机械设计基础第16章
高等教育出版社第16章 机械设计基础第五版滚动轴承
计算准则: 一般轴承 —疲劳寿命计算(针对点蚀) 静强度计算
低速或摆动轴承 —只进行静强度计算
高速轴承 —进行疲劳寿命计算、校验极限转速。
二、轴承寿命
轴承的寿命:轴承的一个套圈或滚动体材料出现第 一个疲劳扩展迹象前,一个套圈相对 于另一个套圈的总转数,或在某一转 速下的工作小时数。
由于制造精度、材料的差异,即使是同样的材 料、同样的尺寸以及同一批生产出来的轴承,在完 全相同的条件下工作,它们的寿命也不相同,也会 产生和大得差异,甚至相差达到几十倍。 一个具体的轴承很难预知其确切的寿命,但 试验表明,轴承的可靠性与寿命之间有如P278图 16-6的关系曲线。
如图所示,有两种 受力情况:
(1)若FA+FS2>FS1
由于轴向固定,轴不能向右 移动,即轴承1被压紧,由力 的平衡条件得: FA
O1
O2
轴承1(压紧端)承受的轴向载荷为:
Fa1 FA Fs 2
轴承2(放松端)承受的轴向载荷为:
Fa 2 FS 2
(1)若FA+FS2<FS1
即FS1-FA>FS2,则轴承2被压紧,由力的平衡 条件得: 轴承1(放松端)承受的轴向载荷:
N
三、当量动载荷的计算
滚动轴承的基本额定动载荷是在一定的试验 向心轴承是指轴承受纯径向载荷, 条件下确定的。
推力轴承是指承受中心轴向载荷。
如果作用在轴上的实际载荷既有径向载荷, 又有轴向载荷,则必须将实际载荷换算成与试验 条件相当的载荷后,才能和基本额定动载荷进行 比较。换算后的载荷是一种假定的载荷,故称为 当量动载荷: 径向载荷 轴向载荷
图a所示的为外圈宽边相对(背对背)安装, 称为反装。图b的为外圈窄边相对(面对面)安装, 称为正装。
《机械设计基础》 第五篇 通用机械零部件 第16章
上一页 下一页 返回
16.1轴
• 轴颈和轴头的直径应取标准值,直径的大小由与之相配合部件的内孔 决定。轴上螺纹、花键部分必须符合相应的标准。
• 2.轴上零件的轴向定位及固定 • 轴向定位及固定是使零件在轴上有确定的轴向位置。轴上零件的轴向
外形不同又可分为光轴(如图16-3所示)和阶梯轴(如图16- 1所示)。由于阶梯轴上的零件便于拆装与固定,又能节省材料和减 轻重量,所以在机械中应用最为广泛。
上一页 下一页 返回
16.1轴
• ② 曲轴。轴线不为直线的轴称为曲轴,如图16-4所示,是机械 中的专用零件。
• ③ 挠性轴。还有一种可以把回转运动灵活地传到任何位置的钢丝软 轴,也称为挠性轴,如图16-5所示。它是由多组钢丝分层卷绕而 成的,其主要特点是具有良好的挠性,常用于医疗器械、汽车里程表 和电动的手持小型机具(如铰孔机等)的传动等。
定位及固定是以轴肩、套筒、圆螺母、轴端挡圈和轴承端盖等来保证 的。与轮毂相配装的轴段长度,一般应略小于轮毂宽2~3mm。常 用的轴向定位及固定的方法如表16-2所示。 • 3.轴上零件的周向定位及固定 • 为了满足机器传递运动和扭矩的要求,轴上零件除了需要轴向定位外 ,还必须有可靠的周向定位。
上一页 下一页 返回
示。
上一页 下一页 返回
16.1轴
• (3)为了便于轴上零件的装配和去除毛刺,轴端及轴肩一般均应制 出45°的倒角。
• (4)为便于加工,应使轴上直径相近处的圆角、倒角、键槽和越程 槽等尺寸一致。
• (5)为便于轴上零件的装拆和固定,常将轴设计成阶梯形。如图1 6-10所示为阶梯轴上零件的装拆图。图中表明,可依次把齿轮、 套筒、左端滚动轴承、轴承盖、带轮和轴端挡圈从轴的左端装入。由 于轴的各段直径不同,当零件往轴上装配时,既不擦伤配合表面,又 装配方便。右端滚动轴承从轴的右端装入,为使左、右端滚动轴承易 于拆卸,套筒厚度和轴肩高度均应小于滚动轴承内圈的厚度。
机械设计基础--滚动轴承
?
RV2 RH2 Fr
角 接 触 球 轴 承
RV1 RH1 1,角接触轴承的派生轴向力 Fs O -支反力作用点,即法线与轴线的交点. 向心角接触轴承(角接触球轴承,圆锥滚子 轴承)受纯径向载荷作用后,会产生派生轴 FS 向分力 FS . O F 派生轴向力: si ≈ 1.25 Fr tgα 注意 F 的
Fr1 ● 若 FS1 + FA > FS2
Fr2
轴向合力向右,轴有向右移动的趋势,
但外圈被固定, 右轴承被压紧,会产生反力FS2′, 即:Fa1=FS1 (放松端) 使轴向力平衡, 使得 FS 1 + FA = FS 2 + FS 2 ′ FS2 和 FS2′ 都是右轴承所受的力,故: Fa 2 = FS 2 + FS 2 ′ = FS 1 + FA 而左轴承被放松, 故:Fa1 = FS 1
(放松端)
1 FS2′
FS1
2
FA
FS2
● 若 FS2 + FA < FS1, 轴向合力向左,轴有向左移动的趋势, 右轴承被压紧,会产生反力FS 2′, 使轴向力平衡:
FS 1 = FS 2 + FA + FS 2 ′ Fa1 = FS 1
(放松端)
∴
Fa 2 = FS 1 FA(压紧端)
归纳如下: 根据排列方式判明派生轴向力 FS 1,FS2 的方向; 判明轴向合力指向及轴可能移动的方向, 分析哪端轴承被"压紧",哪端轴承被"放松"; "放松"端的轴向载荷等于自身的内部轴向力, "压紧"端的轴向载荷等于除去自身派生轴向力 后其它轴向力的代数和. 对于能够承受少量轴向力而α=0 的向心轴承: (如深沟球轴承) 因为:α=0 , FS1=0 ,FS2= 0 所以:Fa=FA 图中: Fa1=0 Fr1 Fa2=FA FA
机械设计基础(第16章)
螺旋弹簧是用弹簧丝卷绕制成的,由于制造简便,所以应用最广。在一 般机械中,最常用的是圆柱螺旋弹簧。
16.3 弹 簧
16.3 弹 簧
16.3.2 圆柱形螺旋弹簧的结构
图示为螺旋压 缩弹簧和拉伸 弹簧。压簧在 自由状态下各 圈间应留有一 定的余留间隙 d1。为使载荷 沿弹簧轴线传 递,弹簧的两 端各有3/4~ 5/4圈与邻圈 并紧,称为死 圈。死圈端部 必须磨平。
16.2 离合器
16.2.2 摩擦离合器
摩擦离合器利用主、从动半离合器摩擦片接触面间的摩擦力传递 扭矩。 为提高传递转矩的能力,多采用多片摩擦片。他能在不停车或两 轴有较大转速差时进行平稳结合,且可在过载时因摩擦片间打滑而起 到过在保护作用。
单片离合器动作过程
多片离合器动作过程
多片离合器结构组成
16.2 离合器
16.1 联轴器
ω1=ω2时,双万向联轴器须满 足的条件:
⑴主动轴、从动轴与中间轴之 间的夹角相同,即:α1=α2 ⑵中间轴两端叉面必须位于同 一平面内。 双万向联轴器
16.1 联轴器
16.1.3 弹性联轴器:
轮胎联轴器
弹性柱销联轴器
弹性套柱销联轴器
16.1 联轴器
16.1.4 联轴器的选择
标准联轴器的选择 1.联轴器类型的选择 选择原则:其使用要求和类型特性一致 对低速,刚性较好的轴 对高速,刚性较差的轴 对轴线相交的两轴 对大功率重载传动 对高速、且有冲击或振动的轴
结构简单,重量轻,惯性小,外形尺寸小,工作安全,效率高; 接合元件耐磨性好,使用寿命长,散热条件好;
操纵方便省力,制造容易,调整维修方便。
16.2 离合器
16.2.1 牙嵌式离合器
由两个端面带牙的半离合器1、3组成。从动半离合器3用导向平键或 花键与轴联接,另一半离合器1用平键与轴联接,对中环2用来使两轴 对中,滑环4可操纵离合器的分离或接合。
机械设计基础第16章
第十六章联轴器、离合器和制动器§16-1 联轴器一、联轴器的功用与分类联轴器主要是用在轴与轴之间的联接中,使两轴可以同时转动,以传递运动和转矩。
用联轴器联接的两根轴,只有在机器停车后,经过拆卸才能把它们分离。
由于制造、安装误差或工作时零件的变形等原因,一般无法保证被联接的两轴精确同心,通常会出现两轴间的轴向位移x(图19-1a)、径向位移y(图19-1b)、角位移 (图19-1c)或这些位移组合的综合位移(图19-1d)。
如果联轴器不具有补偿这些相对位移的能力,就会产生附加动载荷,甚至引起强烈振动。
图19-1两轴间的各种相对位移根据联轴器补偿位移的能力,联轴器可分为刚性和弹性两大类。
刚性联轴器由刚性传力件组成,它又可分为固定式和可移式两种类型。
固定式刚性联轴器不能补偿两轴的相对位移,可移式刚性联轴器能补偿两轴间的相对位移。
弹性联轴器包含有弹性元件,除了能补偿两轴间的相对位移外,还具有吸收振动和缓和冲击的能力。
联轴器已标准化。
一般可先依据机器的工作条件选定合适的类型,然后按照计算转矩、轴的转速和轴端直径从标准中选择所需的型号和尺寸。
必要时还应对其中的某些零件进行验算。
计算转矩T c应考虑机器起动时的惯性力、机器在工作中承受过载和受到可能的冲击等因素,按下式确定T c=K A T(19-1)式中,T为名义转矩;K A为工作情况系数。
二、常用的联轴器及其特点联轴器的种类很多,这里仅介绍有代表性的几种结构。
1.固定式刚性联轴器(1)凸缘联轴器凸缘联轴器是应用最广的固定式刚性联轴器。
如图19-2所示,它用螺栓将两个半联轴器的凸缘联接起来,以实现两轴联接。
联轴器中的螺栓可以用普通螺栓,也可以用铰制孔螺栓。
这种联轴器有两种主要的结构型式:图19-2a是有对中榫的I型凸缘联轴器,靠凸肩和凹槽(即对中榫)来实现两轴同心。
图19-2b是II型凸缘联轴器,靠铰制孔用螺栓来实现两轴同心。
为安全起见,凸缘联轴器的外圈还应加上防护罩或将凸缘制成轮缘型式。
机械设计基础滚动轴承
较高 低
2’~4’ 不允许
能承受较大旳径向。因 线性接触,内外圈只允 许有小旳相对偏转。除U 构造外,还有内圈无挡 边(NU)、外圈单挡边 (NF)、内圈单挡边(NJ)等 型式
只能承受径向载荷。承 载能力大,径向尺寸特 小。一般无保持架,因 而滚针间有摩擦,极限 转速低。
几点阐明:因为构造不同,各类轴承旳使用性能也不相同,现阐明如下。
设计:潘存云
主要承受径向载荷,
同步也能承受少许
中
轴向载荷。因为外
2˚ ~3˚ 滚道表面是以轴承
中点为中心旳球面,
故能调心。
表16-2 滚动轴承旳主要类型和特征(续)
轴承名称、 类型及代号
构造简图 承载方向 极限转速 允许角偏差
主要特征和应用
调心滚 子轴承 20230C
设计:潘存云
能承受很大旳径向载荷
前置代号
基本代号共5位
( 成套轴承分 部件代号
0
)
类
尺寸系列代号
型
宽(高)度 直径系列
代 系列代号 代号
号
后置代号 或加
注:
代表字母;
代表数字
1. 前置代号----成套轴承分部件代号。 是轴承代号旳基础,有三项 2. 基本代号:表达轴承旳基本类型、构造和尺寸。
类型代号 ----左起第一位,为0(双列角接触球轴承) 则省略。
6 2 2 03
轴承内径 d=17 mm 直径系列代号,2(轻)系列 宽度系列代号,2(宽)系列 深沟球轴承 7 (0) 3 12 AC / P6
公差等级6级 公称接触角 α=25˚ 轴承内径 d=12×5=60 mm 直径系列代号,3(中)系列 宽度系列代号,0(窄)系列,代号为0,不标出 角接触球轴承
机械设计基础第六版第16章 滚动轴承
组合 代号
极 允许 限 角偏 转 转差 速
特性与应用
617 637 618 619 高 160 60 62 63 64
8′ ~ 16′
主要承受径向负荷,也可同时 承受少量双向轴向负荷,工作时内 外圈轴线允许偏斜。摩擦阻力小, 极限转速高,结构简单,价格便宜, 应用最广泛。但承受冲击载荷能力 较差,适用于高速场合。在高速时 可代替推力球轴承。 能同时承受径向负荷与单向的 轴向负荷,公称接触角有15°、 25°40°三种,越大,轴向承载能 力也越大。成对使用,对称安装, 极限转速较高。适用于转速较高, 同时承受径向和轴向负荷的场合。
接触角 ↑ → 轴向承载能力 ↑
滚动轴承按其承受载荷的方向或公称接触角的不同, 可分为: (1)径向轴承,主要承受径向载荷,其公称接触角从0 到45; (2)推力轴承,主要用于承受轴向载荷,其公称接触角 从大于45到90。
各类球轴承的公称接触角
轴承类型 径向轴承 径向接触 向心角接触 推力轴承 推力角接触 轴向接触
表16-6 轴承内部结构常用代号
轴承类型 角接触球轴承 圆锥滚子轴承 代 号 含 义 示 例 B C AC B E α=40˚ α=15˚ α=25˚ 接触角α加大 加强型 7210B 7210C 7210AC 32310B N207E
表16-7 公差等级代号
代 号 省略 /P6 6级 /P6x 6x级 /P5 5级 /P4 4级 /P2 2级 公差等级符合标准的 0级 示 例
角接 触球 轴承 7 推力 圆柱 滚子 轴承 8
19 (1)0 (0)2 (0)3 (0)4
719 70 72 73 74
较 高
2′ ~ 3′
11 12
811 812
《机械设计基础》第十六章 机械传动系统设计
P T 9550 n
机械设计基础
3.传动比
传动比反映了机械传动增速或减速的能力。一般情况下,传动装 置均为减速运动。在摩擦传动中,V带传动可达到的传动比最大,平 带传动次之,然后是摩擦轮传动。在啮合传动中,就一对啮合传动而 言,蜗杆传动可达到的传动比最大,其次是齿轮传动和链传动。
4.功率损耗和传动效率
《机械设计基础》
机械设计基础
第十六章 机械传动系统设计
16.1 传动系统的功能与分类 16.1.1 传动机构的功能 1.变速:通过实现变速传动,以满足工作机的变速要求; 2.传递动力:把原动机输入的转矩变换为工作机所需要的转 矩或力; 3.改变运动形式:把原动机输入的等速旋转运动,转变为工 作机所需要的各种运动规律变化,实现运动运动形式的转换; 4.实现运动的合成与分解:实现由一个或多个原动机驱动若 干个相同或不同速度的工作机; 5.作为工作机与原动机的桥梁:由于受机体外形、尺寸的限 制,或为了安全和操作方便,工作机不易与原动机直接连接时, 也需要用传动装置来连接。 6.实现某些操纵控制功能:如起停、离合、制动或换向等。 机械设计基础
nd i nr
2.选择机械传动类型和拟定总体布置方案
根据机器的功能要求、结构要求、空间位置、工艺性能、总传 动比及其他限制性条件,选择传动系统所需的传动类型,并拟定 从原动机到工作机的传动系统的总体布置方案。
3.分配总传动比
根据传动方案的设计要求,将总传动比分配分配到各级传动。
4.计算机械传动系统的性能参数
(3)传动比范围
不用类型的传动装置,最大单级传动比差别较大。当采用多级传动时,应合理安排传 动的次序。
(4)布局与结构尺寸
对于平行轴之间的传动,宜采用圆柱齿轮传动、带传动、链传动;对于相交轴之间 的传动,可采用锥齿轮或圆锥摩擦轮传动;对于交轴之间的传动,可采用蜗杆传动或 交错轴齿轮传动。两轴相距较远时可采用带传动、链传动;反之采用齿轮传动。
精品课件-机械设计基础-第16章
第16章 现代设计方法简介
16.4
1. (1)将求解域离散化。所使用的单元类型与问题的类型和 计算精度有关。单元按维次划分有点单元、线单元、平面单 元和空间单元,按位移函数的阶次可分为一次单元、二次单
(2)选择位移模式。位移函数一般用单元内点的坐标的多 项式来表示,它只是近似地表示了单元内真实位移分布。位 移函数的阶次超高,计算精度越高。
第16章 现代设计方法简介
图16-2 二维问题的可行域
第16章 现代设计方法简介
可行域内的设计点称为可行点,如X (1) 点,它是设计 所允许采用的方案;反之,就是非可行点(或外点),如X (2) 点。处于不等式约束边界上的点称为边界点,如X (3) 点,它
若一个优化问题同时含有式(16-3)中的不等式设计约束
第16章 现代设计方法简介
2. 目标函数是设计变量的函数,也称评价函数,用来作为 评价设计方案好坏的标准。一项设计的优劣,一般总可以用 一些设计指标来衡量,例如:零(部)件的承载能力最大、效率 最高、成本最低、质量最轻、误差最小等结构、性能和经济 指标。这些设计指标可以表示为设计变量的函数,即
F ( X ) F (x1, x2, • • •, xn )
第16章 现代设计方法简介
二维CAD系统使图纸的修改和重复利用十分方便,提高了 设计效率,缩短了设计周期。由于电子文档的管理成为了现 实,可以支持零件库的建立,有利于产品设计的标准化、系 列化和通用化。二维CAD系统中占市场主流的有Autodesk公司 的AutoCAD软件及国产的CAXA电子图板系统等。
X [x1x2 • • • xn ]T [x(i 1, 2, • • •, n)]T
(16-1)
第16章 现代设计方法简介
机械设计基础第十六章轴
第十六章 车由16-13、已知图16-41中所示直齿轮减速器输出轴在安装齿轮处地直径 d =65m m ,齿轮轮毂 长85mm,齿轮和轴地材料均为45钢.齿轮分度圆直径为d °二300mm ,所受圆周力F t =8000N ,载荷有轻微冲击.试选择该处平键地尺寸.如果轮毂材料为铸铁,则该平键所能 传递地转矩T 有多大?则要求 h 一671 =12.9mm 与实际情况不符。
52顾可选 L =80mm 贝V 丨=L -b =80 —18 =62mm 要求 如果轮毂材料为铸铁,则该平键所能承受的最大挤压力为[二p ] =50 L 60MPa 取[j ] =60MPa则由[J ]二也 得,传递的最大转矩为:p dhldhL 「65灯0-3 如1沢62如0-6 “T max = 【V = 60 10 -664.95Nm4 416-14、已知一传动轴所传递地功率 N =16kW ,转速n =720r/min ,材料为Q255I 冈•求该 解:普通平键的挤压强度条件为_ F 4T 「、6= [二 p ]p A dhl p45号钢在轻微冲击下的[;「。
] =100L120MPq 取[二 p ] =110MPaT =F t 氏=8000 兰=1200N_m2 2" F 4T 4 1200 一 门 “6S= 110 10A dhl 0.065hl 则有: hl 又: 又: .71mm0.065 110 106一般选键长 L ::: B - (1 〜2)-(5 〜10) =85-(1 〜2) -(5 〜10) = 79 ~73mm . L = 70mm d=65mm 查表6-8可选择的键截面尺寸为: b h =18 11 .丨二L —b =70 —18=52mm h _回=10.8mm 合适62传动轴所需地最小直径解:当传动轴传递的功率为N =16KWtf ,其扭转强度条件为 3 P 9550 103-,丄: n W9550 103 0.2d 3 M ]P n 即:d —3 0.2[] 其中 P =16KWh =720r/min ,16 33.18mm 720 A =118时 d _118 当 A =126.5寸,d _126.5=35.56mm 16当 A =135时,d _135 37.95mm 720 16-15、图16-42所示为一直齿圆柱齿轮减速器输出轴地示意图 .有关尺寸如图所示•轴承宽度 为20mm ;齿轮宽度为 50mm,分度圆直径为 200mm,传递地功率为 N = 5.5 kW,转速 n =300r/min •试按弯扭合成强度计算轴地直径并绘出轴地结构图解:(1)作计算简图并求支反力T=9550^ = 9550汉5.5 = 175.08Nm n 300 l 2000T 2000 175.08 ,门“F t 1750.8N圆周力 径向力 d 200 二 F t tan : =1750.8 tan20 -637.2N F r F AX = F BX =[ 2 F Ay 二 F By = g2 1750.8 “ = 875.4N 26372 =318.6N2 T=175.08Mx175NhM CX^F AX 1=875.4 0.2 =175.080M cy=F A y 1=318.6 0.2 =63.72NmM c fj M cx2M cy2*:';175.08263.722「=186.3NmMv = •, M cmax2(:T)» f:186.32(0.6 175.08)^213.88Nm i10M Va“0X213.88d - 3 v = 3 633.88mmV 55X0。
机械设计基础课后习题答案 第16章
16-1解由手册查得6005 深沟球轴承,窄宽度,特轻系列,内径,普通精度等级(0级)。
主要承受径向载荷,也可承受一定的轴向载荷;可用于高速传动。
N209/P6 圆柱滚子轴承,窄宽度,轻系列,内径,6级精度。
只能承受径向载荷,适用于支承刚度大而轴承孔又能保证严格对中的场合,其径向尺寸轻紧凑。
7207CJ 角接触球轴承,窄宽度,轻系列,内径,接触角,钢板冲压保持架,普通精度等级。
既可承受径向载荷,又可承受轴向载荷,适用于高速无冲击, 一般成对使用,对称布置。
30209/P5 圆锥滚子轴承,窄宽度,轻系列,内径,5级精度。
能同时承受径向载荷和轴向载荷。
适用于刚性大和轴承孔能严格对中之处,成对使用,对称布置。
16-2解室温下工作;载荷平稳,球轴承查教材附表 1,( 1)当量动载荷时在此载荷上,该轴承能达到或超过此寿命的概率是 90%。
( 2)当量动载荷时16-3解室温下工作;载荷平稳,球轴承当量动载荷查教材附表1,可选用轴承6207(基本额定动载荷)。
16-4解(1)计算当量动载荷查手册, 6313的,,查教材表16-12,并插值可得,所以,当量动载荷( 2)计算所需基本额定动载荷查教材表 16-9,室温下工作;查教材表16-10有轻微冲击,球轴承因所需的,所以该轴承合适。
16-5解选择轴承型号查教材表 16-9,工作温度125℃时,;载荷平稳,选用球轴承时,查教材附表 1,根据和轴颈,可选用球轴承6408(基本额定动载荷). 选用滚子轴承时,查教材附表 1,根据和轴颈,可选用圆柱滚子轴承N208(基本额定动载荷( 2)滚子轴承的载承能力较大,并查手册可知其径向尺寸小。
16-6解( 1)按题意,外加轴向力已接近,暂选的角接触轴承类型70000AC。
( 2)计算轴承的轴向载荷 (解图见16.4b) 由教材表 16-13查得,轴承的内部派生轴向力,方向向左,方向向右因轴承 1被压紧轴承 2被放松( 3)计算当量动载荷查教材表 16-12,,查表16-12得,查表16-12得,( 3)计算所需的基本额定动载荷查教材表 16-9,常温下工作,;查教材表16-10,有中等冲击,取;球轴承时,;并取轴承1的当量动载荷为计算依据查手册,根据和轴颈,选用角接触球轴承7308AC合适(基本额定动载荷16-7 根据工作要求,选用内径的圆柱滚子轴承。
机械设计基础第16章
35
第16章
轴 系 零 部 件
(4) 轴的结构设计及绘制结构草图。
① 轴系各零件的位置和固定方式。齿轮安装在轴的中部, 两侧分别用轴环和套筒作轴向固定,用平键(键14×45 GB
1096-90)联接作周向固定。轴承安装在齿轮两边,左边轴
承用轴肩作轴向固定,轴承孔与轴颈采用过渡配合;右边轴 承用套筒作轴向固定,轴承孔与轴之间也采用过渡配合;两 边轴承的外圈用轴承盖作轴向固定。弹性套柱销联轴器安装 在轴的外伸端,用平键(键10×70 GB 1096-90)联接作周向 固定,用轴肩作轴向固定。 以上各零件布置见图16-13。
图16-4 曲轴
8
第16章
轴 系 零 部 件
16.1.2 轴的常用材料及热处理
轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制 圆钢和锻件。锻件的内部组织均匀,强度较好,重要的轴、 大尺寸或阶梯尺寸变化较大的轴,应采用锻制毛坯。对直径 较小的轴,可直接用圆钢加工。
轴的常用材料及其主要力学性能见表16-1。
36
第16章
轴 系 零 部 件
图16-13 减速器从动轴设计
37
第16章
轴 系 零 部 件
② 确定轴的各段直径和长度。如图16-13所示,将轴分
为6段,分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ表示。
38
第16章
轴 系 零 部 件
(5) 按弯、扭组合作用验算轴的强度。
① 绘出轴的空间受力图,求轴上的作用力。 轴的跨度:
由式(16-2)可得实心圆轴的设计公式为 (16-3)
常用材料的[τ]值与C值可查表16-3。若轴上有一个键 槽,可将算得的直径增大3%~5%; 如有两个键槽, 可增大 7%~10%。
最新机械设计基础教案——第16章联轴器与离合器、其它常用零部件.docx
第 16 章联轴器与离合器、其它常用零部件(一)教学要求(1)了解联轴器、离合器、制动器的类型与特点(2)了解各类弹簧的工作原理、特点及应用,掌握圆柱螺旋弹簧的设计方法(二)教学的重点与难点(1)联轴器、离合器、制动器的选用(2)圆柱螺旋弹簧的设计计算(三)教学内容16. 1联轴器一、联轴器的类型、结构和特性联轴器机械式联轴器液力联轴器——液压~、液力~、液力偶合器电磁式联轴器其中以机械式联轴器最为常用机械式联轴器:1、刚性联轴器1)刚性固定式联轴器(无法补偿两轴线相对位移偏差)①套筒联轴器,图16-1②凸缘联轴器:图16-2a ,用普通螺栓联接;图16-2b ,用铰制孔螺栓联接③夹壳式联轴器,图16-32)刚性可移式联轴器(可补偿两种轴线的X 、Y和综合误差的影响)图16-4①十字滑块联轴器②万向联轴器。
③齿轮联轴器,如图16-8 ,允许Y 和位移,适合于重载传动2、弹性联轴器(并可补偿轴线偏差,有弹性元件、缓冲吸振)1)弹性套柱销联轴器2)弹性柱销联轴器3)轮胎联轴器二、联轴器的选择1、选联轴器类型——按载荷大小,转速高低,而轴对中性和工作特性(振动、冲击等)2、定计算扭矩3、定型号4、校核转速5、协调轴孔直径6、规定部件安装精度(根据联轴器允许的轴的相对偏移量)7、必要校核。
16. 2离合器要求:操纵方便、省力,接合和分离迅速平稳、动作准确、结构简单一、机械离合器1、牙嵌式离合器(如图16-13)——适于停车和低速(n<10r/min )时接合矩形牙—— Z=3~15图 16-14 牙型梯形牙——Z=5~11接合不太容易三角形牙——易于接合,但承载低Z=15~60锯齿形牙——只能单向接合Z=2~6牙齿可布置在周向,也可布置在轴向2、摩擦式离合器——接合平稳,适合于高速运动中接合1)单盘摩擦离合器(图16-15)2)锥面摩擦离合器(图16-16)在同样压紧力下有较大的摩擦力3)多盘式摩擦离合器(图16-17 )传动能力较大、应用较广。
机械设计基础第16章
16.1.2 系统分析法
1.设问探求法
这是用系统提问的方式打破传统思维的束缚,以拓展 设计思路、提高创新能力的一种方法。设问探求法主要有 “5W2H法”和“奥斯本设问法”两种。
2.列举分析法
列举分析法是通过详细列举待设计、改进产品的各种 特性,在全面分析的基础上找出更多设计方案的创新方法, 常见的有特性列举法、缺点列举法和希望点列举法。
3.支承的变异
轴系的支承结构是一类典型结构,轴系的工作性能与 它的支承设计状况和质量密切相关。旋转轴至少需要两个 相距一定距离的支点支承,支承的变异设计包括支点位置 的变异和支点轴承的种类及其组合的变异。
4.材料的变异
机械设计中可以选择的材料种类很多,不同的材料具 有不同的性能,不同的材料对应于不同的加工工艺,结构 设计中既要根据功能的要求合理地选择材料,又要根据材 料的种类确定相应的加工工艺,并根据加工工艺的要求来 确定恰当的结构,只有通过适当的结构设计,才能充分地 发挥所选择材料的优势。
2.机构的倒置
机构的运动构件与机架的转换,称为机构的倒 置。按照运动相对性原理,机构倒置后各构件间 的相对运动关系不变,但可以得到不同特性的机 构。图16.2为机构倒置的例子。
16.3 结构方案的创新设计
机械结构设计的任务是在总体设计的基 础上,根据所确定的原理方案,决定满足 功能要求的机械结构,所确定的结构除应 能够实现原理方案所规定的动作要求外, 还应能满足设计对结构的强度、刚度、精 度、稳定性、工艺性、寿命、可靠性等方 面的要求。
16.3.1 结构方案的变异设计
1.连接的变异
连接作用是通过零件的工作表面与其他零件的相应表 面接触来实现的,不同形式的连接由于相接触的工作表面 的形状不同,表面间所施加的紧固力也不同,从而对零件 的自由度形成不同的约束。