湖北省荆门市2018年中考数学试题
2018年中考数学卷精析版——湖北荆门卷
2018年中考数学卷精析版——荆门卷(本试卷满分120分,考试时间120分钟)一、选择题(本大题12个小题,每小题只有唯一正确答案,每小题3分,共36分)3. (2018湖北荆门3分)已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于【】A.30°B.35°C.40°D.45°【答案】B。
【考点】三角形外角性质,平行线的性质,直角三角形两锐角的关系。
【分析】如图,∵∠3是△ADG 的外角,∴∠3=∠A +∠1=30°+25°=55°, ∵l1∥l 2,∴∠3=∠4=55°。
∵∠4+∠EFC =90°,∴∠EFC =90°﹣55°=35°。
∴∠2=35°。
故选B 。
4. (2018湖北荆门3分)若x 2y+9-与|x ﹣y ﹣3|互为相反数,则x +y 的值为【 】A . 3B . 9C . 12D . 27 【答案】D 。
【考点】相反数,非负数的性质,算术平方根的性质,绝对值的性质。
【分析】∵x 2y+9-与|x ﹣y ﹣3|互为相反数,∴x 2y+9-+|x ﹣y ﹣3|=0,∴x 2y+9=0x y 3=0-⎧⎨--⎩,解得x=15y=12⎧⎨⎩。
∴x +y =12+15=27。
故选D 。
5.(2018湖北荆门3分)对于一组统计数据:2,3,6,9,3,7,下列说法错误的是【 】 A .众数是3 B .中位数是6 C .平均数是5 D .极差是7 【答案】B 。
【考点】众数,中位数,算术平均数,极差。
【分析】分别计算该组数据的众数、平均数、中位数及极差后,选择正确的答案即可: A .∵3出现了2次,最多,∴众数为3,故此选项正确;B .∵排序后为:2,3,3,6,7,9,∴中位数为:(3+6)÷2=4.5,故此选项错误;C .2+3+6+9+3+7x==55;故此选项正确;D .极差是9﹣2=7,故此选项正确。
湖北省荆门市中考数学试卷解析
2018 年湖北省荆门市中考数学试卷解读一、选择题(本大题 12 个小题,每题只有独一正确答案,每题 3 分,共 36 分)1.以下实数中,无理数是( )A .﹣B . πC .D . |﹣ 2|解读: :A 、﹣是有理数,故本选项错误;B 、是无理数,故本选项正确;C 、=3,是有理数,故本选项错误;D 、 |﹣ 2|=2,是有理数,故本选项错误;应选 B .2﹣ 2x ﹣ 3=0 ,配方后的方程能够是(2.用配方法解对于x 的一元二次方程 x )222 2A .( x ﹣ 1) =4B .( x+1) =4C .( x ﹣1) =16D .( x+1 ) =16解读: 把方程 x 2﹣ 2x ﹣3=0 的常数项移到等号的右侧,获得 x 2﹣ 2x=3 ,方程两边同时加前一次项系数一半的平方,获得x 2﹣ 2x+1=3+1 , 配方得( x ﹣ 1) 2=4. 应选 A .3.已知:直线 l 1∥ l 2,一块含 30°角的直角三角板以下图搁置,∠ 1=25°,则∠ 2 等于( )A . 30°B . 35°C . 40°D . 45°解读: ∵∠ 3 是 △ ADG 的外角, ∴∠ 3=∠ A+ ∠ 1=30°+25 °=55°,∵ l 1∥ l 2, ∴∠ 3=∠ 4=55°, ∵∠ 4+∠ EFC=90 °,∴∠ EFC=90 °﹣ 55°=35°, ∴∠ 2=35°. 应选 B .4.若 与|x ﹣ y ﹣ 3|互为相反数,则 x+y 的值为( )A.3B.9C.12D.27解读:∵与|x﹣y﹣3|互为相反数,∴+|x﹣ y﹣ 3|=0,∴,② ﹣①得, y=12,把y=12 代入②得,x﹣12﹣ 3=0 ,解得 x=15 ,∴x+y=12+15=27 .应选 D.5.对于一组统计数据:2, 3, 6, 9, 3,7,以下说法错误的选项是()A.众数是 3B.中位数是6C.均匀数是5D.极差是 7解读: A .∵ 3 出现了 2 次,最多,∴众数为3,故此选项正确;B.∵排序后为:2, 3, 3, 6, 7, 9,∴中位数为:(3+6 )÷2=4.5 ;故此选项错误;C. ==5;故此选项正确;D.极差是9﹣ 2=7,故此选项正确;应选 B.6.已知点 M (1﹣ 2m, m﹣ 1)对于 x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的选项是()A.B.C.D.解读:由题意得,点 M 对于 x 轴对称的点的坐标为:( 1﹣ 2m, 1﹣m),又∵M ( 1﹣2m, m﹣ 1)对于 x 轴的对称点在第一象限,∴,解得:,在数轴上表示为:.应选 A.7.以下 4×4 的正方形网格中,小正方形的边长均为1,三角形的极点都在格点上,则与△ABC 相像的三角形所在的网格图形是()A.B.C.D.解读:依据勾股定理, AB==2 ,BC==,AC==,所以△ ABC 的三边之比为: 2:=1:2:,A 、三角形的三边分别为2,=,=3 ,三边之比为2::3=::3,故本选项错误;B、三角形的三边分别为2, 4,=2,三边之比为2: 4: 2=1 : 2:,故本选项正确;C、三角形的三边分别为2, 3,=,三边之比为2: 3:,故本选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故本选项错误.应选 B.8.如图,点 A 是反比率函数 y=(x>0)的图象上随意一点,AB ∥ x 轴交反比率函数y= ﹣的图象于点B,以 AB 为边作 ?ABCD ,此中 C、 D 在 x 轴上,则S□ABCD为()A.2B.3C.4D.5解读:设 A 的纵坐标是b,则 B 的纵坐标也是b.把 y=b 代入 y=得,b=,则x=,,即A的横坐标是,;同理可得: B 的横坐标是:﹣.则 AB= ﹣(﹣)= .则 S□ABCD = ×b=5.应选 D.9.如图,△ABC 是等边三角形,P 是∠ ABC 的均分线BD 上一点, PE⊥AB 于点 E,线段BP 的垂直均分线交BC 于点 F,垂足为点Q.若 BF=2 ,则 PE 的长为()A.2B.2C.D.3 解读:∵△ ABC 是等边三角形P 是∠ ABC 的均分线,∴∠ EBP=∠ QBF=30 °,∵B F=2 , FQ⊥ BP,∴BQ=BF ?cos30°=2×=,∵FQ 是 BP 的垂直均分线,∴BP=2BQ=2,在 Rt△ BEF 中,∵∠ EBP=30 °,∴PE= BP=.应选 C.10.如图,已知正方形ABCD 的对角线长为2,将正方形ABCD 沿直线 EF 折叠,则图中暗影部分的周长为()A.8B . 4C . 8D . 6解读: ∵正方形 ABCD 的对角线长为 2,即 BD=2,∠ A=90 °, AB=AD ,∠ ABD=45 °,∴AB=BD ?cos ∠ ABD=BD ?cos45°=2× =2,∴ A B=BC=CD=AD=2 ,由折叠的性质: A ′M=AM , D ′N=DN ,A ′D ′=AD , ∴图中暗影部分的周长为:A ′M+BM+BC+CN+D ′N+A ′D ′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8 . 应选 C .11.已知:多项式 x 2﹣ kx+1 是一个完好平方式,则反比率函数y= 的解读式为( )A .y= B . y=﹣ C .y= 或 y= ﹣ D .y= 或 y= ﹣ 解读: ∵多项式 x 2﹣kx+1 是一个完好平方式,∴k= ±2,把 k= ±2 分别代入反比率函数 y=的解读式得: y= 或 y= ﹣ ,应选: C .12.已知:按序连结矩形各边的中点,获得一个菱形,如图 ① ;再按序连结菱形各边的中点,获得一个新的矩形,如图② ;而后按序连结新的矩形各边的中点,获得一个新的菱形,如图 ③ ;这样频频操作下去,则第2018 个图形中直角三角形的个数有()A.8048 个B.4024 个C.2018 个D.1066 个解读:第 1 个图形,有 4 个直角三角形,第2 个图形,有4 个直角三角形,第3 个图形,有8 个直角三角形,第 4 个图形,有 8 个直角三角形,,挨次类推,当 n 为奇数时,三角形的个数是2( n+1),当 n 为偶数时,三角形的个数是2n 个,所以,第2018 个图形中直角三角形的个数是2×2018=4024 .应选 B.二、填空题(本大题共 5 个小题,每题 3 分,共 15 分)13.计算﹣(﹣ 2)﹣ 2﹣(﹣2) =.解读:原式 =﹣﹣1=﹣1.故答案为:﹣ 1.14.如图,在直角坐标系中,四边形 OABC 是直角梯形, BC ∥ OA ,⊙ P 分别与 OA 、 OC、 BC 相切于点 E、 D 、B ,与 AB 交于点 F.已知 A ( 2,0), B( 1, 2),则 tan∠ FDE= .解读:连结 PB 、PE.∵⊙ P分别与 OA 、BC 相切于点E、B,∴PB ⊥BC, PE⊥OA ,∵BC∥OA ,∴B 、P、 E 在一条直线上,∵A ( 2, 0), B( 1,2),∴ A E=1 , BE=2 ,∴ t an ∠ABE= = ,∵∠ EDF= ∠ ABE ,∴ t an ∠FDE= .故答案为: .15 如图是一个上下底密封纸盒的三视图,请你依据图中数据,计算这个密封纸盒的表面积为 cm 2.(结果可保存根号)解读: 依据该几何体的三视图知道其是一个六棱柱,∵其高为 12cm ,底面半径为 5,2密封纸盒的侧面积为: ×5×6×5 =75cm 22∴其全面积为:( 75+360) cm .16.新定义: [a , b]为一次函数 y=ax+b ( a ≠0, a ,b 为实数)的 “关系数 ”.若 “关系数 ”[1,m ﹣2] 的一次函数是正比率函数,则对于 x 的方程 的解为.解读: 依据题意可得: y=x+m ﹣ 2,∵“关系数 ”[1, m ﹣ 2]的一次函数是正比率函数, ∴m ﹣ 2=0 , 解得: m=2,则对于 x 的方程变成+ =1,解得: x=3 ,查验:把 x=3 代入最简公分母 2( x ﹣ 1)=4≠0,故 x=3 是原分式方程的解,故答案为: x=3 .17.如图( 1)所示, E 为矩形 ABCD 的边 AD 上一点,动点 P、 Q 同时从点 B 出发,点 P 沿折线BE﹣ ED ﹣ DC 运动到点 C 时停止,点 Q 沿 BC 运动到点 C 时停止,它们运动的速度都是 1cm/秒.设 P、 Q 同发 t 秒时,△ BPQ 的面积为ycm 2.已知 y 与 t 的函数关系图象如图( 2)(曲线 OM 为抛物线的一部分),则以下结论:① AD=BE=5 ;② cos∠ ABE=;③当 0< t≤5 时, y=2;④当 t=秒时,△ ABE ∽△ QBP ;此中正确的结论是t①③④(填序号).解:依据图( 2)可得,当点P 抵达点 E 时点 Q 抵达点 C,∵点 P、Q 的运动的速度都是1cm/秒,∴B C=BE=5 ,∴A D=BE=5 ,故①小题正确;又∵从 M 到 N 的变化是 2,∴E D=2 ,∴A E=AD ﹣ ED=5 ﹣2=3 ,在 Rt△ ABE 中, AB===4,∴cos∠ ABE==,故② 小题错误;过点 P作 PF⊥BC于点 F,∵AD ∥BC,∴∠ AEB= ∠PBF,∴sin ∠PBF=sin ∠AEB==,∴PF=PBsin ∠ PBF= t,∴当 0< t≤5 时, y= BQ ?PF= t? t=t 2,故③小题正确;当 t=秒时,点P 在 CD 上,此时, PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD ﹣ PD=4 ﹣=,∵=,==,∴ = ,又∵∠ A= ∠ Q=90 °,∴△ ABE ∽△ QBP,故④小题正确.综上所述,正确的有①③④.故答案为:①③④.18.先化简,后求值:,此中a=+1.解:原式 ===.(5 分)当 a=+1 时,原式 ==.(8分)19.如图, Rt△ ABC 中,∠ C=90 °,将△ABC 沿 AB 向下翻折后,再绕点 A 按顺时针方向旋转α度(α<∠ BAC ),获得 Rt△ ADE ,此中斜边 AE 交 BC 于点 F,直角边 DE 分别交AB 、BC 于点 G、H.(1)请依据题意用实线补全图形;(2)求证:△ AFB ≌△ AGE .解:( 1)绘图,如图;(4分)(2)证明:由题意得:△ ABC ≌△ AED .( 5 分)∴AB=AE ,∠ ABC= ∠ E.( 6 分)在△ AFB 和△AGE 中,∴△ AFB ≌△ AGE (ASA ).( 9 分)20.“端午节”是我国的传统佳节,民间向来有吃“粽子”的风俗.我市某食品厂为认识市民对昨年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D 表示)这四种不一样口胃粽子的喜欢状况,在节前对某居民区市民进行了抽样检查,并将检查状况绘制成以下两幅统计图(尚不完好).请依据以上信息回答:(1)本次参加抽样检查的居民有多少人?(2)将两幅不完好的图增补完好;(3)若居民区有 8000 人,请预计爱吃 D 粽的人数;(4)如有外型完好同样的 A 、 B、 C、 D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰巧是 C 粽的概率.解:( 1) 60÷10%=600 (人).答:本次参加抽样检查的居民有600 人.( 2 分)(2)如图;( 5 分)(3) 8000×40%=3200 (人).答:该居民区有8000 人,预计爱吃 D 粽的人有3200 人.(7 分)(4)如图;(列表方法略,参照给分).(8 分)P (C 粽)= = .答:他第二个吃到的恰巧是C 粽的概率是. ( 10 分)21.以下图为圆柱形大型储油罐固定在 U 型槽上的横截面图.已知图中 ABCD 为等腰梯形( AB ∥ DC ),支点 A 与 B 相距 8m ,罐底最低点到地面 CD 距离为 1m .设油罐横截面圆心为 O ,半径为 5m ,∠ D=56 °,求: U 型槽的横截面(暗影部分)的面积.(参照数据: sin53°≈, tan56°≈, π≈3,结果保存整数)解:如图,连结 AO 、BO .过点 A 作 AE ⊥DC 于点 E ,过点 O 作 ON ⊥DC 于点 N , ON 交 ⊙O 于点 M ,交 AB 于点 F .则 OF ⊥ AB . ∵OA=OB=5m , AB=8m ,∴AF=BF= AB=4 ( m ),∠ AOB=2 ∠AOF ,在 Rt △ AOF 中, sin ∠AOF==0.8=sin53 °,∴∠ AOF=53 °,则∠ AOB=106 °,∵OF==3 (m ),由题意得: MN=1m ,∴FN=OM ﹣ OF+MN=3 (m ),∵四边形 ABCD 是等腰梯形, AE ⊥ DC , FN ⊥AB , ∴ A E=FN=3m , DC=AB+2DE .在 Rt △ ADE 中, tan56°= = ,∴DE=2m , DC=12m .∴S 阴=S 梯形 ABCD ﹣( S 扇 OAB ﹣ S △OAB ) = ( 8+12 ) ×3﹣(π×52﹣ ×8×3) =20(m 2).20m 2.答: U 型槽的横截面积约为22.荆门市是有名的“鱼M之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75 千克,且乌鱼的进货量大于40 千克.已知草鱼的批发单价为8 元 /千克,乌鱼的批发单价与进货量的函数关系以下图.(1)请直接写出批发购进乌鱼所需总金额 y(元)与进货量 x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当天零售,草鱼和乌鱼分别可卖出89%、 95%,要使总零售量不低于进货量的 93%,问该经销商应如何安排进货,才能使进货花费最低?最低花费是多少?解:( 1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式y=;(2)设该经销商购进乌鱼x 千克,则购进草鱼(75﹣ x)千克,所需进货花费为w 元.由题意得:解得 x≥50.由题意得 w=8 (75﹣ x) +24x=16x+600 .∵16> 0,∴ w 的值随 x 的增大而增大.∴当 x=50 时, 75﹣ x=25, W 最小 =1400(元).答:该经销商应购进草鱼25 千克,乌鱼 50 千克,才能使进货花费最低,最低花费为1400元.2﹣ 2kx+k+2 的图象与 x 轴有交点.23.已知: y 对于 x 的函数 y= ( k﹣ 1) x(1)求 k 的取值范围;(2)若 x1,x2是函数图象与 x 轴两个交点的横坐标,且知足(k﹣1)2x1 +2kx 2+k+2=4x 1x2.①求 k 的值;②当 k≤x≤k+2 时,请联合函数图象确立y 的最大值和最大值.解:( 1)当 k=1 时,函数为一次函数y=﹣ 2x+3 ,其图象与x 轴有一个交点.(1分)当 k ≠1 时,函数为二次函数,其图象与 x 轴有一个或两个交点,令 y=0 得( k ﹣ 1) x 2﹣ 2kx+k+2=0 .△ =(﹣ 2k )2﹣ 4( k ﹣ 1)( k+2) ≥0,解得 k ≤2.即 k ≤2 且 k=1. ( 2 分)综上所述, k 的取值范围是 k ≤2. ( 3 分)( 2) ① ∵ x 1≠x 2,由( 1)知 k <2 且 k=1 .由题意得( k ﹣ 1) x 12+( k+2 ) =2kx 1.( *) ( 4 分)将( * )代入( k ﹣ 1) x 12+2kx 2+k+2=4x 1x 2 中得:2k ( x 1+x 2)=4x 1x 2. (5 分) 又∵ x 1+x 2=, x 1 x 2=,∴2k ?=4?. ( 6 分)解得: k 1=﹣ 1, k 2=2 (不合题意,舍去). ∴所求 k 值为﹣ 1. (7 分)② 如图,∵ k 1=﹣ 1, y=﹣ 2x 2+2x+1= ﹣ 2( x ﹣ ) 2+ .且﹣ 1≤x ≤1. ( 8 分)由图象知:当 x= ﹣ 1 时, y 最小 =﹣ 3;当 x= 时, y 最大 = . ( 9 分)∴y 的最大值为,最小值为﹣ 3. ( 10 分)24.如图甲,四边形 OABC 的边 OA 、OC 分别在 x 轴、 y 轴的正半轴上,极点在B 点的抛物线交 x 轴于点 A 、D ,交 y 轴于点 E ,连结 AB 、 AE 、 BE .已知 tan ∠ CBE=, A ( 3,0), D (﹣ 1, 0), E (0, 3). (1)求抛物线的解读式及极点B 的坐标;( 2)求证: CB 是 △ ABE 外接圆的切线;( 3)尝试究坐标轴上能否存在一点 P ,使以 D 、 E 、 P 为极点的三角形与 △ ABE 相像,若存在,直接写出点 P 的坐标;若不存在,请说明原因;( 4)设 △AOE 沿 x 轴正方向平移 t 个单位长度( 0< t ≤3)时, △ AOE 与 △ ABE 重叠部分 的面积为 s ,求 s 与 t 之间的函数关系式,并指出t 的取值范围.解:由题意,设抛物线解读式为y=a( x﹣3)( x+1).将 E( 0,3)代入上式,解得:a=﹣ 1.∴y= ﹣ x 2+2x+3 .则点 B (1, 4).(2)证明:如图 1,过点 B 作 BM ⊥y 于点 M ,则 M ( 0, 4).在Rt△ AOE 中, OA=OE=3 ,∴∠ 1=∠ 2=45°, AE==3 .在 Rt△ EMB 中, EM=OM ﹣OE=1=BM ,∴∠ MEB= ∠ MBE=45 °, BE==.∴∠ BEA=180 °﹣∠ 1﹣∠ MEB=90 °.∴AB 是△ ABE 外接圆的直径.在 Rt△ ABE 中, tan∠ BAE===tan∠ CBE ,∴∠ BAE= ∠CBE .在 Rt△ ABE 中,∠ BAE+ ∠ 3=90°,∴∠ CBE+∠3=90 °.∴∠ CBA=90 °,即 CB⊥ AB .∴CB 是△ ABE 外接圆的切线.(3)解: Rt △ ABE 中,∠ AEB=90 °,tan∠ BAE= , sin∠ BAE=, cos∠BAE=;若以 D 、E、 P 为极点的三角形与△ ABE 相像,则△ DEP 必为直角三角形;① DE 为斜边时, P1在 x 轴上,此时 P1与 O 重合;由 D (﹣ 1, 0)、 E( 0,3),得 OD=1 、 OE=3,即 tan∠ DEO==tan∠BAE ,即∠DEO= ∠ BAE知足△ DEO∽△ BAE 的条件,所以 O 点是切合条件的P1点,坐标为( 0, 0).② DE 为短直角边时, P2在 x 轴上;若以 D 、E、 P 为极点的三角形与△ ABE 相像,则∠ DEP2=∠ AEB=90 °,sin∠ DP2E=sin∠ BAE=;而 DE==,则 DP2=DE ÷sin∠ DP2E=÷=10, OP2=DP 2﹣ OD=9即: P2( 9, 0);③ DE 为长直角边时,点P3在 y 轴上;若以 D 、E、 P 为极点的三角形与△ ABE 相像,则∠ EDP3=∠ AEB=90 °,cos∠DEP3=cos∠ BAE=;则 EP3=DE ÷cos∠ DEP3=÷= , OP3=EP3﹣OE=;综上,得: P1( 0, 0), P2( 9, 0), P3( 0,﹣).(4)解:设直线AB 的解读式为y=kx+b .将 A ( 3, 0), B ( 1,4)代入,得解得∴y= ﹣ 2x+6.过点 E 作射线 EF∥ x 轴交 AB 于点 F,当 y=3 时,得 x=,∴ F(,3).状况一:如图2,当 0< t≤时,设△ AOE 平移到△ DNM 的地点, MD 交 AB 于点 H, MN交AE于点 G.则 ON=AD=t ,过点 H 作 LK ⊥ x 轴于点 K ,交 EF 于点 L .由△ AHD ∽△ FHM ,得,即.解得 HK=2t .∴S 阴=S△MND﹣ S△GNA﹣ S△HAD =×3×3﹣(3﹣ t)2﹣ t?2t= ﹣ t2+3t.状况二:如图 3,当< t≤3 时,设△ AOE 平移到△ PQR 的地点, PQ 交 AB 于点 I ,交 AE 于点 V.由△ IQA ∽△ IPF,得.即,解得 IQ=2 ( 3﹣ t).∴S 阴=S△IQA﹣ S△VQA =×( 3﹣t)×2( 3﹣ t)﹣222﹣3t+.( 3﹣ t) =( 3﹣ t) =t综上所述: s=.。
2018年中考数学卷精析版荆门卷 精品
2018年中考数学卷精析版——荆门卷(本试卷满分120分,考试时间120分钟)一、选择题(本大题12个小题,每小题只有唯一正确答案,每小题3分,共36分)3. (2018湖北荆门3分)已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于【】A.30°B.35°C.40°D.45°【答案】B。
【考点】三角形外角性质,平行线的性质,直角三角形两锐角的关系。
【分析】如图,∵∠3是△ADG 的外角,∴∠3=∠A +∠1=30°+25°=55°,∵l 1∥l 2,∴∠3=∠4=55°。
∵∠4+∠EFC =90°,∴∠EFC =90°﹣55°=35°。
∴∠2=35°。
故选B 。
4. (2018湖北荆门3分)若x 2y+9-与|x ﹣y ﹣3|互为相反数,则x +y 的值为【 】A . 3B . 9C . 12D . 27 【答案】D 。
【考点】相反数,非负数的性质,算术平方根的性质,绝对值的性质。
【分析】∵x 2y+9-与|x ﹣y ﹣3|互为相反数,∴x 2y+9-+|x ﹣y ﹣3|=0,∴x 2y+9=0x y 3=0-⎧⎨--⎩,解得x=15y=12⎧⎨⎩。
∴x +y =12+15=27。
故选D 。
5.(2018湖北荆门3分)对于一组统计数据:2,3,6,9,3,7,下列说法错误的是【 】 A .众数是3 B .中位数是6 C .平均数是5 D .极差是7 【答案】B 。
【考点】众数,中位数,算术平均数,极差。
【分析】分别计算该组数据的众数、平均数、中位数及极差后,选择正确的答案即可: A .∵3出现了2次,最多,∴众数为3,故此选项正确;B .∵排序后为:2,3,3,6,7,9,∴中位数为:(3+6)÷2=4.5,故此选项错误;C .2+3+6+9+3+7x==55;故此选项正确;D .极差是9﹣2=7,故此选项正确。
2018年荆门市中考数学试卷及答案 精品
荆门市二O 一二年初中毕业生学业及升学考试试卷 数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效. 4.考试结束,请将本试题卷和答题卡一并上交.一、选择题(本大题12个小题,每小题只有唯一正确答案,每小题3分,共36分)1.下列实数中,无理数是( ) A .-52B .πC .|-2|2.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=16l 1 1l 223.已知:直线l 1∥l 2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( )A .30°B .35°C .40°D .45°4|x -y -3|互为相反数,则x +y 的值为( ) A .3 B .9 C .12 D .275.对于一组统计数据:2,3,6,9,3,7,下列说法错误..的是( ) A .众数是3 B .中位数是6 C .平均数是5 D .极差是7 6.已知点M (1-2m ,m -1)关于x 轴的对称点...在第一象限,则m 的取值范围在数轴上表示正确的是( )7.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )8.如图,点A 是反比例函数y =2x(x >0)的图象上任意一点,AB ∥x 轴交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D 在x 轴上,则S □ABCD 为( )A .2B .3C .4D .59.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若10 0.510 0.5 10 0.5 10 0.5A .B .C .D .A CB A . B .C .D .第8题图第9题图A DE F P Q CBBF =2,则PE 的长为( )A .2B .CD .310.如图,已知正方形ABCD 的对角线长为方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( ) A ...8 D .611.已知:多项式x 2-kx +1是一个完全平方式,则反比例函数y =1k x的解析式为( )A .y =1xB .y =-3xC .y =1x或y =-3xD .y =2x或y =-2x12.已知:顺次连结矩形各边的中点,得到一个菱形,如图①;再顺次连结菱形各边的中点,得到一个新的矩形,如图②;然后顺次连结新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2018个图形中直角三角形的个数有( ) A .8048个 B .4024个 C .2018个 D .1066个二、填空题(本大题共5个小题,每小题3分,共15分) 13-(-2)-2-2)=__▲__.14.如图,在直角坐标系中,四边形OABC 是直角梯形,BC ∥OA ,⊙P (此处原题仍用字母O ,与表示坐标原点的字母重复——录入者注)分别与OA 、OC 、BC 相切于点E 、D 、B ,与AB 交于点F .已知A (2,图① 图② 图③第10题图0),B (1,2),则tan ∠FDE =__▲__.15.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为__▲__cm 2.(结果可保留根号) 16.新定义:[a ,b ]为一次函数y =ax +b (a ≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m -2]的一次函数是正比例函数,则关于x 的方程11x -+1m=1的解为__▲__.17.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE —ED —DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:AD =BE =5;cos ∠ABE =35;当0<t ≤5时,y =25t 2;当t =29秒时,△ABE ∽△QBP ;其中正确的结论是__▲__(填序号).三、解答题(本大题共7个小题,共69分) 18.(本题满分8分)先化简,后求值:211()(3)31a a a a +----,其中a1.图(1) 图(2)第17题图Q CB第15题图cm第14题图19.(本题满分9分)如图,Rt △ABC 中,∠C =90°,将△ABC 沿AB 向下翻折后,再绕点A 按顺时针方向旋转α度(α<∠BAC ),得到Rt △ADE ,其中斜边AE 交BC 于点F ,直角边DE 分别交AB 、BC 于点G 、H .(1)请根据题意用实线补全图形; (2)求证:△AFB ≌△AGE .20.(本题满分10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).αDEF G CBH第19题图CB请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.21.(本题满分10分)如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)第21题图CD类型22.(本题满分10分)荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?23.(本题满分10)已知:y 关于x 的函数y =(k -1)x 2-2kx +k +2的图象与x 轴有交点.)第22题图(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最大值.24.(本题满分12分)如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于,A(3,0),D(-1,0),点E,连结AB、AE、BE.已知tan∠CBE=13E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出....点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE 与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.荆门市二O 一二年初中毕业生学业及升学考试数学试题参考答案及评分标准一、选择题(每选对一题得3分,共36分)1.B 2.A 3.B 4.D 5.B 6.A 7.B 8.D 9.C 10.C 11.C 12.B二、填空题(每填对一题得3分,共15分) 13.-1 14.1215.360 16.x =3 17.①③④18.解:原式=311a a ---=21a -.…………………………………………………………5分当a=+1时,原式==. (8)分19.解:(1)画图,如图1;…………………………………………………………………4分图甲图乙(备用图)(2)由题意得:△ABC ≌△AED .……………………………………………………………5分∴AB =AE ,∠ABC =∠E .…………………………………………………………………6分在△AFB 和△AGE 中,,,,ABC E AB AE αα∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFB ≌△AGE (ASA).……………………………………………………………………9分20.解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.2分 (2)如图2;………………………………………………………………………………………5分(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人.………………………………7分 (4)如图3;类型A D CB 图2α 图1DEF GC BH(列表方法略,参照给分). (8)分P(C粽)=312=14.答:他第二个吃到的恰好是C粽的概率是14.……………………………………………10分21.解:如图4,连结AO、BO.过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F.则OF⊥AB.∵OA=OB=5m,AB=8m,∴AF=BF=12AB=4(m),∠AOB=2∠AOF.………………………………………………3分在Rt△AOF中,sin∠AOF=AFAO=0.8=sin53∴∠AOF=53°,=1065分∵OF3(m),由题意得:MN=1m,∴FN=OM-OF+MN=3(m).………………………………………………………………6分∵四边形ABCD是等腰梯形,AE⊥DC,FN⊥AB,∴AE=FN=3m,DC=AB+2DE.在Rt△ADE中,tan56°=AEDE =32,∴DE=2m,DC=开始A B CB C D A C D A B D A B C图3图4D E N C12m .……………………………7分 ∴S 阴=S梯形ABCD-(S扇OAB-S △OAB )=12(8+12)×3-(106360π×52-12×8×3)=20(m2). 答:U 型槽的横截面积约为20m 2.…………………………………………………………10分 22.解:(1)y=26 (2040),24 (40).x x x x ⎧⎨>⎩≤≤……………………………………………………………4分(2)设该经销商购进乌鱼x 千克,则购进草鱼(75-x )千克,所需进货费用为w 元. 由题意得:40,89%(75)95%93%75.x x x >⎧⎨⨯-+⨯⎩≥解得x ≥50.……………………………………………………………………………………6分 由题意得w =8(75-x )+24x =16x +600.……………………………………………………8分 ∵16>0,∴w 的值随x 的增大而增大. ∴当x =50时,75-x =25,W 最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.……………………………………………………………………………………………10分23.解:(1)当k =1时,函数为一次函数y =-2x +3,其图象与x 轴有一个交点.……1分当k ≠1时,函数为二次函数,其图象与x 轴有一个或两个交点, 令y =0得(k -1)x 2-2kx +k +2=0.△=(-2k )2-4(k -1)(k +2)≥0,解得k ≤2且k =1.……………………………2分综上所述,k 的取值范k ≤2分(2)①∵x 1≠x 2,由(1)知k <2且k =1. 由题意得(k-1)x 12+(k+2)=2kx 1.(*)………………………………………………………4分 将(*)代入(k -1)x 12+2kx 2+k +2=4x 1x 2中得: 2k (x 1+x 2)=4x 1x 2.……………………………………………………………………………5分 又∵x 1+x 2=21k k -,x 1x 2=21k k +-, ∴2k ·21kk -=4·21k k +-.……………………………………………………………………6分解得:k 1=-1,k 2=2(不合题意,舍去). ∴所求k 值为-1.………………………………………………………………………图5……7分②如图5,∵k1=-1,y=-2x2+2x+1=-2(x-12)2+32.且-1≤x≤1.…………………………………………………………………………………8分由图象知:当x=-1时,y最小=-3;当x=12时,y最大=32.…………………………9分∴y的最大值为32,最小值为-3.…………………………………………………………10分24.(1)解:由题意,设抛物线解析式为y=a(x-3)(x+1).将E(0,3)代入上式,解得:a=-1.∴y=-x2+2x+3.则点B(1,4).…………………………………………………………………………………2分(2)如图6,证明:过点B作BM⊥y于点M,则M(0,4).在Rt△AOE中,OA=OE=3,∴∠1=∠2=45°,AE在Rt△EMB中,EM=OM∴∠MEB=∠MBE=45∴∠BEA=180°-∠1∴AB是△在Rt△ABE中,tan∠BAE=BE=13=tan∠CBE,∴∠BAE=∠CBE.在Rt△ABE中,∠BAE+∠3=90°,∴∠CBE+∠3=90°.∴∠CBA=90°,即CB⊥AB.∴CB是△ABE外接圆的切图6线.………………………………………………………………5分 (3)P 1(0,0),P 2(9,0),P 3(0,-13).………………………………………………………8分(4)解:设直线AB 的解析式为y =kx +b . 将A (3,0),B (1,4)代入,得30,4.k b k b +=⎧⎨+=⎩解得2,6.k b =-⎧⎨=⎩∴y =-2x +6.过点E 作射线EF ∥x 轴交AB 于点F ,当y =3时,得x =32,∴F (32,3).…………9分情况一:如图7,当0<t ≤32时,设△AOE 平移到△DNM 的位置,MD交AB 于点H ,MN 交AE 于点G .则ON =AD =t ,过点H 作LK ⊥x 轴于点K ,交EF 于点L . 由△AHD ∽△FHM ,得AD HKFM HL=.即332tHK HKt=--.解得HK =2t .∴S阴=S △MND -S △GNA -S △HAD =12×3×3-12(3-t )2-12t ·2t =-32t 2+3t .…………11分情况二:如图8,当32<t ≤3时,设△AOE 平移到△PQR 的位置,PQ交AB 于点I ,交AE 于点V .由△IQA ∽△IPF ,得AQ IQFP IP=.即3332IQ t IQ t -=--.解得IQ =2(3-t ).图8图7∴S阴=S △IQA -S △VQA =12×(3-t )×2(3-t )-12(3-t )2=12(3-t )2=12t 2-3t +92. 综上所述:s =22333 0),221933 (3).222t t t t t t ⎧-+<⎪⎪⎨⎪-+<⎪⎩≤≤(……………………………………………………12分。
2018年湖北省荆门市中考数学试卷
2018年湖北省荆门市中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选择项前的字母代号填相应的位置上)1.的绝对值是()A.3 B.﹣3 C.D.2.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×10103.如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180°B.270°C.360°D.540°4.函数y=中,自变量x的取值范围是()A.x<4 B.x≤4 C.x≤4且x≠2 D.x>25.下列计算正确的是()A.a3+a5=a8B.a4•a5=a20C.(﹣2a3)2=4a6 D.a6÷a2=a36.从一幅扑克牌中随机抽取一张牌,它是黑桃的概率为()A.B.C.D.7.用圆心角为90°,半径为16cm的扇形纸片卷成一个圆锥形无底纸帽(接缝不计),如图,则这个纸帽的底面半径为()A.8cm B.4cm C.16cm D.2cm8.若x>y,则下列式子错误的是()A.3﹣x>3﹣y B.x﹣3>y﹣3 C.x+3>y+2 D.>9.如图,小正方形的边长为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.10.如图,CD为⊙O直径,CD⊥AB于点F,AO⊥BC于E,AO=1cm,则阴影部分的面积为()A.﹣cm2B.cm2C.cm2D.cm211.随着市场竞争日益激烈,某商品一个月内连续两次降价,第一次降价10%,第二次再降价10%后,售价为810元,则原售价为()A.900元B.1000元C.960元D.920元12.如图,是二次函数y=ax2+bx+c图象的一部分,对称轴为直线x=1,且过点(﹣4,0),给出四个结论:①abc<0 ②2a﹣b=0 ③4a+2b+c<0 ④若点(﹣6,y1),(3,y2)是该抛物线上的两点,则y1>y2,其中正确的是()A.①②B.①②④ C.②③D.②③④二、填空题(本题共5小题,每小题3分,共15分)13.分解因式:(m+1)(m﹣9)+8m=.14.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有台.15.荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是.16.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.17.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是.三、解答题(本题共7小题,共69分)18.(1)计算:|1﹣|+3tan30°﹣()0﹣(﹣)﹣1.(2)解不等式组.19.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.20.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分数段频数频率60≤x<70 9 a70≤x<80 36 0.480≤x<90 27 b90≤x≤100 c 0.2请根据上述统计图表,解答下列问题:(1)在表中,a=,b=,c=;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?21.如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?22.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB 交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.23.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D 两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?24.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.2018年湖北省荆门市中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选择项前的字母代号填相应的位置上)1.的绝对值是()A.3 B.﹣3 C.D.【考点】绝对值.【分析】根据绝对值的性质进行解答即可.【解答】解:∵>0,∴||=.故选D.2.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350 000 000有9位,所以可以确定n=9﹣1=8.【解答】解:350 000 000=3.5×108.故选:B.3.如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180°B.270°C.360°D.540°【考点】平行线的性质.【分析】先根据平行线的性质得出∠BAC+∠ACD=180°,∠DCE+∠CEF=180°,进而可得出结论.【解答】解:∵AB∥CD∥EF,∴∠BAC+∠ACD=180°①,∠DCE+∠CEF=180°②,①+②得,∠BAC+∠ACD+∠DCE+∠CEF=360°,即∠BAC+∠ACE+∠CEF=360°.故选C.4.函数y=中,自变量x的取值范围是()A.x<4 B.x≤4 C.x≤4且x≠2 D.x>2【考点】函数自变量的取值范围.【分析】根据被开方数是非负数、分母不能为零,可得答案.【解答】解:由y=,得4﹣x≥0且x﹣2≠0.解得x≤4且x≠2.故选:C.5.下列计算正确的是()A.a3+a5=a8B.a4•a5=a20C.(﹣2a3)2=4a6 D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂相乘,底数不变指数相加,故B错误;C、积的乘方等于乘方的积,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:C.6.从一幅扑克牌中随机抽取一张牌,它是黑桃的概率为()A.B.C.D.【考点】概率公式.【分析】让黑桃扑克牌的张数除以扑克牌总张数即为所求的概率.【解答】解:∵一幅扑克牌中有黑桃13张,所有扑克的总数为54.∴从一幅扑克牌中随机抽取一张牌,它是黑桃的概率=,故选D.7.用圆心角为90°,半径为16cm的扇形纸片卷成一个圆锥形无底纸帽(接缝不计),如图,则这个纸帽的底面半径为()A.8cm B.4cm C.16cm D.2cm【考点】圆锥的计算.【分析】设这个纸帽的底面半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解方程即可.【解答】解:设这个纸帽的底面半径为r,根据题意得2πr=,解得r=4,所以这个纸帽的底面半径为4cm.故选B.8.若x>y,则下列式子错误的是()A.3﹣x>3﹣y B.x﹣3>y﹣3 C.x+3>y+2 D.>【考点】不等式的性质.【分析】根据不等式的性质对各个选项逐一判断,选出错误一项即可.【解答】解:∵x>y,∴﹣x<﹣y,∴3﹣x<3﹣y,A错误;∵x>y,∴x﹣3>y﹣3,正确;∵x>y,∴x+3>y+3,∴x+3>y+2,C正确;∵x>y,∴,D正确,故选:A.9.如图,小正方形的边长为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,BC=2,AC==,∴BC:AC:AB=2::=::1,A、三边之比为::1,图中的三角形(阴影部分)与△ABC相似;B、三边之比::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似,故选A.10.如图,CD为⊙O直径,CD⊥AB于点F,AO⊥BC于E,AO=1cm,则阴影部分的面积为()A .﹣cm 2B . cm 2C . cm 2D . cm 2【考点】扇形面积的计算.【分析】连结OB ,根据垂径定理及圆周角定理得出∠AOB=2∠AOD=120°,OF=AO=,AB=2AF=,再由S 阴影=S 扇形OAB ﹣S △OAB 即可得出结论.【解答】解:连结OB ,∵CD 为直径,CD ⊥AB ,∵AF=BF , =,∴∠AOD=∠DOE=2∠C ,∵∠COE=∠AOF ,∴∠COE=2∠C .∵AE ⊥BC ,∴∠C=90°×=30°,∠AOD=60°,∵∠AOB=2∠AOD=120°,OF=AO=,AB=2AF=, ∴S 扇形OAB ==π,S △OAB =AB •OF=××=, ∴S 阴影=S 扇形OAB ﹣S △OAB =﹣. 故选A .11.随着市场竞争日益激烈,某商品一个月内连续两次降价,第一次降价10%,第二次再降价10%后,售价为810元,则原售价为( )A.900元B.1000元C.960元D.920元【考点】一元一次方程的应用.【分析】设该商品原来的价格是x元,根据等量关系式:原价×(1﹣降低率)2=81,列出方程即可求解.【解答】解:设原价为x元.x×(1﹣10%)2=810,解得x=1000.故选:B.12.如图,是二次函数y=ax2+bx+c图象的一部分,对称轴为直线x=1,且过点(﹣4,0),给出四个结论:①abc<0 ②2a﹣b=0 ③4a+2b+c<0 ④若点(﹣6,y1),(3,y2)是该抛物线上的两点,则y1>y2,其中正确的是()A.①②B.①②④ C.②③D.②③④【考点】二次函数图象与系数的关系.【分析】①由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上得到c>0,由对称轴为x=﹣=﹣1,得到b<0,可以对①进行分析判断;②由对称轴为x=﹣=﹣1,得到2a=b,可以对②进行分析判断;③对称轴为x=﹣1,图象过点A(﹣4,0),得到图象与x轴另一个交点(2,0),可对③进行分析判断;④对称轴为x=﹣1,开口向下,点(﹣6,y1)比点(3,y2)离对称轴远,即可对④进行判断.【解答】解:①∵抛物线的开口向上,∴a>0,∵与y轴的交点在y轴的负半轴上,∴c<0,∵对称轴为x=﹣<0∴b>0,∴abc<0,故①正确;②∵对称轴为x=﹣=﹣1,∴2a=b,∴2a﹣b=0,故②正确;③∵对称轴为x=﹣1,图象过点A(﹣4,0),∴图象与x轴另一个交点(2,0),∴4a+2b+c=0,故③错误;④∵对称轴为x=﹣1,开口向下,∴点(﹣6,y1)比点(3,y2)离对称轴远,∴y1>y2,故④正确;故选B.二、填空题(本题共5小题,每小题3分,共15分)13.分解因式:(m+1)(m﹣9)+8m=(m+3)(m﹣3).【考点】因式分解-运用公式法.【分析】先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可.【解答】解:(m+1)(m﹣9)+8m,=m2﹣9m+m﹣9+8m,=m2﹣9,=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).14.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有16台.【考点】一元一次方程的应用.【分析】设购置的笔记本电脑有x台,则购置的台式电脑为台.根据笔记本电脑的台数比台式电脑的台数的还少5台,可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设购置的笔记本电脑有x台,则购置的台式电脑为台,依题意得:x=﹣5,即20﹣x=0,解得:x=16.∴购置的笔记本电脑有16台.故答案为:16.15.荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到一男一女的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:由树状图可知共有20种等可能性结果,其中抽到一男一女的情况有12种,所以抽到一男一女的概率为P(一男一女)=,故答案为:.16.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=2cm.【考点】旋转的性质.【分析】利用旋转的性质得出DC=AC,∠D=∠CAB,再利用已知角度得出∠AFC=90°,再利用直角三角形的性质得出FC的长.【解答】解:∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°=2(cm).故答案为:2.17.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是(﹣3,0)或(5,0)或(3,0)或(﹣5,0).【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.【解答】解:∵反比例函数y=图象关于原点对称,∴A、B两点关于O对称,∴O为AB的中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).三、解答题(本题共7小题,共69分)18.(1)计算:|1﹣|+3tan30°﹣()0﹣(﹣)﹣1.(2)解不等式组.【考点】解一元一次不等式组;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)首先去掉绝对值符号,计算乘方,代入特殊角的三角函数值,然后进行加减计算即可;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:(1)原式=﹣1+3×﹣1﹣(﹣3)=﹣1++3=2;(2)解①得x>﹣,解②得x≤0,则不等式组的解集是﹣<x≤0.19.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【考点】旋转的性质.【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS 得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.20.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分数段频数频率60≤x<70 9 a70≤x<80 36 0.480≤x<90 27 b90≤x≤100 c 0.2请根据上述统计图表,解答下列问题:(1)在表中,a=0.1,b=0.3,c=18;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;加权平均数.【分析】(1)根据表格中的数据可以求得抽查的学生数,从而可以求得a、b、c的值;(2)根据(1)中c的值,可以将频数分布直方图补充完整;(3)根据平均数的定义和表格中的数据可以求得七年级学生的平均成绩;(4)根据表格中的数据可以求得“优秀”等次的学生数.【解答】解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400,即“优秀”等次的学生约有400人.21.如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?【考点】解直角三角形的应用-坡度坡角问题.【分析】过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,根据直角三角形的性质用x表示出AC与BC的长,再根据小明与小军同时到达山顶C处即可得出结论.【解答】解:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x.在Rt△BCD中,∵∠B=30°,∴BC===2x,∵小军的行走速度为米/秒.若小明与小军同时到达山顶C处,∴=,解得a=1米/秒.答:小明的行走速度是1米/秒.22.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB 交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.【考点】切线的判定;角平分线的性质.【分析】(1)证明:连接CO,证得∠OCA=∠CAE,由平行线的判定得到OC∥FD,再证得OC⊥CE,即可证得结论;(2)证明:连接BC,由圆周角定理得到∠BCA=90°,再证得△ABC∽△ACE,根据相似三角形的性质即可证得结论.【解答】(1)证明:连接CO,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠FAB,∴∠OCA=∠CAE,∴OC∥FD,∵CE⊥DF,∴OC⊥CE,∴CE是⊙O的切线;(2)证明:连接BC,在Rt△ACE中,AC===,∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCA=∠CEA,∵∠CAE=∠CAB,∴△ABC∽△ACE,∴=,∴,∴AB=5,∴AO=2.5,即⊙O的半径为2.5.23.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D 两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)A城运往C乡的化肥为x吨,则可得A城运往D乡的化肥为30﹣x吨,B城运往C乡的化肥为34﹣x吨,B城运往D乡的化肥为40﹣(34﹣x)吨,从而可得出W与x大的函数关系.(2)根据题意得140x+12540≥16460求得28≤x≤30,于是得到有3种不同的调运方案,写出方案即可;(3)根据题意得到W=x+12540,所以当a=200时,y最小=﹣60x+12540,此时x=30时y最=10740元.于是得到结论.小【解答】解:(1)W=250x+200(30﹣x)+150(34﹣x)+240(6+x)=140x+12540(0<x≤30);(2)根据题意得140x+12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从,B城调往C城6台,调往D 城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从,B城调往C城5台,调往D 城35台;第三种调运方案:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D 城36台,(3)W=x+200(30﹣x)+150(34﹣x)+240(6+x)=x+12540,=10740元.所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小此时的方案为:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D 城36台.24.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)在直线y=﹣x+2中,分别令y=0和x=0,容易求得A、B两点坐标;(2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB的长,从而可用t表示出AF的长;(3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到=,可判定△AFG与△AGB相似;(4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式.【解答】解:(1)在直线y=﹣x+2中,令y=0可得0=﹣x+2,解得x=2,令x=0可得y=2,∴A为(2,0),B为(0,2);(2)由(1)可知OA=2,OB=2,∴tan∠ABO==,∴∠ABO=30°,∵运动时间为t秒,∴BE=t,∵EF∥x轴,∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t,在Rt△ABO中,OA=2,OB=2,∴AB=4,∴AF=4﹣2t;(3)相似.理由如下:当四边形ADEF为菱形时,则有EF=AF,即t=4﹣2t,解得t=,∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=,如图,过G作GH⊥x轴,交x轴于点H,则四边形OEGH为矩形,∴GH=OE=,又EG∥x轴,抛物线的顶点为A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=,又AF•AB=×4=,∴AF•AB=AG2,即=,且∠FAG=∠GAB,∴△AFG∽△AGB;(4)存在,∵EG∥x轴,∴∠GFA=∠BAO=60°,又G点不能在抛物线的对称轴上,∴∠FGA≠90°,∴当△AGF为直角三角形时,则有∠FAG=90°,又∠FGA=30°,∴FG=2AF,∵EF=t,EG=4,∴FG=4﹣t,且AF=4﹣2t,∴4﹣t=2(4﹣2t),解得t=,即当t的值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=,∴E点坐标为(0,),∵抛物线的顶点为A,∴可设抛物线解析式为y=a(x﹣2)2,把E点坐标代入可得=4a,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+.。
专题5.6 湖北省荆门市-2018中考数学真题之名师立体解读高端精品(只含真题解析)
1.C【解析】8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选:C.2.C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.9970000=9.97×106,故选:C.3.B【解析】根据题意得x﹣1≥0,1﹣x≠0,解得x>1.故选:B.5.A【解析】∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a∥b,∴∠5=∠4=100°,∴∠2=180°﹣∠5=80°,故选:A.6.C【解析】∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵DE=EF=FC,∴EF:AB=1:3,∴△EFG∽△BAG,∴=()2=,故选:C.7.A【解析】解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选:A.方差为×[2×(7﹣)2+3×(8﹣)2+(9﹣)2]=(环2),则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,故选:D.10.B【解析】解:由主视图和左视图可确定所需正方体个数最少时俯视图为:,则搭成这个几何体的小正方体最少有5个.故选:B.易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1.故选:C.12.B【解析】∵抛物线的顶点坐标(﹣2a,﹣9a),∴﹣=﹣2a,=﹣9a,∴b=4a,c=5a,∴抛物线的解析式为y=ax2+4ax﹣5a,∴4a+2b+c=4a+8a﹣5a=7a>0,故①正确,5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②错误,∵抛物线y=ax2+4ax﹣5a交x轴于(﹣5,0),(1,0),∴若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1,正确,故③正确,若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,故④错误,故选:B.13.﹣【解析】原式=2×﹣|×﹣3|+1=﹣2+1=﹣.14.﹣3【解析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因为k≠0,所以k的值为﹣3.∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S阴影=S扇形OBE﹣S△BOE,=﹣×,=﹣,=﹣,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:b=(负数舍去),∴k=ab=2,17.63【解析】∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.18.解:原式=(+)÷=•=•=,当时,原式==.∴,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,,∴,,∴,∴BH+EH的最小值为3.(3)记选择“E”的同学中的2名女生分别为N1,N2,4名男生分别为M1,M2,M3,M4,列表如下:∵共有30种等可能的结果,其中,恰好是同性别学生(记为事件F)的有14种情况,∴.在Rt△PEA中,,∴在Rt△ACB中,(米)答:岚光阁与湖心亭之间的距离AB为450米.22.解:(1)依题意得,解得:;(2)当0≤t≤20时,设y=k1t+b1,由图象得:,解得:∴y=t+16;当20<t≤50时,设y=k2t+b2,由图象得:,解得:,∴y=﹣t+32,综上,;(3)W=ya﹣mt﹣n,当0≤t≤20时,W=10000(t+16)﹣600t﹣160000=5400t,∵5400>0,∴当t=20时,W最大=5400×20=108000,当20<t≤50时,W=(﹣t+32)(100t+8000)﹣600t﹣160000=﹣20t2+1000t+96000=﹣20(t﹣25)2+108500,∵﹣20<0,抛物线开口向下,∴当t=25,W最大=108500,∵108500>108000,∴当t=25时,W取得最大值,该最大值为108500元.【点评】此题考查了二次函数的应用,待定系数法确定函数解析式,熟练掌握二次函数的性质是解本题的关键.∴AC平方∠DAE;(2)①∵AB为直径,∴∠AFB=90°,而DE⊥AD,∴BF∥DE,∴OC⊥BF,∴=,∴∠COE=∠FAB,而∠FAB=∠M,∴∠COE=∠M,设⊙O的半径为r,在Rt△OCE中,cos∠COE==,即=,解得r=4,即⊙O的半径为4;∴=,即=,∴FN=.∵,∴2(x1﹣x2)=x1x2,∴4(x1﹣x2)2=(x1x2)2,∴4[(x1+x2)2﹣4x1x2]=(x1x2)2,∴4[16(k﹣1)2+64]=162,∴k=1;(3)如图,取OB的中点C,∴BC=OB,∵B(4,8),∴C(2,4),∵PQ∥OB,∴点O到PQ的距离等于点O到OB的距离,∵S△POQ:S△BOQ=1:2,∴OB=2PQ,∴PQ=BC,∵PQ∥OB,∴四边形BCPQ是平行四边形,∴PC∥AB,∵抛物线的解析式为y=x2+x②,。
最新部编RJ人教版 初中中考数学真题真卷———2018年湖北省荆门市中考数学试卷含答案解析(word版)
(时限:120分钟满分:100分)卷首语:亲爱的同学,快乐的初中生活已经结束了,你的数学学习一定有很大收获!来检测一下自己吧,请你认真审题,精心作答,细心检查。
相信你能取得好成绩!一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)8的相反数的立方根是()A.2 B.C.﹣2 D.2.(3分)中国的陆地面积和领水面积共约9970000km2,9970000这个数用科学记数法可表示为()A.9.97×105B.99.7×105C.9.97×106D.0.997×1073.(3分)在函数y=中,自变量x的取值范围是()A.x≥1 B.x>1 C.x<1 D.x≤14.(3分)下列命题错误的是()A.若一个多边形的内角和与外角和相等,则这个多边形是四边形B.矩形一定有外接圆C.对角线相等的菱形是正方形D.一组对边平行,另一组对边相等的四边形是平行四边形5.(3分)已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A .80°B .70°C .85°D .75°6.(3分)如图,四边形ABCD 为平行四边形,E 、F 为CD 边的两个三等分点,连接AF 、BE 交于点G ,则S △EFG :S △ABG =( )A .1:3B .3:1C .1:9D .9:17.(3分)已知关于x 的不等式3x ﹣m +1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤78.(3分)甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表对他们的训练成绩作如下分析,其中说法正确的是( )A .他们训练成绩的平均数相同B .他们训练成绩的中位数不同C .他们训练成绩的众数不同D .他们训练成绩的方差不同9.(3分)如图,在平面直角坐标系xOy 中,A (4,0),B (0,3),C (4,3),I 是△ABC 的内心,将△ABC 绕原点逆时针旋转90°后,I 的对应点I'的坐标为( )A .(﹣2,3)B .(﹣3,2)C .(3,﹣2)D .(2,﹣3)10.(3分)某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )A.4个B.5个C.6个D.7个11.(3分)如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P 为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.B.C.1 D.212.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每题3分,满分15分,将答案填在答题纸上)13.(3分)计算:×2﹣2﹣|tan30°﹣3|+20180=.14.(3分)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为.15.(3分)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB 为直径的⊙O交BC于点E,则阴影部分的面积为.16.(3分)如图,在平面直角坐标系xOy中,函数y=(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k 的值为.17.(3分)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018=.三、解答题(本大题共7小题,共69分.解答应写出文字说明、证明过程或演算步骤.)18.(8分)先化简,再求值:(x+2+)÷,其中x=2.19.(9分)如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.20.(10分)文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;(3)若选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.21.(10分)数学实践活动小组借助载有测角仪的无人机测量象山岚光阁与文明湖湖心亭之间的距离.如图,无人机所在位置P与岚光阁阁顶A、湖心亭B在同一铅垂面内,P与B的垂直距离为300米,A与B的垂直距离为150米,在P处测得A、B两点的俯角分别为α、β,且tanα=,tanβ=﹣1,试求岚光阁与湖心亭之间的距离AB.(计算结果若含有根号,请保留根号)22.(10分)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与P的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)23.(10分)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB 的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB 于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.24.(12分)如图,抛物线y=ax 2+bx +c (a ≠0)与x 轴交于原点及点A ,且经过点B (4,8),对称轴为直线x=﹣2.(1)求抛物线的解析式;(2)设直线y=kx +4与抛物线两交点的横坐标分别为x 1,x 2(x 1<x 2),当时,求k 的值;(3)连接OB ,点P 为x 轴下方抛物线上一动点,过点P 作OB 的平行线交直线AB 于点Q ,当S △POQ :S △BOQ =1:2时,求出点P 的坐标.(坐标平面内两点M (x 1,y 1),N (x 2,y 2)之间的距离MN=)2018年湖北省荆门市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)8的相反数的立方根是()A.2 B.C.﹣2 D.【分析】根据相反数的定义、立方根的概念计算即可.【解答】解:8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选:C.【点评】本题考查的是实数的性质,掌握相反数的定义、立方根的概念是解题的关键.2.(3分)中国的陆地面积和领水面积共约9970000km2,9970000这个数用科学记数法可表示为()A.9.97×105B.99.7×105C.9.97×106D.0.997×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:9970000=9.97×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)在函数y=中,自变量x的取值范围是()A.x≥1 B.x>1 C.x<1 D.x≤1【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得x﹣1≥0,1﹣x≠0,解得x>1.故选:B.【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.4.(3分)下列命题错误的是()A.若一个多边形的内角和与外角和相等,则这个多边形是四边形B.矩形一定有外接圆C.对角线相等的菱形是正方形D.一组对边平行,另一组对边相等的四边形是平行四边形【分析】A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;C、根据正方形的判定方法进行判断;D、一组对边平行且相等的四边形是平行四边形.【解答】解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;C、对角线相等的菱形是正方形,故此选项正确;D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;本题选择错误的命题,故选:D.【点评】本题主要考查的是多边形的内角和和外角和,四点共圆问题,正方形的判定,平行四边形的判定,掌握这些定理和性质是关键.5.(3分)已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°【分析】想办法求出∠5即可解决问题;【解答】解:∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a ∥b ,∴∠5=∠4=100°,∴∠2=180°﹣∠5=80°,故选:A .【点评】本题考查平行线的性质,三角形内角和定理,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(3分)如图,四边形ABCD 为平行四边形,E 、F 为CD 边的两个三等分点,连接AF 、BE 交于点G ,则S △EFG :S △ABG =( )A.1:3 B.3:1 C.1:9 D.9:1【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵DE=EF=FC,∴EF:AB=1:3,∴△EFG∽△BAG,∴=()2=,故选:C.【点评】本题考查平行四边形的性质、相似三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.(3分)已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【解答】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选:A.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.8.(3分)甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表对他们的训练成绩作如下分析,其中说法正确的是()A.他们训练成绩的平均数相同 B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同【分析】利用方差的定义、以及众数和中位数的定义分别计算得出答案.【解答】解:∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,∴甲成绩的平均数为=8(环),中位数为=8(环)、众数为8环,方差为×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=(环2),∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,∴乙成绩的平均数为=,中位数为=8(环)、众数为8环,方差为×[2×(7﹣)2+3×(8﹣)2+(9﹣)2]=(环2),则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,故选:D.【点评】此题主要考查了中位数以及方差以及众数的定义等知识,正确掌握相关定义是解题关键.9.(3分)如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(2,﹣3)【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【解答】解:过点作IF⊥AC于点F,IE⊥OA于点E,∵A(4,0),B(0,3),C(4,3),∴BC=4,AC=3,则AB=5,∵I是△ABC的内心,∴I到△ABC各边距离相等,等于其内切圆的半径,∴IF=1,故I到BC的距离也为1,则AE=1,故IE=3﹣1=2,OE=4﹣1=3,则I(3,2),∵△ABC绕原点逆时针旋转90°,∴I的对应点I'的坐标为:(﹣2,3).故选:A.【点评】此题主要考查了旋转的性质以及直角三角形的性质,得出其内切圆半径是解题关键.10.(3分)某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由主视图和左视图可确定所需正方体个数最少时俯视图为:,则搭成这个几何体的小正方体最少有5个.故选:B.【点评】此题主要考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.11.(3分)如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P 为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.B.C.1 D.2【分析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,利用等腰直角三角形的性质得AC=BC=,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到PE=AP=CQ,QF=BQ,所以PE+QF=BC=1,然后证明MH为梯形PEFQ的中位线得到MH=,即可判定点M到AB的距离为,从而得到点M的运动路线为△ABC的中位线,最后利用三角形中位线性质得到点M所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1.故选:C.【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.12.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线的顶点坐标(﹣2a,﹣9a),∴﹣=﹣2a,=﹣9a,∴b=4a,c=5a,∴抛物线的解析式为y=ax2+4ax﹣5a,∴4a+2b+c=4a+8a﹣5a=7a>0,故①正确,5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②错误,∵抛物线y=ax2+4ax﹣5a交x轴于(﹣5,0),(1,0),∴若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1,正确,故③正确,若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,故④错误,故选:B.【点评】本题考查二次函数的性质、二次函数图象上的点的特征、抛物线与坐标轴的交点问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每题3分,满分15分,将答案填在答题纸上)13.(3分)计算:×2﹣2﹣|tan30°﹣3|+20180=﹣.【分析】直接利用二次根式的性质结合绝对值的性质以及特殊角的三角函数值分别化简得出答案.【解答】解:原式=2×﹣|×﹣3|+1=﹣2+1=﹣.故答案为:﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.(3分)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为﹣3.【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k的值.【解答】解:把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因为k≠0,所以k的值为﹣3.故答案为﹣3.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.(3分)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为.【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.【解答】解:连接OE、AE,∵AB是⊙O的直径,∴∠AEB=90°,∵四边形ABCD是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S阴影=S扇形OBE﹣S△BOE,=﹣×,=﹣,=﹣,故答案为:﹣.【点评】本题考查了扇形的面积计算、平行四边形的性质,直角三角形中30度角等知识点,能求出扇形OBE的面积和△ABE的面积是解此题的关键.16.(3分)如图,在平面直角坐标系xOy中,函数y=(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为.【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【解答】解:过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b)则C点的坐标为(a+3,b),∵E为AC的中点,∴EF=CM=b,AF=AM=OQ=a,E点的坐标为(3+a,b),把D、E的坐标代入y=得:k=ab=(3+a)b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:b=(负数舍去),∴k=ab=2,故答案为:2.【点评】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等知识点,能得出关于a、b的方程是解此题的关键.17.(3分)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018=63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【解答】解:∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点评】本题考查了规律型中数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.三、解答题(本大题共7小题,共69分.解答应写出文字说明、证明过程或演算步骤.)18.(8分)先化简,再求值:(x+2+)÷,其中x=2.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)÷=•=•=,当时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(9分)如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.【分析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.【解答】(1)证明:在Rt△ABC中,∠BAC=30°,E为AB边的中点,∴BC=EA,∠ABC=60°.∵△DEB为等边三角形,∴DB=DE,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC∴△ADE≌△CDB.(2)解:如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°.∴∠EAE'=60°,∴△EAE'为等边三角形,∴,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,,∴,,∴,∴BH+EH的最小值为3.【点评】本题考查轴对称最短问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.20.(10分)文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;(3)若选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.【分析】(1)由A栏目人数及其所占百分比可得总人数;(2)总人数乘以D栏目所占百分比求得其人数,再用总人数减去其他栏目人数求得B的人数即可补全图形,用360°乘以B人数所占比例可得;(3)列表得出所有等可能结果,然后利用概率的计算公式即可求解【解答】解:(1)30÷20%=150(人),∴共调查了150名学生.(2)D:50%×150=75(人),B:150﹣30﹣75﹣24﹣6=15(人)补全条形图如图所示.扇形统计图中“B”所在扇形圆心角的度数为.(3)记选择“E”的同学中的2名女生分别为N 1,N 2,4名男生分别为M 1,M 2,M 3,M 4,列表如下:∵共有30种等可能的结果,其中,恰好是同性别学生(记为事件F )的有14种情况,∴.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力以及求随机事件的概率;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)数学实践活动小组借助载有测角仪的无人机测量象山岚光阁与文明湖湖心亭之间的距离.如图,无人机所在位置P 与岚光阁阁顶A 、湖心亭B 在同一铅垂面内,P 与B 的垂直距离为300米,A 与B 的垂直距离为150米,在P 处测得A 、B 两点的俯角分别为α、β,且tanα=,tanβ=﹣1,试求岚光阁与湖心亭之间的距离AB .(计算结果若含有根号,请保留根号)【分析】过点P作PD⊥QB于点D,过点A作AE⊥PD于点E,利用直角三角形的性质和三角函数解答即可.【解答】解:过点P作PD⊥QB于点D,过点A作AE⊥PD于点E.由题意得:∠PBD=β,∠PAE=α,AC=150,PD=300,在Rt△PBD中,,∵∠AED=∠EDC=∠ACD=90°,∴四边形EDCA为矩形,∴DC=EA,ED=AC=150,∴PE=PD﹣ED=300﹣150=150,在Rt△PEA中,,∴在Rt△ACB中,(米)答:岚光阁与湖心亭之间的距离AB为450米.【点评】此题考查了俯角的定义.注意能借助俯角构造直角三角形并解直角三角形.22.(10分)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与P的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)【分析】(1)根据题意列出方程组,求出方程组的解得到m与n的值即可;(2)根据图象,分类讨论利用待定系数法求出y与P的解析式即可;(3)根据W=ya﹣mt﹣n,表示出W与t的函数解析式,利用一次函数与二次函数的性质求出所求即可.【解答】解:(1)依题意得,解得:;(2)当0≤t≤20时,设y=k1t+b1,由图象得:,解得:∴y=t+16;当20<t≤50时,设y=k2t+b2,由图象得:,解得:,∴y=﹣t+32,综上,;(3)W=ya﹣mt﹣n,当0≤t≤20时,W=10000(t+16)﹣600t﹣160000=5400t,∵5400>0,∴当t=20时,W=5400×20=108000,最大当20<t≤50时,W=(﹣t+32)(100t+8000)﹣600t﹣160000=﹣20t2+1000t+96000=﹣20(t﹣25)2+108500,∵﹣20<0,抛物线开口向下,∴当t=25,W=108500,最大∵108500>108000,∴当t=25时,W取得最大值,该最大值为108500元.【点评】此题考查了二次函数的应用,待定系数法确定函数解析式,熟练掌握二次函数的性质是解本题的关键.23.(10分)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB 的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB 于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.【分析】(1)连接OC,如图,利用切线的性质得OC⊥DE,则判断OC∥AD得到∠1=∠3,加上∠2=∠3,从而得到∠1=∠2;(2)①利用圆周角定理和垂径定理得到=,则∠COE=∠FAB,所以∠FAB=∠M=∠COE,设⊙O的半径为r,然后在Rt△OCE中利用余弦的定义得到=,从而解方程求出r即可;②连接BF,如图,先在Rt△AFB中利用余弦定义计算出AF=,再计算出OC=3,接着证明△AFN∽△AEC,然后利用相似比可计算出FN的长.【解答】(1)证明:连接OC,如图,∵直线DE与⊙O相切于点C,∴OC⊥DE,又∵AD⊥DE,∴OC∥AD.∴∠1=∠3∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平方∠DAE;(2)解:①∵AB为直径,∴∠AFB=90°,而DE⊥AD,∴BF∥DE,∴OC⊥BF,∴=,∴∠COE=∠FAB,而∠FAB=∠M,∴∠COE=∠M,设⊙O的半径为r,在Rt△OCE中,cos∠COE==,即=,解得r=4,即⊙O的半径为4;②连接BF,如图,在Rt△AFB中,cos∠FAB=,∴AF=8×=在Rt△OCE中,OE=5,OC=4,∴CE=3,∵AB⊥FM,∴,∴∠5=∠4,∵FB∥DE,∴∠5=∠E=∠4,∵=,∴∠1=∠2,∴△AFN∽△AEC,∴=,即=,∴FN=.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理、圆周角定理和相似三角形的判定与性质.24.(12分)如图,抛物线y=ax 2+bx +c (a ≠0)与x 轴交于原点及点A ,且经过点B (4,8),对称轴为直线x=﹣2.(1)求抛物线的解析式;(2)设直线y=kx +4与抛物线两交点的横坐标分别为x 1,x 2(x 1<x 2),当时,求k 的值;(3)连接OB ,点P 为x 轴下方抛物线上一动点,过点P 作OB 的平行线交直线AB 于点Q ,当S △POQ :S △BOQ =1:2时,求出点P 的坐标.(坐标平面内两点M (x 1,y 1),N (x 2,y 2)之间的距离MN=)【分析】(1)先利用对称轴公式得出b=4a ,进而利用待定系数法即可得出结论;(2)先利用根与系数的关系得出,x 1+x 2=4(k ﹣1),x 1x 2=﹣16,转化已知条件,代入即可得出结论;(3)先判断出OB=2PQ ,进而判断出点C 是OB 中点,再求出AB 解析式,判断出PC ∥AB ,即可得出PC 解析式,和抛物线解析式联立解方程组即可得出结论.【解答】解:(1)根据题意得,,∴,∴抛物线解析式为y=x 2+x ;(2)∵直线y=kx +4与抛物线两交点的横坐标分别为x 1,x 2, ∴x 2+x=kx +4,∴x 2﹣4(k ﹣1)x ﹣16=0,根据根与系数的关系得,x 1+x 2=4(k ﹣1),x 1x 2=﹣16, ∵,∴2(x 1﹣x 2)=x 1x 2,∴4(x 1﹣x 2)2=(x 1x 2)2,∴4[(x 1+x 2)2﹣4x 1x 2]=(x 1x 2)2,∴4[16(k ﹣1)2+64]=162,∴k=1;(3)如图,取OB 的中点C ,∴BC=OB ,∵B (4,8),∴C (2,4),∵PQ ∥OB ,∴点O 到PQ 的距离等于点O 到OB 的距离,∵S △POQ :S △BOQ =1:2,∴OB=2PQ ,∴PQ=BC ,∵PQ ∥OB ,∴四边形BCPQ 是平行四边形,∴PC ∥AB ,∵抛物线的解析式为y=x 2+x ②,令y=0,∴x2+x=0,∴x=0或x=﹣4,∴A(﹣4,0),∵B(4,8),∴直线AB解析式为y=x+4,设直线PC的解析式为y=x+m,∵C(2,4),∴直线PC的解析式为y=x+2②,联立①②解得,(舍)或,∴P(﹣2,﹣2+2).【点评】此题是二次函数综合题,主要考查了待定系数法,一元二次方程的根与系数的关系,平行四边形的判定和性质,等高的两三角形面积的比等于底的比,判断出OB=2PQ是解本题的关键.。
最新-荆门市中考数学试题 精品
湖北省荆门市2018年初中升学考试数 学 试 题(总分120分,考试时间120分钟)一、选择题、(本大题有10个小题,每小题2分,共20分) 1.下列计算结果为负数的是( )A 、(-3)0B 、-|-3|C 、(-3)2D 、(-3)-22. 下列计算正确的是( )A 、a 2·b 3=b 6B 、(-a 2)3=a 6C 、(ab )2=ab 2D 、(-a )6÷(-a )3=-a 33.如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4.用一把带有刻度的直角尺,⑴可以画出两条平行线;⑵可以画出一个角的平分线;⑶可以确定一个圆的圆心.以上三个判断中正确的个数是( ) A 、0个 B 、1个 C 、2个 D 、3个5.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的长度为y(cm)与燃烧时间x (小时)的函数关系用图象表示为下图中的( )6.在的Rt △ABC 中,∠C =90°,cosA =51,则tanA = ( ) A、62 B 、26 C 、562 D 、 247.有一张矩形纸片ABCD ,AB =2.5,AD =1.5,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AC 与BC 交于点F (如下图),则CF 的长为( )A 、0.5B 、0.75C 、1D 、1.258.钟表上12时15分钟时,时针与分针的夹角为 ( ) A 、90° B 、82.5° C 、67.5° D 、60°9.已知PA 是⊙O 的切线,A 为切点,PBC 是过点O 的割线,PA =10cm ,PB =5cm ,则⊙O 的半径长为( )A 、 15cmB 、10 cmC 、7.5 cmD 、5 cm10.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如A 、B 、C 、ABACDA下表.某人住院治疗后得到保险公司报销金额是1000元,那么此人住院的医疗费是( )A 、1000元B 、1250元C 、1500元D 、2000元二、真空题(本大题有10个小题,每小题3分,共30分,请将答案直接填写在题后的横线上)11.在数轴上,与表示-1的点距离为3的点所表示的数是__________. 12.已知数据:1,2,1,0,-1,-2,0,-1,这组数据的方差为_____.13.多项式x 2+px +12可分解为两个一次因式的积,整数p 的值是_____(写出一个即可)14.某音像公司对外出租光盘的收费方法是:每张光盘出租后的前2天每天收费0.8元,以后每天收费0.5元,那么一张光盘在出租后第n 天(n >2且为整数)应收费_____元.15.不等式组⎪⎩⎪⎨⎧->-≥-xx x 3111221的解集为_______.16.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=_______.17.在平面直角坐标系中,入射光线经过y 轴上点A (0,3),由x 轴上点C 反射,反射光线经过点B (-3,1),则点C 的坐标为_____.18.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示)则需塑料布y(m 2)与半径R(m)的函数关系式是(不考虑塑料埋在土里的部分)_________.19.已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0,则第三边长为______.20.在一次主题为“学会生存”的中学生社会实践活动中,春华同学为了锻炼自己,他通过了解市场行情,以每件6元的价格从批发市场购进若干件印有2018北京奥运标志的文化衫到自由市场去推销,当销售完30件之后,销售金额达到300元,余下的每件降价2元,很快推销完毕,此时销售金额达到380元,春华同学在这次活动中获得纯收入_____元. 三、解答题(本大题有8个小题,共70分)21.(本题满分6分)先化简后求值:)252(23--+÷--x x x x 其中x =22 22.(本题满分6分)为了测量汉江某段河面的宽度,秋实同学设计了如下图所示的测量方案:先在河的北岸选一定点A ,再在河的南岸选定相距a 米的两点B 、C (如图),分别测得∠ABC =α,∠ACB =β,请你根据秋实同学测得的数据,计算出河宽AD.(结果用含a 和含α、β的三角函数表示)23.(本题满分8分)青少年视力水平的下降已经引起全社会的关注,某校为了了解初中毕业年级500名学生的视力情况,从中抽查了一部分学生视力,通过数据处理,得到如下频率分布表和频率分布直方图:请你根据给出的图表回答:⑴填写频率分布表中未完成部分的数据,⑵在这个问题中,总体是____________,样本容量是_______. ⑶在频率分布直方图中梯形ABCD 的面积是______. ⑷请你用样本估计总体......,可以得到哪些信息(写一条即可)____________________________. 24.(本题满分8分)已知关于x 的方程0141)1(22=+++-k x k x 的两根是一个矩形两邻边的长. ⑴k 取何值时,方程在两个实数根; ⑵当矩形的对角线长为5时,求k 的值.25.(本题满分10分)已知,如图,四边形ABCD 内接于圆,延长AD 、BC 相交于点E ,点F 是BD 的延长线上的点,且DE 平分∠CDF⑴求证:AB =AC ;⑵若AC =3cm ,AD =2cm ,求DE 的长.河水ACD26.(本题满分10分)在△ABC 中,借助作图工具可以作出中位线EF ,沿着中位线EF 一刀剪切后,用得到的△AEF 和四边形EBCF 可以拼成平行四边形EBCP ,剪切线与拼图如图示1,仿上述的方法,按要求完成下列操作设计,并在规定位置画出图示,⑴在△ABC 中,增加条件_____________,沿着_____一刀剪切后可以拼成矩形,剪切线与拼图画在图示2的位置;⑵在△ABC 中,增加条件_____________,沿着_____一刀剪切后可以拼成菱形,剪切线与拼图画在图示3的位置;⑶在△ABC 中,增加条件_____________,沿着_____一刀剪切后可以拼成正方形,剪切线与拼图画在图示4的位置⑷在△ABC (AB ≠AC )中,一刀剪切后也可以拼成等腰梯形,首先要确定剪切线,其操作过程(剪切线的作法)是:_____________________________________________________________________________________________________________________________________________然后,沿着剪切线一刀剪切后可以拼成等腰梯形,剪切线与拼图画在图示5的位置.27.(本题满分10分)某校初中三年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位,学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还多30个座位.⑴求中巴车和大客车各有多少个座位? ⑵客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴DABCE F图示1A BC P FE(E )(A )图示2图示3图示4图示5车多租一辆,所需租车费比单独租用一种车型都要便宜,按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?28.(本题满分12分)已知:如图,抛物线m x x y +-=332312与x 轴交于A 、B 两点,与y 轴交于C 点,∠ACB =90°,⑴求m 的值及抛物线顶点坐标;⑵过A 、B 、C 的三点的⊙M 交y 轴于另一点D ,连结DM 并延长交⊙M 于点E ,过E 点的⊙M 的切线分别交x 轴、y 轴于点F 、G ,求直线FG 的解析式;⑶在条件⑵下,设P 为CBD 上的动点(P 不与C 、D 重合),连结PA 交y 轴于点H ,问是否存在一个常数k ,始终满足AH ·AP =k ,如果存在,请写出求解过程;如果不存在,请说明理由.湖北省荆门市2018年初中升学考试数学参考答案及评分说明二、填空题(每小题3分,共30分) 11.-4或2(答对一个得1分);12.23;13.±7,±8,±13(写出其中一个即可,正确写出多个者不扣分,其中如有1个错误记0分);14.0.5n +0.6(不化简不扣分);15.-5<x ≤-4;16.135°;17.(-49,0);18.y =30πR +πR 2; 19.22或13或5(填对一个得1分);20.140;三、解答题(共70分)21.解:原式=2)3)(3(23--+÷--x x x x x ……………………2分 =31+-x ……………………4分当x =22 时,原式=3223221-=+-……6分22.解法一:∵cot α=ADBD,∴BD =AD ·cot α ……………………2分 同理,CD =AD ·cot β ……………………3分 ∴ AD ·cot α+AD ·cot β=a ……………………4分 ∴ AD =βαcot cot +a(米) ……………………6分解法二:∵tan α=BD AD ,∴BD =αtan AD……………………2分 同理,CD =βtan AD……………………3分 ∴αtan AD +βtan AD=a ……………………4分 ∴AD =βαβαtan tan tan ·tan ·+a (米) ……………………6分23.本题有4个小题,每小题2分,共8分)⑴第二列从上至下两空分别填15、50;第三列从上至下两空分别填0.5、0.3(每空0.5分) …………………………………………2分⑵500名学生的视力情况,50(每空1分)………………………………2分⑶0.8 ………………………………2分 ⑷本题有多个结论,只要是根据频率分布表或频率分布直方图的有关信息,并且用样本估计总体所反映的结论都是合理的.例如,该校初中毕业年级学生视力在4.55~4.85的人数最多,约250人;该校初中毕业年级学生视力在5.15以上的与视力在4.25以下的人数基本相等,各有20人左右等. ………………………………2分24.解⑴ 要使方程有两个实数根,必须△≥0,即)141(4)]1([22+-+-k k ≥0 ………………………………1分 化简得:2k -3≥0 ………………………………2分 解之得:k ≥23………………………………3分 ⑵ 设矩形的两邻边长分别为a 、b ,则有⎪⎪⎩⎪⎪⎨⎧+=+=+=+分 分 514114)5(2222 k ab k b a b a解之得:k 1=2,k 2=-6 ………………………………7分 由⑴可知,k =-6时,方程无实数根,所以,只能取k =2 ……………8分 25. ⑴ 证明:∵∠ABC =∠2,∠2=∠1=∠3,∠4=∠3 ………………2分∴∠ABC =∠4 ………………………………3分 ∴AB =AC ………………………………4分 ⑵ ∵∠3=∠4=∠ABC ,∠DAB =∠BAE ,∴△ABD ∽△AEB ………………………………6分∴ABADAE AB = ………………………………8分 ∵AB =AC =3,AD =2∴AE =292=AD AB ∴DE =25229=- (cm ) ………………………………10分 26.解:⑴ 方法一:∠B =90°,中位线EF ,如图示2-1. 方法二:AB =AC ,中线(或高)AD ,如图示2-2. ⑵ AB =2BC (或者∠C =90°,∠A =30°),中位线EF ,如图示3. ⑶ 方法一:∠B =90°且AB =2BC ,中位线EF ,如图示4-1.方法二:AB =AC 且∠BAC =90°,中线(或高)AD ,如图示4-2.DABCE F1234⑷ 方法一:不妨设∠B >∠C ,在BC 边上取一点D ,作∠GDB =∠B 交AB 于G ,过AC 的中点E 作EF ∥GD 交BC 于F ,则EF 为剪切线.如图示5-1.方法二:不妨设∠B >∠C ,分别取AB 、AC 的中点D 、E ,过D 、E 作BC 的垂线,G 、H 为垂足,在HC 上截取HF =GB ,连结EF ,则EF 为剪切线.如图示5-2.方法三:不妨设∠B >∠C ,作高AD ,在DC 上截取DG =DB ,连结AG ,过AC 的中点E 作EF ∥AG 交BC 于F ,则EF 为剪切线.如图示5-2.27.解:⑴设每辆中巴车有座位x 个,每辆大客车有座位(x +15)个,依题意有11530270270+++=x x ………………………………2分 解之得:x 1=45,x 2=-90(不合题意,舍去)…………3分答:每辆中巴车有座位45个,每辆大客车有座位60个。
2018年湖北省各市中考数学真题及答案汇总
2018年湖北省各市中考数学真题及答案汇总
2018年湖北省各市中考数学真题及答案汇总
武汉
2018年湖北省武汉中考数学真题2018年湖北省武汉中考数学真题及答案黄石2018年湖北省黄石中考数学真题
2018年湖北省黄石中考数学真题答案
襄樊
2018年湖北省襄樊中考数学真题
2018年湖北省襄樊中考数学真题答案
十堰
2018年湖北省十堰中考数学真题
2018年湖北省十堰中考数学真题答案
荆州
2018年湖北省荆州中考数学真题
2018年湖北省荆州中考数学真题答案
宜昌
2018年湖北省宜昌中考数学真题
2018年湖北省宜昌中考数学真题答案
荆门
2018年湖北省荆门中考数学真题
2018年湖北省荆门中考数学真题答案
鄂州
2018年湖北省鄂州中考数学真题
2018年湖北省鄂州中考数学真题答案
孝感
2018年湖北省孝感中考数学真题
2018年湖北省孝感中考数学真题答案
黄冈
2018年湖北省黄冈中考数学真题
2018年湖北省黄冈中考数学真题答案
咸宁
2018年湖北省咸宁中考数学真题
2018年湖北省咸宁中考数学真题答案
随州
2018年湖北省随州中考数学真题
2018年湖北省随州中考数学真题答案
恩施
2018年湖北省恩施中考数学真题
2018年湖北省恩施中考数学真题答案
编辑推荐:
2017年湖北省各市中考数学真题及答案汇总
2018年全国各省市中考各科试题及答案汇总。
专题5.6 湖北省荆门市(母题解读)-2018中考数学真题之名师立体解读高端精品(原卷版)
母题一二次函数的实际应用【母题来源】湖北省荆门市2018年中考数学试卷第22题【母题原题】随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与P的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)【命题意图】此题考查了二次函数的应用,待定系数法确定函数解析式,熟练掌握二次函数的性质是解本题的关键.【方法、技巧、规律】利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.【母题1】我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:,每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?【母题2】某公司生产并销售A,B两种品牌新型节能设备,第一季度共生产两种品牌设备20台,每台的成本和售价如下表:设销售A种品牌设备x台,20台A,B两种品牌设备全部售完后获得利润y万元.(利润=销售价-成本)(1)求y关于x的函数关系式;(2)若生产两种品牌设备的总成本不超过80万元,那么公司如何安排生产A,B两种品牌设备,售完后获利最多?并求出最大利润;(3)公司为营销人员制定奖励促销政策:第一季度奖金=公司总利润销售A种品牌设备台数,那么营销人员销售多少台A种品牌设备,获得奖励最多?最大奖金数是多少?【母题3】某大学生利用暑假40天社会实践进行创业,他在网上开了一家微店,销售推广一种成本为25元/件的新型商品.在40天内,其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时,;当21≤x≤40时,.这40天中的日销售量m(件)与时间x(天)符合函数关系,具体情况记录如下表(天数为整数):(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元,试写出日销售利润w(元)与时间x(天)的函数关系式;(3)求这40天中该同学微店日销售利润不低于640元有多少天?母题二圆的综合问题【母题来源】湖北省荆门市2018年中考数学试卷第23题【母题原题】如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.【命题意图】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理、圆周角定理和相似三角形的判定与性质.【方法、技巧、规律】(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.(4)圆与相似形综合问题,证明三角形相似不是最终目的,利用相似三角形的对应边成比例计算某些线段的长才是此类问题的真正目的,最后都落脚于计算图中线段问题上,均是这一种模式的应用.【母题1】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【母题2】已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC 的延长线于点E,如图①.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求BD的长;(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=194,tan∠BAD=34,求⊙O的半径.【母题3】如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE.(1)求证:AC2=AE•AB;(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;(3)设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ的最小值.母题三二次函数综合题【母题来源】湖北省荆门市2018年中考数学试卷第24题【母题原题】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)【命题意图】此题是二次函数综合题,主要考查了待定系数法,一元二次方程的根与系数的关系,平行四边形的判定和性质,等高的两三角形面积的比等于底的比,判断出OB=2PQ是解本题的关键.【方法、技巧、规律】弄清题目中所涉及的概念,熟悉与之相关的定理、公式、技巧和方法;从不同的角度来探索解题的途径,注意运用“从已知看可知”,“从结论看需知”等综合法与分析法来沟通已知条件与结论.综合使用分析法和综合法,运用方程的思想,,使用分类讨论的思想,运用数形结合的思想,运用转化的思想.【母题1】如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x轴的垂线,交抛物线于点P,交线段CA于点M,连接P A、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.【母题2】如图,已知抛物线28 5y ax x c=++与x轴交于,A B两点,与y轴交于C点,且(2,0),(0,4)A C-,直线1:42l y x=--与x轴交于D点,点P是抛物线285y ax x c=++上的一动点,过点P作PE x⊥轴,垂足为E,交直线l于点F.(1)试求该抛物线的表达式;(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH x⊥轴,垂足为H,连接AC,①求证:ACD∆是直角三角形;②试问当P 点横坐标为何值时,使得以点,,P C H 为顶点的三角形与ACD ∆相似?【母题3】如图,已知抛物线a ax ax y 9322--=与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N . (1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△P AD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,ANAM 11+均为定值,并求出该定值.。
2018年荆门市初中毕业暨升学考试数学试题
2018年荆门市初中毕业暨升学考试数学试题一、选择题(本大题共15小题,每小题2分,满分30分) 1.计算-24的值等于 [ ] A .-16. B .16.C .-8. D .8.2.若21=a 则a 为[ ] A.21 B.21- C.21± D.2±. 3.下列式子为最简二次根式的是 [ ] A. a 12. B.ab 3. C.2a. D.b a 23. 4.若53=-b b a 则ba的值是[ ] A.52. B.- 52. C.85. D.58.5.计算cos600+33cot300的值为[ ] A.23. B.65. C.27. D.223+. 6.已知点P 关于x 轴的对称点P 1的坐标是(2,3),那么点P 关于原点的对称点P 2的坐标是[ ]A .(-3,-2).B .(2,-3).C .(-2,-3).D .(-2,3).7.下列计算正确的是 [ ]A .2a 2+3a 2=5a 4.B .(2a 2)3=8a 5.C .2a 3·(-a 2)=-2a 5.D .6a 2m ÷2a m =3a 2.A .1.B .-4.C .1或-4.D .-1或4.9.如图1,AB ∥EF ∥DC ,EG ∥BD ,则图中与∠1相等的角(∠1除外)共有 [ ]A .6个.B .5个.C .4个.D .2个.10.己知等腰三角形的一个角为75°,则其顶角为 [ ]A .30°.B .75°.C .105°.D .30°或75.面上,对桌面的压强是200帕,倒过来放,对桌面的压强是[ ] A .50帕. B .100帕.C .200帕. D .800帕.12.已知⊙O 的弦AB 长8cm ,弦心距为3cm ,则⊙O 的直径是 [ ]A .5cm .B .10cm .13.顺次连结四边形ABCD 各边中点所成的四边形为菱形,那么四边形ABCD 的对角线AC 和BD 只需满足的条件是[ ]A .相等.B .互相垂直.C .相等且互相垂直.D .相等且互相平分.14.从1999年11月1日起,全国储蓄存款征收利息税,税率为利息的20%,即储蓄利息的20%由各银行储蓄点代扣代收.某人在1999年12月存入人民币若干元,年利率为2.25%,一年到期后将缴纳利息税72元,则他存入的人民币为[ ]A .1600元.B .16000元.C .360元.D .3600元.点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为 [ ]A.1.B.22. C.2. D.13-. 二、填空题(本大题共10小题,每小题3分,满分30分) 16.(-6)2的算术平方根是______.18.把4x 4y 2-5x 2y 2-9y 2分解因式的结果是______.19.关于x 的一元二次方程k 2x 2-(2k+1)x+1=0有两个实数根,则k 的取值范围是______.解是______21.如果一次函数y=mx+n 与反比例函数y=x m n -3的图象相交于点(21,2),那么该直线与双曲线的另一个交点为__________.22.对于同一平面内的三条直线a 、b 、c ,给出下列五个论断:①a ∥b ;②b ∥c ;③a ⊥b ;④a ∥c ;⑤a ⊥c .以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题:______.23.升国旗时,某同学站在离旗杆底部24米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若双眼离地面1.5米,则旗杆高度为______米(用含根号的式子表示).25.一个钢筋三角架三边长分别是20cm 、50cm 、60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有______种.三、解答题(本大题共7小题,满分60分) 26.(本题满分6分)27.(本题满分6分)为了了解中学生的身高情况,对某中学同年龄的若干名女生的身高进行了测量,将所得数据整理后,画出频率分布直方图如下,已知图中从左到右五个小组的频率分别是0.017,0.050,0.100,0.133,0.300,第三小组的频数为6.(1)参加这次测试的学生数是多少?(2)身高在哪个范围内的学生人数最多?这一范围内的人数是多少?(3)如果本次测试身高在155cm以上的为良好,试估计该校学生身高良好率是多少?28.(本题满分8分)已知:E是正方形ABCD的边BC上的中点,F是CD一点,AE平分∠BAF.求证:AF=BC+CF.29.(本题满分8分)旅客乘车按规定可随身携带一定重量的行李,如果超过规定,则需购行李票,设行李费y(元)是行李重量x(千克)的一次函数,其图象如图7所示.求:(1)y与x之间的函数关系式;(2)旅客最多可免费携带行李的重量.30.(本题满分10分)某校组织360名师生去参观三峡工程建设,如果租用甲种客车若干辆刚好坐满;如果租用乙种客车可少租1辆,且余40个空座位.(1)已知甲种客车比乙种客车少20个座位,求甲、乙两种客车各有多少个座位;(2)已知甲种客车租金是每辆400元,乙种客车租金是每辆480元,这次参观同时租用这两种客车,其中甲种客车比乙种客车少租1辆,所用租金比单独租用任何一种客车要节省,按这种方案需用租金多少元?31.(本题满分10分)如图8,以Rt△ABC的直角边BC为直径画半圆,交斜边AB于D,结果精确到0.1).32.(本题满分12分)如图9,在直角坐标系xOy中,A、B是x轴上两点,以AB为直(1)求n的值;(2)求m的值和A、B、C三点的坐标;(3)点P、Q分别从A、O两点同时出发,以相同的速度沿AB、OC向B、C运动,连结PQ并延长,与BC交于点M,设AP=k,问是否存在这样的k值,使以P、B、M为顶点的三角形与△ABC相似?若存在求出k的值;若不存在说明理由.参考答案一、1.A;2.C;3.B;4.D;5.A;6.D;7.C;8.A;9.B;10.D;11.D;12.B;13.A;14.B;15.C.二、16.6;17.a≤3;18.y2(x2+1)(2x+3)(2x-3);24.160°;25.2.27.(1)∵第三小组的频数为6,频率为0.1,∴参加这次测试(2)从频率分布直方图可以看出,身高在(157.5-160.5)cm之间的人数最多,共有人数60×0.300=18(人).(3)身高良好率为[1-(0.017+0.050+0.100)]×100%=83.3%.28.证法1:作EM⊥AF于M.∵∠1=∠2,AE是公共边,∴Rt△ABE≌Rt△AME.∴AM=AB=BC,EM=BE.①连结EF,E是BC中点,∴EC=BE=EM∴Rt△EMF≌Rt△ECF,∴FM=FC.②综合①、②得AF=AM+MF=BC+CF.证法2:连结FE并延长,与AB的延长线交于点M.可证Rt△BME≌Rt△CFE,∴BM=CF,ME=FE,又∠1=∠2,∴AM=AF.∴AF=AB+BM=BC+CF.证法3:过中点E作EM∥AB,交AF于M.则AM=MF,且∠1=∠2=∠3.∴AF=AB+CF=BC+CF.29.(1)设一次函数关系式为y=kx+b,如图所示,有(2)由(1)知,当y=0时,有故,旅客最多可免费携带行李30千克.30.(1)设甲种客车有x个座位,则乙种客车有(x+20)个座位,依题意,得整理,得x2+600x-7200=0.解得x1=60,x2= -120(不合题意,舍去).∴x=60,x+20=80.答:甲种客车有60个座位,乙种客车有80个座位.(2)设租用甲种客车y辆,则租用乙种客车(y+1)辆.由于单独租用甲种客车需6辆,单独租用乙种客车需5辆,租金都是2400元,依题意,得 400y+480(y+1)<2400.当y=1时,y+1=2,则60×1+80×2=220<360,不合题意;当y=2时,y+1=3,由60×2+80×3=360.此时租金为400×2+480×2=2240元.答:按这种方案需用租金2240元.31.连结CD、OD.∵AC⊥BC,∴AC是⊙O的切线,∴AC2=AD·AB.S阴影=S△ACD+S△OCD+S扇形OCD=0.72-0.52=0.2.32.(1)设A(x1,0),B(x2,0),其中x1<0,x2>0,则OA= -x1,OB=x2,OC= -n.∵AB是直径,OC⊥AB,∴OC2=OA·OB,即n2=-x1x2.又x1x2=6n,∴n2= -6n,∴n1= -6,n2=0(舍去).∴n的值为-6.x1+x2=6m,x1x2= -6n,故抛物线的解析式为A、B、C的坐标为A(-9,0)、B(4,0)、C(0,-6).(3)如图(见原题)所示,当∠BPM=∠BAC,或当∠BPM=∠BCA时,以P、B、M为顶点的三角形与△ABC相似.当∠BPM=∠BAC时,PM∥AC.而∠BPM<∠AOC=90°,∴无论P、Q在何位置,都有∠BPM≠∠BCA.故只有当k=3.6时,△PBM∽△ABC.。
2018年湖北省荆门市中考数学试卷(答案+解析)
2018年湖北省荆门市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)8的相反数的立方根是()A.2 B.C.﹣2 D.2.(3分)中国的陆地面积和领水面积共约9970000km2,9970000这个数用科学记数法可表示为()A.9.97×105B.99.7×105C.9.97×106D.0.997×1073.(3分)在函数y=中,自变量x的取值范围是()A.x≥1B.x>1 C.x<1 D.x≤14.(3分)下列命题错误的是()A.若一个多边形的内角和与外角和相等,则这个多边形是四边形B.矩形一定有外接圆C.对角线相等的菱形是正方形D.一组对边平行,另一组对边相等的四边形是平行四边形5.(3分)已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°6.(3分)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则S△EFG:S△ABG=()A.1:3 B.3:1 C.1:9 D.9:17.(3分)已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7D.4<m≤7A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同9.(3分)如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A.(﹣2,3) B.(﹣3,2) C.(3,﹣2) D.(2,﹣3)10.(3分)某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个11.(3分)如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.B.C.1 D.212.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每题3分,满分15分,将答案填在答题纸上)13.(3分)计算:×2﹣2﹣|tan30°﹣3|+20180=.14.(3分)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为.15.(3分)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为.16.(3分)如图,在平面直角坐标系xOy中,函数y=(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为.17.(3分)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,,,,,,,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018=.三、解答题(本大题共7小题,共69分.解答应写出文字说明、证明过程或演算步骤.)18.(8分)先化简,再求值:(x+2+)÷,其中x=2.19.(9分)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.20.(10分)文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;(3)若选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.21.(10分)数学实践活动小组借助载有测角仪的无人机测量象山岚光阁与文明湖湖心亭之间的距离.如图,无人机所在位置P 与岚光阁阁顶A、湖心亭B在同一铅垂面内,P与B的垂直距离为300米,A与B的垂直距离为150米,在P处测得A、B 两点的俯角分别为α、β,且tanα=,tanβ=﹣1,试求岚光阁与湖心亭之间的距离AB.(计算结果若含有根号,请保留根号)22.(10分)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y<与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)23.(10分)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.24.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)2018年湖北省荆门市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)8的相反数的立方根是()A.2 B.C.﹣2 D.【分析】根据相反数的定义、立方根的概念计算即可.【解答】解:8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选:C.2.(3分)中国的陆地面积和领水面积共约9970000km2,9970000这个数用科学记数法可表示为()A.9.97×105B.99.7×105C.9.97×106D.0.997×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9970000=9.97×106,故选:C.3.(3分)在函数y=中,自变量x的取值范围是()A.x≥1B.x>1 C.x<1 D.x≤1【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得x﹣1≥0,1﹣x≠0,解得x>1.故选:B.4.(3分)下列命题错误的是()A.若一个多边形的内角和与外角和相等,则这个多边形是四边形B.矩形一定有外接圆C.对角线相等的菱形是正方形D.一组对边平行,另一组对边相等的四边形是平行四边形【分析】A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;C、根据正方形的判定方法进行判断;D、一组对边平行且相等的四边形是平行四边形.【解答】解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;C、对角线相等的菱形是正方形,故此选项正确;D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;本题选择错误的命题,故选:D.5.(3分)已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°【分析】想办法求出∠5即可解决问题;【解答】解:∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a∥b,∴∠5=∠4=100°,∴∠2=180°﹣∠5=80°,故选:A.6.(3分)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则S△EFG:S△ABG=()A.1:3 B.3:1 C.1:9 D.9:1【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵DE=EF=FC,∴EF:AB=1:3,∴△EFG∽△BAG,∴△=()2=,△故选:C.7.(3分)已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7D.4<m≤7【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【解答】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选:A.A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同【分析】利用方差的定义、以及众数和中位数的定义分别计算得出答案.【解答】解:∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,∴甲成绩的平均数为=8(环),中位数为=8(环)、众数为8环,方差为×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=(环2),∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,∴乙成绩的平均数为=,中位数为=8(环)、众数为8环,方差为×[2×(7﹣)2+3×(8﹣)2+(9﹣)2]=(环2),则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,故选:D.9.(3分)如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A.(﹣2,3) B.(﹣3,2) C.(3,﹣2) D.(2,﹣3)【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【解答】解:过点作IF⊥AC于点F,IE⊥OA于点E,∵A(4,0),B(0,3),C(4,3),∴BC=4,AC=3,则AB=5,∵I是△ABC的内心,∴I到△ABC各边距离相等,等于其内切圆的半径,∴IF=1,故I到BC的距离也为1,则AE=1,故IE=3﹣1=2,OE=4﹣1=3,则I(3,2),∵△ABC绕原点逆时针旋转90°,∴I的对应点I'的坐标为:(﹣2,3).故选:A.10.(3分)某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由主视图和左视图可确定所需正方体个数最少时俯视图为:,则搭成这个几何体的小正方体最少有5个.故选:B.11.(3分)如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.B.C.1 D.2【分析】连接OC,OM、CM,如图,利用斜边上的中线性质得到OM=PQ,CM=PQ,则OM=CM,于是可判断点M在OC 的垂直平分线上,则点M运动的轨迹为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:连接OC,OM、CM,如图,∵M为PQ的中点,∴OM=PQ,CM=PQ,∴OM=CM,∴点M在OC的垂直平分线上,∴点M运动的轨迹为△ABC的中位线,∴点M所经过的路线长=AB=1.故选:C.12.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线的顶点坐标(﹣2,﹣9a),∴﹣=﹣2,=﹣9a,∴b=4a,c=﹣5a,∴抛物线的解析式为y=ax2+4ax﹣5a,∴4a+2b+c=4a+8a﹣5a=7a>0,故①正确,5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②错误,∵抛物线y=ax2+4ax﹣5a交x轴于(﹣5,0),(1,0),∴若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1,正确,故③正确,若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,故④错误,故选:B.二、填空题(每题3分,满分15分,将答案填在答题纸上)13.(3分)计算:×2﹣2﹣|tan30°﹣3|+20180=﹣.【分析】直接利用二次根式的性质结合绝对值的性质以及特殊角的三角函数值分别化简得出答案.【解答】解:原式=2×﹣|×﹣3|+1=﹣2+1=﹣.故答案为:﹣.14.(3分)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为﹣3.【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值.【解答】解:把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k=0,k2=﹣3,1因为k≠0,所以k的值为﹣3.故答案为﹣3.15.(3分)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为.【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.【解答】解:连接OE、AE,∵AB是⊙O的直径,∴∠AEB=90°,∵四边形ABCD是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S阴影=S扇形OBE﹣S△BOE,=﹣×,=﹣,=﹣,故答案为:﹣.16.(3分)如图,在平面直角坐标系xOy中,函数y=(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为.【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【解答】解:过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b)则C点的坐标为(a+3,b),∵E为AC的中点,∴EF=CM=b,AF=AM=OQ=a,E点的坐标为(3+a,b),把D、E的坐标代入y=得:k=ab=(3+a)b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:b=(负数舍去),∴k=ab=2,故答案为:2.17.(3分)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,,,,,,,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018=63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S=1×1+2×+3×+…+63×+2×=63,此题得解.2018【解答】解:∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.三、解答题(本大题共7小题,共69分.解答应写出文字说明、证明过程或演算步骤.)18.(8分)先化简,再求值:(x+2+)÷,其中x=2.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)÷=•=•=,当时,原式==.19.(9分)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.【分析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC对称点E',连接BE'交AC于点H.则点H即为符合条件的点.【解答】(1)证明:在Rt△ABC中,∠BAC=30°,E为AB边的中点,∴BC=EA,∠ABC=60°.∵△DEB为等边三角形,∴DB=DE,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC∴△ADE≌△CDB.(2)解:如图,作点E关于直线AC对称点E',连接BE'交AC于点H.则点H即为符合条件的点.由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°.∴∠EAE'=60°,∴△EAE'为等边三角形,∴,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,,∴,,∴,∴BH+EH的最小值为3.20.(10分)文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;(3)若选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.【分析】(1)由A栏目人数及其所占百分比可得总人数;(2)总人数乘以D栏目所占百分比求得其人数,再用总人数减去其他栏目人数求得B的人数即可补全图形,用360°乘以B人数所占比例可得;(3)列表得出所有等可能结果,然后利用概率的计算公式即可求解【解答】解:(1)30÷20%=150(人),∴共调查了150名学生.(2)D:50%×150=75(人),B:150﹣30﹣75﹣24﹣6=15(人)补全条形图如图所示.扇形统计图中“B”所在扇形圆心角的度数为.(3)记选择“E”的同学中的2名女生分别为N1,N2,4名男生分别为M1,M2,M3,M4,∵共有30种等可能的结果,其中,恰好是同性别学生(记为事件F)的有14种情况,∴.21.(10分)数学实践活动小组借助载有测角仪的无人机测量象山岚光阁与文明湖湖心亭之间的距离.如图,无人机所在位置P 与岚光阁阁顶A、湖心亭B在同一铅垂面内,P与B的垂直距离为300米,A与B的垂直距离为150米,在P处测得A、B 两点的俯角分别为α、β,且tanα=,tanβ=﹣1,试求岚光阁与湖心亭之间的距离AB.(计算结果若含有根号,请保留根号)【分析】过点P作PD⊥QB于点D,过点A作AE⊥PD于点E,利用直角三角形的性质和三角函数解答即可.【解答】解:过点P作PD⊥QB于点D,过点A作AE⊥PD于点E.由题意得:∠PBD=β,∠P AE=α,AC=150,PD=300,在Rt△PBD中,,∵∠AED=∠EDC=∠ACD=90°,∴四边形EDCA为矩形,∴DC=EA,ED=AC=150,∴PE=PD﹣ED=300﹣150=150,在Rt△PEA中,,∴在Rt△ACB中,(米)答:岚光阁与湖心亭之间的距离AB为450米.22.(10分)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾,y 放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=<与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)【分析】(1)根据题意列出方程组,求出方程组的解得到m与n的值即可;(2)根据图象,分类讨论利用待定系数法求出y与P的解析式即可;(3)根据W=ya﹣mt﹣n,表示出W与t的函数解析式,利用一次函数与二次函数的性质求出所求即可.【解答】解:(1)依题意得,解得:;(2)当0≤t≤20时,设y=k1t+b1,由图象得:,解得:∴y=t+16;当20<t≤50时,设y=kt+b2,2由图象得:,解得:,∴y=﹣t+32,综上,;<(3)W=ya﹣mt﹣n,当0≤t≤20时,W=10000(t+16)﹣600t﹣160000=5400t,∵5400>0,∴当t=20时,W最大=5400×20=108000,当20<t≤50时,W=(﹣t+32)(100t+8000)﹣600t﹣160000=﹣20t2+1000t+96000=﹣20(t﹣25)2+108500,∵﹣20<0,抛物线开口向下,∴当t=25,W最大=108500,∵108500>108000,∴当t=25时,W取得最大值,该最大值为108500元.23.(10分)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.【分析】(1)连接OC,如图,利用切线的性质得OC⊥DE,则判断OC∥AD得到∠1=∠3,加上∠2=∠3,从而得到∠1=∠2;(2)①利用圆周角定理和垂径定理得到=,则∠COE=∠F AB,所以∠F AB=∠M=∠COE,设⊙O的半径为r,然后在Rt△OCE 中利用余弦的定义得到=,从而解方程求出r即可;②连接BF,如图,先在Rt△AFB中利用余弦定义计算出AF=,再计算出CE=3,接着证明△AFN∽△AEC,然后利用相似比可计算出FN的长.【解答】(1)证明:连接OC,如图,∵直线DE与⊙O相切于点C,∴OC⊥DE,又∵AD⊥DE,∴OC∥AD.∴∠1=∠3∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平方∠DAE;(2)解:①∵AB为直径,∴∠AFB=90°,而DE⊥AD,∴BF∥DE,∴OC⊥BF,∴=,∴∠COE=∠F AB,而∠F AB=∠M,∴∠COE=∠M,设⊙O的半径为r,在Rt△OCE中,cos∠COE==,即=,解得r=4,即⊙O的半径为4;②连接BF,如图,在Rt△AFB中,cos∠F AB=,∴AF=8×=在Rt△OCE中,OE=5,OC=4,∴CE=3,∵AB⊥FM,∴,∴∠5=∠4,∵FB∥DE,∴∠5=∠E=∠4,∵=,∴∠1=∠2,∴△AFN∽△AEC,∴=,即=,∴FN=.24.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)【分析】(1)先利用对称轴公式得出b=4a,进而利用待定系数法即可得出结论;(2)先利用根与系数的关系得出,x1+x2=4(k﹣1),x1x2=﹣16,转化已知条件,代入即可得出结论;(3)先判断出OB=2PQ,进而判断出点C是OB中点,再求出AB解析式,判断出PC∥AB,即可得出PC解析式,和抛物线解析式联立解方程组即可得出结论.【解答】解:(1)根据题意得,,∴,∴抛物线解析式为y=x2+x;(2)∵直线y=kx+4与抛物线两交点的横坐标分别为x1,x2,∴x2+x=kx+4,∴x2﹣4(k﹣1)x﹣16=0,根据根与系数的关系得,x+x2=4(k﹣1),x1x2=﹣16,1∵,∴2(x1﹣x2)=x1x2,∴4(x1﹣x2)2=(x1x2)2,∴4[(x1+x2)2﹣4x1x2]=(x1x2)2,∴4[16(k﹣1)2+64]=162,∴k=1;(3)如图,取OB的中点C,∴BC=OB,∵B(4,8),∴C(2,4),∵PQ∥OB,∴点O到PQ的距离等于点Q到OB的距离,∵S△POQ:S△BOQ=1:2,∴OB=2PQ,∴PQ=BC,∵PQ∥OB,∴四边形BCPQ是平行四边形,∴PC∥AB,∵抛物线的解析式为y=x2+x②,令y=0,∴x2+x=0,∴x=0或x=﹣4,∴A(﹣4,0),∵B(4,8),∴直线AB解析式为y=x+4,设直线PC的解析式为y=x+m,∵C(2,4),∴直线PC的解析式为y=x+2②,联立①②解得,(舍)或,∴P(﹣2,﹣2+2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荆门市2018年初中毕业生学业水平考试
数学试题
说明:1.全卷分两部分,第一部分为选择题,第二部分为非选择题,考试时间为120分钟,满分120分.
2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠.3.选择题1-12题,每小题选出答案后,用2B铅笔将答题卡选择题答案区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13-24题,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡对应的区域内.
第一部分选择题
一、选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,有且只有一个答案是正确的)
1.2的绝对值是( )
A.2 B.-2 C.1
2D.-1
2
2.下列运算正确的是( )
A.a+2a=2a2B.(-2ab2)2=4a2b4C.a6÷a3=a2D.(a -3)2=a2-9
3有意义,则x的取值范围是( )
A.x>1 B.x>-1 C.x≥1 D.x≥-1
4.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,
AD =3,则BC 的长为( ) A .5 B .6 C .8 D .10
5.在平面直角坐标系中,若点A (a ,-b )在第一象限内,则点B (a ,b )所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 6.由5个大小相同的正方体拼成的几何体如图所示,则下列说法正确的是( )
A .主视图的面积最小
B .左视图的面积最小
C .俯视图的面积最小
D .三个视图的面积相等 7.化简2
21
x x x ++÷(1-11x +)的结果是(
)
A .
11
x +
B .1x x
+ C .x +1 D .x -1
8.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止.设点P 的运动路程为x (cm),在下列图象中,能表示△ADP 的面积y (cm 2)关于x (cm)的函数关系的图象是( )
9.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边长,则△ABC 的
P D
C
B A 第8题图 A . B .
C .
D .
x
O x
O x O x O
第6题图 D C
B
A 第4题图
周长为( )
A .7
B .10
C .11
D .10或11
10.若二次函数y =x 2+mx 的对称轴是x =3,则关于x 的方程x 2+mx =7的解为( )
A .x 1=0,x 2=6
B .x 1=0,x 2=6
C .x 1=0,x 2=6
D .x 1=0,x 2=6
11.如图,在矩形ABCD 中(AD >AB ),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点E .在下列结论中,不一定正确的是( ) A .△AFD ≌△DCE B .AF =12
AD C .AB =AF D .BE =
AD -DF
12.如图,从一块直径为24cm 的圆形纸片上剪出一个圆心角为90°的扇形ABC ,使点A ,B ,C 在圆周上.将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( ) A .12cm B .6cm C .
D .
第二部分 非选择题
二、填空题(本题共5小题,每小题3分,共15分) 13.分解因式:(m +1)(m -9)+8m =______.
C
第12题图 D C F
B A E
第11题图
14.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的14
还少5台,则购置的笔
记本电脑有______台.
15.荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是______.
16.两个全等的三角尺重叠摆放在△ACB 的位置,将其中一个三角尺绕着点C 按逆时针方向旋转到△DCE 的位置,使点A 恰好落在边DE 上,AB 与CE 相交于点F .已知∠ACB =∠DCE =90°,∠B =30°,AB =8cm ,则CF =______cm .
17.如图,已知点A (1,2)是反比例函数y =k x
图象上的一点,连接AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点,若△P AB 是等腰三角形,则点P 的坐标是______. 三、解答题(本题共7小题,共69分) 18.(本题满分8分) (1)计算:|1
+3sin 30°-
5)
-(-13
)-1.
(2)解不等式组210, 23
. 2
3x x x +>⎧⎪⎨-+⎪⎩①
≥②
第17题图 D
F
B A E 第16题图
19.(本题满分9分)如图,在Rt △ABC 中,∠ACB =90°,点D ,E 分别在AB ,AC 上,CE =BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF . (1)补充完成图形;
(2)若EF ∥CD ,求证:∠BDC =90°.
20.(本题满分10分)秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格.现学校随机选取了部分学生的成绩,整理并制作了如下不完整的图表:
C B E
第19题图
请根据上述统计图表,解答下列问题:
(1)在表中,a =______,b =______,c =______; (2)补全频数直方图;
(3)根据以上选取的数据,计算七年级学生的平均成绩;
(4)如果测试成绩不低于80分者为“优秀”,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?
21.(本题满分10分)如图,天星山山脚下西端A 处与东端B 处相距800(1
米,小军和小明同学分别从A 处和B 处向山顶匀速行走.已
知山的西端的坡角是45°,东端的坡角是30°,
米/秒.若小明与小军同时到达山顶C 处,则小明的行走速度是多少?
22.(本题满分10分)如图,AB 是⊙O 的直径,AD 是⊙O 的弦,点F 是DA 延长线上的一点,AC 平分∠F AB 交⊙O 于点C .过点C 作CF ⊥DF ,垂足为E .
(1)求证:CE 是⊙O 的切线;
分数/分
3
1
2第20题图
C
B A 30°
45°
第21题图
(2)若AE =1,CE =2,求⊙O 的半径.
23.(本题满分10分)A 城有某种农机30台,B 城有农机40台,现要将这些农机全部运往C ,D 两乡,调运任务承包给某运输公司.已知C 乡需要农机34台,D 乡需要农机36台.从A 城往C ,D 两乡运送农机的费用分别为250元/台和200元/台,从B 城运往C ,D 两乡运送农机的费用分别为150元/台和240元/台.
(1)设A 城运往C 乡该农机x 台,运送全部农机的总费用为W 元,求W 关于x 的函数关系式,并写出自变量x 的取值范围;
(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;
(3)现该运输公司对A 城运往C 乡的农机,从运输费中每台减免a 元(a ≤200)作为优惠,其它费用不变.如何调运,使总费用最少?
24.(本题满分12分)如图,直线y
+
x 轴,y 轴分别交
于点A ,点B ,两动点D ,E 分别从点A ,点B 同时出发向点O 运动(运动到点O 停止),运动速度分别是1个单位长度/
度/秒,设运动时间为t 秒.以点A 为顶点的抛物线经过点E ,过点E 作x 轴的平行线,与抛物线的另一个交点为点G ,与AB 交于点F .
第22题图
(1)求点A,B的坐标;
(2)用含t的代数式分别表示EF和AF的长;
(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由;
(4)是否存在t的值,使△ADF是直角三角形?若存在,求出此时抛物线的解析式;若不存在,请说明理由.
第24题图。