中学9年级袋鼠数学2019竞赛题
2019年浙江省中考数学奥赛试题试卷附解析
2019年浙江省中考数学奥赛试题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,EB 为半圆O 的直径,点A 在EB 的延长线上,AD 切半圆O 于点D ,BC ⊥AD 于点C ,AB =2,半圆O 的半径为2,则BC 的长为( )A .2B .1C .1.5D .0.52.把抛物线y=x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x 2-3x +5,则有( )A .b=3,c=7B .b=-9,c=-15C .b=3,c=3D .b=-9,c=213. 下列关于二次函数2132y x =-+与213()2y x =-- 的图象关系说法错误的是( ) A . 开口方向、大小相同 B .顶点相同C . 可以相互平移得到D . 对称轴不同4.下列图形中,是中心对称图形而不是轴对称图形的是( )A . 平行四边形B . 正方形C . 正三角形D . 线段AB 5.如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( )94x yO P D CA .10B .16C .18D .20 6.不等式组31413(3)024x x +<⎧⎪⎨+-<⎪⎩的最大整数解是( ) A .0 B .-1 C .-2 D .17.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中只有3个红球. 每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱. 通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )A . 12B . 9C . 4D . 38.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 9.已知a <0,若-3a n ·a 3的值大于零,则n 的值只能是( ) A .n 为奇数B .n 为偶数C .n 为正整数D .n 为整数 10.已知3a b -=-,2c d +=,则()()b c a d +--的值为( ) A .-1B .-5C . 5D . 1 11.一个数的立方根是它本身,则这个数是( )A .0B .1,0C .1,-1D .1,-1或0 二、填空题12.如图是一口直径AB 为4米,深BC 为2米的圆柱形养蛙池,小青蛙们晚上经常坐在池底中心O 观赏月亮,则它们看见月亮的最大视角∠COD= 度,(不考虑青蛙的身高). 13.我们在语文课《桃花源记》中学过“初极狭,才通人,复行数十步,豁然开朗”,是因为 .14.如图,PA 是⊙O 的切线,切点为A , PA=23,∠APO=30°,则⊙O 的半径长为 .15.一个钢筋三角架长分别为20cm 、50 cm 、60 cm ,现要再做一个与其相似的钢筋三角架,而只有长为30 cm 和50 cm 的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的载法有 种.解答题(19~22每题5分,23~24每题6分,25~26每题7分,共46分)16.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,•另一条弦长为6厘米,则两弦之间的距离为________厘米.17.如图,AB 是半圆O 的直径,AC = AD ,OC =2,∠CAB= 30°,则点O 到CD 的距离OE= .18.如图,四边形ABCD 中,AB ∥CD ,要使四边形ABCD 为平行四边形,则应添加的条件是 . (添加一个条件即可)19.平行四边形的周长为30,两邻边的差为5,则其较长边是________.20.如图,飞机要从A 地飞往B 地, 因受大风影响, 一开始就偏离航线(AB)18°(即∠A=18°),飞到了C 地,已知∠ABC=10°,现在飞机要达到B 地需以 的角飞行(即∠BCD 的度数). 21.列车中途受阻,停车 10 min ,再启动后速度提高到原来的 1. 5 倍,这样行驶了 20 km , 正好将耽误的时间补上. 如果设列车原来的速度是 x(km/h),那么根据题意,可得方程 .22.若22(3)16x m x +-+是完全平方式,则m 的值等于 .23.164的立方根是 ,()29-的平方根是 ,-5是 的平方根. 24.计算:(1)22222(43)3(2)a b ab a b ab ---+= ; (2) 22(32)5(1)5m mn ---+- 三、解答题25.如图所示,一根 4m 的竹竿斜靠在墙上.(1)如果竹竿与地面 60°角,那么竹竿下湍离墙角有多远?(2)如果竹竿上端顺墙下滑到高度为2. 3 m 处停止,那么此时竹竿与地面所成的锐角的 大小是多少?26.如图,正方形网格中的每个小正方形边长都是1,•每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)在图甲中,画出一个平行四边形,使其面积为6;(2)在图乙中,画出一个梯形,使其面积为6.27.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上.28.计算:322(3)a a -÷= .29.如图所示,已知△ABC ≌△DCB ,其中AB=DC ,试说明∠ABD=∠ACD 的理由.30.一家奶制品厂现有鲜奶9 t ,若将这批鲜奶制成酸奶销售,则加工l t 鲜奶可获利1200元;若制成奶粉销售,则加工1 t 鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3 t ,若专门生产奶粉,则每天可能用去l t ,由于受人员和设备的限制,酸奶和奶粉两种产品不可能同时生产,为了保证产品的质量,这批鲜奶必须在不超过4天内加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.A5.A6.C7.A8.D9.B10.C11.D二、填空题12.9013.盲区减少14.215.216.7厘米或1厘米17.18.略19.1020.28°21.2020101.560x x -=22. 7 或一123.14,9±,5 24.(1)221112a b ab - (2)611mn m --+三、解答题25.(1)如图,AB= 4 , ∠B =60° ,∠ACB=90°,01cos602BC AB ==,∴BC=2 m (2)如图, 2.3A C '=,4A B ''=,∴ 2.3sin 4A B C ''∠=,∴35559o A B C '''''∠≈26.解:图形略,答案不惟一.27.(1)21y x =+ (2)点P(-1,1)不在这个一次函数的图象上28.49a 29.略30.用2.5天生产酸奶,用1.5天生产奶粉,即方案三可获最大利润为l2000元,且不浪费.。
袋鼠数学竞赛真题2019_MK Austria
Känguru der Mathematik 2019Level Felix (Grade 1 and 2)Austria – 21. 3. 20191. Which of these clouds contain only numbers that are smaller than 7?(A) (B) (C) (D) (E)2.Which of the 5 pictures shows a part of this chain?(A) (B) (C) (D) (E)3. Mother kangaroo and her son Max together weigh 60 kg (kilograms).The mother on her own weighs52 kg.How heavy is Max?(A) 4 kg (B) 8 kg (C) 30 kg (D) 56 kg (E) 112 kg4.There are 12 children in front of a zoo. Susi is the 7th from the front and Kim the 2nd from the back.How many children are there between Susi and Kim?(A) 2 (B) 3 (C) 4 (D) 5 (E) 65.Jörg is sorting his socks. Two socks with the same number are one pair.How many pairs can he find?(A) 8(B) 6(C) 5(D) 4(E) 36. Five equally big square pieces of card are placed on a table on top of each other.The picture on the side is created this way.The cards are collected up from top to bottom.In which order are they collected?(A) 5-4-3-2-1 (B) 5-2-3-4-1 (C) 5-4-2-3-1 (D) 5-3-2-1-4 (E) 5-2-3-1-47. There are two kinds of camels: bactrian camels that have 2 humps, dromedaries that have 1 hump.Exactly 10 camels live in a certain zoo. Together they have 14 humps.How many bactrian camels are there in this zoo?(A) 1 (B) 2 (C) 3 (D) 4 (E) 58. The floor of a room is covered with equally big rectangular tiles (see picture).How long is the room?(A) 6 m (B) 8 m (C) 10 m (D) 11 m (E) 12 m9.The picture shows a mouse and a piece of cheese.The mouse is only allowed to move to the neighbouring fields in the directionof the arrows.How many paths are there from the mouse to the cheese?(A) 2(B) 3(C) 4(D) 5(E) 610. Which of the figures can be cut into these 3 pieces?(A) (B) (C) (D) (E)11. The giants Tim and Tom build a sandcastle and decorate it with a flag.They insert half the flagpole into the highest point of the sandcastle.The highest point of the flagpole is now 16 m above the floor, the lowest 6 m (see diagram).How high is the sandcastle?(A) 11 m (B) 12 m (C) 13 m (D) 14 m (E) 15 m12. There are white, grey and black squares. Three children use these to make this pattern.First Anni replaces all black squares with white squares.Then Bob replaces all grey squares with black squares.Finally Chris replaces all white squares with grey squares.Which picture have the three children now created?(A) (B)(C) (D)(E)13. Together the three squirrels Anni, Asia and Elli have 10 nuts. Each one has a different number of nuts but at least2 nuts.Anni has the least number of nuts. Asia has the most nuts.How many nuts does Elli have?(A) 1 (B) 2 (C) 3 (D) 4 (E) 514.Each figure is made up of 4 equally big cubes and coloured in.Which figure needs the least amount of colour?(A) (B) (C) (D) (E)15.Four strips of paper are used to make a pattern (see picture).What do you see when you look at it from behind?(A) (B) (C) (D) (E)。
袋鼠数学数学竞赛试题
袋鼠数学数学竞赛试题
题目,在一个房间里,有一只袋鼠和一只狗。
袋鼠的身高是狗的1/4,袋鼠的体重是狗的1/2。
如果袋鼠的体重增加了20%,那么袋鼠的身高将增加多少?
解答:
1. 利用代数方法解答:
设狗的身高为h,袋鼠的身高为1/4h。
袋鼠的体重为w,狗的体重为2w。
根据题意可得,袋鼠的体重增加20%,即原体重的1.2倍,即1.2w。
设袋鼠身高增加后的身高为x,则有,x = 1/4h + Δh(Δh为身高增加的值)。
根据题意可得,1.2w = 2w (x/h)^3(袋鼠体重的增加与身高的关系)。
整理方程得,(x/h)^3 = 0.6。
解方程可得,x/h ≈ 0.843。
因此,袋鼠的身高增加约为84.3%。
2. 利用比例方法解答:
根据题意可得,袋鼠的身高与狗的身高的比例为1:4,袋鼠的体重与狗的体重的比例为1:2。
设袋鼠的身高增加后的身高为x,根据比例可得,x/h = 1.2。
解方程可得,x = 1.2h。
因此,袋鼠的身高增加了20%。
3. 利用图形方法解答:
设狗的身高为h,袋鼠的身高为1/4h。
袋鼠的体重为w,狗的体重为2w。
根据题意可得,袋鼠的体重增加20%,即原体重的1.2倍,即1.2w。
画出狗和袋鼠的身高和体重的比较图,可以观察到袋鼠的身高增加了20%后,狗和袋鼠的身高之间的比例关系仍然保持不变。
综上所述,袋鼠的身高增加了约84.3%。
美国国际袋鼠数学竞赛试题
Kangourou Sans Fronti`e resMathematics Promotion Society Math Kangaroo in USAMath Kangaroo2012in USAInternational Competition in MathematicsThursday,March15,2012Levels1and2This test consists of24questions on4pages.You have75minutes to complete it.Calculators are not allowed!Please enter your answers on the answer form provided.Please put your name and ID number on the line below.3Point Problems1.How many animals are there in the picture to the right?A)3B)4C)5D)6E)72.Which piecefits in the empty place in the puzzle on the right?A)B)C)D)3.How many legs do these animals have altogether?A)5B)10C)12D)14E)204.Helena wrote the word KANGAROO twice.How many times did she write the letter A?A)1B)2C)3D)4E)65.Luke repeats the same four stickers on astrip. Which is the tenth sticker put down by Luke?A)B)C)D)E)6.On Friday Dan starts to paint the word BANANA.Each day he paints one letter.On what day will he paint the last letter?A)Monday B)Tuesday C)Wednesday D)Thursday E)Friday7.Which of the bolded paths is the longest?A)A B)B C)C D)D E)E8.Katja is in a boat on a lake.Which of the pictures does she see in thelake?A)B)C)D)E) 4Point Problems9.13children are playing hide and seek.One of them is the“seeker.”After a while9children have been found.How many children are still hiding?A)3B)4C)5D)9E)2210.Father hangs the laundry outside on a clothesline.He wants to use as few pins as possible.For3towels he needs 4pins,as shown.How many pins does he need for9towels?A)9B)10C)12D)16E)1811.Today Betty added her age and her sister’s age and obtained10as the sum.What will the sum of their ages be one year from today?A)5B)10C)11D)12E)2012.The clock shows the time when Stephen leaves school.Lunch at school starts3hours before school ends.At what time does lunch start?A)1B)2C)5D)11E)1213.A dragon has3heads.Every time a hero cuts off1head,3new heads grow.The hero cuts1 head offand then he cuts1head offagain.How many heads does the dragon have now?A)4B)5C)6D)7E)814.Stars,clovers,gifts and trees repeat regularly on a game board. Some juice was spilled on the board.As a result some of the pictures can’t be seen(these are the white spaces in the picture).How many stars were on the board before the juice was spilled?A)3B)6C)8D)9E)2015.Eve brings12pieces of candy,Alice brings9pieces of candy and Irene doesn’t bring any candy. They put all the pieces of candy together on a table and divide them equally among themselves. How many pieces of candy does each of the girls get?A)3B)7C)8D)9E)1216.Tim is looking at seven silk paintings on a wall.On the left he sees the dragon and on the right thebutterfly.Which animal is to the left of the tiger and the lion,and to the right of the apricot?A)B)C)D)E) 5Point Problems17.Winnie the Pooh bought4apple pies and Eeyore bought6cheesecakes.They each paid the same amount of money and together they paid24euros.How many euros does1cheesecake cost?A)2B)4C)6D)10E)1218.Sparrow Jack jumps on a fence from one post to another.Each jump takes him1second.He makes 4jumps ahead,then1jump back and again4jumps ahead and1back,and so on.In how many seconds does Jack get from START toFINISH?A)10B)11C)12D)13E)1419.Grandmother made11cookies.She decorated5cookies with raisins and then7cookies with nuts.At least how many cookies were decorated with both raisins and nuts?A)1B)2C)5D)7E)1220.At a school party Dan,Jack and Ben each received a bag with10pieces of candy.Each of the boys ate just1piece of candy and gave1piece of candy to the teacher.How many pieces of candy do they have left altogether?A)8B)10C)24D)27E)3021.What number is covered by theflower?A)1B)2C)3D)4E)5=32435=422.Ann has a lot of these tiles:How many of the following shapes can Ann makeby gluing together two of thesetiles?A)0B)1C)2D)3E)423.In a box there are three boxes,and each one of these boxes contains three smaller boxes.How many boxes are there in total?A)9B)10C)12D)13E)1524.There are coins on the board.We want to have2coins in each column and2coins in each row.How many coins need to be removed?A)0B)1C)2D)3E)4Kangourou Sans Fronti`e res Math Kangaroo in USA Math Kangaroo2014in USAInternational Competition in MathematicsThursday,March20,2014Levels1and2This test consists of24questions on4pages.You have75minutes to complete it.Calculators are not allowed!Please enter your answers on the answer form provided.Please put your name and ID number on the line below.Problems3points each#1.The ladybug will sit on aflower that hasfive petals and three leaves.On which of theflowers below will the ladybug sit?(A)(B)(C)(D)(E)#2.If you start at the arrow and move along the line,in what order do youmeet the shapes?(A) , ,•(B) ,•, (C)•, , (D) , ,•(E) ,•,#3.How many more small gray squares are there than(A)6(B)7(C)8(D)9(E)10#4.Put the animals in order from the smallest to the largest.Give the number of the animal in the middle.(A)1(B)2(C)3(D)4(E)5#5.Ann has twelve of these tiles.She makes a design that is onecontinuous line.Ann starts at the left side of the grid,as shown in the picture.How does the line end on the right side of the grid?(A)(B)(C)(D)(E)#6.Which of the pictures below is the shadow of the girl?(A)(B)(C)(D)(E)#7.A square was made out of25small squares,but some of these small squares are nowmissing.How many small squares are missing?(A)6(B)7(C)8(D)10(E)12#8.How many ducks balance the crocodile?(A)(B)(C)(D)(E)Problems4points each#9.When the ant goes from home following thesearrows:→3,↑3,→3,↑1on the board to the right,it comes tothe ladybug.Which animal will it come to if it goes fromhome following these arrows:→2,↓2,→3,↑3,→2,↑2?(A)(B)(C)(D)(E)#10.The kangaroo is inside how many circles?(A)1(B)2(C)3(D)4(E)5Math Kangaroo 2014March 20,2014Levels 1and 2#11.A square was cut into 4parts as shown in the picture to the right.Whichof the following shapes cannot be made using only these 4parts?(A)(B )(C)(D )(E)#12.Which of the shapes shown below will fit this shape exactly to make a rectangle?(A)(B)(C)(D)(E)#13.Walking from K to O along the lines,pick up the lettersKANGAROO in the correct order.What is the length of the shortestwalk in meters (1m =1meter)?(A )16m (B )17m (C )18m (D )19m (E )20m #14.How many numbers that are greater than 10and less than or equalto 31can be written with only the digits 1,2and 3?You can repeat digits.(A )2(B )4(C )6(D )7(E )8#15.Seven sticks lie on top of each other.Stick 2is atthe bottom.Stick 6is at the top.Which stick is in themiddle?(A )1(B )3(C )4(D )5(E )7#16.How many frogs did the three pelicans catchaltogether?(A )1(B )2(C )4(D )9(E )12Problems 5points each#17.The chess board is damaged.How many black squares are missingon the right side of the line?(A )11(B )12(C )13(D )14(E )15#19.What shouldyou put in the square on the bottomto get a correctdiagram?(A)−38(B )÷8(C )−45(D )×6(E )÷6#20.Put the digits 2,3,4and 5in the squares and calculate the sum to get the largest possible value.What is that value?(A )68(B )77(C )86(D )95(E )97#21.The central cell of the square was removed.We cut the rest of the squareinto identical pieces.Which type of piece is it not possible to get?(A )(B )(C )(D )(E )#22.To get the product of 2×3×15,Bill has to press the keys of his calculator seven times:.Bill wants to multiply all the numbers from 3to 21using his calcu-lator.At least how many times will he press the keys of his calculator?(A )19(B )31(C )37(D )50(E )60#23.Fred has 4red cubes,3blue cubes,2green cubes and 1yellow cube.Hebuilds a tower (see the picture)in such a way that no two adjacent cubes have thesame color.What color is the cube with the question mark?(A )red (B )blue (C )green (D )yellow(E )It is impossible to determine.#24.Cogwheel A turns around completely once.At which place is x now?x C A (A )a (B )b (C )c (D )d (E )eKangourou Sans Fronti`e res Math Kangaroo in USA Math Kangaroo2015in USAInternational Competition in MathematicsThursday,March19,2015This test consists of24questions on4pages.You have75minutes to complete it.Calculators are not allowed!Please enter your answers on the answer form provided.Please put your name and ID number on the line below.Levels1and23points#1.Look closely at these four pictures.Whichfigure is missing from one of the pictures?(A)(B)(C)(D)(E)#2.Find the piece missing from the house on the right.(A)(B)(C)(D)(E)#3.There arefive ladybugs shown to the left.How many spots are there onall the ladybugs together?(A)17(B)18(C)19(D)20(E)21Math Kangaroo 2015March 19,2015Levels 1and 2#4.Which of the following pictures can be rotated so that it will be the same as the picture shown on the right?(A)(B)(C)(D)(E)#5.What does the tower shown to the right look like from above?(A)(B)(C)(D)(E)943728#6.The diagram to the left shows six numbers.What is the sum of thenumbers outside the square?(A )12(B )11(C )23(D )33(E )10#7.Half of a movie lasts half an hour.How long does the whole movie last?(A )15minutes(B )half an hour (C )1hour(D )2hours (E )40minutes #together into five long strips.Which connected strip is the shortest?(A )A(B )B (C )C (D )D (E )E4points#9.There are 11flags on a straight race track.The first flag is at the start,and the last flag is at the finish.The distance between each flag is 4meters.How long is the track?(A )12meters (B )24meters (C )36meters (D )40meters (E )44meters #10.Marko has 9pieces of candy and Tomo has 17pieces of candy.How many pieces of candy does Tomo need to give to Marko so that each boy has the same number of pieces of candy?(A )2(B )3(C )4(D )5(E )6#12.When written as5/5/2015,the date Mayfifth,2015,has three5’s.The next earliest date that will have three5’s is:(A)May tenth,2015(B)Apriltwenty-fifth,2015(C)May twenty-fifth,2015(D)Januaryfifth,2055(E)Mayfifteenth,2015#13.Emil placed the numbers1,2,3,4,and5correctly inthe boxes in the diagram on the right.What number did heplace in the box with the question mark?(A)1(B)2(C)3(D)4(E)5#14.Vera invited13guests to her birthday party.She had2pizzas,and each of them was cut into8 slices.Each person at the party ate one slice of pizza.How many slices of pizza were left over?(A)5(B)4(C)3(D)2(E)1#15.Don has two identical bricks(see picture to the right).Whichfigure can he notbuild using these two bricks?(A)(B)(C)(D)(E)#16.Which piece is missing from the puzzle to the right?(A)(B)(C)(D)(E)5points#17.In one jump,Jake the Kangaroo jumps from one circle to a neighboringcircle along a line,as shown in the picture to the right.He cannot jump intoany circle more than once.He starts at circle S and needs to make exactly4jumps to get to circle F.In how many different ways can Jake do this?(A)3(B)4(C)5(D)6(E)7S F#18.A ship was attacked by pirates.One by one,the pirates climbed a rope to get to the ship.The pirate captain was the eighth pirate to climb,and there were as many pirates in front of him as behind him.How many pirates climbed the rope?(A)7(B)8(C)12(D)15(E)16Math Kangaroo2015March19,2015Levels1and2 #19.For3days,Joy the cat was catching mice.Each day Joy caught2mice more than the previous day.On the third day Joy caught twice as many mice as on thefirst day.In total,how many mice did Joy catch during the three days?(A)12(B)15(C)18(D)20(E)24#20.The numbers3,5,7,8and9were written in the squares of the cross(see thefigure to the right)so that the sum of the numbers in the row is equal to the sum ofthe numbers in the column.Which number was written in the central square?(A)3(B)5(C)7(D)8(E)9#21.My grandmother has a dog named Atos,as well as some ducks,hens and geese.She has40animals altogether.She has four times as many geese as ducks.Atos and the hens make up one half of all her animals.My grandmother has:(A)19hens and5ducks(B)20hens and4ducks(C)19hens and15geese(D)19hens and16geese(E)20hens and16geese#22.One of the six stickers shown below was placed on each of the six faces of a die.The next picture shows the die in two positions.Which picture is on the face opposite the face with the kangaroo sticker?(A)(B)(C)(D)(E)#23.Sylvia,Tara,Una and Wanda went out for dessert.They stood in line one after another.Each one of them ordered one of the following desserts:ice cream,waffle,bun,and cake,and each one ordered a different item.We know that:•Thefirst girl did not buy the ice cream or the waffle.•Una was not last in line,and she bought the cake.•Sylvia,who was standing behind Tara and in front of Una,did not buy the waffle.Which of the following is true?(A)Wanda wasfirst in line.(B)Tara bought the ice cream.(C)Wanda bought the waffle. (D)Una was second in line.(E)Sylvia bought the bun.#24.We left for a summer camp yesterday at4:32PM and got to our destination today at6:11AM. How long did we travel?(A)13hours39minutes(B)14hours39minutes(C)14hours21minutes(D)13hours21minutes(E)2hours21minutes。
2019年初三数学竞赛试卷及答案
2019年初三数学竞赛试卷学校___________________年级___________班 姓名_________________ 一、选择题(共5小题,每小题6分,共30分)1、抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为223y x x =--,则b c 、的值为 ( ) A 、22b c ==, B 、20b c ==, C 、21b c =-=-, D 、32b c =-=,2、如图,在等腰三角形△ABC 的斜边AB 上取两点M 、N ,使∠MCN =45°,记AM =m ,MN =x ,BN =n ,则以x 、m 、n 为边长的三角形的形状是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、随x 、m 、n 变化而变化3、如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD 于F 点,若CF=1,FD=2,则BC 的长为( ) A. B.C. D.4、已知函数2|82|y x x =﹣﹣和y kx k =+(k≠0,k 为常数),则不论k 为何值,这两个函数的图象( )A 、有且只有一个交点B 、有且只有二个交点C 、有且只有三个交点D 、有且只有四个交点5、已知关于x 的不等式组 恰有5个整数解,则t 的取值范围是( ).A 、6-<t <112-B 、6-≤t <112-C 、6-<t ≤112-D 、6-≤t ≤112-二、填空题(共5小题,每小题6分,共30分)6、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为 .FAAB CN255332x xx t x +⎧->-⎪⎪⎨+⎪-<⎪⎩7、如图,△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于E ,F 是OE 的中点.如果BD//CF ,BC =25,则线段CD 的长度为__________________.8、如图,在平面直角坐标系内放置一个直角梯形AOCD .已知AB =3,AO =8,OC =5,若点P 在梯形内,且S △PAD =S △POC ,S △PAO =S △PCD ,那么点P 的坐标是________.9、在平面直角坐标系xOy 中,不论k 取什么样的实数,直线y =kx ﹣3k +4总经过一个定点P ,若以原点O 为圆心的圆过点A (13,0),与⊙O 交于B 、C 两点,则弦BC 的长的最小值为10、小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.三、解答题(共4题,满分60分)11、如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC -∠CBE .(第11题)12、如图,已知AB 为圆O 的直径,C 为圆周上一点,D 为线段OB 内一点(不是端点),满足CD AB ⊥,DE CO ⊥,垂足为E .若10CE =,且AD 与DB 的长均为正整数,求线段AD 的长.13、已知:y 关于x 的函数y =(k -1)x 2-2kx +k +2的图象与x 轴有交点.(1)求k 的取值范围;(2)若x 1,x 2是函数图象与x 轴两个交点的横坐标,且满足(k -1)x 12+2kx 2+k +2=4x 1x 2. ①求k 的值;②当k ≤x ≤k +2时,请结合函数图象确定y 的最大值和最小值.14、如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.参考答案 1、B2、15、B ;提示:作∠CAD =∠BAM ,AD =AM , 可得△ABM ≌△ACD ,再得△MN ≌△AND ,可得结论3. B ; 【解析】过点E 作EM ⊥BC 于M ,交BF 于N ,易证得△ENG ≌△BNM (AAS ),MN 是△BCF 的中位线,根据全等三角形的性质,即可求得GN =MN =12,由折叠的性质,可得BG =3,求得BF =2BN =5,由勾股定理即可求得BC 的长.4. B ;【解析】函数y =8-2x -x 2中,令y =0,解得:x =-4或2.则二次函数与x 轴的交点坐标是(-4,0)和(2,0).则函数的图象如图.一次函数y =kx +k (k 为常数)中,令y =0,解得:x =-1,故这个函数一定经过点(-1,0).经过(-1,0)的直线无论k 多大,都是2个交点.故选B . 5、C . 解:根据题设知不等式组有解,解得,32t -<x <20.由于不等式组恰有5个整数解,这5个整数解只能为15,16,17,18,19,因此14≤32t -<15,解得6-<t ≤112-. 6、解:因为DCFE 是平行四边形,所以DE //CF ,且EF //DC.连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC ,因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6. 78、ABCM ND(第6题)9、2410、207; 解:设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y 所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又 20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.11、解:将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC=CEBE=因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12、解:连接AC ,BC ,则90ACB ∠=︒.又CD AB ⊥,DE CO ⊥,由Rt △CDE ∽Rt △COD 可得2CE CO CD ⋅=,由Rt △ACD ∽Rt △CBD 可得(第11题)2CD AD BD =⋅,所以CE CO AD BD ⋅=⋅.设AD a DB b ==,,a b ,为正整数,则2a bCO +=,又10CE =,代入上式得 102a bab +⋅=, …………10分 整理得(5)(5)25a b --=.考虑到a b >,只能是550a b ->->,得52551a b -=-=,. 因此30AD a ==. …………20分13、【解析】(1)当k =1时,函数为一次函数y =-2x +3,其图象与x 轴有一个交点. 当k ≠1时,函数为二次函数,其图象与x 轴有一个或两个交点,令y =0得(k -1)x 2-2kx +k +2=0.△=(-2k )2-4(k -1)(k +2)≥0,解得k ≤2.即k ≤2且k ≠1.12x =综上所述,k 的取值范围是k ≤2.(2)①∵x 1≠x 2,由(1)知k <2且k ≠1.由题意得(k -1)x 12+(k +2)=2kx 1.将(*)代入(k -1)x 12+2kx 2+k +2=4x 1x 2中得:2k (x 1+x 2)=4x 1x 2. 又∵x 1+x 2=21k k -,x 1x 2=21k k +-, ∴2k ·21k k -=4·21k k +-.解得:k 1=-1,k 2=2(不合题意,舍去).∴所求k 值为-1. ②如图5,∵k 1=-1,y =-2x 2+2x +1=-2(x -12)2+32. 且-1≤x ≤1.由图象知:当x =-1时, y 最小=-3;当x =12时,y 最大=32. ∴y 的最大值为32,最小值为-3. 14、解:若n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12n a a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).则有7|(j i -),但0<j i -≤6,矛盾.故n ≥7. …………10分又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数(k 为正整数).则10ki m +(12i =,,…,7)被7除的余数两两不同.若不然,存在正整数i ,(1j ≤i <j ≤7),满足7|[(10)(10)]k kj m i m +-+,即7|10()k j i -,从而7|()j i -,矛盾. 故必存在一个正整数i (1≤i ≤7),使得7|(10)ki m +,即i 为m 的魔术数. 所以,n 的最小值为7.。
美国袋鼠数学竞赛试题及答案
美国袋鼠数学竞赛试题及答案一、选择题(每题2分,共10分)1. 如果一个数的平方等于81,那么这个数是:A. 9B. -9C. 3D. -32. 下列哪个分数是最接近0.5的?A. 0.49B. 0.51C. 0.48D. 0.523. 如果一个圆的半径是5厘米,那么它的周长是多少厘米?A. 15πB. 10πC. 20πD. 25π4. 一个班级有30名学生,其中1/3是男生,其余是女生。
这个班级有多少名女生?A. 20B. 10C. 15D. 55. 一个数的立方是-27,这个数是:A. -3B. 3C. -27D. 27二、填空题(每题3分,共15分)6. 如果一个数的平方根是4,那么这个数是______。
7. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长度是______。
8. 一个数的1/4加上5等于10,这个数是______。
9. 如果一个数的1/5是2,那么这个数是______。
10. 一个数的2倍加上3等于11,这个数是______。
三、解答题(每题5分,共20分)11. 一个长方形的长是20厘米,宽是10厘米,求它的面积。
12. 如果一个数的平方加上这个数等于10,求这个数。
13. 一个圆的直径是14厘米,求它的面积。
14. 一个数的立方加上这个数的平方再加上这个数等于64,求这个数。
答案1. B(-9的平方是81)2. B(0.51最接近0.5)3. C(周长=2πr,r=5,所以周长=2*π*5=10π)4. A(女生人数=30*(2/3)=20)5. A(-3的立方是-27)6. 16(4的平方是16)7. 5(根据勾股定理,斜边=√(3^2+4^2)=5)8. 36(设这个数为x,x/4+5=10,解得x=36)9. 10(设这个数为x,x/5=2,解得x=10)10. 4(设这个数为x,2x+3=11,解得x=4)11. 面积=长*宽=20*10=200平方厘米12. 设这个数为x,x^2+x=10,解得x=(-1+√41)/2 或 x=(-1-√41)/2(舍去负根)13. 面积=πr^2,r=直径/2=7,所以面积=π*7^2=49π平方厘米14. 设这个数为x,x^3+x^2+x=64,解得x=4结束语希望这份试题能够帮助同学们更好地准备美国袋鼠数学竞赛,同时也能够激发大家学习数学的热情。
湖州市2019年初三数学竞赛试题及答案
湖州市2019年初三数学竞赛试题答题时注意;1.用圆珠笔或钢笔作答. 2.解答书写时不要超过装订线.3.可以用计算器一、选择题(共8小题,每小题5分,满分40分)1.一套《少儿百科全书》总价为270元,张老师只用20元和50元两种面值..的人民币正好全额付清了书款,则他可能的付款方式一共有( )A .2种B .3种C .4种D .5种2.设y x ,为实数,则4284522++-+x xy y x 的最小值为( ) A .1 B .2 C .3 D .53. 如图,将一块边长为4cm 的正方形纸片ABCD ,叠放在一块足够大的直角三角板上(并使直角顶点落在A 点),设三角板的两直角边分别与CD 交于点F ,与CB 延长线交于点E ,那么四边形AECF 的面积为( )A .12cm 2B .14cm 2C .16cm 2D .18cm 24. 若关于x 的方程c c x x 22+=+的两个解是cx c x 2,==,则关于x 的方程1212-+=-+a a x x 的解是( ) A .a a 2, B .12,1--a a C .12,-a a D .11,-+a a a5. 如图所示,三角形ABC 的面积为1cm 2.AP 垂直∠B 的平分线BP 于P .则与三角形PBC 的面积相等的长方形是( )A .B .C .D .6. 公司职员小王和小陈在同一办事处工作,某天下午2点整要参加公司总部的西部大开发研讨会.下午小陈1点整从办事处出发,乘出租车于1点50分提前到达公司总部;小王因忙于搜集资料,1点25分才出发,为了赶时间,他让出租车从小路走,虽然路程比小陈走的路程缩短了10千米,但由于路况问题,出租车的平均速度比小陈乘坐的出租车的平均速度每小时慢6千米,所以小王还是迟到了5分钟.设小陈乘坐的出租车的平均速度为x 千米/时,小陈从办事处到公司总部的距离为y 千米,那么( )A .x=30,y=36B .x=3,y=36C .x=36,y=30D .x=3.6,y=30 7.如图,在反比例函数y=2x(x >0)的图象上,有点P 1,P 2,P 3,P 4,…,P n ,…,它们的横坐标依次为1,2,3,4,…,P n ,…,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,…,S n ,…,则S 1+S 2+S 3 +…+S 2019 的结果为( )A .3493+B .3293+ C .6 D .3398+二、填空题(共6小题,每小题5分,满分30分)9.如图是二次函数y =ax 2+bx 的图象,若一元二次方程ax 2+bx+m =0 有实数根,则实数m 的最大值为 .10.如图,直线2y kx =-(k >0)与双曲线xky =在第一象限内的交点为R ,与x 轴的交点为P ,与y 轴的交点为Q ;作RM ⊥x 轴于点M ,若△OPQ 与△PRM 的面积之比是4∶1, 则=k .11. 抛物线2)4(42-=x y 与x x y 2422+-=及x 轴所围成图形的面积(即图中阴影部分的面积)是 。
袋鼠数学数学竞赛试题
袋鼠数学数学竞赛试题袋鼠数学数学竞赛试题(详细版)第一部分:选择题(共10道题,每题4分,共40分)1. 若方程组 $2x+3y=7$,$5x-4y=8$ 的解为 $(a,b)$ ,求 $a+b$ 的值。
A. 1B. 2C. 3D. 42. 在一个等边三角形的内部有一个圆,圆与三角形的边相切,圆的半径为 4 cm。
求该等边三角形的边长。
A. 8 cmB. 12 cmC. 16 cmD. 24 cm3. 数列 $\{a_n\}$ 满足 $a_1=1$,$a_2=2$,$a_3=4$,$a_n=a_{n-1}+a_{n-2}+a_{n-3}$ ($n \geq 4$)。
则 $a_8$ 的值为多少?A. 29B. 32C. 33D. 364. 已知正方形 $ABCD$ 的边长为 8 cm,点 $P$ 在边 $AB$ 上,点$Q$ 在边 $CD$ 上,且 $AP=3$ cm,$CQ=4$ cm。
连接 $PQ$ ,求$PQ$ 的长度。
A. 3 cmB. 4 cmC. 5 cmD. 6 cm5. 在等差数列 $\{a_n\}$ 中,$a_1=3$,$a_5=11$。
求 $a_{10}$ 的值。
A. 19B. 20C. 21D. 226. 若 $a$ 的值满足 $a^3-7a^2+16a-12=0$,求 $a^2-3a+6$ 的值。
A. 8B. 10C. 12D. 147. 已知 $\triangle ABC$ 的三边分别为 $AB=8$ cm,$AC=6$ cm,$BC=10$ cm。
点 $D$ 在边 $BC$ 上,且 $BD=4$ cm。
若 $\angle DAB=60^\circ$,求 $\angle ACD$ 的度数。
A. $30^\circ$B. $45^\circ$C. $60^\circ$D. $75^\circ$8. 函数 $f(x)$ 为实数域上的线性函数,且满足 $f(3)=-4$,$f(5)=6$。
“周报杯”2019年全国初中数学竞赛试题及参考答案
解:由
4 ,得
4,
a 1 0,
依题意有
(a
1)2
(a
1)
0,解得,
a
0
,或
a
1
.
(7)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从
迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每
隔固定时间发一辆车,那么发车间隔的时间是
分钟.
【答】4.
5a (A) 2
(B)1
3
(C) 2
(D) a
解:如图,连接OE,OA,OB. 设 D ,
则 ECA 120 EAC .
ABO 1 ABD 1 60,
所以 △ ACE ≌ △ ABO ,于是 AE OA 1.
(5)将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意
所以 s 13 可能为1,3,5,7,9,进而 (t 13)2 为337,329,313,289,257,故
5
保证原创精品 已受版权保护
s 6,s 20 只能是 (t 13)2 =289,从而 s 13 =7.有 t 4;,t 4 故
x 48,x 160
y
32,
y
32.
三、解答题(共4题,每题15分,满分60分)
定8条直线.所以,满足条件的6个点可以确定的直线最
少有8条.
(4)已知 AB 是半径为1的圆 O 的一条弦,
且
AB a 1 .以 AB 为一边在圆 O 内作正△ ABC ,
点
D 为圆 O 上不同于点A的一点,且 DB AB a , DC 的 延长线交圆 O 于点 E ,则 AE 的长为( B ).
2016年袋鼠数学竞赛-初三
Singapore Math Kangaroo Contest 2017Secondary 3 Contest PaperName:School:INSTRUCTIONS:1.Please DO NOT OPEN the contest booklet until the Proctor has given permission to start.2.TIME : 1 hour and 30 minutes3.There are 30 questions in this paper. 3 points, 4 points and 5 points will be awarded for eachcorrect question in Section A, Section B and Section C respectively. No points are deducted for Unanswered question. 1 point is deducted for Wrong answer.4.Shade your answers neatly in the answer entry sheet.5.PROCTORING : No one may help any student in any way during the contest.6.No calculators are allowed.7.All students must fill and shade in your Name, Index number, Level and School in theAnswer sheet provided.8.MINIMUM TIME: Students must stay in the exam hall for at least 1 hour and 15 minutes.9.Students must show detailed working and transfer answers to the answer entry sheet.10.No spare papers can be used in writing this contest. Enough space is provided for yourworking of each question.11. Y ou must return this contest paper to the proctor.Rough WorkingSection A(Correct–3points|Unanswered–0points|Wrong–deduct1point)Question1In this diagram,each number is the sum of the two numbers immediately below it.What number is in the most bottom left box?(A)15(B)16(C)17(D)18(E)19Question2Peter wrote the word KANGAROO on a piece of transparent glass as shown in the picture below. What will he see if heflips the paper over to its right and then rotates it one half-turn?(A)(B)(C)(D)(E)Question3Angela made a decoration with grey and white asteroids by overlaping them from biggest at the bottom,to the smallest at the top.The areas of the asteroids are1cm2,4cm2,9cm2and16cm2. What is the total area of the visible grey regions?(A)9cm2(B)10cm2(C)11cm2(D)12cm2(E)13cm2 Question4Maria has24dollars.Every one of her3siblings has12dollars.How much does she have to give each of her siblings,such that everyone has the same amount?(A)1dollar(B)2dollars(C)3dollars(D)4dollarsj(E)6dollarsWhich option shows the path of the midpoint of the wheel when the wheel rolls along the zig-zag-curve shown?(A)(B)(C)(D)(E)Question6Some girls were dancing in a circle.Antonia was thefifth to the left from Bianca and the eighth to the right from Bianca.How many girls were in the group?(A)11(B)12(C)13(D)14(E)15Question7Circle of radius1rolls along a straight line from the point K to the point L,where KL=11π.What does the circle look like at L?LK(A(B)(C)(D(E)Question8Martin is taking part in a chess competition.He won9out of15matches.If he wins the next5 matches,what will his success rate be in the competition?(A)60%(B)65%(C)70%(D)75%(E)80%Question9One eighth of the guests at a wedding were children.Three sevenths of the adult guests were men. What fraction of the wedding guests were women?(A)12(B)13(C)15(D)17(E)37My maths teacher has a box with coloured buttons.There are203red buttons,117white buttons and28blue buttons.What is the least number of buttons he must take from the box without looking, to ensure he has at least3buttons of the same colour?(A)3(B)6(C)7(D)28(E)203Section B(Correct–4points|Unanswered–0points|Wrong–deduct1point)Question11ABCD is a trapezoid with sides AB parallel to CD,where AB=50,CD=20.E is a point on the side AB such that the segment DE divides the given trapezoid into two parts of equal area.Calculate the length AE.(A)25(B)30(C)35(D)40(E)45Question12How many positive integers A,which satisfy the property that exactly one of the numbers A or A+20 is a4-digit number?(A)19(B)20(C)38(D)39(E)40Question13Six perpendiculars lines are drawn from the midpoints on each sides of the triangle to each of the other two sides.What fraction of the area of the initial triangle does the resulting hexagon cover?(A)13(B)25(C)49(D)12(E)23The squares of three consecutive positive integers adds up to770.What is the largest of these3 integers?(A)15(B)16(C)17(D)18(E)19Question15A belt drive system consists of the wheels A,B and C,which rotate without a slippage.B turns4 full rounds when A turns5full rounds,and B turns6full rounds whenC turns7full rounds.Find the perimeter of A if the perimeter of C is30cm.(A)27cm(B)28cm(C)29cm(D)30cm(E)31cm Question16Mr Tan wants to prepare a schedule for his jogging over the next few months.Every week,he wants to jog on the same days of the week and he never wants to jog on two consecutive days.In addition, he wants to jog three times per week.How many schedules can he choose from?(A)6(B)7(C)9(D)10(E)35Question17Four brothers have different heights.Tom is shorter than Victor by x cm.Tom is taller than Peter by x cm.Oscar is shorter than Peter by by x cm.Tom is184cm tall and the average height of all the four brothers is178cm.How tall is Oscar?(A)160cm(B)166cm(C)172cm(D)184cm(E)190cm Question18It rained7times during the holiday.When it rained in the morning,it was sunny in the afternoon. When it rained in the afternoon,it was sunny in the morning.There were5sunny mornings and6 sunny afternoons.How many days did the holiday last at least?(A)7(B)8(C)9(D)10(E)11Jenny decided to write numbers in the cells of the3×3table below.The sums of the numbers in any 2×2squares are the same.The three numbers in the corner cells have already been written as shown in thefigure.Which number should she write in the bottom right corner cell?(A)5(B)4(C)1(D)0(E)Impossible to determineQuestion20Seven positive integers a,b,c,d,e,f,g are written in a row.The sum of all the seven positive integers is equals to2017;any two neighbouring numbers differ by±1.Which of the numbers can be equal to 286?(A)only a or g(B)only b or f(C)only c or e(D)only d(E)any of themSection C(Correct–5points|Unanswered–0points|Wrong–deduct1point)Question21There are4children of different ages under18.The product of their ages is882.Assuming that their ages are integers,find the sum of their ages.(A)23(B)25(C)27(D)31(E)33Question22On the faces of a given dice these numbers appear:−3,−2,−1,0,1,2.If you throw it twice and multiply the two results,what is the probability that the product is negative?(A)12(B)14(C)1136(D)1336(E)13Question23Given a two digit number ab.The six digit number ababab is divisible by?(A)2(B)5(C)7(D)9(E)11My friend wants to use a special seven digit password.The digits of the password occur exactly as many times as its digit value.The same digits of this number are always written consecutively.For example4444333or1666666.How many possible passwords can he choose from?(A)6(B)7(C)10(D)12(E)13Question25Paul wants to write a natural number in each box in the diagram such that each number is the sum of the two numbers in the boxes immediately underneath.At most how many odd numbers can Paul write?(A)13(B)14(C)15(D)16(E)17Question26Liza calculated the sum of angles of a convex polygon.She missed one of the angles and so her result was2017◦.What angle did she miss?(A)37◦(B)53◦(C)97◦(D)127◦(E)143◦Question27There are30dancers standing in a circle and facing the centre.After the”Left”command some dancers turned to the left and all the others-to the right.Those dancers who were facing each other, said”Hello”.It turned out to be10such dancers.Then after the command”Around”all the dancers made a180◦turn.Again,those dancers who were facing each other,said”Hello”.How many dancers said”Hello”?(A)10(B)20(C)8(D)15(E)impossible to determineOn a balance scale,3different masses are put at random on each pan and the result is shown in the picture.The masses are of101,102,103,104,105and106grams.What is the probability that the 106gram mass stands on the heavier(right)pan?(A)75%(B)80%(C)90%(D)95%(E)100% Question29A andB are on the circle with centre M.P B is tangent to the circle at B.The distances P A and MB are integers,P B=P A+6.How many possible values are there for MB?(A)0(B)2(C)4(D)6(E)8Question30Point D is chosen on the side AC of triangle ABC so that DC=AB.Points M and N are the midpoints of the segments AD and BC,respectively.If∠NMC=αthen∠BAC always equals to(E)60◦(A)2α(B)90◦−α(C)45◦+α(D)90◦−α2Rough Working。
2019年袋鼠数学竞赛L3
Kangaroo Aus 2019(Grade 5-6)一、三分题1、小明画一只猫,他接下来加上眼睛。
请问下图中拿一幅图展示了他最后完成这幅图的情景?2、玛丽用点和线来代表数字。
点代表1,线代表5,请问下面哪副图代表17?3、一个救援队里有14个女生和12个男生。
队里有一半的人出去散步了。
请问最少有多少女生去散步了?4、一个数字钟显示时间如图:,请问下面哪副图使用了上面4个数字,并且是在上面时间之后的第一个时间?5、下面哪个骰子的对面数字之和为7?6、哪一个几何在图形中找不到?7、有一群袋鼠,他们的年龄和是36岁。
再过2年,他们的年龄和是60岁。
请问一共有多少只袋鼠?8、劳拉想在图中给一个2×2的正方形涂色。
请问有多少种方法?二、四分题9、每一张卡片上都有一位三位数。
这三个三位数的和是826。
那么隐藏的两个数字之和是多少?10、大卫把6个最小的奇数写在骰子上。
然后,他抛了3次,这3次的和不可能为?11、吉姆有一个可以折叠的由10根相同长度的小棒连成的棒子。
以下哪个图形不能用这个棒子做成?12、哪一幅图的黑色面积最大?13、一个小院子里有30只小动物(狗、猫、老鼠)。
牧师把6只狗变为6只猫,然后再把5只猫变为5只老鼠。
这个时候,狗、猫、老鼠的只数一样多。
请问最开始有多少只猫?14、大卫用1cm×1cm×2cm的砖头搭建城堡。
如图;他搭的最后一个塔共用了28块砖。
请问最后他搭的那个塔是多高?15、吉姆按照如图方式把纸折碟,然后再按照图示的方法,沿着两条线把这个纸剪开。
请问,他最后得到了多少张纸块?16、每一张图上都画了一条线。
现在我们把他们叠成一个正方体。
请问哪一幅图在折叠成正方体后,它上面的线是一个封闭的图形?三、五分题17、骰子的每一面都写了一个数字。
如图。
已知每个对面的数字积都相等。
请问6个面的数字都加起来和最小为多少?18、如图,三个黑色的小球加上一个白色的小球放在天平左端,右端放一块30克的冰和一个黑色的球。
1_福建省2019年“大梦杯”初中数学竞赛试题含参考答案
2019年“大梦杯”福建省初中数学竞赛试题参考答案 考试时间 2019年3月13日 9∶00-11∶00 满分150分一、选择题(共5小题,每小题7分,共35分)。
每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.在平面直角坐标系xOy 中,已知点(02)B ,,点A 在x 轴正半轴上且30BAO ∠=︒。
将OAB △沿直线AB 折叠得CAB △,则点C 的坐标为( )A .(13),B .(33),C .(33),D .(31), 【答案】 B【解答】如图,设CD x ⊥轴于点D 。
依题意,23CA OA ==,260CAO BAO ∠=∠=︒。
所以,3CD =,3AD =,3OD =。
因此,点C 的坐标为(33),。
2.若实数a ,b 满足232a a +=,232b b +=,且a b ≠,则22(1)(1)a b ++=( ) A .18 B .12 C .9 D .6 【答案】 A【解答】依题意,a ,b 为方程2320x x +-=的两个不同实根。
因此,由韦达定理得,3a b +=-,2ab =-。
[]22(1)(1)(123)(123)9(1)(1)91()9(132)18a b a b a b a b ab ++=+-+-=--=-++=+-=。
或解:222222222(1)(1)11()2194418a b a b a b a b ab a b ++=+++=++-+=+++=。
3.若关于x 的方程22240224x x x ax x x +-+++=-+-只有一个实数根,则符合条件的所有实数a 的值的总和为( )A .6-B .30-C .32-D .38- 【答案】 D 【解答】方程22240224x x x ax x x +-+++=-+-化为22480x x a +++= ……………… ① 若方程①有两个相等实根,则168(8)0a =-+=△,6a =-。
2019年秋九年级数学竞赛试题(含答案)
九年级数学竞赛试题一.选择题:(每题4分,共32分)1.若m 为实数,则代数式||m +m 的值一定是( ).A .正数B .0C .负数D .非负数2.若10<<a ,化简2211()4()4a a a a-+++-的结果为( )A .2a -B .2aC .-2aD .2a 3.如果a ,b ,c 都不为零且0a b c ++=,则222222222111b c a c a b a b c +++-+-+-的值是( ) A .零 B .正数 C .负数 D .不能确定4.已知四边形的边长分别是m ,n ,p ,q ,且满足222222m n p q mn pq +++=+,则这个四边形是( )A .平行四边形B .对角线互相垂直的四边形C .对角线相等的四边形D .平行四边形或对角线互相垂直的四边形5.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .143≤<mB .43≥mC .10≤≤mD .143≤≤m6.如下图,已知函数y ax b =+和2(0)y ax bx c a =++≠,那么它们的图象可以是( )A B C D7.记35311+-=x y ,25212+=x y ,523+-=x y ,对每一个实数x ,都有唯一的一个值y 1,y 2,y 3与之对应,取y 为三数之中的最小值,当x 取遍所有实数时,所有y 值中的最大值为( )A .1B .2C .3D .58.如图,矩形ABCD 中,AB =4,BC =12.5,O 在BC 上,OB =3.5.以O 为坐标原点,建立如图所示的平面直角坐标系,M 坐标为(5,0),以OM 为一边作等腰△OMP ,P 点落在矩形ABCD 的边上,则符合条件的P 点共有( )个A .5B .6C .7D .8二.填空题:(每题4分,共32分)9.规定][a 表示不超过a 的最大整数,当1-=x 时,代数式6323+-nx mx 的值为16,则]32[n m -的值为________.10.若52=a ,94=a ,并且所有正整数n 满足1611=+++-n n n a a a ,则2016a = . 11.在△ABC 中,AB =3,AC =4,BC =5,△ABD .△ACE .△BCF 是等边三角形,则四边形AEFD的面积为_______.12.如图,在平面直角坐标系中,⊙O 的半径为1,点P 在经过点A (-4,0),B (0,4)的直线上,PQ 切⊙O 于点Q ,则切线长PQ 的最小值为________.yxO MDC B AEFDAB PBA O yx第8题图 第11题图 第12题图 13.设抛物线452)12(2++++=a x a x y 与x 轴只有一个交点.则243-+a a 的值为_________. 14.已知实数x ,y 满足0332=-++y x x ,则y x +的最大值为 .15.如图,把一副三角板如图甲放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =6cm ,DC =7cm ,把三角板DCE 绕点C 顺时针旋转15°得到△D ′CE ′,如图乙.这时AB 与CD ′相交于点O ,D ′E ′与AB 相交于点F .则线段AD ′的长为___________.16.如图①,在正方形ABCD 中,点P 沿边DA 从点D 开始向点A 以1cm /s 的速度移动;同时,点Q沿折线A —B —C 从点A 开始向点C 以2cm /s 的速度移动.当点P 移动到点A 时,P ,Q 同时停止移动.设点P 出发x 秒时,△P AQ 的面积为ycm 2,y 与x 的函数图象如图②,写出线段EF 所对应的函数关系式并指出自变量的取值范围:____________________.图①PQDCB A第15题图 第16题图ACBE D(甲)E 'ACBOF D '(乙)三.解答题:(56分) 17.(8分)在学校文化艺术节中,有A ,B ,C ,D 四个班的同学参加集体舞表演,已知A ,B 两个班共16名演员,B ,C 两个班共20名演员,C ,D 两个班共34名演员,且各班演员的人数正好按A ,B ,C ,D 次序从小到大排列,求各班演员的人数. 18.(8分)△ABC 三边长分别为a ,b ,c ,满足下列条件:①c b a >>;②b c a 2=+;③b 为正整数,a ,c 不一定是正整数;④842222=++c b a .根据以上条件: (1)用含b 的代数式表示ac ;(3分)(2)求b 的值.(5分)19.(8分)如图,在△ABC 中,AC =BC ,∠ACB =90°,D ,E 是边AB 上的两点,AD =3,BE =4,∠DCE =45°.(1)求证:AD 2+BE 2=DE 2;(4分) (2)求△ABC 的面积.(4分)EDB CA20.(8分)如图,△ABC 内接于⊙O ,AC >BC ,点D 为的中点.(1)求证:CD 平分∠ACE ;(3分)(2)求证:AD 2=AC ·BC +CD 2.(5分)ODCBA21.(12分)某公司市场信息部经过调研发现:如果单独投资A 产品,则所获利润y A (万元)与投资金额x (万元)之间存在一次函数关系1+=kx y A .并且当投资5万元时,获得利润3万元;如果单独投资B 产品,则所获利润y B (万元)与投资金额x (万元)之间存在二次函数关系bx ax y B +=2.并且当投资2万元时,获得利润2.4万元;投资4万元时,获得利润3.2万元. (1)分别求出上述的一次函数和二次函数的解析式;(4分)(2)如果该公司只投资一种产品,当投资金额在什么范围内,投资B 产品合算?(4分)(3)如果该公司同时对A ,B 两种产品投资,共投资10万元.请设计一种投资方案,使获得的总利润最大,最大总利润是多少万元?(4分)22.(12分)如图,已知抛物线()2y ax bx c a 0=++≠的对称轴为x =-1,且经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)求抛物线和直线BC 的解析式;(4分)(2)N 点是抛物线上第二象限的一个动点,当△NBC 面积最大时,求N 点坐标;(4分) (3)设点P 在抛物线的对称轴x =-1上,且△BPC 是直角三角形,直接写出点P 的坐标.(4分)九年级数学竞赛题参考答案一.选择题(每题4分,共32分)1.D2.B3.A4.D5.A6.C7.B8.C二.填空题(每题4分,共32分)9.-410.211.612.13.814.415.516.三.解答题:17.设A班有x名演员,则B班有(16-x)名演员,C班有20-(16-x)=(x+4)名演员,D 班有34-(x+4)=(30-x)名演员.由已知得:,解得:.∵x为整数,所以.所以:A班有7名演员,B班有9名演员,C班有11名演员,D班有23名演员.18.(1)由④得:,由②得:,即:,∴,.………………3分(2)于是a,c可以看作方程两根,∵a,c是三角形的边长,所以,解得.∵b为正整数,所以,b=4.…………………8分19.(1)将△BCE绕点C顺时针旋转90°到△ACF位置,连接DF.这时,∠DCF=∠DCA+∠FCA=∠DCA+∠BCE=90°-∠DCE=45°.在△DEC和△DFC中,CE=CF,∠DCE=∠DCF,CD=CD,∴△DEC≌△DFC,∴DE=DF.∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=∠BAC=45°,∴∠DAF=90°.在△DAF中,由勾股定理可得:AD2+AF2=DF2.∵AF=BE,DF=DE,所以:AD2+BE2=DE2.…………………4分(2)由(1)得:DE=5,所以:AB=3+4+5=12.过C作CH⊥AB,垂足为H,则CH=AB=6,所以:△ABC的面积S==36.…………………8分20.(1)∵D为的中点,∴∠ACD=∠BAD.∵四边形ABCD是圆内接四边形,∴∠DCE=∠BAD,∴∠ACD=∠DCE,∴CD平分∠ACE.………………3分(2)连接BD,过D作DM⊥AC于M,DN⊥BE于N.∵D为的中点,∴AD=BD.∵CD平分∠ACE,DM⊥AC,DN⊥BE,∴DM=DN.在Rt△ADM和Rt△BDN中,,所以Rt△ADM≌Rt△BDN,∴AM=BN.在Rt△DCM和Rt△DCN中,,所以Rt△DCM≌Rt△DCN,∴CM=CN.在△ADM和△CDM中,由勾股定理得:,.∴=.……………8分21.(1),;…………………4分(2)当时,=,解得:,.∴当时,;…………………8分(3)设对B产品投资t万元,则A产品投资(10-t)万元,总利润为w万元,则:.,当时,w的最大值为6.8万元.即对A产品投资7万元,B产品投资3万元,所获利润最大,最大利润是6.8万元.………………12分22.(1)抛物线的解析式为:;…………………2分直线的解析式为:.…………………4分(2)过N点作x轴的垂线交直线BC于M,设N点的横坐标为t,则N点坐标为(t,),M点的坐标为(t,),则MN=; e则△NBC的面积S===.………7分即当时,S的最大值是,此时,N点的坐标为(,).………8分(3)P1(-1,4),P2(-1,-2),P3(-1,),P3(-1,).…………………12分。
数学竞赛袋鼠试题及答案
数学竞赛袋鼠试题及答案试题一:小明有5个苹果,他决定将它们平均分给3个朋友。
如果每个朋友得到的苹果数量相等,那么每个朋友会得到多少苹果?答案:小明有5个苹果,要平均分给3个朋友。
5除以3等于1余2。
所以,每个朋友可以得到1个苹果,剩下2个苹果无法平均分配。
试题二:一个长方形的长是宽的两倍,如果长是10厘米,那么这个长方形的面积是多少?答案:长方形的长是宽的两倍,所以宽是10除以2,等于5厘米。
长方形的面积是长乘以宽,即10厘米乘以5厘米,等于50平方厘米。
试题三:如果一个数的平方等于这个数本身,那么这个数可以是什么?答案:一个数的平方等于这个数本身,这个数可以是0或1。
因为0的平方是0,1的平方是1。
试题四:在一个圆中,半径增加了10%,那么圆的面积增加了多少百分比?答案:设原圆的半径为r,增加后的半径为1.1r。
原圆的面积为πr²,新圆的面积为π(1.1r)²=1.21πr²。
面积增加了(1.21πr² - πr²) / πr² = 0.21,即增加了21%。
试题五:一个班级有40名学生,如果每个学生都至少参加一个兴趣小组,并且每个兴趣小组最多只能有10名学生,那么至少需要多少个兴趣小组?答案:如果每个兴趣小组最多有10名学生,那么40名学生至少需要40/10=4个兴趣小组。
但是,如果每个学生都至少参加一个兴趣小组,那么至少需要5个兴趣小组,因为4个兴趣小组只能容纳40名学生,而最后一个兴趣小组至少需要1名学生。
结束语:以上是数学竞赛袋鼠试题及答案,希望这些题目能够帮助你更好地理解数学问题,并提高解题能力。
数学是一种美妙的语言,通过不断的练习和思考,你将能够发现它的魅力。
袋鼠数学竞赛试题及答案
袋鼠数学竞赛试题及答案1. 基础计算题:计算下列各题的结果。
- 题目一:\( 56 + 78 - 39 \)- 题目二:\( 48 \times 25 \)- 题目三:\( 3200 ÷ 40 + 76 \)2. 逻辑推理题:小明有5个不同颜色的球,他想从这些球中选出3个来玩。
请问小明有多少种不同的选法?3. 几何题:一个正方形的边长为10厘米,求其周长和面积。
4. 应用题:一家商店出售T恤衫,每件T恤衫的进价是50元,标价是100元。
如果商店决定打8折销售,那么每件T恤衫的利润是多少?5. 数列题:一个等差数列的首项是3,公差是2,求这个数列的第10项。
6. 概率题:一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。
7. 组合题:一个班级有30个学生,需要选出5个学生代表班级参加比赛。
如果不考虑顺序,有多少种不同的选法?8. 代数题:解下列方程:\( 3x - 7 = 26 \)9. 统计题:一组数据是:4, 7, 2, 9, 5, 8。
求这组数据的平均数和中位数。
10. 智力题:一个数字去掉第一位是42,去掉最后一位是32,这个数字是什么?答案1. 基础计算题- 题目一:\( 56 + 78 - 39 = 95 \)- 题目二:\( 48 \times 25 = 1200 \)- 题目三:\( 3200 ÷ 40 + 76 = 95 \)2. 逻辑推理题:小明有5个不同颜色的球,选择3个球的选法是\( C(5, 3) = 5! / (3! \times (5-3)!) = 10 \) 种。
3. 几何题:正方形的周长是 \( 4 \times 10 = 40 \) 厘米,面积是\( 10 \times 10 = 100 \) 平方厘米。
4. 应用题:打8折后,T恤衫售价为 \( 100 \times 0.8 = 80 \) 元,利润是 \( 80 - 50 = 30 \) 元。
2019年初三数学竞赛试卷附答案
2019年初三数学竞赛模拟试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共6小题,每小题4分,共24分)1.从分数组中删去两个分数,使剩下的数之和为1,则删去两个数是()A.B.C.D.2.将正三角形每条边四等份,然后过这些分点作平行于其它两边的直线,则以图中线段为边的菱形个数为()A.15 B.18 C.21 D.243.以正方形ABCD的BC边为直径作半圆O,过点D作直线切半圆于点F,交AB边于点E.则三角形ADE和直角梯形EBCD周长之比为()A.3:4 B.4:5 C.5:6 D.6:74.如图,在边长为1正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,3AE=EB,有一只蚂蚁从E点出发,经过F、G、H,最后回点E点,则蚂蚁所走的最小路程是()A.2 B.4 C.D.5.把正整数按下图所示的规律排序,那么从2005到2007的箭头方向依次为()A.B.C.D.6.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3 B.8 C. D.2第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,每小题5分,共30分)7.当整数m=时,代数式的值是整数.8.规定一种运算“*”:对于任意实数对(x,y)恒有(x,y)*(x,y)=(x+y+1,x2﹣y ﹣1).若实数a,b满足(a,b)*(a,b)=(b,a),则a=,b=.9.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n次移动n格.则不停留棋子的格子的编号有.10.如图,在斜坡的顶部有一铁塔AB,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=14m,塔影长DE=36m,小明和小华的身高都是1.6m,小明站在点E处,影子也在斜坡面上,小华站在沿DE方向的坡脚下,影子在平地上,两人的影长分别为4m 与2m,那么,塔高AB=m.11.如图,从卫生纸的包装纸上得到以下资料:两层300格,每格11.4cm×11cm,图甲.用尺量出整卷卫生纸的半径(R)与纸筒内芯的半径(r),分别为5.8cm和2.3cm,图乙.那么该两层卫生纸的厚度为cm.(π取3.14,结果精确到0.001cm)12.如图,等腰直角三角形ABD,点C是直角边AD上的动点,连接CB.现在将点C绕点A逆时针方向旋转90°得点E,再将点C绕点B顺时针方向旋转90°得点F.如果,设△AED,△BFD,△ABC的面积分别为S1,S2,S3,那么S1+S2﹣S3=.评卷人得分三.解答题(共4小题,共46分)13.(10分)已知,x、y满足,求(x+y)+(x2+2y)+(x3+3y)+…+(x199+199y)的值.14.(12分)如图,△ABC中,∠BAC=60°,AB=2AC.点P在△ABC内,且PA=,PB=5,PC=2,求△ABC的面积.15.(12分)是否存在质数p.q,使得关于x的一元二次方程px2﹣qx+p=O有有理数根?16.(12分)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.参考答案与试题解析1.解:由,而,故删去后,可使剩下的数之和为1.故选:C.2.解:图中只有边长为1或2的两种菱形,每个菱形恰有一条与其边长相等的对角线,原正三角形内部每条长为1的线段,恰是一个边长为1的菱形的对角线,这种线段有18条,对应着18个边长为1的菱形;原正三角形的每条中位线恰是一个边长为2的菱形的对角线,三条中位线对应着3个边长为2的菱形.共得21个菱形.故选:C.3.解:根据切线长定理得,BE=EF,DF=DC=AD=AB=BC.设EF=x,DF=y,则在直角△AED中,AE=y﹣x,AD=CD=y,DE=x+y.根据勾股定理可得:(y﹣x)2+y2=(x+y)2,∴y=4x,∴三角形ADE的周长为12x,直角梯形EBCD周长为14x,∴两者周长之比为12x:14x=6:7.故选:D.4.解:延长DC到D',使CD=CD',G关于C对称点为G',则FG=FG',同样作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.容易看出,当E、F、G'、H'、E'在一条直线上时路程最小,最小路程为EE'===2.故选:C.5.解:∵1和5的位置相同,∴图中排序每四个一组循环,而2005除以4的余数为1,∴2005的位置和1的位置相同,∴20052007.故选:D.6.解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.7.解:∵要使代数式的值是整数,∴3m﹣1只能在±1、±2、±3、±6这四个数中取值,∵当3m﹣1=1时,∴m=,当3m﹣1=﹣1时,m=0,当3m﹣1=2时,m=1,当3m﹣1=﹣2时,m=﹣,当3m﹣1=3时,m=,当3m﹣1=﹣3时,m=﹣,当3m﹣1=6时,m=,当3m﹣1=﹣6时,m=﹣,又∵m也是整数,∴可得m=0或1,故答案为0或1.8.解:由题意得:,解得,故答案两空分别填﹣1,1.9.解:因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),应停在第=n(n+1)﹣7p格,这时p是整数,且使0≤n(n+1)﹣7p≤6,分别取n=1,2,3,4,5,6,7时,n(n+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n≤10,设n=7+t(t=1,2,3)代入可得,=n(n+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与n=t时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.10.解:作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G,可得矩形BDFG.由题意得:=∴DF==14.4(m);∵GF=BD=CD=7(m),同理可得:=,∴AG=1.6÷2×7=5.6(m),∴AB=14.4+5.6=20(m).∴铁塔的高度为20m.故答案为:20.11.解:设该两层卫生纸的厚度为hcm .根据题意,得 11.4×11×h ×300=π(5.82﹣2.32)×11 37620h=π(33.64﹣5.29)×11 h ≈0.026.答:两层卫生纸的厚度为0.026cm .12.解:作CM ⊥AB ,DN ⊥BF 垂足分别为M ,N , 由旋转的性质可知AC=AE ,BC=BF , 设AC=x ,则CM=x ,又AD=BD=,∴AB=2,那么S △AED =×AE ×AD=x ,S △ABC =×AB ×CM=x ,而△BDN ∽△CBD ,那么,那么DN ×BC=BD 2=2,∴S △BFD =×BF ×DN=×DN ×BC=1, ∴S 1+S 2﹣S 3=S △AED +S △BFD ﹣S △ABC =x +1﹣x=1.故答案为:1.13.解:∵且,∴y ﹣2x=0, ∴x=1,y=2;(x+y)+(x2+2y)+(x3+3y)+…+(x199+199y),=(1+2)+(1+4)+(1+6)+…+(1+398),=3+5+7+ (399)=,=39999.14.解:如图,作△ABQ,使得∠QAB=∠PAC,∠ABQ=∠ACP,则△ABQ∽△ACP.∵AB=2AC,∴△ABQ与△ACP相似比为2.∴AQ=2AP=2,BQ=2CP=4,∠QAP=∠QAB+∠BAP=∠PAC+∠BAP=∠BAC=60°.由AQ:AP=2:1知,∠APQ=90°,于是PQ=AP=3,∴BP2=25=BQ2+PQ2,从而∠BQP=90°,过A点作AM∥PQ,延长BQ交AM于点M,∴AM=PQ,MQ=AP,∴AB2=AM2+(QM+BQ)2=PQ2+(AP+BQ)2=28+8,=AB•ACsin60°===3+.故S△ABC故答案为:3+.15.解:设方程有有理数根,则判别式为平方数.令△=q2﹣4p2=n2,规定其中n是一个非负整数.则(q﹣n)(q+n)=4p2.(5分)由于1≤q﹣n≤q+n,且q﹣n与q+n同奇偶,故同为偶数,因此,有如下几种可能情形:、、、、消去n,解得.(10分)对于第1,3种情形,p=2,从而q=5;对于第2,5种情形,p=2,从而q=4(不合题意,舍去);对于第4种情形,q是合数(不合题意,舍去).又当p=2,q=5时,方程为2x2﹣5x+2=0,它的根为,它们都是有理数.综上所述,存在满足题设的质数.(15分)16.解:(1)连接PC.∵△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE=90°,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE;(2)共有四种情况:①当点C与点E重合,即CE=0时,PE=PB;②CE=2﹣,此时PB=BE;③当CE=1时,此时PE=BE;④当E在CB的延长线上,且CE=2+时,此时PB=EB;(3)MD:ME=1:3.过点M作MF⊥AC,MH⊥BC,垂足分别是F、H.∴MH∥AC,MF∥BC.∴四边形CFMH是平行四边形.∵∠C=90°,∴▱CFMH是矩形.∴∠FMH=90°,MF=CH.∵,HB=MH,∴.∵∠DMF+∠DMH=∠DMH+∠EMH=90°,∴∠DMF=∠EMH.∵∠MFD=∠MHE=90°,∴△MDF∽△MEH.∴.。
中学7年级袋鼠数学2019竞赛题
(A) 40
(B) 5 and a half (C) 4
(D) 3
(E) 2 and a half
Question 3 A 3 × 3 × 3 cube is built from 1 × 1 × 1 cubes. The cubes which are in the middle of each face are removed, and the cube in the very center of the 3 × 3 × 3 cube is also removed as shown below. How many 1 × 1 × 1 cubes are left?
(A) 60
(B) 65
(C) 70
(D) 75
(E) 80
Section B (Correct – 4 points | Unanswered – 0 points | Wrong – deduct 1 point)
Question 11 A four-digit integer is written on each of three pieces of paper. The pieces of paper are arranged so that three of the digits are covered as shown below. The sum of the three 4-digit integers is 10126. Which of the following are the covered digits?
(A) 5, 6 and 7 (B) 4, 5 and 7 (C) 4, 6 and 7 (D) 4, 5 and 6 (E) 3, 5 and 6
2019年初三数学竞赛试卷及答案
2019年初三数学竞赛试卷及答案2019年初三数学竞赛试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一.选择题(共6小题,每小题4分,共24分)1.用甲乙两种饮料按照x:y(重量比)混合配制成一种新饮料,原来两种饮料成本是:甲每500克5元,乙每500克4元。
现甲成本上升10%,乙下降10%,而新饮料成本恰好保持不变,则x:y=()A。
4:5B。
3:4C。
2:3D。
1:22.一个立方体的每一个面都写有一个自然数,并且相对的两个面内的两数之和都相等,如图是这个立方体的平面展开图,若20、__、9的对面分别写的是a、b、c,则a²+b²+c²-ab-bc-ca的值为()A。
481B。
301C。
602D。
9623.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x²+mx+n的图象与x轴有两个不同交点的概率是()A。
1/12B。
1/6C。
1/4D。
1/34.设$f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$,S是曲线$y=f(x)$与x轴所围成的面积,$S_1$是曲线$y=\frac{1}{2}f(x)$与x轴所围成的面积,则4$S_1$的整数部分等于()A。
4B。
5C。
6D。
75.横坐标、纵坐标都是整数的点叫做整点,函数y=$\frac{1}{x}$在第一象限内有整点,这些整点的个数是()A。
3个B。
4个C。
6个D。
8个6.有红色、黄色、蓝色三个盒子,其中有一个盒子内放有一个苹果;三个盒子上各写有一句话,红色盒子上写着“该盒子没有苹果”,黄色盒子上写着“该盒子内有苹果”,蓝色盒子上写着“黄色盒子内没有苹果”;已知这三句话中有且只有一句是真的,那么XXX在哪个盒子内()A。
红色B。
黄色C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10πR (A)
3
5πR (B)
3
√ 2πR 3 (C)
(A) 30
(B) 45
(C) 135
(D) 145
(E) 150
Question 12
The numbers a, b, c and d are distinct positive integers chosen from 1 to 10. What is the least possible ac
(A) SHAVE
(B) SHAV
(D) EVAH
(E)
E
E
(C) VAHS
SHAVE
S
Question 4 How many different sums can you get by rolling three standard dice simultaneously?
(A) 14
(B) 15
(C) 16
(D) 17
(E) 18
Question 5 Five identical glasses are filled with water. Four of them contain the same amount of water. Which one contains a different amount?
value of + ? bd
2 (A)
10
3 (B)
19
14 (C)
45
29 (D)
90
25 (E)
72
Question 13 The flag of Kanguria is a rectangle with side lengths in the ratio 3 : 5. The flag is divided into four rectangles with the same areas as shown below. What is the ratio of the side lengths of the white rectangle?
(A) 1 kg
(B) 30 kg
(C) 31 kg
(D) 32 kg
(E) 33 kg
Question 8 Given that the figure consists of nine identical squares, which of the following statements is true?
Rough Working
Singapore Math Kangaroo Contest 2019 – Secondary 3 / Grade 9
Section A (Correct – 3 points | Unanswered – 0 points | Wrong – deduct 1 point)
(A) 6 minutes 56 seconds (D) 7 minutes 26 seconds
(B) 7 minutes 6 seconds (E) 7 minutes 36 seconds
(C) 7 minutes 16 seconds
Question 3
What is the mirror image of the word SHAVE?
(A) 25
(B) 20
(C) 16
(D) 15
(E) 10
Question 7 The weights of three kangaroos are different integers. Their total weight is 97 kg. What is the greatest possible weight of the lightest kangaroo?
(A) 1 : 3
(B) 1 : 4
(C) 2 : 7
(D) 3 : 10
(E) 4 : 15
3
Singapore Math Kangaroo Contest 2019 – Secondary 3 / Grade 9 Question 14 A 3 × 2 rectangle can be exactly covered by two L-shape figures in two different ways as shown below.
Question 1 Calculate 20 × 19 + 20 + 19.
(A) 389
(B) 399
(C) 409
(D) 419
(E) 429
Question 2 A toy train takes exactly 1 minute and 11 seconds to complete one round on a course. How long does it take to complete six rounds?
Question 11 A square has vertices A, B, C, D labelled clockwise. An equilateral triangle is constructed with vertices A, E, C labelled clockwise. What is the measure (in degrees) of angle CBE?
1
5
7 2 8
4 0
2 2
331
(A) 0, 2 and 2 (B) 1, 2 and 9 (C) 2, 4 and 9 (D) 2, 7 and 8 (E) 5, 7 and 8
Section B (Correct – 4 points | Unanswered – 0 points | Wrong – deduct 1 point)
(A)
(B)
(C)
(D)
(E)
1
Singapore Math Kangaroo Contest 2019 – Secondary 3 / Grade 9
Question 6 A park has five gates. Monica wants to enter through one gate and to exit through a different one. How many ways can she enter and exit the park?
(A) α = β (D) 2β + α = 90◦
(B) 2α + β = 90◦ (E) α + β = 45◦
(C) α + β = 60◦
Question 9 Which of the following unit squares has the largest fraction of its area shaded?
(A)
(B)
(C)
(Dath Kangaroo Contest 2019 – Secondary 3 / Grade 9
Question 10 A five-digit integer is written on each of three pieces of paper. The pieces of paper are arranged so that three of the digits are covered as shown below. The sum of the three 5-digit integers is 57263. Which of the following are the covered digits?
In how many different ways can the figure below be exactly covered by the L-shape figures?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 48
Question 15 A triathlon consists of swimming, running and biking. The biking is three-quarters of the total distance, the running is one-fifth of the total distance, and the swimming is 2 km. What is the total distance (in km) of the triathlon?
Singapore Math Kangaroo Contest 2019
Secondary 3 / Grade 9 Contest Paper
Name:
School:
INSTRUCTIONS: 1. Please DO NOT OPEN the contest booklet until the Proctor has given permission to start. 2. Duration: 1 hour and 30 minutes 3. There are 30 questions in this paper. Each question scores 3 points in Section A, 4 points in Section B and 5 points in Section C. No points are deducted for Unanswered question. 1 point is deducted for Wrong answer. 4. Shade your answers neatly in the answer entry sheet. 5. PROCTORING: No help should be given to any student in any way during the contest. 6. No calculators are allowed. 7. All students must fill and shade in your Name, Index number, Level and School in the Answer sheet provided. 8. Students are not allowed to leave the venue within the first hour of the contest and 15 minutes before the end of the contest. 9. Students must show detailed working and transfer their answers to the answer entry sheet.