义可知|PF |=|PD | ∴要求|PM |+|PF |的最小值,即求|PM |+|PD |的最小值,只有当D ,P ,M 三点共线时|PM |+|PD |最小,此时P 纵坐标为2,则横坐标为2 故答案为:()2,2【点睛】本题考查抛物线的简单性质,涉及与抛物线有关的最值问题,属中档题. 13.已知倾斜角为α的直线l 经过抛物线24y x =的焦点交抛物线于A 、B 两点,并且4AF BF =,则cos α=______.【答案】35± 【解析】 【分析】考虑角α为锐角,设A 、B 两点在准线上的射影分别为C 、.D 过B 作BM AC ⊥于.M 则有AC AF =,BD BF =.设44AF BF m ==,则3.AM m =,35AM cos AB α==,同理由α为钝角得出3cos 5α=-,综上可得出答案.【详解】解:若角α锐角,如图,设A 、B 两点在准线上的射影分别为C 、D .过B 作BM AC ⊥于.M 则有AC AF =,BD BF = 设44AF BF m ==,则3AM m =.则35AM cos AB α==. 若角α为钝角,由对称性可知3cos 5α=-. 因此,3cos 5α=±. 故答案为:35±. 【点睛】本题考查了抛物线的简单几何性质,考查了抛物线的定义,考查了转化思想,属于中档题.14.已知抛物线C :24y x =的焦点为F ,准线与x 轴的交点为H ,点P 在C 上,且PH =,则PFH ∆的面积为______.【答案】4±【解析】 【分析】设2,4t P t ⎛⎫ ⎪⎝⎭,()0t >,则214t PF PM ==+,PH =由PH =,可得2840t t -+=,解得4t =±即可求解.【详解】解:由抛物线C :24y x =,得焦点()1,0F ,准线方程为 1.x =-过P 作PM 垂直准线于M ,设2,4t P t ⎛⎫ ⎪⎝⎭,()0t >,则214t PF PM ==+,22214t PH t ⎛⎫=++ ⎪⎝⎭由52PH =,可得2840t t -+=, 解得423t =±. 则PFH ∆的面积为124232t ⨯⨯=± 故答案为:423±【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.三、解答题(本大题共5小题)15.(1)已知椭圆的焦点在x 轴上,长轴长为4,焦距为2,求该椭圆的标准方程; (2)已知抛物线顶点在原点,对称轴是y 轴,并且焦点到准线的距离为5,求该抛物线方程.【答案】(1)22143x y +=(2)210x y =或210x y =-【解析】【分析】(1)设出椭圆的方程为()222210x y a b a b+=>>,由题意可得a ,c ,求得b ,可得所求方程;(2)设抛物线的方程为2x ty =,0t ≠,由焦点到准线的距离解得t ,可得所求方程.【详解】解:(1)设椭圆的方程为()222210x y a b a b+=>>,由题意可得24a =,即2a =,22c =,即1c =,b ==则椭圆的标准方程为22143x y +=;(2)设抛物线的方程为2x ty =,0t ≠, 焦点到准线的距离为5,可得152t =,即10t =±, 则抛物线的标准方程为210x y =或210x y =-.【点睛】本题考查椭圆和抛物线的方程和性质,考查方程思想和运算能力,属于基础题.16.已知椭圆C :222210x y a b a b+=>>()形面积为 (1)求椭圆C 的方程;(2)过点1,1M ()的直线l 与椭圆C 交于A ,B 两点,且点M 恰为线段AB 的中点,求直线l的方程.【答案】(1)22132x y +=(2)直线l 的方程为2350x y +-=【解析】 【分析】(1)根据椭圆的几何性质求得a =b =(2)联立直线与椭圆,由根与系数关系得到两根之和,再根据中点公式列式可求得斜率k ,从而求得直线l 方程.【详解】解:(1)椭圆C c a ∴=,223a c =222222a b c b c =+∴=,即b =椭圆C 的两个顶点和两个焦点构成的四边形面积为bc ∴=2=1c ∴=,从而得a =b =∴椭圆C 的方程为22132x y +=;(2)显然,直线l 的斜率存在,设该斜率k , 直线l 的方程为()11y k x -=-,即1y kx k =+-, 直线l 的方程与椭圆C 的方程联立,消去y 得:()()()22232613160k x k k x k ++-+--=且该方程显然有二不等根,记A ,B 两点的坐标依次为()11,x y ,()22,x y ,1212x x +=,即122x x +=, ()261232k k k -∴=+,解得23k =-, ∴所求直线l 的方程为2350x y +-=.【点睛】本题考查了直线与椭圆的综合,属中档题.17.已知抛物线C :22y px =经过点2,2P (),A ,B 是抛物线C 上异于点O 的不同的两点,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)若OA OB ⊥,求AOB 面积的最小值.【答案】(1)抛物线C 的方程为22y x =.焦点坐标为1,02(),准线方程为12x =-(2)面积的最小值为4 【解析】 【分析】(1)根据题意,将P 的坐标代入抛物线的方程,可得p 的值,即可得抛物线的标准方程,分析即可得答案;(2)直线AB 的方程为x ty a =+,与抛物线的方程联立,可得2220y ty a --=,设()11,A x y ,()22,B x y ,结合OA OB ⊥,结合根与系数的关系分析可得22121204y y y y +=,进而可得AOB 面积的表达式,分析可得答案.【详解】解:(1)由抛物线C :22y px =经过点()2,2P 知44p =,解得1p =.则抛物线C 的方程为22y x =.抛物线C 的焦点坐标为1,02⎛⎫ ⎪⎝⎭,准线方程为12x =-;(2)由题知,直线AB 不与y 轴垂直,设直线AB :x ty a =+, 由22x ty a y x=+⎧⎨=⎩消去x ,得2220y ty a --=. 设()11,A x y ,()22,B x y ,则122y y t +=,122y y a =-.因为OA OB ⊥,所以12120x x y y +=,即22121204y y y y +=,解得120y y =(舍去)或124y y =-. 所以2 4.a -=-解得2a =. 所以直线AB :2x ty =+.所以直线AB 过定点2,0().121242AOBSy y =⨯⨯-==≥=. 当且仅当12y =,22y =-或12y =-,22y =时,等号成立. 所以AOB ∆面积的最小值为4.【点睛】本题考查抛物线的与直线的位置关系,关键是求出抛物线的标准方程,属于中档题.18.已知椭圆2222:1(0)x y C a b a b +=>>经过点(1,)2,一个焦点为.(1)求椭圆C 的方程;(2)若直线(1)(0)y k x k =-≠与x 轴交于点P ,与椭圆C 交于,A B 两点,线段AB 的垂直平分线与x 轴交于点Q ,求AB PQ的取值范围.【答案】(1)椭圆C 的方程是2214x y +=;(2)AB PQ的取值范围为(4,. 【解析】【详解】试题分析:(1)求椭圆C 的方程,已知椭圆2222:1(0)x y C a b a b +=>>经过点(1,2,一个焦点为,故可用待定系数法,利用焦点为可得c =,可得221314a b+=,再由222a b c =+,即可解出,a b ,从而得椭圆C 的方程;(2)求AB PQ 的取值范围,由弦长公式可求得线段AB 的长,因此可设1122(,),(,)A x y B x y ,由22(1),{1,4y k x x y =-+=得,2222(14)8440k x k x k +-+-=,则12,x x 是方程的两根,有根与系数关系,得2122814k x x k +=+,21224414k x x k-=+,由弦长公式求得线段AB 的长,求PQ 的长,需求出,P Q 的坐标,直线(1)(0)y k x k =-≠与x 轴交于点P ,可得(1,0)P ,线段AB 的垂直平分线与x 轴交于点Q ,故先求出线段AB 的中点坐标,写出线段AB 的垂直平分线方程,令0y =,既得Q 点的坐标,从而得PQ 的长,这样就得AB PQ的取值范围.试题解析:(1)由题意得2222=3,{131,4a b a b -+=解得=2a ,1b =. 所以椭圆C 的方程是2214x y +=.(2)由22(1),{1,4y k x x y =-+=得2222(14)8440k x k x k +-+-=.设1122(,),(,)A x y Bx y ,则有2122814k x x k +=+,21224414k x x k -=+, 121222(2)14k y y k x x k -+=+-=+.所以线段AB 的中点坐标为2224(,)1414k kk k-++, 所以线段AB 的垂直平分线方程为.于是,线段AB 的垂直平分线与x 轴的交点Q 223(,0)14kk+,又点(1,0)P , 所以22223111414k k PQ k k +=-=++.又222222844(1)[()4]1414k k AB k k k -=+-⋅++224(1)(13)k k ++=.于是,22222224(1)(13)1321444311114k k AB k k k PQ k k k ++++===-++++. 因为0k ≠,所以221331k<-<+.所以AB PQ 的取值范围为(4,43). 考点:求椭圆的方程,直线与椭圆位置关系,二次曲线范围问题.19.已知椭圆22221(0)x y a b a b +=>>的离心率为3,其短轴的端点分别为,,||2A B AB =,且直线,AM BM 分别与椭圆C 交于,E F 两点,其中点1,2M m ⎛⎫⎪⎝⎭,满足0m ≠,且3m ≠±. (Ⅰ)求椭圆C 的方程;(Ⅱ)若BME 面积是AMF 面积的5倍,求m 的值.【答案】(Ⅰ)2214x y +=;(Ⅱ)1m =±. 【解析】 【分析】(Ⅰ)由题意得到关于a,b,c 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)由题意得到直线AM,BM 的方程,联立直线方程与椭圆方程,求得点E,F 的坐标结合题意即可得到关于m 的方程,解方程即可确定m 的值.【详解】(Ⅰ)由题意可得:22222c e a AB b a b c ⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得:222413a b c ⎧=⎪=⎨⎪=⎩,椭圆的方程为2214x y += .(Ⅱ)()()10,1,0,1,,2A B M m ⎛⎫- ⎪⎝⎭且0m ≠, ∴直线AM 的斜率为112k m =-,直线BM 的斜率为232k m=, ∴直线AM 的方程为112y x m =-+,直线BM 的方程为312y x m =-,由221,411,2x y y x m ⎧+=⎪⎪⎨⎪=-+⎪⎩得()22140m x mx +-=, ∴240,1mx x m ==+,∴22241,11m m E m m ⎛⎫- ⎪++⎝⎭. 由221,431,2x y y x m ⎧+=⎪⎪⎨⎪=-⎪⎩得()229120m x mx +-=, ∴2120,9mx x m ==+,∴222129,99m m F m m ⎛⎫- ⎪++⎝⎭.∵11sin sin 22AMF BME S MA MF AMF S MB ME BME ∆∆=∠=∠,,AMF BME ∠=∠, 5AMFBMESS=,∴5MA MF MB ME =,∴5MA MB MEMF=∴22541219m m m mm m m m =--++ ∵0m ≠,且m ≠∴整理方程得21m =, ∴1m =±为所求.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.1、在最软入的时候,你会想起谁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选教育类期中期末考试文档,希望能帮助到您!2020最新高二数学上册期末考试试卷及答案试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知命题p:∀x∈R,sinx≤1,则( C)A.⌝p:∃x∈R,sinx≥1B.⌝p:∀x ∈R,sinx≥1C.⌝p:∃x∈R,sinx>1 D.⌝p:∀x∈R,sinx>12.等差数列{a n}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( B).A.160 B.180 C.200 D.220 3.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c.若a=3,b =4,∠C=60°,则c的值等于( C ).A.5 B.13 C.13D.37 4.若双曲线x2a2-y2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( D)A.73B.54C.43D.535.在△ABC 中,能使sinA >32成立的充分不必要条件是( C )A .A ∈⎝ ⎛⎭⎪⎫0,π3B .A ∈⎝ ⎛⎭⎪⎫π3,2π3C .A ∈⎝ ⎛⎭⎪⎫π3,π2D .A ∈⎝ ⎛⎭⎪⎫π2,5π66.△ABC 中,如果A atan =Bb tan =Cctan ,那么△ABC 是( B ).A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形7. 如图,PA ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点, F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的值为( B ) A .1∶2 B .1∶1 C .3∶1 D .2∶18.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA=CC 1=2CB ,则直线BC 1与直线A B 1夹角的余弦值为( A )A.55 B.53C.255 D. 359.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( D ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]10.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =kx +34分为面积相等的两部分,则k 的值是( A ).A .73B .37C .43D .3411.若关于x 的不等式2x 2-8x -4-a ≥0在1≤x ≤4内有解,则实数a 的取值范围是( A )A .a ≤-4B .a ≥-4C .a ≥-12D .a ≤-1212.定义域为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2(x -3)2,若函数y =f (x )-log a (x+1)在(0,+∞)上至少有三个零点,则a 的取值范围为 ( B )A. ⎝ ⎛⎭⎪⎫0,22 B. ⎝ ⎛⎭⎪⎫0,33 C. ⎝ ⎛⎭⎪⎫0,55 D.⎝⎛⎭⎪⎫0,66解析 由于定义为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),得f (-1+2)=f (-1)-f (1)=0,即f (1)=0,故f (x +2)=f (x ),可知f (x )的周期T =2,图象以x =2为对称轴,作出f (x )的部分图象,如图,∵y =log a (x +1)的图象与f (x )的图象至少有三个交点,即有log a (2+1)>f (2)=-2且0<a <1,解得a ∈⎝⎛⎭⎪⎫0,33。
第Ⅱ卷(选择题 共90分)二、填空题:本大题共5小题,每小题5分,共20分.把答案填在答题卡的相应位置13.已知某抛物线的准线方程为y =1,则该抛物线的标准方程为________。
x 2=-4y14.若a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是______75__。
15.过椭圆221164x y +=内一点M(2,1)引一条弦,使弦被点M 平分,则这条弦所在直线的斜率等于________ -1216.已知函数f (x )=x α的图象过点(4,2),令 a n =1f n +1+f n,n ∈N *。
记数列{a n }的前n 项和为S n ,则S 2 016=________。
2 017-1三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.17.(12分)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C 。
(1)若a =b ,求cos B ; (2)设B =90°,且a =2,求△ABC 的面积。
解 (1)由sin 2B =2sin A sin C 及正弦定理,得b 2=2ac , ∵a =b ,∴a =2c 。
由余弦定理,得cos B =a 2+c 2-b 22ac=a 2+14a 2-a 22a ×12a=14。
(2)由(1)得b 2=2ac 。
∵B =90°,a =2,∴a 2+c 2=2ac ,∴a=c =2,∴S △ABC =12ac =1。
18.设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0。
(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围。
解 (1)由x 2-4ax +3a 2<0,得:(x -3a )(x -a )<0, 当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3。
由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0。
解得:2<x ≤3, 即q 为真时实数x 的取值范围是2<x ≤3。
若p 且q 为真,则p 真且q 真,所以实数x 的取值范围是2<x <3。
(2)p 是q 的必要不充分条件,即q 推出p ,且p 推不出q , 设集合A ={x |p (x )};集合B ={x |q (x )},则集合B 是集合A 的真子集,又B =(2,3],当a >0时,A =(a,3a );a <0时,A =(3a ,a )。
所以当a >0时,有⎩⎪⎨⎪⎧a ≤2,3<3a ,解得1<a ≤2,当a <0时,显然A ∩B =∅,不合题意,19.(本小题满分12分)已知动圆经过点F (2,0),并且与直线x =-2相切。
(1)求动圆圆心P 的轨迹M 的方程;(2)经过点(2,0)且倾斜角等于135°的直线l 与轨迹M 相交于A ,B 两点,求|AB |。
解 (1)设动圆圆心P (x ,y )。
因为动圆经过点F (2,0),并且与直线x =-2相切,所以点P 到定点F (2,0)的距离与到定直线x =-2的距离相等, 故点P 的轨迹是一条抛物线,其焦点为F ,准线为x =-2,设轨迹方程为y 2=2px (p >0),则p2=2,所以轨迹M 的方程为y 2=8x 。
(2)轨迹M 的焦点(2,0),直线l 的斜率k =tan 135°=-1,于是其方程为y =-(x -2)。
由⎩⎪⎨⎪⎧y =-x -2,y 2=8x ,消去y 得x 2-12x +4=0。
设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=12, 于是|AB |=x 1+x 2+p =12+4=16。
20.(12分)如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,△ABC 是直角三角形,且PA =AB =AC 。
又平面QBC 垂直于底面ABC 。
(1)求证:PA ∥平面QBC ;(2)若PQ ⊥平面QBC ,求锐二面角Q -PB -A 的余弦值。
解 (1)证明:过点Q 作QD ⊥BC 交BC 于点D , 因为平面QBC ⊥平面ABC 。
所以QD ⊥平面ABC 。
又PA ⊥平面ABC , 所以QD ∥PA 。
而QD ⊂平面QBC ,PA ⊄平面QBC , 所以PA ∥平面QBC 。
(2)因为PQ ⊥平面QBC , 所以∠PQB =∠PQC =90°。
又PB =PC ,PQ =PQ , 所以△PQB ≌△PQC , 所以BQ =CQ 。
所以点D 是BC 的中点,连接AD ,则AD ⊥BC ,因此AD ⊥平面QBC ,故四边形PADQ 是矩形。
分别以AC ,AB ,AP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系。
设PA =2a ,则Q (a ,a,2a ),B (0,2a,0),P (0,0,2a )。
设平面QPB 的法向量为n =(x ,y ,z ),因为PQ→=(a ,a,0),PB →=(0,2a ,-2a ), 所以⎩⎪⎨⎪⎧ax +ay =0,2ay -2az =0,取n =(1,-1,-1)。
又平面PAB 的一个法向量为m =(1,0,0), 设锐二面角Q -PB -A 的大小为θ, 则cos θ=|cos 〈m ,n 〉|=m ·n|m ||n |=33,即锐二面角Q -PB -A 的余弦值等于33。
21.(本小题满分12分)若{}n a 的前n 项和为n S ,点),(n S n 均在函数y =x x 21232-的图像上。
(Ⅰ)求数列{}n a 的通项公式;n a =3n-2 (Ⅱ)13+=n n na ab ,n T 是数列{}n b 的前n 项和,(1) 点),(n S n 均在函数y =x x 21232-的图像上,∴n S =n n 21232-,故=-1n S)1(21)1(232---n n )2(≥n ,… 从而当2≥nn S -1-n S =3n-2,即n a =3n-2,又当n=1时,111==S a,满足上式∴n a =3n-2(2) 13+=n n n a a b ,n a =3n-2, ∴)13)(23(3+-=n n b n =131231+--n n∴++-+-+-=...101717141411n T 131231+--n n =.1331311+=+-n n n 22.(本小题满分12分)已知椭圆x 2+2y 2=a 2(a >0)的一个顶点和两个焦点构成的三角形的面积为4。
(1)求椭圆C 的方程;(2)已知直线y =k (x -1)与椭圆C 交于A ,B 两点,是否存在x 轴上的点M (m,0),使得对任意的k ∈R ,MA →·MB →为定值?若存在,求出点M 的坐标;若不存在,说明理由。