2020年深圳市中考数学总复习命题专题(含答案和解析)

合集下载

2020年深圳市中考总复习数学试卷六(含答案和解析)

2020年深圳市中考总复习数学试卷六(含答案和解析)

A.970B.860C.750D.720&式子 2COS30A 、 2.3 2tan45;(1 tan60 )2 的值是(2.39、如右图,在 RtVABC 中, ACB 90o, ACBCCA 为半径的圆与 AB 交于点D ,贝U AD 的长为9 24B. 一5A.5C.)18 5172020年深圳市中考总复习数学试卷六一、选择题(3*12=36 )1、计算 32的值是()A 、9B 、 9C 、6D 、 62•太阳的半径约为 696 000km ,把696 000这个数用科学记数法表示为()A 、36.96 10B . 69.6 105C . 6.96 105D 、66.96 10Q 13、如图,1= 2 , 3=40 •则 4等于( )A 、 120B 、 130c 、 140D 、404、下列计算正确的是()/A 、 a 3 a 2a 32aB 、 .a 2= a c 、 2a 2a 23a 4D 、(a -b ) 2=a 2— b 25、为了考察某种小麦的长势,从中抽取了16 9 10株麦田,测得田冋(单位: cm )为:1914 11 12 10 16 8 17 则这组数据的中位数和极差分别是()A . 13, 16B . 14, 11C . 12, 11D . 13, 116、下列说法正确的是()A 、平分弦的直径垂直于弦B 、半圆(或直径)所对的圆周角是直角C 、相等的圆心角所对的弧相等D 、若两个圆有公共点,则这两个圆相交7、地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝.2012年底,长江江豚数量仅剩约 1000头其数量平均下降的百分率在13%〜15%范围内,由此预测,2013年底剩下的数量可能为()D 、2中三角形的个数是(5 C . 16 A . 8 B . 9 10、如图,是一组按照某种规律摆放成的图案,则图11、张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示•以下说法错误的是()A. 加油前油箱中剩余油量y (升)与仃驶时间t (小时)的函数关系是y- 8t+25B. 途中加油21升C. 汽车加油后还可行驶4小时D. 汽车到达乙地时油箱中还余油6升12、如图,二次函数y=ax2+bx+c (a工0的图象的顶点在第一象限,且过点(0, 1)和(-1, 0).下列结论:①abv 0,②b2>4a,③0v a+b+cv2,④0v bv 1,⑤当x>- 1时,y >0,其中正确结论的个数是()A . 5个B. 4个C. 3个 D . 2个第H题图第12题图、填空题(3*4=12 )13、用半径为10cm,圆心角为216 °勺扇形作一个圆锥的侧面,则这个圆锥的高是______________ cm。

2020年深圳市中考数学试卷及答案(完整版)

2020年深圳市中考数学试卷及答案(完整版)

2020 年深圳市中考数学试卷·回忆版第 1 页共2 页2一.选择题(共 12 小题,每小题 3 分,满分 36 分)1.2020 的相反数是()12.在矩形ABCD 中,AB=6,点E 在AD 上,点F 在BC 上,将AEFB 沿EF 折叠,点B 的对应点G 在AD 的延长线上,点A 的对应点是点H,EG=12,下列结论中,有几个是正确的()①EF 丄BG;1 A.-2020 B.20201C.2020 D.-2020②EG=FG;2.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.将150 000 000 用科学记数法表示为()A.1.5×109 B.1.5×107 C.1.5×108 D.0.15×109 4.下列哪个图形,主视图、左视图和俯视图相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.一组数据246,254,247,263,255 的平均数和屮位数分别是()A.253,247 B.253,254 C.254,247 D.254,2546.下列计算正确的是()A.a + a = a2 B.(ab)3=ab3C.a(a + b) = a2 +ab D.a2·a3=a67.一把直尺与30°的直角三角板如图所示,∠l=40°,则∠2=()A.50°B.60°C.70°D.80°8.如图,已知AB=AC,BC=6,由尺规作图痕迹可求出()A.2③S△ABE = S△BEG;④点F 在C 点时,∠GEF=75°;4.1个B.2 个C.3 个D.4 个二.填空题(共 4 小题,满分 12 分,每小题 3 分)13.因式分解:m3-m=.14.口袋里装有编号为1,2,3,4,5,6,7 的7 个球,从中随机摸岀一个球,摸出编号为偶数球的概率是.15.如图,在平面直角坐标系中,ABOC 为平行四边形,A (1,2),B (3,1),C 在反比例函数的图象上,则上= .16.如图,已知四边形ABCD,连接AC、BD 交于点O,已知∠ABC =∠DAC=90°,B.3 tan ACB 1,BO 4 ,则S ABD =.C.4D.59.以下说法中正确的是()A.平行四边形的对边相等B.圆周角等干圆心角的一半2 OD 3S CBDC.分式方程1 x 12 的解为x=2 D.三角形的一个外角等于两个内角的和x 2 x 210.在△TPQ 中,∠P=90°,∠T=70°,PQ=200,则TP 的长为()三.解答题(第 17 题 5 分,第 18 题 6 分,第 19 题 7 分,第 20 题 8 分,第 21 题 8 分,第 22 题 9 分,第 23 题 9 分,满分 52 分)17.(5 分)计算:(1)-1-2cos30°+|−√3|+(4-π)0.A.200·tan70°B.C.200·sin70°D.200 3 tan700200sin70011.二次函数y = ax2+bx + c(a>0)的图象如图所示,下列说法错误的是()A.abc>0B.4ac-b2<0C.3a +c>0D.ax2+bx+c = n+1 无实数根a a+118.(6 分)先化简:a−2a+13−a÷ (2 + ),再将a=2 代入求值。

2020年深圳市中考总复习数学试卷十一(含答案和解析)

2020年深圳市中考总复习数学试卷十一(含答案和解析)

2020年深圳市中考总复习数学试卷十一一、选择题(本部分共12小题,每题3分,共36分)1.下列四个实数中,最小的实数是()A.﹣2 B.2 C.﹣4 D.﹣12.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.3.地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×1064.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个5.不等式组的解集是3<x<a+2,则a的取值范围是()A.a>1 B.a≤3C.a<1或a>3 D.1<a≤36.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%7.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是()A.3,2 B.3,4 C.5,2 D.5,48.已知:21=2,22=4,23=8,24=16,25=32,…设A=(2+1)(22+1)…(22017+1)+1,则A个位数是()A.3 B.4 C.5 D.69.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x+B.y=x+C.y=x+D.y=x+10.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A .以点F 为圆心,OE 长为半径画弧B .以点F 为圆心,EF 长为半径画弧C .以点E 为圆心,OE 长为半径画弧D .以点E 为圆心,EF 长为半径画弧(第9题) (第10题) (第11题) (第12题)11.如图,已知灯塔M 方圆一定范围内有镭射辅助信号,一艘轮船在海上从南向北方向以一定的速度匀速航行,轮船在A 处测得灯塔M 在北偏东30°方向,行驶1小时后到达B 处,此时刚好进入灯塔M 的镭射信号区,测得灯塔M 在北偏东45°方向,则轮船通过灯塔M 的镭射信号区的时间为( ) A .(﹣1)小时 B .(+1)小时 C .2小时 D .小时12.在边长为2的正方形ABCD 中,P 为AB 上的一动点,E 为AD 中点,PE 交CD 延长线于Q ,过E 作EF ⊥PQ 交BC 的延长线于F ,则下列结论:①△APE ≌△DQE ;②PQ=EF ;③当P 为AB 中点时,CF=;④若H 为QC 的中点,当P 从A 移动到B 时,线段EH 扫过的面积为1,其中正确的有( ) A .1个 B .2个 C .3个 D .4个二、填空题(本部分共4小题,每题3分,共12分) 13.因式分解:x 2y ﹣4y= .14.如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 .15.如图,AC ⊥x 轴于点A ,点B 在y 轴的正半轴上,∠ABC=60°,AB=4,BC=2,点D 为AC 与反比例函数y=的图象的交点.若直线BD 将△ABC 的面积分成1:2的两部分,则k 的值为 .16.如图,在矩形ABCD 中,将∠ABC 绕点A 按逆时针方向旋转一定角度后,BC 的对应边B'C'交CD 边于点G .连接BB'、CC'.若AD=7,CG=4,AB'=B'G ,则CC B B ''= .三、解答题(本部分共7小题,共52分) 17.(5分)计算:|﹣4|﹣2cos60°+(﹣)0﹣(﹣3)2.18.(6分)先化简,再求值:(﹣)÷,其中a=2sin60°﹣tan45°.19.(7分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表根据以上信息解决下列问题:(1)m=,n=;(2分)(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(2分)(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.(3分)20.(8分)某水果店在两周..内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(3分)(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x≤14)之间的函数关系式,并求出第几天时销售利润最大?(5分)时间x(天)1≤x≤78≤x≤14售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x 120﹣x储存和损耗费用(元)40+3x 3x2﹣64x+40021.(8分)如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(3分)(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.(5分)22.(9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2分)(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3分)(3)若MA=6,sin∠AMF=,求AB的长.(4分)23.(9分)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D 在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2分)(2)如图①,连接BE,线段OC上的点F关于直线l对称点F'恰好在线段BE上,求点F的坐标;(3分)(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.(4分)2020年深圳市中考总复习数学试卷十一参考答案和试题解析一.选择题1-12 CCBBD DBDAD BB解析:8.解:122 已经等于5,5乘以任何奇数,所得数个位仍为5,然后加1,结果为6.故选:D.9.解:直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过P点的一条直线l将这八个正方形分成面积相等的两部分,∴三角形ABP面积是8÷2+1=5,∴BP•AB=5,∴AB=2.5,∴OA=3﹣2.5=0.5,由此可知直线l经过(0,0.5),(4,3)设直线方程为y=kx+b,则,解得.∴直线l解析式为y=x+.故选:A.11.解:连接MC,过M点作MD⊥AC于D.在Rt△ADM中,∵∠MAD=30°,∴AD=MD,在Rt△BDM中,∵∠MBD=45°,∴BD=MD,∴BC=2MD,∴BC:AB=2MD:(﹣1)MD=2:+1.故轮船通过灯塔M的镭射信号区的时间为(+1)小时.故选:B.12.解:①∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=90°,∵∠A=∠EDQ,∠AEP=∠QED,AE=ED,∴△AEP≌△DEQ,故①正确,②作PG⊥CD于G,EM⊥BC于M,∴∠PGQ=∠EMF=90°,∵EF⊥PQ,∴∠PEF=90°,∴∠PEN+∠NEF=90°,∵∠NPE+∠NEP=90°,∴∠NPE=∠NEF,∵PG=EM,∴△EFM≌△PQG,∴EF=PQ,故②正确,③连接QF.则QF=PF,PB2+BF2=QC2+CF2,设CF=x,则(2+x)2+12=32+x2,∴x=1,故③错误,④当P在A点时,Q与D重合,QC的中点H在DC的中点S处,当P运动到B时,QC的中点H与D 重合,故EH扫过的面积为△ESD的面积的一半为,故④错误.故选:B.二.填空题13. y (x ﹣2)(x+2) 14. 31 15. -4或-8 16.74745解析:15.解:如图所示,过C 作CE ⊥AB 于E ,∵∠ABC=60°,BC=2,∴Rt △CBE 中,CE=3,又∵AC=4,∴△ABC 的面积=AB×CE=×4×3=6,连接BD ,OD ,∵直线BD 将△ABC 的面积分成1:2的两部分,∴点D 将线段AC 分成1:2的两部分,当AD :CD=1:2时,△ABD 的面积=×△ABC 的面积=2,∵AC ∥OB ,∴△DOA 的面积=△ABD 的面积=2,∴|k|=2,即k=±4,又∵k <0,∴k=﹣4;当AD :CD=2:1时,△ABD 的面积=×△ABC 的面积=4,∵AC ∥OB ,∴△DOA 的面积=△ABD 的面积=4,∴|k|=4,即k=±8,又∵k <0,∴k=﹣8,故答案为:﹣4或﹣8.16.解:连接AC ,AG ,AC',由旋转可得,AB=AB',AC=AC',∠BAB'=∠CAC', ∴ACAB C A B A ='',∴△ABB'∽△ACC',∴ ACAB C C B B =''∵AB'=B'G ,∠AB'G=∠ABC=90°,∴△AB'G 是等腰直角三角形,∴AG=2AB', 设AB=AB'=x ,则AG=2x ,DG=x ﹣4,∵Rt △ADG 中,AD 2+DG 2=AG 2,∴72+(x ﹣4)2=(2x )2, 解得x 1=5,x 2=﹣13(舍去),∴AB=5,∴Rt △ABC 中,由勾股定理,AC=74 ∴74745ACAB C C B B ==''故答案为:74745.三.解答题17. -5 ...........................................................................(5分) 18.33 ...........................................................................(6分)19.(1) 8 3 .........................................................................(每空1分,2分) (2) 144 .........................................................................(2分) (3) 32 .........................................................................(3分)20.解: (1)x=10%;.........................................................................(3分)(2)当1≤x≤7时,第1次降价后的价格:10×(1﹣10%)=9,∴y=(9﹣4.1)(80﹣3x )﹣(40+3x )=﹣17.7x+352,∵﹣17.7<0,∴y 随x 的增大而减小,∴当x=1时,y 有最大值,y 大=﹣17.7×1+352=334.3(元), 当8≤x≤14时,第2次降价后的价格:8.1元, ∴y=(8.1﹣4.1)(120﹣x )﹣(3x 2﹣64x+400)=﹣3x 2+60x+80=﹣3(x ﹣10)2+380, ∴当x=10时,y 有最大值,y 大=380(元)..........................................(2分)综上所述,y 与x (1≤x <15)之间的函数关系式为:⎩⎨⎧≤≤++≤≤+=)()(14x 880x 60x 3-7x 1352x 7.17-y 2....(3分)21.(1)证明:∵PQ 垂直平分BE ,∴QB=QE ,OB=OE ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠PEO=∠QBO ,∴△BOQ ≌△EOP (ASA ),∴PE=QB ,又∵AD ∥BC ,∴四边形BPEQ 是平行四边形,又∵QB=QE ,∴四边形BPEQ 是菱形;............................................(3分)(2)解:∵O ,F 分别为PQ ,AB 的中点,∴AE+BE=2OF+2OB=18,设AE=x ,则BE=18﹣x ,在Rt △ABE 中,62+x 2=(18﹣x )2,解得x=8,BE=18﹣x=10,∴OB=BE=5,............(1分) 设PE=y ,则AP=8﹣y ,BP=PE=y ,在Rt △ABP 中,62+(8﹣y )2=y 2,解得y=425..........(2分)在Rt △BOP 中,由勾股定理PO=415,∴PQ=2PO=215...............................(2分)22.(1)证明:连接OA 、OE 交BC 于T .∵AM 是切线,∴∠OAM=90°,∴∠PAD+∠OAE=90°,∵PA=PD ,∴∠PAD=∠PDA=∠EDT ,∵OA=OE ,∴∠OAE=∠OEA ,∴∠EDT+∠OEA=90°,∴∠DTE=90°,∴OE ⊥BC ,∴=....(2分)(2)∵ED 、EA 的长是一元二次方程x 2﹣5x+5=0的两根,∴ED•EA=5,∵=,∴∠BAE=∠EBD ,∵∠BED=∠AEB ,∴△BED ∽△AEB ,............................(2分) ∴=,∴BE 2=DE•EA=5,∴BE=................................................(1分)(3)作AH ⊥OM 于H .在Rt △AMO 中,∵AM=6,sin ∠M==设OA=m ,OM=3m ,∴9m 2﹣m 2=72,∴m=3, ∴OA=3,OM=9,易知∠OAH=∠M ,∴sin ∠OAD==............................................(2分)∴OH=1,AH=2.BH=2, ∴AB===2...................................................(2分)23.解:(1)b=-2 c=﹣3;......................................................................(2分)(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),...............(1分)∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x ﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);......................(2分)(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.....(每个2分,共4分)。

2020年深圳市中考数学试题及详解(WORD版)

2020年深圳市中考数学试题及详解(WORD版)

2020年深圳市中考数学试题及详解(WORD版)1.2020的相反数是(-2020)。

2.图形C既是轴对称图形,也是中心对称图形。

3.150 000 000用科学记数法表示为1.5×10^8.4.正方体的主视图、左视图和俯视图相同。

5.平均数为253,中位数为253.6.运算(2/3)×(-9/10)的结果为(-3/5)。

7.三角形的一个外角等于两个内角的和。

8.BD的长度为4.9.平行四边形的对边相等,圆周角等于圆心角的一半,分式方程的解为x=2.10.河宽(PT的长)可以表示为200sin70°米。

11.3a+c>0是错误的结论。

12.点H、K分别是线段CD上的中点。

二、填空题13.m^3-m=(m-1)m(m+1)14.B.2个15.k=2x-516.∠XXX∠XXX,∠XXX∠DCA,∠ABC+∠ADC=180°三、解答题17.5/818.3/419.(1) m=100.n=30 (2) 人数/名:软件 30,硬件 40,总线15,测试 15 (3) 108° (4) 90人20.(1) 连接OB,∠XXX°,∠XXX∠OAD=90°,∴四边形OBCD是矩形,BC=OD=6,∵∠OAB=90°,∴AB=OA=OB=10,∵∠OAE=∠OAB+∠BAE=90°+∠BAE,∠OEA=∠OED+∠DEA=90°+∠BAE,∴∠OAE=∠OEA,AE=AB (2) ∵BC=6,CD=BD-BC=AB-BC=4,∴AD=√(AB^2-BD^2)=√(100-36)=8,∴CE=CD+DE=CD+AD=12,∵BE=2AB=20,∴AE=BE-AB=10,∵∠AEC=∠ABC=90°,∴三角形AEC与三角形ABC全等,∴AC=BC=6,∴CD/AC=4/6=2/321.(1) 设肉粽的进货单价为x元,蜜枣粽的进货单价为y 元,则50x+30y=620,且x=y+6,解得x=14,y=8 (2) 设肉粽的单价为p元,则p+6为蜜枣粽的单价,50p+30(p+6)=620,解得p=8,∴肉粽的单价为8元,蜜枣粽的单价为14元,进货总价为400元,∴肉粽的数量为50个,蜜枣粽的数量为20个,剩下的200元可以买16个肉粽或10个蜜枣粽,所以最终可以买到66个肉粽和30个蜜枣粽。

[原创]2020年深圳市中考数学试卷及答案doc初中数学

[原创]2020年深圳市中考数学试卷及答案doc初中数学

ACD图1[原创]2020年深圳市中考数学试卷及答案doc 初中数学数 学 试 卷第一部分 选择题〔本部分共12小题,每题3分,共36分。

每题给出的4个选项中,其中只有一个是正确的〕 1.-2的绝对值等于A .2B .-2C .12D .42.为爱护水资源,某社区新建了雨水再生工程,再生水利用量达58600立方米/年。

那个数据用科学记数法表示为〔保留两个有效数字〕A .58×103B .5.8×104C .5.9×104D .6.0×104 3.以下运算正确的选项是A .(x -y )2=x 2-y 2B .x 2·y 2 =(xy )4C .x 2y +xy 2 =x 3y 3D .x 6÷y 2 =x 4 4.升旗时,旗子的高度h (米)与时刻t (分)的函数图像大致为5.以下讲法正确的选项是A .〝打开电视机,正在播世界杯足球赛〞是必定事件B .〝掷一枚硬币正面朝上的概率是12〞表示每抛掷硬币2次就有1次正面朝上C .一组数据2,3,4,5,5,6的众数和中位数差不多上5D 甲2=0.24,乙组数据的方差S 03,那么乙组数据比甲组数据稳固6中心对称图形但不是..轴对称图形的是7.点P 〔a -1,a 〕在平面直角坐标系的第二象限内,那么a 的取值范畴在数轴上可表示为〔阴影部分〕8.观看以下算式,用你所发觉的规律得出22018的末位数字是21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…, A .2 B .4 C .6 D .89.如图1,△ABC 中,AC =AD =BD ,∠DAC =80º,那么∠B 的度数是 A .40º B .35º C .25º D .20º-2 -3 -1 02 A .-2 -3 -1 02B .C .-2 -3 -1 02D .-2 -3 -1 02ABC DtOthOthOt hOABCD图2 10.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有〝粽子〞的图案,另外两张的正面印有〝龙舟〞的图案,现将它们背面朝上,洗平均后排列在桌面,任意翻开两张,那么两张图案一样的概率是A .13B .12C .23D .3411.某单位向一所期望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,每个B 型包装箱比A型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。

2020年深圳市中考总复习数学试卷五(含答案和解析)

2020年深圳市中考总复习数学试卷五(含答案和解析)

2020年深圳市中考总复习数学试卷五一、选择题(本部分共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的) 1. 绝对值为5的实数是( )A .5±B .5C .5- D. 512.环境监测中PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.数据0.0000025用科学记数法可以表示为( ) A .6105.2⨯ B .5105.2-⨯ C .6105.2-⨯ D .7105.2-⨯3.如图,下面是由四个完全相同的正方体组成的几何体,这个几何体的主视图是( )A .B .C .D .4.下列计算正确的是( )A .325a a a +=B .222(3)9a b a b -=-C .3226()ab a b -= D .623a b a a b ÷=5. 某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误..的是( ) A. 众数是80 B. 中位数是75 C .平均数是80 D. 极差是156.函数中,自变量x 的取值范围是( )A . x >1B . x <1C .51-≥xD .51≥x 7.如图,AB ∥CD ,∠ABE =60°,∠D =50°,则∠E 的度数为( )A .︒30B .︒20C .︒10D . ︒408.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( ) A . B . C . D .9.某市今年中考体育测试,其中男生测试项目有200米跑、1000米跑、立定跳远、投掷实心球、一分钟跳绳、引体向上、篮球半场来回运球上篮七个项目.考生须从这七个项目中选取两个项目,其中200米跑必选,剩下六个项目选一个,则两名男生在体育测试中所选项目完全相同的概率为( ) A .71 B .61 C .51 D .4110.如右图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,图中阴影部分MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则矩形PQMN 的面积为( ) A .16 B .20 C .36 D .4511.以下说法正确的有( )①正八边形的每个内角都是135°; ②反比例函数y =﹣,当x <0时,y 随x 的增大而增大; ③长度等于半径的弦所对的圆周角为30°; ④分式方程13x 1=x x -的解为2x=3; A . 1个 B . 2个 C . 3个 D . 4个12.如右图,在平面直角坐标系中,直线y =﹣3x +3与x 轴、y 轴分别交于A 、B 两点, 以AB 为边在第一象限作正方形ABCD ,点D 在双曲线(k ≠0)上.将正方形沿x 轴负方向平移a 个单位长度后,点C 恰好落在该双曲线上,则a 的值是( )A .1B .2C .3D .4第二部分 非选择题二、填空题(本题共4小题,每小题3分,共12分) 13.分解因式:269mx mx m -+=_____________.14.如图,将⊙O 沿弦AB 折叠,使经过圆心O ,则∠OAB = .15.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为 (用含n 的代数式表示).16.如图,在四边形ABCD 中,AD ∥BC ,∠BCD=90°,∠ABC=45°,AD=CD ,CE 平分∠ACB 交AB 于点E ,在BC 上截取BF=AE ,连接AF 交CE 于点G ,连接DG 交AC 于点H ,过点A 作AN ⊥BC ,垂足为N ,AN 交CE 于点M .则下列结论;①CM=AF ;②CE ⊥AF ;③△ABF ∽△DAH ;④GD 平分∠AGC ,其中正确的序号是 .三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算: 02)14.3(32145sin 8-+-+⎪⎭⎫⎝⎛-︒⨯-π(第16题图)18.先化简,然后a在﹣1、1、2三个数中选一个合适的数代入求值.19.某校学生准备调查初一年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到初一(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到初一年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.类别频数(人数)频率武术类0.25书画类20 0.20棋牌类15 b器乐类合计a 1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=_________,b=_________;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_________;③若该校初一年级有学生560人,请你估计大约有多少学生参加武术类校本课程.20.钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A,B的距离,如下图,我勘测飞机在距海平面垂直高度为1千米的点C处,测得端点A的俯角为45°,然后沿着平行于AB的方向飞行3.2千米到点D,并测得端点B的俯角为37°,求钓鱼岛两端AB的距离.(结果精确到0.1千米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41)21.如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.B OC D E B O C D P x yE F Q l 图1 图2 22.定义:如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.如矩形OBCD 中,点C 为O ,B 两点的勾股点,已知OD =4,在DC 上取点E,DE=8.(1)如果点E 是O ,B 两点的勾股点(点E 不在点C ), 试求OB 的长;(2)如果OB =12,分别以OB,OD 为坐标轴建立如图2的直角坐标系,在x 轴上取点F (5,0).在线段DC 上取点P , 过点P 的直线l ∥y 轴,交x 轴于点Q .设DP=t.①当点P 在DE 之间,以EF 为直径的圆与直线l 相切,试求t 的值;②当直线l 上恰好有2点是E ,F 两点的勾股点时,试求相应t 的取值范围.23.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(0,4),点B 的坐标为(4,0),点C 的坐标为(﹣4,0),点P 在AB 上,连结CP 与y 轴交于点D ,连结BD .过P ,D ,B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF . (1)求直线AB 的函数解析式; (2)求证:∠BDE =∠ADP ;(3)设DE =x ,DF =y .请求出y 关于x 的函数解析式;(备用图)2020年深圳市中考总复习数学试卷五参考答案13. 2)3(-x m14. ︒3015. 2)1(+n16. ①②③④17.原式=1342222++-⨯……………………………………………………(3分) =2……………………………………………………(5分)131112)1()1)(1(111)1(2.182-+=-++-=-+-++⨯-+=a a a a a a a a a a a 原式当2=a 时,原式=513=-+a a …………………………(6分)19. 解:(1)∵调查的人数较多,范围较大, ∴应当采用随机抽样调查,∵到初一年级每个班随机调查一定数量的同学相对比较全面,∴丙同学的说法最合理.……………………………………………(1分) (2)①∵喜欢书画类的有20人,频率为0.20,∴a =20÷0.20=100,……………………………………………(2分) b =15÷100=0.15;……………………………………………(3分) ②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;………………………(5分) ③喜欢武术类的人数为:560×0.25=140人.……………………………(7分)20. 解:过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . ∵AB ∥CD ,∴∠AEF =∠EFB =∠ABF =90°, ∴四边形ABFE 为矩形,题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCBDCABBCB在Rt△AEC中,∠C=45°,AE=1千米.∴CE=AE=1(千米).在Rt△BFD中,∠BDF=37°,BF=1千米,∴DF==≈1.33千米,……………………………………………(6分)∴AB=EF=CD+DF﹣CE≈3.2+1.33﹣1=3.53≈3.5(千米).……………………(7分)答:钓鱼岛两端AB的距离约为3.5千米.…………………………(8分)21.解::(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD;……………(3分)(2)∵AD∥BC,∴∠ADB=∠DBE,∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE﹣∠DBE=2∠ADB﹣∠ADB=∠ADB,∴AB=AD,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.…………………………(8分)22.(1)10(2)①4 ②4<t<923.解:(1)设直线AB的函数解析式为y=kx+4,代入(4,0)得:4k+4=0,解得:k=﹣1,则直线AB的函数解析式为y=﹣x+4;……(3分)(2)①由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BOD≌△COD,∴∠BDO=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP,…………………………………(6分)②连结PE,∵∠ADP是△DPE的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,∵DF是⊙Q的直径,∴∠DEF=90°,∴△DEF是等腰直角三角形,∴DF=DE,即y=x;…………………………(9分)。

2020年深圳市中考总复习数学试卷三(含答案和解析)

2020年深圳市中考总复习数学试卷三(含答案和解析)

2020年深圳市中考总复习数学试卷三一、选择题1.2020的相反数是( )A .﹣2020B .2020C .20201D .20201 2.2019年茂名市生产总值约2450亿元,将2450用科学记数法表示为( )A .0.245×104B .2.45×103C .24.5×102D .2.45×10113.如图1是某几何体的三视图,该几何体是( )A .球B .三棱柱C .圆柱D .圆锥4.下列事件中,是必然事件的是( )A .两条线段可以组成一个三角形B .400人中有两个人的生日在同一天C .早上的太阳从西方升起D .打开电视机,它正在播放动画片5.如图2,直线a 、b 被直线c 所截,若a ∥b ,∠1=60°,那么∠2的度数为( ) A .120° B .90° C .60° D .30°6.下列各式计算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .a 2+3a 2=4a 4D .a 4÷a 2=a 27.下列说法正确的是( )A .长方体的截面一定是长方形B .了解一批日光灯的使用寿命适合采用的调查方式是普查C .一个圆形和它平移后所得的圆形全等D .多边形的外角和不一定都等于360°8.不等式组的解集在数轴上表示为( ) A . B . C . D .9.如图,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( )A .150°B .140°C .130°D .120°10.我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .B .C .D .11.如图,在ABC R ∆t 中,︒=∠90C ,AC=BC ,AB=8,点D 为AB 中点,若直角MDN 绕点D 旋转,分别交AC 于点E ,交BC 于点F ,则下列说法正确的是( )①AE=CF;②EC+CF=24;③DE=DF; ④若ECF ∆的面积为一个定值,则EF 的长也是一个定值。

【真题】2020年深圳市中考数学试卷含答案解析(2)(Word版)

【真题】2020年深圳市中考数学试卷含答案解析(2)(Word版)

2020年广东省深圳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B.C.D.62.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3.00分)图中立体图形的主视图是()A.B. C.D.4.(3.00分)观察下列图形,是中心对称图形的是()A. B.C.D.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,106.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2) B.(2,3) C.(2,4) D.(2,5)8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B.C.D.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA ∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9=.14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2020﹣π)0.18.(6.00分)先化简,再求值:,其中x=2.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a=,b=.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A 和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2020年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B.C.D.6【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)图中立体图形的主视图是()A.B. C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)观察下列图形,是中心对称图形的是()A. B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、+无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2) B.(2,3) C.(2,4) D.(2,5)【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B.C.D.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3,∴光盘的直径为6,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b >0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA ∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,),∴BP=|﹣n|,∴S△BOP=|﹣n|×m=|12﹣mn|∵PA∥x轴,∴A(,n),∴AP=|﹣m|,∴S△AOP=|﹣m|×n=|12﹣mn|,∴S△AOP =S△BOP,故②正确;如图,过点P作PF⊥OA于F,PE⊥OB于E,∴S△AOP =OA×PF,S△BOP=OB×PE,∵S△AOP =S△BOP,∴OB×PE=OA×PE,∵OA=OB,∴PE=PF,∵PE⊥OB,PF⊥OA,∴OP是∠AOB的平分线,故③正确;如图1,延长BP交x轴于N,延长AP交y轴于M,∴AM⊥y轴,BN⊥x轴,∴四边形OMPN 是矩形, ∵点A ,B 在双曲线y=上,∴S △AMO =S △BNO =6, ∵S △BOP =4, ∴S △PMO =S △PNO =2, ∴S 矩形OMPN =4, ∴mn=4, ∴m=, ∴BP=|﹣n |=|3n ﹣n |=2|n |,AP=|﹣m |=,∴S △APB=AP ×BP=×2|n |×=8,故④错误;∴正确的有②③, 故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9=(a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8.【分析】根据正方形的性质得到AC=AF,∠CAF=90°,证明△CAE≌△AFB,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠FAB=90°,∵∠ABF=90°,∴∠AFB+∠FAB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE==,连接CF,∵AD平分∠CAB,BE平分∠ABC,∴CF是∠ACB的平分线,∴∠ACF=45°=∠AFE,∵∠CAF=∠FAE,∴△AEF∽△AFC,∴,∴AC===,故答案为.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2020﹣π)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×++1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)先化简,再求值:,其中x=2.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=把x=2代入得:原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100人,a=0.25,b=15.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A 和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠FAB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点,∵在Rt△ACH中,∠ACH=45°,∴,∴四边形ACDB的面积为:.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD是菱形是解此题的关键.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN 全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=BC=1,∵cosB==,在Rt△AMB中,BM=1,∴AB==;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴=,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得,即OP=FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点代入,解得:a=1,∴抛物线的解析式为:;(2)由知A(,﹣2),设直线AB解析式为:y=kx+b,代入点A,B的坐标,得:,解得:,∴直线AB的解析式为:y=﹣2x﹣1,易求E(0,1),,,若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴,设点P(t,﹣2t﹣1),则:解得,,由对称性知;当时,也满足∠OPM=∠MAF,∴,都满足条件,∵△POE的面积=,∴△POE的面积为或.(3)若点Q在AB上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2、ES=,由NE+ES=NS=QR可得﹣a+=2,解得:a=﹣,∴Q(﹣,);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(﹣,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(,2).综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。

2020年广东省深圳市中考数学试卷和答案解析

2020年广东省深圳市中考数学试卷和答案解析

2020年广东省深圳市中考数学试卷和答案解析一、选择题(每小题3分,共12小题,满分36分)1.(3分)2020的相反数是()A.2020B.C.﹣2020D.﹣解析:直接利用相反数的定义得出答案.参考答案:解:2020的相反数是:﹣2020.故选:C.点拨:此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.解析:根据中心对称图形与轴对称图形的概念进行判断即可.参考答案:解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.点拨:本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.参考答案:解:将150000000用科学记数法表示为1.5×108.故选:D.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体解析:分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.参考答案:解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B 不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C 不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.点拨:本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.(3分)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,247解析:根据中位数、众数的计算方法,分别求出结果即可.参考答案:解:=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.点拨:本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.(3分)下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6解析:利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.参考答案:解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.点拨:本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.7.(3分)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°解析:根据平角的定义和平行线的性质即可得到结论.参考答案:解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.点拨:本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.(3分)如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ 的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC 于点D.若BC=6,则BD的长为()A.2B.3C.4D.5解析:依据等腰三角形的性质,即可得到BD=BC,进而得出结论.参考答案:解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=BC=×6=3,故选:B.点拨:本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.(3分)以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2D.三角形的一个外角等于两个内角的和解析:根据平行四边形的性质对A进行判断;根据圆周角定理对B 进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.参考答案:解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.点拨:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米解析:在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.参考答案:解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=,∴PT==,即河宽米,故选:B.点拨:此题考查了解直角三角形的应用﹣方向角问题,掌握方向角与正切函数的定义是解题的关键.11.(3分)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根解析:根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x =1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.参考答案:解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.点拨:本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c (a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.12.(3分)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD 于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个解析:连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF =EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF =∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.参考答案:解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB===,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.点拨:本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.(3分)分解因式:m3﹣m=m(m+1)(m﹣1).解析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.参考答案:解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).点拨:本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.(3分)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.解析:用袋子中编号为偶数的小球的数量除以球的总个数即可得.参考答案:解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为,故答案为:.点拨:本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.(3分)如图,在平面直角坐标系中,O(0,0),A(3,1),B (1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=﹣2.解析:连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.参考答案:解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(,1),∵A(3,1),∴C的坐标为(﹣2,1),∵反比例函数y=(k≠0)的图象经过点C,∴k=﹣2×1=﹣2,故答案为﹣2.点拨:本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.(3分)如图,在四边形ABCD中,AC与BD相交于点O,∠ABC =∠DAC=90°,tan∠ACB=,=,则=.解析:通过作辅助线,得到△ABC∽△ANM,△OBC∽△ODM,△ABC ∽△DAN,进而得出对应边成比例,再根据tan∠ACB=,=,得出对应边之间关系,设AB=a,DN=b,表示BC,NA,MN,进而表示三角形的面积,求出三角形的面积比即可.参考答案:解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由==得,DM=a,∴4b+b=a,即,b=a,∴====.故答案为:.点拨:本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.解析:根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.参考答案:解:原式=3﹣2×+3﹣13﹣+﹣1=2.点拨:本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.18.(6分)先化简,再求值:÷(2+),其中a=2.解析:先将分式进行化简,然后代入值即可求解.参考答案:解:原式=÷=÷=×=当a=2时,原式==1.点拨:本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=50,n=10.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是72度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有180名.解析:(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.参考答案:解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.点拨:本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C 的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.解析:(1)证明:连接AC、OC,如图,根据切线的性质得到OC ⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.参考答案:(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.点拨:本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?解析:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.参考答案:解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.点拨:本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.解析:(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD=90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD (SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,求出AG=6,AD=12,证明△AME ∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN =8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP=∠PAE=90°,连接EG,BD,由勾股定理可求出答案.参考答案:(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.点拨:本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t 之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.解析:(1)将点A(﹣3,0)、B(1,0)代入抛物线的解析式得到关于a、b的方程组即可;(2)分三种情况:①0<t<1时,②1≤t<时,③≤t≤3时,可由面积公式得出答案;(3)令F(﹣1,t),则MF=,ME=﹣n,得出,可求出n=.则得出答案.参考答案:解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①0<t<1时,如图1,若B'C'与y轴交于点F,∵OO'=t,OB'=1﹣t,∴OF=3OB'=3﹣3t,∴S=×(C'O'+OF)×OO'=×(3+3﹣3t)×t=﹣+3t,②1≤t<时,S=;③≤t≤3时,如图2,C′O′与AD交于点Q,B′C′与AD交于点P,过点P作PH⊥C′O′于H,∵AO=3,O'O=t,∴AO'=3﹣t,O'Q=6﹣2t,∴C'Q=2t﹣3,∵QH=2PH,C'H=3PH,∴PH=C'Q=(2t﹣3),∴S=(2t﹣3),∴S=﹣,综合以上可得:S=.(3)令F(﹣1,t),则MF=,ME=﹣n,∵ME﹣MF=,∴MF=ME﹣,∴,∴m2+2m+1+t2﹣2nt=﹣.∵n=﹣m2﹣2m+3,∴+(2+4n﹣17)m+1+t2﹣6t+﹣=0.当t=时,上式对于任意m恒成立,∴存在F(﹣1,).点拨:本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。

2020年深圳市中考总复习数学试卷八(含答案和解析)

2020年深圳市中考总复习数学试卷八(含答案和解析)

2020年深圳市中考总复习数学试卷八一、选择题(每题3分,共36分) 1.64-的立方根是( ) A .±4B .±2C .-2D .-42.下列计算正确的是( ) A .532=+ B .222a a a =+ C .xy x y x +=+)1( D .632)(mn mn =3.若代数式14a -在实数范围内有意义,则实数a 的取值范围为( ) A .4a = B .4a > C .4a < D .4a ≠4.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )A .B .C .D .5.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.成绩/m 1.50 1.60 1.65 1.70 1.75 1.80 人数232341则这些运动员成绩的中位数,众数分别为( )A .1.65,1.70B .1.65,1.75C . 1.70,1.75D .1.70,1.706.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .330%10=xB .330%)101(=-xC .330%)101(2=-xD .330%)101(=+x8.已知一个三角形的三边长分别为5,7,8.则其内切圆的半径为( ) A .32 B .32C .3D .239.如图1,AB ∥CD ,E 为CD 上一点,射线EF 经过点A ,EC=EA .若∠CAE=30°,则∠BAF=( ) A .30° B .40° C .50° D .60°列说法正确的是( ) A .AD=2OB B .CE=EOC .∠OCE=40°D .∠BOC=2∠BAD图1 图2 图311.如图抛物线y=a x 2+b x +c 的图象交x 轴于A (﹣2,0)和点B ,交y 轴负半轴于点C ,且OB=OC ,下列结论:①22=-c b ;②21=a ;③1-=b ac ;④0>c b a +,其中正确的个数有( ) A .1个B .2个C .3个D .4个12.如图4,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接 BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④PC PH DP ⋅=2其中正确的是( )A .①②③④B .②③C .①②④D .①③④二、填空题(每题3分,共12分)13.因式分解:a a a 1510523-+-=____________.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两 个小球,摸出两个颜色相同的小球的概率为 . 15. 如图5,△ABC 中,AB=AC ,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE 的长为 .图5 图6 16.如图6,直线221+-=x y 与x 轴交于C ,与y 轴交于D ,以CD 为边作矩形CDAB ,点A 在x 轴上,双曲线)0(<k ky =经过点B 与直线CD 交于E ,EM ⊥x 轴于M ,则=S ___________. 图4三、解答题(17题5分,18题6分,19题7分,20、21每题8分,22、23每题9分,共52分) 17.计算:2)31()2017(330sin 2---+--︒π18.先化简,再求值:1)1331(2+-÷+-+-x xx x x x ,其中x 的值从不等式组⎩⎨⎧-≤-14232<x x 的整数解中选取.19.某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小 时),将学生分成五类:A 类(0≤t ≤2),B 类(2<t ≤4),C 类(4<t ≤6),D 类(6<t ≤8),E 类(t >8), 绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题: (1)E 类学生有_______人,补全条形统计图; (2)D 类学生人数占被调查总人数的______%;(3)从该班做义工时间在0≤t ≤4的学生中任选2人.求这2人做义工 时间都在2<t ≤ 4中的概率.20.某商场经营A 种品牌的玩具,购进时的单价30元,根据市场调查:在一段时间内,销售单价是40元 时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该种品牌玩具的销售单价为x 元(x >40),请用含x 的代数式表示该玩具的销售量.(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于450件的销售任务,求商场销 售该品牌玩具获得的最大利润是多少?(3)该商场计划将(2)中所得的利润的一部分资金采购一批B 种玩具并转手出售,根据市场调查并准备 两种方案,方案①:如果月初出售,可获利15%.并可用本和利再投资C 种玩具,到月末又可获利10%; 方案②:如果只到月末出售可直接获利30%,但要另支付他库保管费350元,请问商场如何使用这笔 资金,采用哪种方案获利较多?21.关于x 的方程032)12(22=+-+--k k x k x 有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程的两个实数根分别为1x 、2x ,存不存在这样的实数k ,使得521=-x x ?若存在,求出 这样的k 值;若不存在,说明理由.22.如图,已知BF 是⊙O 的直径,A 为⊙O 上(异于B 、F )一点,⊙O 的切线MA 与FB 的延长线交于 点M ;P 为AM 上一点,PB 的延长线交⊙O 于点C ,D 为BC 上一点且PA=PD ,AD 的延长线交⊙O 于点E .(1)求证:»ºBE CE =;(2)若ED 、EA 的长是一元二次方程0552=+-x x 的两根,求BE 的长; (3)若MA=62,si n ∠AMF=31,求AB 的长.23.已知,抛物线)0(32<a bx ax y ++=与x 轴交于A (3,0)、B 两点,与y 轴交于点C ,抛物线的对称轴是直线x=1,D 为抛物线的顶点,点E 在y 轴C 点的上方,且CE=21. (1)求抛物线的解析式及顶点D 的坐标; (2)求证:直线DE 是△ACD 外接圆的切线; (3)在直线AC 上方的抛物线上找一点P ,使ACD ACP S S △△21=,求点P 的坐标; (4)在坐标轴上找一点M ,使以点B 、C 、M 为顶点的三角形与△ACD 相似,直接写出点M 的坐标.2020年深圳市中考总复习数学试卷八参考答案一、选择题.1-12 CCDDC BDCDD CC二、填空题.13.)32(52+--a a a 14.52 15.7(半角模型,旋转△ABD 或者△ACE 都可) 16.27三、解答题. 17.-1018.原式=xx 2- 带入x =2 原式=0 19.(1)5 (2)36 (3)P=10320.21.22.23.。

2020年深圳市中考数学试卷(带答案及详细解析)

2020年深圳市中考数学试卷(带答案及详细解析)

2020年深圳市中考数学试卷一、选择题(每小题3分,共12小题,满分36分) 1. 2020的相反数是( )A.2020C.-2020D.2. 下列图形中既是轴对称图形,也是中心对称图形的是( )A. B. C. D.3. 2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约 150 000 000元。

将150 000 000用科学记数法表示为( )4.下列哪个图形,主视图、左视图和俯视图相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5. 某同学在今年的中考体育测试中选考跳绳。

考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数...和中位数...分别是()( )A.253,253B.255,253C.253,247D.255,2476. 下列运算正确的是( B.C.D.7. 一把直尺与30°的直角三角板如图所示,∠1=40°,则∠2=( ) A.50° B.60°C.70°D.80° 8. 如图,已知AB =AC ,BC =6,山尺规作图痕迹可求出BD =( )A.2B.3C.4D.530021A9. 以下说法正确的是( ) A.平行四边形的对边相等 B.圆周角等于圆心角的一半C.分式方程的解为x =2 D.三角形的一个外角等于两个内角的和10. 如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为() ( ) A.200tan70°米 B.米C.200sin70°米D.米11. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( ) A.B.4ac -b 2<0C.3a +c >0D.ax 2+bx +c =n +1无实数根12. 如图,矩形纸片ABCD 中,AB =6,BC =12.将纸片折叠,使点B 落在边AD的延长线上的点G 处,折痕为EF ,点E 、F 分别在边AD 和边BC 上。

2020年广东省深圳市中考数学试卷-含详细解析

2020年广东省深圳市中考数学试卷-含详细解析

2020年广东省深圳市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.2020的相反数是()A. 2020B. −2020C. 12020D. −120202.下列图形既是轴对称图形又是中心对称图形的是()A. B.C. D.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A. 0.15×108B. 1.5×107C. 15×107D. 1.5×1084.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A. 圆锥B. 圆柱C. 三棱柱D. 正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A. 253,253B. 255,253C. 253,247D. 255,2476.下列运算正确的是()A. a+2a=3a2B. a2⋅a3=a5C. (ab)3=ab3D. (−a3)2=−a67.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A. 40°B. 60°C. 70°D. 80°8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A. 2B. 3C. 4D. 59.以下说法正确的是()A. 平行四边形的对边相等B. 圆周角等于圆心角的一半C. 分式方程1x−2=x−1x−2−2的解为x=2D. 三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A. 200tan70°米B. 200tan70∘米 C. 200sin 70°米 D. 200sin70∘米11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A. abc>0B. 4ac−b2<0C. 3a+c>0D. 关于x的方程ax2+bx+c=n+1无实数根12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD 于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共12.0分)13.分解因式:m3−m=______.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是______.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=kx(k≠0)的图象经过▱OABC的顶点C,则k=______.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=12,BO OD =43,则S△ABDS△CBD=______.三、计算题(本大题共2小题,共11.0分)17.计算:(13)−1−2cos30°+|−√3|−(4−π)0.18.先化简,再求值:a+1a2−2a+1÷(2+3−aa−1),其中a=2.四、解答题(本大题共5小题,共41.0分)19.以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=______,n=______.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是______度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有______名.20.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG =ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(−3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O′B′C′,点O、B、C的对应点分别为点O′、B′、C′,设平移时间为t秒,当点O′与点A重合时停止移动.记△O′B′C′与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=9作垂线,垂足为E,试2?若存在,请求出F 问在该抛物线的对称轴上是否存在一点F,使得ME−MF=14的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:2020的相反数是:−2020.故选:B.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】B【解析】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.根据中心对称图形与轴对称图形的概念进行判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】D【解析】解:将150000000用科学记数法表示为1.5×108.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.【答案】A【解析】解:x−=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.根据中位数、众数的计算方法,分别求出结果即可.本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.【答案】B【解析】解:a+2a=3a,因此选项A不符合题意;a2⋅a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(−a3)2=a6,因此选项D不符合题意;故选:B.利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.7.【答案】D【解析】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°−60°−40°=80°,∵AB//CD,∴∠3=∠2=80°,故选:D.根据平角的定义和平行线的性质即可得到结论.本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.【答案】B【解析】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=12BC=12×6=3,故选:B.依据等腰三角形的性质,即可得到BD=12BC,进而得出结论.本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.【答案】A【解析】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x−1−2(x−2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.根据平行四边形的性质对A进行判断;根据圆周角定理对B进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【解析】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQPT,∴PT=PQtan70∘=200tan70∘,即河宽200tan70∘米,故选:B.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.11.【答案】C【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x=1时,y<0,可对C进行判断;根据抛物线y= ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12.【答案】C【解析】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=ABBE =612=12,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF 是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.13.【答案】m(m+1)(m−1)【解析】解:m3−m,=m(m2−1),=m(m+1)(m−1).先提取公因式m,再对余下的多项式利用平方差公式继续分解.本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.【答案】37【解析】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为37,故答案为:37.用袋子中编号为偶数的小球的数量除以球的总个数即可得.本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.【答案】−2【解析】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(12,1),∵A(3,1),∴C的坐标为(−2,1),∵反比例函数y=kx(k≠0)的图象经过点C,∴k=−2×1=−2,故答案为−2.连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.【答案】332【解析】解:如图,过点D作DM//BC,交CA的延长线于点M,延长BA交DM于点N,∵DM//BC,∴△ABC∽△ANM,△OBC∽△ODM,∴ABBC =ANNM=tan∠ACB=12,BCDM=OBOD=43,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴ABBC =DNNA=12,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由BCDM =OBOD=43得,DM=32a,∴4b+b=32a,即,b=310a,∴S △ABD S △BCD =12AB⋅DN 12BC⋅NB =ab 2a⋅(a+2b)=310a 22a⋅1610a =332.故答案为:332.通过作辅助线,得到△ABC∽△ANM ,△OBC∽△ODM ,△ABC∽△DAN ,进而得出对应边成比例,再根据tan∠ACB =12,BO OD =43,得出对应边之间关系,设AB =a ,DN =b ,表示BC ,NA ,MN ,进而表示三角形的面积,求出三角形的面积比即可.本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.17.【答案】解:原式=3−2×√32+3−1 3−√3+√3−1=2.【解析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解. 本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.18.【答案】解:原式=a+1(a−1)2÷2a−2+3−a a−1=a +1(a −1)2÷a +1a −1 =a +1(a −1)2×a −1a +1 =1a −1当a =2时,原式=12−1=1.【解析】先将分式进行化简,然后代入值即可求解.本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.【答案】50 10 72 180【解析】解:(1)m =15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×1050=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC//AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=√102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD⋅AE=12AC⋅CE,∴CD=6×810=245.【解析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC//AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.【答案】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300−y)个,获得利润为w元,由题意得:w=(14−10)y+(6−4)(300−y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300−y),∴y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.【解析】(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300−y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.【答案】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:如图,设BE与DG交于Q,∵AEAG =ABAD=23,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵EAAG =ABAD,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【解析】(1)由正方形的性质得出AE =AF ,∠EAG =90°,AB =AD ,∠BAD =90°,得出∠EAB =∠GAD ,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE =AG ,AB =AD ,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)证明△EAB∽△GAD ,得出∠BEA =∠AGD ,则A ,E ,G ,Q 四点共圆,得出∠GQP =∠PAE =90°,连接EG ,BD ,由勾股定理可求出答案.本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.23.【答案】解:(1)∵抛物线y =ax 2+bx +3过点A(−3,0),B(1,0),∴{9a −3b +3=0a +b +3=0,解得{a =−1b =−2, ∴抛物线的解析式为y =−x 2−2x +3;(2)①0<t <1时,如图1,∵OO′=t ,OB′=1−t ,∴OE =3OB′=3−3t ,∴S =12×(C′O′+OE)×OO′=12×(3+3−3t)×t =−32t 2+3t , ②1≤t <32时,S =32; ③32≤t ≤3时,如图2,∵AO =3,O′O =t ,∴AO′=3−t ,O′O =6−2t ,∴C′Q =2t −3,∵QH =2HE ,C′H =3HE ,∴HE =15C′D =15(2t −3),∴S =32−12(2t −3)×15(2t −3), ∴S =−25t 2+65t +35,综合以上可得:S ={ −32t 2+3t (0<t <1)32(1≤t <32)−25t 2+65t +35(32≤t ≤3). (3)令F(−1,t),则MF =√(m +1)(n −t)2,ME =92−n ,∵ME −MF =14, ∴MF =ME −14, ∴(m +1)2+(n −t)2=(174−n)2,∴m 2+2m +1+t 2−2nt =−172n +28916. ∵n =−m 2−2m +3,∴(1+2n −172)m 2+(2+4n −17)m +1+t 2−6t +512−28916=0. 当n =154时,上式对于任意m 恒成立,∴存在F(−1,154).【解析】(1)将点A(−3,0)、B(1,0)代入抛物线的解析式得到关于a 、b 的方程组即可;(2)分三种情况:①0<t <1时,②1≤t <32时,③32≤t ≤3时,可由面积公式得出答案;(3)令F(−1,t),则MF =√(m +1)(n −t)2,ME =92−n ,得出(m +1)2+(n −t)2=(174−n)2,可求出n =154.则得出答案.本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。

2020年广东省深圳市中考数学试卷及答案解析

2020年广东省深圳市中考数学试卷及答案解析

2020年广东省深圳市中考数学试卷一、选择题(每小题3分,共12小题,满分36分)1.(3分)2020的相反数是()A.2020B.12020C.﹣2020D.−120202.(3分)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×1084.(3分)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.(3分)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,247 6.(3分)下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a67.(3分)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是( )A .40°B .60°C .70°D .80°8.(3分)如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP ,AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .若BC =6,则BD 的长为( )A .2B .3C .4D .59.(3分)以下说法正确的是( )A .平行四边形的对边相等B .圆周角等于圆心角的一半C .分式方程1x−2=x−1x−2−2的解为x =2D .三角形的一个外角等于两个内角的和10.(3分)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A.200tan70°米B.200tan70°米C.200sin 70°米D.200sin70°米11.(3分)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根12.(3分)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD 的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD 于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A .1个B .2个C .3个D .4个二、填空题(本题共4小题,每小题3分,共12分)13.(3分)分解因式:m 3﹣m = .14.(3分)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是 .15.(3分)如图,在平面直角坐标系中,O (0,0),A (3,1),B (1,2).反比例函数y =k x (k≠0)的图象经过▱OABC 的顶点C ,则k = .16.(3分)如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠ABC =∠DAC =90°,tan∠ACB =12,BO OD =43,则S △ABDS △CBD = .三、解答题(本题共7小题,共52分)17.(5分)计算:(13)﹣1﹣2cos30°+|−√3|﹣(4﹣π)0.18.(6分)先化简,再求值:a+1a2−2a+1÷(2+3−aa−1),其中a=2.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E 、A 、D 在同一条直线上),发现BE =DG 且BE ⊥DG .小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转(如图1),还能得到BE =DG 吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转(如图2),试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG 和矩形ABCD ,且AE AG =AB AD =23,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中,DE 2+BG 2的值是定值,请求出这个定值.23.(9分)如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴的交点A (﹣3,0)和B (1,0),与y 轴交于点C ,顶点为D .(1)求该抛物线的解析式;(2)连接AD ,DC ,CB ,将△OBC 沿x 轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A 重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=92作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=14?若存在,请求出F的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共12小题,满分36分)1.(3分)2020的相反数是()A.2020B.12020C.﹣2020D.−12020【解答】解:2020的相反数是:﹣2020.故选:C.2.(3分)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.3.(3分)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108【解答】解:将150000000用科学记数法表示为1.5×108.故选:D.4.(3分)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体【解答】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.5.(3分)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,247【解答】解:x=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.6.(3分)下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6【解答】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.7.(3分)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°【解答】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB ∥CD ,∴∠3=∠2=80°,故选:D .8.(3分)如图,在△ABC 中,AB =AC .在AB 、AC 上分别截取AP ,AQ ,使AP =AQ .再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠BAC 内交于点R ,作射线AR ,交BC 于点D .若BC =6,则BD 的长为( )A .2B .3C .4D .5【解答】解:由题可得,AR 平分∠BAC ,又∵AB =AC ,∴AD 是三角形ABC 的中线,∴BD =12BC =12×6=3, 故选:B .9.(3分)以下说法正确的是( )A .平行四边形的对边相等B .圆周角等于圆心角的一半C .分式方程1x−2=x−1x−2−2的解为x =2D.三角形的一个外角等于两个内角的和【解答】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.10.(3分)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.200tan70°米C.200sin 70°米D.200sin70°米【解答】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=PQ PT,∴PT=PQtan70°=200tan70°,即河宽200tan70°米,故选:B.11.(3分)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根【解答】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.12.(3分)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD 的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD 于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个【解答】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO =∠FBO , 又∵∠EOG =∠BOF , ∴△BOF ≌△GOE (ASA ), ∴BF =EG ,∴BF =EG =GF ,故②正确, ∵BE =EG =BF =FG , ∴四边形BEGF 是菱形, ∴∠BEF =∠GEF ,当点F 与点C 重合时,则BF =BC =BE =12, ∵sin ∠AEB =AB BE =612=12, ∴∠AEB =30°,∴∠DEF =75°,故④正确,由题意无法证明△GDK 和△GKH 的面积相等,故③错误; 故选:C .二、填空题(本题共4小题,每小题3分,共12分) 13.(3分)分解因式:m 3﹣m = m (m +1)(m ﹣1) . 【解答】解:m 3﹣m , =m (m 2﹣1), =m (m +1)(m ﹣1).14.(3分)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是37.【解答】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为37,故答案为:37.15.(3分)如图,在平面直角坐标系中,O (0,0),A (3,1),B (1,2).反比例函数y =kx (k ≠0)的图象经过▱OABC 的顶点C ,则k = ﹣2 .【解答】解:连接OB ,AC ,交点为P , ∵四边形OABC 是平行四边形, ∴AP =CP ,OP =BP , ∵O (0,0),B (1,2), ∴P 的坐标(12,1),∵A (3,1),∴C 的坐标为(﹣2,1),∵反比例函数y =kx (k ≠0)的图象经过点C , ∴k =﹣2×1=﹣2, 故答案为﹣2.16.(3分)如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠ABC =∠DAC =90°,tan ∠ACB =12,BO OD=43,则S △ABD S △CBD=332.【解答】解:如图,过点D 作DM ∥BC ,交CA 的延长线于点M ,延长BA 交DM 于点N , ∵DM ∥BC ,∴△ABC ∽△ANM ,△OBC ∽△ODM , ∴AB BC=AN NM=tan ∠ACB =12,BC DM=OB OD=43,又∵∠ABC =∠DAC =90°, ∴∠BAC +∠NAD =90°, ∵∠BAC +∠BCA =90°, ∴∠NAD =∠BCA , ∴△ABC ∽△DAN , ∴AB BC=DN NA=12,设AB =a ,DN =b ,则BC =2a ,NA =2b ,MN =4b , 由BC DM=OB OD =43得,DM =32a ,∴4b +b =32a , 即,b =310a , ∴S △ABD S △BCD=12AB⋅DN 12BC⋅NB =ab 2a⋅(a+2b)=310a 22a⋅1610a=332.故答案为:332.三、解答题(本题共7小题,共52分)17.(5分)计算:(13)﹣1﹣2cos30°+|−√3|﹣(4﹣π)0.【解答】解:原式=3﹣2×√32+3﹣1 3−√3+√3−1 =2.18.(6分)先化简,再求值:a+1a 2−2a+1÷(2+3−aa−1),其中a =2.【解答】解:原式=a+1(a−1)2÷2a−2+3−aa−1=a+1(a−1)2÷a+1a−1 =a+1(a−1)2×a−1a+1=1a−1当a =2时,原式=12−1=1.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m 名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题. (1)m = 50 ,n = 10 . (2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是 72 度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有 180 名. 【解答】解:(1)m =15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×1050=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【解答】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC ∥AD , ∴∠OCB =∠E , ∵OB =OC , ∴∠OCB =∠B , ∴∠B =∠E , ∴AE =AB ;(2)解:∵AB 为直径, ∴∠ACB =90°, ∴AC =√102−62=8, ∵AB =AE =10,AC ⊥BE , ∴CE =BC =6, ∵12CD •AE =12AC •CE ,∴CD =6×810=245.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【解答】解:(1)设蜜枣粽的进货单价是x 元,则肉粽的进货单价是(x +6)元, 由题意得:50(x +6)+30x =620,解得:x =4, ∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y 个,则蜜枣粽购进(300﹣y )个,获得利润为w 元, 由题意得:w =(14﹣10)y +(6﹣4)(300﹣y )=2y +600, ∵2>0,∴w 随y 的增大而增大, ∵y ≤2(300﹣y ), ∴y ≤200,∴当y =200时,w 有最大值,w 最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E 、A 、D 在同一条直线上),发现BE =DG 且BE ⊥DG . 小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG 绕点A 按逆时针方向旋转(如图1),还能得到BE =DG 吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转(如图2),试问当∠EAG 与∠BAD 的大小满足怎样的关系时,背景中的结论BE =DG 仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG 和矩形ABCD ,且AE AG=AB AD=23,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中,DE 2+BG 2的值是定值,请求出这个定值.【解答】(1)证明:∵四边形AEFG 为正方形,∴AE =AF ,∠EAG =90°,又∵四边形ABCD 为正方形,∴AB =AD ,∠BAD =90°,∴∠EAB =∠GAD ,∴△AEB ≌△AGD (SAS ),∴BE =DG ;(2)当∠EAG =∠BAD 时,BE =DG ,理由如下:∵∠EAG =∠BAD ,∴∠EAB =∠GAD ,又∵四边形AEFG 和四边形ABCD 为菱形,∴AE =AG ,AB =AD ,∴△AEB ≌△AGD (SAS ),∴BE =DG ;(3)解:如图,设BE 与DG 交于Q ,∵AE AG =AB AD =23,AE =4,AB =8 ∴AG =6,AD =12.∵四边形AEFG 和四边形ABCD 为矩形,∴∠EAG =∠BAD ,∴∠EAB =∠GAD ,∵EA AG =AB AD ,∴△EAB ∽△GAD ,∴∠BEA =∠AGD ,∴A ,E ,G ,Q 四点共圆,∴∠GQP =∠P AE =90°,∴GD ⊥EB ,连接EG ,BD ,∴ED 2+GB 2=EQ 2+QD 2+GQ 2+QB 2=EG 2+BD 2,∴EG 2+BD 2=42+62+82+122=260.23.(9分)如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴的交点A (﹣3,0)和B (1,0),与y 轴交于点C ,顶点为D .(1)求该抛物线的解析式;(2)连接AD ,DC ,CB ,将△OBC 沿x 轴以每秒1个单位长度的速度向左平移,得到△O 'B 'C ',点O 、B 、C 的对应点分别为点O '、B '、C ',设平移时间为t 秒,当点O '与点A 重合时停止移动.记△O 'B 'C '与四边形AOCD 重合部分的面积为S ,请直接写出S 与t 之间的函数关系式;(3)如图2,过该抛物线上任意一点M (m ,n )向直线l :y =92作垂线,垂足为E ,试问在该抛物线的对称轴上是否存在一点F ,使得ME ﹣MF =14?若存在,请求出F 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y =ax 2+bx +3过点A (﹣3,0),B (1,0),∴{9a −3b +3=0a +b +3=0,解得{a =−1b =−2,∴抛物线的解析式为y =﹣x 2﹣2x +3;(2)①0<t <1时,如图1,∵OO '=t ,OB '=1﹣t ,∴OE =3OB '=3﹣3t ,∴S =12×(C 'O '+OE )×OO '=12×(3+3﹣3t )×t =−32t 2+3t , ②1≤t <32时,S =32;③32≤t ≤3时,如图2,∵AO =3,O 'O =t ,∴AO '=3﹣t ,O 'O =6﹣2t ,∴C 'Q =2t ﹣3,∵QH =2HE ,C 'H =3HE ,∴HE =15C 'D =15(2t ﹣3),∴S =32−12(2t −3)×15(2t ﹣3),∴S =−25t 2+65t +35,综合以上可得:S ={ −32t 2+3t(0<t <1)32(1≤t <32)−25t 2+65t +35(32≤t ≤3). (3)令F (﹣1,t ),则MF =√(m +1)(n −t)2,ME =92−n , ∵ME ﹣MF =14,∴MF =ME −14,∴(m +1)2+(n −t)2=(174−n)2, ∴m 2+2m +1+t 2﹣2nt =−172n +28916. ∵n =﹣m 2﹣2m +3, ∴(1+2n −172)m 2+(2+4n ﹣17)m +1+t 2﹣6t +512−28916=0. 当n =154时,上式对于任意m 恒成立,∴存在F (﹣1,154).。

2020年广东省深圳市中考数学试卷(含解析)

2020年广东省深圳市中考数学试卷(含解析)

2020年广东省深圳市中考数学试卷(考试时间:100分钟满分:100分)一、选择题(每小题3分,共36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×1084.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,2476.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a67.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.59.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2D.三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共12分)13.分解因式:m3﹣m=.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.18.(6分)先化简,再求值:÷(2+),其中a=2.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m 名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG 绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C 的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:2020的相反数是:﹣2020.故选:C.2.【解答】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.3.【解答】解:将150000000用科学记数法表示为1.5×108.故选:D.4.【解答】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.5.【解答】解:=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.6.【解答】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.7.【解答】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.8.【解答】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=BC=×6=3,故选:B.9.【解答】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.10.【解答】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=,∴PT==,即河宽米,故选:B.11.【解答】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.12.【解答】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB===,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.二、填空题13.【解答】解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).14.【解答】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为,故答案为:.15.【解答】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(,1),∵A(3,1),∴C的坐标为(﹣2,1),∵反比例函数y=(k≠0)的图象经过点C,∴k=﹣2×1=﹣2,故答案为﹣2.16.【解答】解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由==得,DM=a,∴4b+b=a,即,b=a,∴====.故答案为:.三、解答题17.【解答】解:原式=3﹣2×+3﹣13﹣+﹣1=2.18.【解答】解:原式=÷=÷=×=当a=2时,原式==1.19.【解答】解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.20.【解答】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.21.【解答】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.22.【解答】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.23.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①0<t<1时,如图1,∵OO'=t,OB'=1﹣t,∴OE=3OB'=3﹣3t,∴S=×(C'O'+OE)×OO'=×(3+3﹣3t)×t=﹣+3t,②1≤t<时,S=;③≤t≤3时,如图2,C′O′与AD交于点Q,B′C′与AD交于点P,过点P作PH⊥C′O′于H,∵AO=3,O'O=t,∴AO'=3﹣t,O'Q=6﹣2t,∴C'Q=2t﹣3,∵QH=2PH,C'H=3PH,∴PH=C'Q=(2t﹣3),∴S=(2t﹣3),∴S=﹣,综合以上可得:S=.(3)令F(﹣1,t),则MF=,ME=﹣n,∵ME﹣MF=,∴MF=ME﹣,∴,∴m2+2m+1+t2﹣2nt=﹣.∵n=﹣m2﹣2m+3,∴+(2+4n﹣17)m+1+t2﹣6t+﹣=0.当t=时,上式对于任意m恒成立,∴存在F(﹣1,).。

2020年深圳市中考总复习数学试卷一(含答案和解析)

2020年深圳市中考总复习数学试卷一(含答案和解析)

2020年深圳市中考总复习数学试卷一一、选择题1.﹣的绝对值是()A.﹣B.﹣C.D.52.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a65.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()次数 2 3 4 5人数 2 2 10 6A.3次B.3.5次C.4次D.4.5次6.7.下列事件中,是确定事件的是()A.从一副扑克牌中抽取一张,抽到方块AB.明天太阳从西方升起C.任意买一张电影票座位号是偶数D.阴天就会下雨7.如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)9. A ,B 两地相距180km ,新修的高速公路开通后,在A ,B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为xkm/h ,则根据题意可列方程为( ) A .﹣=1B .﹣=1 C .﹣=1D .﹣=110.如图1,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( ) A .2m B .2m C .(2﹣2)m D .(2﹣2)m图1 图2 图311.如图2,在四边形ABCD 中,∠ABC=90°,AB=BC=2,E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF .若四边形ABCD 的面积为6,则△BEF 的面积为( ) A .2B .C .D .312.平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5 B .6 C .7 D .8二、填空题13.分解因式:x 2﹣1= .14.关于x 的方程()012m 2=+++m x m x 有实根,则m 的取值范围是 。

2020年广东省深圳市中考数学试卷(附答案详解)

2020年广东省深圳市中考数学试卷(附答案详解)

2020年广东省深圳市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.(2021·辽宁省本溪市·历年真题)2020的相反数是()A. 2020B. −2020C. 12020D. −120202.(2021·黑龙江省·历年真题)下列图形既是轴对称图形又是中心对称图形的是()A. B.C. D.3.(2021·广东省·历年真题)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A. 0.15×108B. 1.5×107C. 15×107D. 1.5×1084.(2021·河南省濮阳市·模拟题)分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A. 圆锥B. 圆柱C. 三棱柱D. 正方体5.(2021·宁夏回族自治区固原市·模拟题)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A. 253,253B. 255,253C. 253,247D. 255,2476.(2021·广东省·其他类型)下列运算正确的是()A. a+2a=3a2B. a2⋅a3=a5C. (ab)3=ab3D. (−a3)2=−a67.(2021·全国·模拟题)如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A. 40°B. 60°C. 70°D. 80°8.(2021·吉林省·模拟题)如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A. 2B. 3C. 4D. 59.(2021·广东省深圳市·模拟题)以下说法正确的是()A. 平行四边形的对边相等B. 圆周角等于圆心角的一半C. 分式方程1x−2=x−1x−2−2的解为x=2D. 三角形的一个外角等于两个内角的和10.(2021·广东省·历年真题)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q 的北偏西70°方向,则河宽(PT的长)可以表示为()A. 200tan70°米B. 200tan70∘米 C. 200sin 70°米 D. 200sin70∘米11.(2021·山东省青岛市·模拟题)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A. abc>0B. 4ac−b2<0C. 3a+c>0D. 关于x的方程ax2+bx+c=n+1无实数根12.(2021·安徽省合肥市·模拟题)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD 和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A. 1个B. 2个C. 3个D. 4个13. (2021·江苏省徐州市·模拟题)分解因式:m 3−m =______.14. (2021·广西壮族自治区贵港市·模拟题)一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是______.15. (2021·安徽省合肥市·模拟题)如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y =k x (k ≠0)的图象经过▱OABC 的顶点C ,则k =______.16. (2021·江苏省常州市·模拟题)如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠ABC =∠DAC =90°,tan∠ACB =12,BO OD =43,则S △ABDS △CBD =______.三、计算题(本大题共1小题,共5.0分)17. (2021·湖南省怀化市·模拟题)计算:(13)−1−2cos30°+|−√3|−(4−π)0.18.(2021·湖南省怀化市·模拟题)先化简,再求值:a+1a2−2a+1÷(2+3−aa−1),其中a=2.19.(2021·四川省·单元测试)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=______,n=______.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是______度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有______名.20.(2021·安徽省合肥市·模拟题)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(2021·广东省·历年真题)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(2021·湖南省怀化市·模拟题)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG =ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.23.(2021·湖南省怀化市·模拟题)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(−3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O′B′C′,点O、B、C的对应点分别为点O′、B′、C′,设平移时间为t秒,当点O′与点A重合时停止移动.记△O′B′C′与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=9作垂线,垂足为E,试2?若存在,请求出F 问在该抛物线的对称轴上是否存在一点F,使得ME−MF=14的坐标;若不存在,请说明理由.答案和解析1.【答案】B【知识点】相反数【解析】【分析】此题主要考查了相反数,正确把握相反数的定义是解题关键.直接利用相反数的定义得出答案.【解答】解:2020的相反数是:−2020.故选B.2.【答案】B【知识点】中心对称图形、轴对称图形【解析】【分析】根据中心对称图形与轴对称图形的概念进行判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.【解答】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.3.【答案】D【知识点】科学记数法-绝对值较大的数【解析】解:将150000000用科学记数法表示为1.5×108.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【知识点】作图-三视图、由三视图判断几何体、简单几何体的三视图【解析】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.【答案】A【知识点】算术平均数、中位数【解析】【分析】本题考查中位数、平均数的意义和计算方法,属于基础题.根据中位数、平均数的计算方法,分别求出结果即可.【解答】解:x−=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选A.6.【答案】B【知识点】同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】【分析】本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.【解答】解:A.a+2a=3a,因此选项A不符合题意;B.a2⋅a3=a2+3=a5,因此选项B符合题意;C.(ab)3=a3b3,因此选项C不符合题意;D.(−a3)2=a6,因此选项D不符合题意;故选:B.7.【答案】D【知识点】平行线的性质【解析】【分析】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.首先根据平角的定义求出∠3=80°,再由平行线的性质求解即可.【解答】解:如图,由题意得∠4=60°,∵∠1=40°,∴∠3=180°−60°−40°=80°,∵AB//CD,∴∠3=∠2=80°,故选D.8.【答案】B【知识点】作一个角的平分线、等腰三角形的性质【解析】【分析】本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.依据等腰三角形的性质,即可得到BD=12BC,进而得出结论.【解答】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=12BC=12×6=3,故选B.9.【答案】A【知识点】平行四边形的性质、圆周角定理、圆心角、弧、弦的关系、分式方程的解【解析】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x−1−2(x−2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.根据平行四边形的性质对A进行判断;根据圆周角定理对B进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】B【知识点】解直角三角形的应用【解析】【分析】此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.【解答】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQPT,∴PT=PQtan70∘=200tan70∘,即河宽200tan70∘米,故选:B.11.【答案】C【知识点】二次函数与一元二次方程、二次函数图象与系数的关系、根的判别式【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x=1时,y<0,可对C进行判断;根据抛物线y= ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12.【答案】C【知识点】翻折变换(折叠问题)、矩形的性质、菱形的判定与性质、锐角三角函数的定义、三角形的面积【解析】【分析】本题主要考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.【解答】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=ABBE =612=12,∴∠AEB=30°,∴∠DEF=75°,故④正确,过点K作KM⊥GH于点M,∵四边形BEGF是菱形,∴BG平分∠DGH,∴KD=KM,在Rt△DHG中,DG<HG,又∵S△DKG=12·DG·DK,S△GKH=12·GH·KM,∴S△GDK<S△GKH,故③错误;故选C.13.【答案】m(m+1)(m−1)【知识点】提公因式法与公式法的综合运用【解析】解:m3−m,=m(m2−1),=m(m+1)(m−1).先提取公因式m,再对余下的多项式利用平方差公式继续分解.本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.【答案】37【知识点】概率公式【解析】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为3,7故答案为:3.7用袋子中编号为偶数的小球的数量除以球的总个数即可得.本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.【答案】−2【知识点】反比例函数图象上点的坐标特征、平行四边形的性质【解析】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),,1),∴P的坐标(12∵A(3,1),∴C的坐标为(−2,1),(k≠0)的图象经过点C,∵反比例函数y=kx∴k=−2×1=−2,故答案为−2.连接OB ,AC ,交点为P ,根据平行四边形的性质:对角线互相平分,由O ,B 的坐标易求P 的坐标,即可求出则C 点坐标,根据待定系数法即可求得k 的值.本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C 点的坐标是解答此题的关键.16.【答案】332 【知识点】角平分线的性质、解直角三角形、相似三角形的判定与性质 【解析】解:如图,过点D 作DM//BC ,交CA 的延长线于点M ,延长BA 交DM 于点N , ∵DM//BC ,∴△ABC∽△ANM ,△OBC∽△ODM ,∴AB BC =AN NM =tan∠ACB =12,BC DM=OB OD =43, 又∵∠ABC =∠DAC =90°,∴∠BAC +∠NAD =90°,∵∠BAC +∠BCA =90°,∴∠NAD =∠BCA ,∴△ABC∽△DAN ,∴AB BC =DN NA =12,设AB =a ,DN =b ,则BC =2a ,NA =2b ,MN =4b ,由BC DM =OB OD =43得,DM =32a ,∴4b +b =32a ,即,b =310a ,∴S △ABDS △BCD =12AB⋅DN 12BC⋅NB =ab 2a⋅(a+2b)=310a 22a⋅1610a =332.故答案为:332.通过作辅助线,得到△ABC∽△ANM ,△OBC∽△ODM ,△ABC∽△DAN ,进而得出对应边成比例,再根据tan∠ACB =12,BO OD=43,得出对应边之间关系,设AB =a ,DN =b ,表示BC ,NA ,MN ,进而表示三角形的面积,求出三角形的面积比即可.本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.17.【答案】解:原式=3−2×√32+√3−1=3−√3+√3−1=2.【知识点】特殊角的三角函数值、负整数指数幂、零指数幂、实数的运算【解析】本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.18.【答案】解:原式=a+1(a−1)2÷2a−2+3−aa−1=a+1(a−1)2÷a+1a−1 =a+1(a−1)2×a−1a+1 =1a−1当a=2时,原式=12−1=1.【知识点】分式的化简求值【解析】本题考查了分式的化简求值,解决本题的关键是进行分式的化简.先将分式进行化简,然后代入值即可求解.19.【答案】解:(1)50;10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如图所示;(3)72;(4) 180.【知识点】扇形统计图、用样本估计总体、条形统计图【解析】【分析】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意.(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.【解答】解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为50;10;(2)见答案;=72°,(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×1050故答案为72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为180.20.【答案】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∵CD⊥AD,∴OC//AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=√102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD⋅AE=12AC⋅CE,∴CD=6×810=245.【知识点】勾股定理、圆周角定理、切线的性质【解析】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.(1)连接AC、OC,根据切线的性质得到OC⊥CD,则可判断OC//AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.21.【答案】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300−y)个,获得利润为w元,由题意得:w=(14−10)y+(6−4)(300−y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300−y),∴y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.【知识点】一元一次不等式的应用、一元一次方程的应用、一次函数的应用【解析】(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300−y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.【答案】(1)证明:∵四边形AEFG为正方形,∴AE=EF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:如图,设BE与DG交于Q,∵AE AG =AB AD =23,AE =4,AB =8∴AG =6,AD =12.∵四边形AEFG 和四边形ABCD 为矩形,∴∠EAG =∠BAD ,∴∠EAB =∠GAD ,∵EA AG =AB AD ,∴△EAB∽△GAD ,∴∠BEA =∠AGD ,∴A ,E ,G ,Q 四点共圆,∴∠GQP =∠PAE =90°,∴GD ⊥EB ,连接EG ,BD ,∴ED 2+GB 2=EQ 2+QD 2+GQ 2+QB 2=EG 2+BD 2,∴EG 2+BD 2=42+62+82+122=260.【知识点】菱形的性质、相似形综合、勾股定理、全等三角形的判定与性质【解析】(1)由正方形的性质得出AE =EF ,∠EAG =90°,AB =AD ,∠BAD =90°,得出∠EAB =∠GAD ,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE =AG ,AB =AD ,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)证明△EAB∽△GAD ,得出∠BEA =∠AGD ,则A ,E ,G ,Q 四点共圆,得出∠GQP =∠PAE =90°,连接EG ,BD ,由勾股定理可求出答案.本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键. 23.【答案】解:(1)∵抛物线y =ax 2+bx +3过点A(−3,0),B(1,0),∴{9a −3b +3=0a +b +3=0,解得{a =−1b =−2, ∴抛物线的解析式为y =−x 2−2x +3;(2)①0<t <1时,如图1,∵OO′=t ,OB′=1−t ,∴OE =3OB′=3−3t ,∴S =12×(C′O′+OE)×OO′=12×(3+3−3t)×t =−32t 2+3t , ②1≤t <32时,S =32; ③32≤t ≤3时,如图2,∵AO =3,O′O =t ,∴AO′=3−t ,O′Q =6−2t ,∴C′Q =2t −3, ∵QH =2HP ,C′H =3HP ,∴HP =15C′Q =15(2t −3), ∴S =32−12(2t −3)×15(2t −3), ∴S =−25t 2+65t +35,综合以上可得:S ={ −32t 2+3t (0<t <1)32(1≤t <32)−25t 2+65t +35(32≤t ≤3). (3)令F(−1,t),则MF =√(m +1)(n −t)2,ME =92−n ,∵ME −MF =14,∴MF =ME −14, ∴(m +1)2+(n −t)2=(174−n)2,∴m 2+2m +1+t 2−2nt =−172n +28916. ∵n =−m 2−2m +3,∴(1+2t −172)m 2+(2+4t −17)m +1+t 2−6t +512−28916=0. 当t =154时,上式对于任意m 恒成立,∴存在F(−1,154).【知识点】二次函数综合【解析】(1)将点A(−3,0)、B(1,0)代入抛物线的解析式得到关于a 、b 的方程组即可;(2)分三种情况:①0<t <1时,②1≤t <32时,③32≤t ≤3时,可由面积公式得出答案;(3)令F(−1,t),则MF =√(m +1)(n −t)2,ME =92−n ,得出(m +1)2+(n −t)2=(174−n)2,可求出t =154.则得出答案.本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。

2020年深圳市中考总复习数学试卷九(含答案和解析)

2020年深圳市中考总复习数学试卷九(含答案和解析)

2020年深圳市中考总复习数学试卷九一、选择题(本部分共12小题,每题3分,共36分。

)1.2-的相反数的倒数是( )A. 2B.22C. 2-D. 22-2. 据报道,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为( ) A .4103.39⨯B .51093.3⨯C .61093.3⨯D .610393.0⨯3. 下列几何体中,主视图相同的是( )A .①②B .①③C .①④D .②④4. 若关于x 的方程kx 2﹣4x +1=0有实数根,则k 的取值范围是( )A .k >4 且k ≠0B .k >4C .k ≤4且k ≠0D .k ≤45. 在一只不透明的口袋中放人只有颜色不同的白球6个,黑球4个,黄球n 个,搅匀后随机从中摸取1个恰好是白球的概率为31,则放入的黄球总数为( ) A. 5个B.6个C. 8个D. 10个6. 若关于x 的不等式02≤-m x 的正整数解只有4个,则m 的取值范围是( )A. 108<<mB. 108<m ≤C. 108≤≤mD. 54<m ≤7. 为了解某班同学一周的课外阅读量,任选班上15名同学进行调查,如下表,则下列说法错误的是( )阅读量(单位:本/周)0 1 2 3 4 人数(单位:人) 1 4 6 2 2A .中位数是2B .平均数是2C .众数是2D .极差是28. 平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5 B .6C .7D .89. 如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是( ) A .24B .4.75C .5D .4.8(第9题) (第10题) (第11题) (第12题)10. 如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO=30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( ) A. (23,323) B. (2,323) C. (323,23) D. (23,3-323)11. 如图,二次函数)0(2≠++=a c bx ax y 图象经过点(-1,2),下列结论中正确的有( )①024<c b a +-;②02<b a -;③1<c a +;④ac a b 482>+, A. 1个B. 2个C. 3个D. 4个12. 如图,将正方形ABCD 折叠,使点A 与CD 边上的点H 重合(H 不与C ,D 重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G .设正方形ABCD 周长为m ,△CHG 周长为n ,则的值为( )A .22 B .21C .21-5D .21-2二、填空题(本部分共4小题,每题3分,共12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年深圳市中考数学总复习命题专题一、选择题1.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果,那么.A. 1个B. 2个C. 3个D. 4个2.下列命题中,真命题是()A. 直角三角形只有一条高线B. 任何一个角都比它的补角小C. 等角的余角相等D. 一个锐角与一个钝角的和等于一个平角3.下列命题为假命题的是().A. 三条边分别对应相等的两个三角形全等B. 三角形的一个外角大于与它相邻的内角C. 角平分线上的点到角两边的距离相等D. 等边三角形的三条角平分线、三条中线、三条高分别交于一点4.下面命题正确的是()A. 矩形对角线互相垂直B. 方程x2=14x的解为x=14C. 六边形内角和为540°D. 一条斜边和一条直角边分别相等的两个直角三角形全等5.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是()A. ①②③④B. ①③④C. ①③D. ①6.下列命题是真命题的是()A. 两边及其中一边的对角分别相等的两个三角形全等B. 平分弦的直径垂直于弦C. 对边平行且一组对角相等的四边形是平行四边形D. 两条直线被第三条直线所截,内错角相等7.下列命题是真命题的是()A. 同旁内角相等,两直线平行B. 对角线互相平分的四边形是平行四边形C. 相等的两个角是对顶角D. 圆内接四边形对角相等8.下列命题是假命题的是( )A. 平行四边形既是轴对称图形,又是中心对称图形B. 同角(或等角)的余角相等C. 线段垂直平分线上的点到线段两端的距离相等D. 正方形的对角线相等,且互相垂直平分9.下列命题是真命题的是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 任意多边形的内角和为360°D. 三角形的中位线平行于第三边,并且等于第三边的一半10.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“ ”,丙说他看到的是“ ”,丁说他看到的是“9”,则下列说法正确的是()A. 甲在丁的对面,乙在甲的左边,丙在丁的右边B. 丙在乙的对面,丙的左边是甲,右边是乙C. 甲在乙的对面,甲的右边是丙,左边是丁D. 甲在丁的对面,乙在甲的右边,丙在丁的右边11.下列命题正确的是()A. 对角线互相垂直平分的四边形是正方形B. 两边及其一角相等的两个三角形全等C. 的算术平方根为3D. 数据4,0,4,6,6的方差是4.812.下列命题中,是假命题的是()A. 任意多边形的外角和为360°B. 在△ABC和△A′B′C′中,若AB=A′B′,BC=B′C′,∠C=∠C′=90°,则△ABC≌△A′B′C′C. 在一个三角形中,任意两边之差小于第三边D. 同弧所对的圆周角和圆心角相等13.下列命题的逆命题是真命题的是()A. 如果两个角是直角,那么它们相等B. 全等三角形的对应角相等C. 两直线平行,内错角相等D. 对顶角相等14.下列命题中,真命题是()A. 对角线垂直相等的四边形是正方形B. 三角形的一个外角大于它的内角C. 垂直于同一直线的两条直线平行D. 同弧所对的圆周角的度数等于圆心角度数的一半15.下列哪一个是假命题()A. 五边形外角和为360°B. 切线垂直于经过切点的半径C. (3,﹣2)关于y轴的对称点为(﹣3,2)D. 抛物线y=x2﹣4x+2017对称轴为直线x=216.下列四个命题中,真命题的是( )A. 相等的圆心角所对的弧相等B. 同旁内角互补C. 平行四边形是轴对称图形D. 全等三角形对应边上的高相等17.有下列命题:①若x2=x,则x=1;②若a2=b2,则a=b;③线段垂直平分线上的点到线段两端的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是()A. 1个B. 2个C. 3个D. 4个18.在平面直角坐标系中,如果x 与y 都是整数,就称点(x,y)为整点.下列命题中错误的是( )A. 存在这样的直线,既不与坐标轴平行,又不经过任何整点B. 若k 与b 都是无理数,则直线y=kx+b 不经过任何整点C. 若直线y=kx+b 经过无数多个整点,则k 与b 都是有理数D. 存在恰好经过一个整点的直线19.下列命题中,真命题的个数有()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②过直线外一点有且只有一条直线与这条直线平行.③两条直线被第三条直线所截,同旁内角互补.④内错角相等,两直线平行.A. 4B. 3C. 2D. 120.下列命题中,真命题是()A. 周长相等的锐角三角形都全等B. 周长相等的等腰直角三角形都全等C. 周长相等的钝角三角形都全等D. 周长相等的直角三角形都全等21.下列命题中,真命题是()A. 若a>b,则c﹣a>c﹣bB. 投一枚硬币10次,有8次正面朝上,则第11次投硬币反面朝上的机会较大C. 点M(x1,y1),点N(x2,y2)都在反比例函数y= 的图象上,若x1<x2,则y1>y2D. 甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S =3.2,S =2.4,这过程中乙发挥比甲更稳定22.下列四个命题中,属于真命题的共有()①相等的圆心角所对的弧相等②若= • ,则a、b都是非负实数③相似的两个图形一定是位似图形④三角形的内心到这个三角形三边的距离相等.A. 1个B. 2个C. 3个D. 4个23.下列命题中,是真命题的是()A. 两直线平行,内错角相等B. 两个锐角的和是钝角C. 直角三角形都相似D. 正六边形的内角和为360°24.如图,AB是⊙O的直径,AC,BC分别与⊙O相交于点D,E,连接DE,现给出两个命题:①若AC=AB,则DE=CE;②若∠C=45°,记△CDE的面积为S1,四边形DABE的面积为S2,则S1=S2,那么()A. ①是真命题②是假命题B. ①是假命题②是真命题C. ①是假命题②是假命题D. ①是真命题②是真命题25.下列命题错误的是()A. 对角线互相平分的四边形是平行四边形B. 对角线相等的平行四边形是矩形C. 一条对角线平分一组对角的四边形是菱形D. 对角线互相垂直的矩形是正方形26.下列命题是真命题的是()A. 若一组数据是1,2,3,4,5,则它的方差是3B. 若分式方程有增根,则它的增根是1C. 对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是矩形D. 若一个角的两边分别与另一个角的两边平行,则这两个角相等27.下列命题中,假命题有()①两点之间线段最短;②到角的两边距离相等的点在角的平分线上;③过一点有且只有一条直线与已知直线平行;④垂直于同一直线的两条直线平行;⑤若⊙O的弦AB,CD交于点P,则PA•PB=PC•PD.A. 4个B. 3个C. 2个D. 1个28.已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A. 1个B. 2个C. 3个D. 4个29.下列命题是真命题的是()A. 相等的角是对顶角B. 若实数a,b满足a2=b2,则a=bC. 若实数a,b满足a<0,b<0,则ab<0D. 角的平分线上的点到角的两边的距离相等30.下列关于图形对称性的命题,正确的是()A. 圆既是轴对称性图形,又是中心对称图形B. 正三角形既是轴对称图形,又是中心对称图形C. 线段是轴对称图形,但不是中心对称图形D. 菱形是中心对称图形,但不是轴对称图形2020年深圳市中考数学总复习命题专题参考答案及试题解析一、选择题1.解:两条平行直线被第三条直线所截,内错角相等,故①错误;如果∠1和∠2是对顶角,那么∠1=∠2,故②正确;三角形的一个外角大于任何一个和它不相邻的内角,故③错误;若x2>0,则x≠0,故④错误;真命题为:②.故答案为:A.2.解:A、直角三角形有三条高,原命题是假命题,故A不符合题意;B、任何一个角不一定比它的补角小,可能大于它的补角,也可能等于它的补角或小于它的补角,原命题是假命题,故B不符合题意;C、等角的余角相等,此命题是真命题,故C符合题意;D、一个锐角与一个钝角的和等于一个平角,此命题是假命题,故D不符合题意;故答案为:C.3.根据“边边边”可判定三角形全等,故A为真命题;三角形的一个外角与它相邻的内角是互补关系,无法判断大小关系,故B为假命题;角平分线上的点到角两边的距离相等,是角平分线的性质,故C为真命题;等边三角形是特殊的等腰三角形,根据三线合一可知三条角平分线、三条中线、三条高分别交于一点,故D为真命题故选B.4.解:A、矩形的对角线相等且互相平分,故A不符合题意;B、方程x2=14x的解为x1=0,x2=14,故B不符合题意;C、六边形的内角和为720°,故C不符合题意;D、一条斜边和一条直角边分别相等的两个直角三角形全等,故D符合题意;故答案为:D.5.解:①两直线平行,内错角相等;其逆命题:内错角相等,两直线平行,是真命题;②对顶角相等,其逆命题:相等的角是对顶角,是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形,是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形,是假命题。

故答案为:C。

6. 解:A、由两边及其中一边的对角分别相等无法证明两个三角形全等,故A错误,是假命题;B、平分弦(非直径)的直径垂直于弦,故B错误,是假命题;C、一组对边平行且一组对角相等的四边形是平行四边形,故C正确,是真命题;D、两条平行线被第三条直线所截,内错角相等,故D错误,是假命题;故答案为:C.7.A.同旁内角相等,两直线平行;假命题;B.对角线互相平分的四边形是平行四边形;真命题;C.相等的两个角是对顶角;假命题;D.圆内接四边形对角相等;假命题;故答案为:B.8.A.平行四边形不是轴对称图形,是中心对称图形,故A选项是假命题,符合题意;B.同角(或等角)的余角相等,是真命题,不符合题意;C.线段垂直平分线上的点到线段两端的距离相等,是真命题,不符合题意;D.正方形的对角线相等,且互相垂直平分,是真命题,不符合题意,故答案为:A.9.A、对角线相等的平行四边形是矩形,所以A选项为假命题;B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;C、任意多边形的外角和为360°,所以C选项为假命题;D、三角形的中位线平行于第三边且等于第三边的一半,所以D选项为真命题,故答案为:D.10.解:由题意可得,∵甲说他看到的是“6,丁说他看到的是“9”,说明两人做对面,乙和丙做对面,又∵乙说他看到的是“ ”,∴乙在甲右边,则丙在丁右边.故答案为:D11.解:A、对角线互相垂直平分且相等的四边形是正方形,是假命题;B、两边及其夹角相等的两个三角形全等,是假命题;C、的算术平方根是,是假命题;D、数据4,0,4,6,6的方差是4.8,是真命题;故答案为:D.12.解:A、任意多边形的外角和为360°,故正确,是真命题,不符合题意;B、在△ABC和△A′B′C′中,若AB=A′B′,BC=B′C′,∠C=∠C′=90°,由(HL)可得△ABC≌△A′B′C′,故正确,是真命题,不符合题意;C、在一个三角形中,任意两边之差小于第三边,故正确,是真命题,不符合题意;D、同弧所对的圆周角是圆心角的一半,错误,是假命题,符合题意.故答案为:D.13.解:A.逆命题是:如果两个角相等,那么它们是直角。

相关文档
最新文档