美国10家著名能源企业及其前沿科技介绍

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美国10家著名能源企业及其前沿科技介绍

美国在经济的发展过程中,总是处于世界的前列,不仅仅使得一些知名的企业总部在美国选址,更是在推动科技的进步过程中起到了不可代替的作用。推动了节能市场的发展,为节能设备的面世做出了自己的贡献。

一、Agrivida 公司及其“纤维素乙醇”技术

据国外媒体报道,当人们考虑美国的新能源方式转换问题时,一般都会考虑到的方式是利用太阳能或新核能反应堆为美国提供电力支持。但参加由美国能源部门分支机构ARPA-E 召开的能源革新峰会的与会者却不这样认为,他们不仅仅希望对为美国电力提供支持的能源利用系统进行革新,而且希望重塑整体的能源利用系统。这些参加能源革新峰会的与会者认为,现有的美国电力系统整体需要技术革新,从传输电力的电线到制造电力过程中废弃热产品所有这些都需要技术革新。

目前,美国境内有十家能源再造公司及其研发的能源再造技术值得人们去关注。或许任何一项能源再造技术并不能使得美国解决现有的原油危机,也不能减轻日益恶化的气候变暖问题,但如果把所有的能源再造技术整合成一个新的能源再造系统,那么人类或许真的可以战胜气候变暖危机,并拥有一个可持续发展的未来。

目前,人们已经可以利用玉米芯中所含的糖分来制造乙醇,但玉米芯中所含糖分甚少。为此,数年前人们就开始尝试利用植物杆等富含纤维素的部分来制造乙醇燃料。科学家将这项技术称为“纤维素乙醇”技术。该技术的特点在于,其制造乙醇的主要原材料不是利用植物中的糖分,而是利用植物中富含的纤维素。但事实证明,将玉米秸秆或玉米芯中的纤维素变为液体乙醇燃料并不是那么简单的一件事。

美国Agrivida公司的生物工程师迈克尔·拉布在植物中加入酶,这种酶将使整个植物(种子、茎和叶)更容易转变成乙醇。在植物中加入酶不是新设想,但还不是很成功,因为酶对植物生长有副作用。他们通过推迟酶的活性来避免这个问题,从而使植物正常生长。这种酶能使每英亩植物的乙醇产量增加50%,同时使乙醇的成本降低大约30%。

Agrivida公司的研究人员希望可以通过在植物生长过程中加入酶,使得植物生长过程中按照研究人员的要求自行降解细胞壁中的纤维素。这项技术发展成熟时,可以通过注入植物体内的控制开关---酶,可以控制植物中的部分纤维素变成糖分。若这样能源再造技术发展成熟,那么将对人类燃料加工过程向前迈进一大步。

二、Phononic Devices公司及其“热电材料”技术

在当今许多工业生产进程中,都会产生副产品“热能”。这些工业生产过程中产生的热能不但很少被有效利用,而且会对工业生产机器造成损害。但有些材料可以使得热能不经过传统的发电模式而直接变成电能,这些材料就是“热电材料”。Phononic Devices公司就是研制热电材料的企业。“热电材料”主要由纳米科技制成,该材料将使得热能和电能之间的转换更具效率,成本更低。

如果将废气的热能可以通过热电材料直接转变成电能,那么将大大增强工业生产过程中的能源利用。但最关键的是如何才能制造出具有高效转化能力的热电材料。

麻省理工大材料领域内的科学家赫布兰德·希德(Gerbrand Ceder)声称:“热电材料属于纯材料领域。如果可以找到制造热电材料的合适纯原料,那么热电材料研究将会有一个巨大进展。”

三、Makani公司的“新型风力发电”技术

目前,在世界上风力资源充足的地区,风力发电企业已经因其具有成本低廉的优势而具备和传统发电企业相竞争的实力。但目前人类利用风力来发电的技术尚不完美。相较于高空中的风力,靠近地面的风力更容易发生变化,并且风速较低。每立方米风速的大小将直接决定产生电能的多少。目前在地面上建设的风力发电站最有效利用风力效率为每平方米风力可

产生1千瓦的电能。但在纽约上空大气急流层内可利用的风力为这种最有效风力的15倍。Makani公司希望通过大型风筝在高空捕捉风力并有效利用高空中存在的风力资源。尽管这种想法看似疯狂,但谷歌公司已对Makani公司投资1500万美元,帮助其研发高空利用风力资源的技术。

四、Graphene Energy公司及其“石墨烯超级电容”技术

石墨烯薄片只有1原子厚,自2004年被曼彻斯特大学的科学家发现之后,作为目前世界上最薄的材料,石墨烯就成为科学界和工业界关注的焦点。或许钻石是女生最喜欢的饰物,但只有1个原子厚度的石墨烯是材料研究领域内科学家的宠儿。科学家已经为石墨烯的用途做了各种规划,如利用到电子技术领域中等。其实石墨烯也可以用来储存能源。Graphene Energy公司目前正在研发利用石墨烯制造超级电容的技术。超级电容器是介于电容器和电池之间的储能器件。它既具有电容器可以快速充放电的特点,又具有电化学电池的储能机理。其具备可以多次重复利用,并可以提供强大电流脉冲的优点。但超级电容器发展的瓶颈在于无法找到可以储存足够能量密度的材料。

Graphene Energy公司希望可以使用石墨烯制造出满足人们需求的超级电容。美国德州大学研究超级电容器的专家罗德·罗夫(Rod Ruoff)声称,利用石墨烯制造出的超级电容,其电能承载量可以是现在同体积超级电容的两倍,通过增大石墨烯表面的碳面积即可扩大这种超级电容的电能承载量。

五、Superconductor Technologies公司及其“超导体陶瓷”技术

目前世界上用来传输电能的是铜线或者铝线。在传输电力时,由于传输电线本身具有一定的电阻,会使得电能在传输过程中产生部分能源消耗。即使在未来,风力发电和太阳能发电技术可以满足人们的需要,同样在普通家庭和发电厂之间使用电线传输电能。

为此,科学家提出了“智能电网”构想。Superconductor Technologies公司希望可以在用来传输电能的电线材料方面取得重大突破。Superconductor Technologies公司声称,如果将现在普遍使用的铜线或铝线换成具有耐高温的超导陶瓷电线,那么其可传输电力的能力可以提高五倍左右,并且在传输过程中仅产生极小的电能消耗。

六、V elkess公司及其“飞轮能源储存”技术

诸如风力发电等新兴能源系统都需要具备适应间歇性产生电能特点的能源储蓄设备。目前,世界上许多企业都在尝试着将电能能源储备科技产业化,目前流行的电能储存方法是在电能储存设备中注入压缩空气或利用超级电容等。飞轮能源储存技术的技术原理和上述两种方法完全不同。

飞轮能源储存器中有一个可旋转的中轴。其工作原理是是向储存器中储存能源时,使用动力系统使中轴旋转使电能转化成动能。释放电能时,使中轴逆向旋转使动能转化为电能。这种飞轮能源储存技术可被应用于工业生产,但目前飞轮能源储存技术因成本过于昂贵及储存技术的不成熟目前被应用的并不多。

Velkess公司希望可以尽快促进飞轮能源技术的成熟。Velkess公司宣称,飞轮能源技术成熟时,可以将目前电能能源储存成本减少90%左右

七、V elocys公司及其新型“费托”工艺

受气候变暖的威胁,生物燃料目前是科学界研究的热门领域。但在仍以原油副产品为主要能源的当今时代,可以通过低成本从原油中提取出可使用的液体能源(如汽油、柴油等)技术仍然是能源领域内非常重要的科技。以其他类型的碳为原料在催化剂和适当反应条件下合成液体燃料的“费托”工艺是大家比较熟知的。该工艺在二战时期被广泛使用。“费托”工艺因其仅能适用于能源密集型行业及昂贵的化学合成成本而逐渐被淘汰。但Velocys公司声称,其公司正在研发的新型“费托”工艺可以通过新型的合成进程,在较低成本的基础上从自然能源中分离出碳氢化合物。

相关文档
最新文档