压轴题-直角三角形

合集下载

压轴题——直角三角形、相似三角形

压轴题——直角三角形、相似三角形

ABE 与ACE 的面积大小关系如何?当,使得BOC 是以BC 为斜边的直角三角形,若存在,求出y x CB A O E y xC BA O E3.如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示2x -1x ,并求出当S =36时点A 1的坐标;的坐标;(3)在图1中,设点D 坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴...围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.的值;若不存在,请说明理由.参考答案:1. (1)将x =0,代入抛物线解析式,得点A 的坐标为(0,-4)……………………………………..2..2分(2)当b =0时,直线为y x =,由24y x y x x =ìí=+-î解得1122x y =ìí=î,2222x y =-ìí=-î所以B 、C 的坐标分别为(-2,-2),(2,2)14242ABE S=´´=,14242ACE S =´´= 所以ABE ACE S S =(利用同底等高说明面积相等亦可)(利用同底等高说明面积相等亦可) ……………………………………..4..4分 当4b >-时,仍有ABE ACE S S =成立. 理由如下理由如下由24y x b y x x =+ìí=+-î,解得1144x b y b b ì=+ïí=++ïî,2244x b y b b ì=-+ïí=-++ïî 所以B 、C 的坐标分别为(-4b +,-4b ++b ),(4b +,4b ++b ),作BF y ^轴,CG y ^轴,垂足分别为F 、G ,则4BF CG b ==+, 而ABE 和ACE 是同底的两个三角形,是同底的两个三角形, G FyBCQO R C B A O y x 图1 D M 图2 O 1 A 1 O y x B 1 C 1 D M所以ABEACESS=. ……………………………………..6..6分(3)存在这样的b . 因为90BF CG,BEF CEG,BFE CGE =Ð=ÐÐ=Ð=° 所以BEF CEG @所以BE CE =,即E 为BC 的中点的中点所以当OE =CE 时,OBC 为直角三角形为直角三角形 ……………………………………..8..8分 因为44GE b b b b GC =++-=+= 所以所以 24CE b =×+,而OE b =所以24b b ×+=,解得124,2b b ==-,所以当b =4或-2时,ΔOBC 为直角三角形. (10).10分2.(1)把A,C 分别带入到抛物线中,解得a=1,b=-3,所以抛物线:y=x^2-3x-4,设P (x0,-x0-1),则E (x0,x0^2-3x0-4),则|PE|=|x0^2-3x0-4-(-x0-1)|=|(x0-1)^2-4|,由于点P 在线段AC 上,所以上,所以 -1<x0<4,所以线段PE 的最大长度为4 (2)当线段PE 的长度取得最大值时,P 为(1,-2),假设存在抛物线上一点Q ,使得三角形PCQ 是以PC 为直角边的直角三角形,则设Q (t ,t^2-3t-4),PC 为直角边,分以下两种情况:为直角边,分以下两种情况:第一种:当角QPC=90度时,利用两个垂直向量的积为0.可得t=2+根号5或t=2-根号5,此时,Q 分别为(1+根号5,1+根号5)(1-根号5,1-根号5),显然这两点都不在抛物线上,故不成立第二种:当角QCP=90度时,同第一种情况解出t=1或3,此时Q 的坐标分别为(1,-6)(3,-4)即分别是E 点和C 点。

2020年中考数学第三轮冲刺专题复习:三角形 压轴题练习(含答案)

2020年中考数学第三轮冲刺专题复习:三角形 压轴题练习(含答案)

四川省渠县崇德实验学校2020年中考数学第三轮冲刺专题复习:三角形压轴题练习1、如图,等腰直角三角形△ABC中,∠ACB=90°,AC=BC,点D是AC边上一点,∠CBD=30°,点E是BD边上一点,且CE=12 AB.(1)如图①,若AB=,求S△CBE(2)如图②,过点E作EQ⊥BD交BC于点Q,求证:AC=12BD+2EQ.2、如图,等边三角形ABC中,E是线段AC上一点,F是BC延长线上一点.连接BE,AF.点G是线段BE的中点,BN∥AC,BN与AG延长线交于点N.(1)若∠BAN=15°,求∠N;(2)若AE=CF,求证:2AG=AF.3、已知,如图,在Rt△ABC中,∠ACB=90°,点D为AB中点,连接CD.点E为边AC上一点,过点E作EF∥AB,交CD于点F,连接EB,取EB的中点G,连接DG、FG.(1)求证:EF=CF;(2)求证:FG⊥DG.4、△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,连接DH,求证:(1)EH=FH;(2)∠CAB=2∠CDH.5、如图,在△ABC中,AD平分∠CAB交BC于点D,过点C作CE⊥AD于E,CE的延长线交AB于点F,点G是BF的中点,连接EG.(1)求证:EG∥BC;(2)若△ACD∽△AEC,且AE•AD=16,AB=4,求EG的长.6、如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求ACAF的值.7、如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD交BC延长线于P点,延长BM交P A于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.8、如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:,CD,求线段AB的长.9、如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.(1)若点D是AC的中点,如图1,求证:AD=CE.(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论:(提示:过点D作DF∥BC,交AB于点F.)(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,给予证明;如果不成立,请说明理由.10、在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.11、如图,在△ABC中,∠ABC=60°,点D,E分别为AB,BC上一点,BD=BE,连接DE,DC,AC=CD.(1)如图1,若AC=DE=EC的长;(2)如图2,连接AE交DC于点F,点M为EC上一点,连接AM交DC于点N,若AE=AM,求证:2DE=MC;(3)在(2)的条件下,若∠ACB=45°,直接写出线段AD,MC,AC的等量关系.12、把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE =4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时AP•CQ的值为.将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,则AP•CQ的值是否会改变?答:.(填“会”或“不会”)此时AP•CQ的值为.(不必说明理由)(2)在(1)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2、图3供解题用)(3)在(1)的条件下,PQ能否与AC平行?若能,求出y的值;若不能,试说明理由.14、已知:△ABC与△ABD中,∠CAB=∠DBA=β,且∠ADB+∠ACB=180°.提出问题:如图1,当∠ADB=∠ACB=90°时,求证:AD=BC;类比探究:如图2,当∠ADB≠∠ACB时,AD=BC是否还成立?并说明理由.综合运用:如图3,当β=18°,BC=1,且AB⊥BC时,求AC的长.15、已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CD;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,AC=7,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求AD AB的值.16、已知等边△ABC和等腰△CDE,CD=DE,∠CDE=120°.(1)如图1,点D在BC上,点E在AB上,P是BE的中点,连接AD,PD,则线段AD与PD之间的数量关系为;(2)如图2,点D在△ABC内部,点E在△ABC外部,P是BE的中点,连接AD,PD,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若点D在△ABC内部,点E和点B重合,点P在BC下方,且PB+PC为定值,当PD最大时,∠BPC的度数为.参考答案1、【解答】(1)解:如图①中,作CH ⊥BD 于H .∵CA =CB ,∠ACB =90°,AB =∴AC =BC =2,在Rt △BCH 中,∵∠CBH =30°,∴CH =12BC =1,BH ,∵CE =12AB ,∴HE 1,∴BE ﹣1,∴S △CBE =12•BE •CH =12•1)•1=2. (2)证明:如图②中,连接DQ 、作CH ⊥BD 于H .∵=CE CH AB BC =12,∠CHE =∠ACB =90°, ∴△CHE ∽△ACB ,∴∠CEH =∠ABC =45°,∵∠DCQ =∠DEQ =90°,∴∠DCQ +∠DEQ =180°,C 、D 、E 、Q 四点共圆,∴∠CQD =∠CED =45°,∴△CDQ 是等腰直角三角形,∴CD =CQ ,AD =BQ ,∵AC =CD +AD ,CQ =CQ =12BD ,BQ =2EQ , ∴AC =12BD +2EQ . 2、【解答】解:(1)∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵AC∥BN,∴∠NBC=∠ACB=60°,∴∠ABN=∠ABC+∠NBC=120°,∴在△ABN中,∠N=180°﹣∠ABN﹣∠BAN=180°﹣120°﹣15°=45°;(2)∵AC∥BN,∴∠N=∠GAE,∠NBG=∠AEG,又∵点G是线段BE的中点,∴BG=EG,∴△NBG≌△AEG(AAS),∴AG=NG,AE=BN,∵AE=CF,∴BN=CF,∵∠ACB=60°,∴∠ACF=180°﹣∠ACB=120°,∴∠ABN=∠ACF,又∵AB=AC,∴△ABN≌△ACF(SAS),∴AF=AN,∵AG=NG=12 AN,∴AF=2AG.3、【解答】证明:(1)如图,∵在Rt △ABC 中,∠ACB =90°,点D 为AB 中点, ∴CD 是斜边AB 上的中线,∴CD =AD =BD =12AB . 又EF ∥AB , ∴=EF CF AD CD, ∴=EF AD CF CD =1, ∴EF =CF ;(2)如图,延长DG 交BC 于点M ,连接GM∴DM 为△BAC 的中位线,GM 为△BEC 的中位线,DG 为△BAE 的中位线; ∴DG =2AE ,GM =2EC , ∴+==1+DM AE EC EC DG AE AE, 又EF ∥AB ,易证得=EC FC AE DF, ∴+=1+=1+==DM EC FC DF FC DF DG AE DF DF FC ,在△DGF 与△DMC 中,有∠FDG=∠CDM ,=DM DC DG DF; 故△DGF ∽△DMC ;所以∠FGD =∠CMD ;又∠CMD =180°﹣∠ACB =90°,∴∠FGD =90°,∴FG ⊥DG .4、【解答】解:(1)∵∠ACB =90°,CD ⊥AB 于D ,∴∠CAE +∠AEC =∠DAF +∠AFD =90°,∴∠AFD =∠AEC ,∵∠AFD =∠CFE ,∴∠CFE =∠CEF ,∴CF =CE ,∵CH ⊥EF ,∴HE =HF ;(2)∵∠ADF =∠CHF =90°,∠AFD =∠CFH ,∴△ADF ∽△CFH , ∴=CF HF AF DF,∵∠AFC =∠DFH ,∴△AFC ∽△DFH ,∴∠CAF =∠CDH ,∵∠CAD =2∠CAF ,∴∠CAB =2∠CDH .5、【解答】证明:(1)∵AD 平分∠CAB ,∴∠CAE =∠F AE .∵CE ⊥AD ,∴∠CEA =∠FEA =90°.在△ACE 和△AFE 中,∠CAE=∠FAE ,AE=AE ,∠CEA=∠FEA=90°, ∴△ACE ≌△AFE .∴CE =FE .又∵G 是BF 的中点,∴EG ∥BC .(2)∵△ACD ∽△AEC ,CE ⊥AD ,∴∠ACD =∠AEC =90°,且=AC AE AD AC. ∴AC 2=AE •AD =16.∴AC=4.在Rt△ABC中,AB=AC=4,由勾股定理得:BC8.∵EG是△FBC的中位线,∴EG=11=8=4 22×BC.6、【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=12AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=12 AB,∴CE=12×6=3,∵AD=4,∴4=3AFCF,∴7=4ACAF.7、【解答】证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,CM=MD,∠CMN=∠DMA,MN=MA,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.8、【解答】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED CD,(3)解:连接EF ,设BD =x ,∵BD :AF =1:,则AF =x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △F AE 中,EF =3x ,∵AE 2+AD 2=2CD 2∴222x +=2(), 解得x =1,∴AB =+4.9、【解答】(1)证明:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AB =AC =BC ,∵D 为AC 中点,∴∠DBC =30°,AD =DC ,∵BD=DE,∴∠E=∠DBC=30°∵∠ACB=∠E+∠CDE,∴∠CDE=30°=∠E,∴CD=CE,∵AD=DC,∴AD=CE;(2)成立,如图2,过D作DF∥BC,交AB于F,则∠ADF=∠ACB=60°,∵∠A=60°,∴△AFD是等边三角形,∴AD=DF=AF,∠AFD=60°,∴∠BFD=∠DCE=180°﹣60°=120°,∵DF∥BC,∴∠FDB=∠DBE=∠E,在△BFD和△DCE中,∠FDB=∠E,∠BFD=∠DCE,BD=DE,∴△BFD≌△DCE,∴CE=DF=AD,即AD=CE.(3)(2)中的结论仍成立,如图3,过点D作DP∥BC,交AB的延长线于点P,∵△ABC是等边三角形,∴△APD也是等边三角形,∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠PDC=60°,∵DB=DE,∴∠DBC=∠DEC,∵DP∥BC,∴∠PDB=∠CBD,∴∠PDB=∠DEC,在△BPD和△DCE中,∠FDB=∠DEC,∠P=∠DCE=60°,DB=DE,∴△BPD≌△DCE,∴PD=CE,∴AD=CE.10、【解答】(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM,∵AB2+AE2=BE2,∴(2x)2+x2=22,(负根已经舍弃),∴x=2∴AB=AC=(•2∴BC AB.(2)作CQ⊥AC,交AF的延长线于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.11、解:(1)如图1,过点C作CG⊥AB于G,∴∠AGC=∠AGB=90°,∵AC=CD,∴AG=DG,设DG=a,∵BD=BE,∠ABC=60°,∴△BDE是等边三角形,∴BD =DE =∴BG =BD +DG =+a ,在Rt △BGC 中,∠BCG =90°﹣∠ABC =30°,∴BC =2BG ,CG =,在Rt △DGC 中,CD =AC =根据勾股定理得,CG 2+DG 2=CD 2,∴()2+a 2=90,∴a =2或a =2(舍), ∴BC =EC +BE =EC +BD ,∴EC +BD =2(BD +DG ),∴EC =BD +2DG =2+2a =2+2×=9﹣;(2)如图2,在MC 上取一点P ,使MP =DE ,连接AP ,∵△BDE 是等边三角形,∴∠BED =60°,BE =DE ,∴∠DEC =120°,BE =PM ,∵AE =AM ,∴∠AEM =∠AME ,∴∠AEB =∠AMP ,∴△ABE ≌△APM (SAS ),∴∠APM=∠ABC=60°,∴∠APC=120°=∠DEC,过点M作AC的平行线交AP的延长线于Q,∴∠MPQ=∠APC=120°=∠DEC,∵AC=CD,∴∠ADC=∠DAC,∴∠CDE=180°﹣∠BDE﹣∠ADC=180°﹣60°﹣∠DAC=120°﹣∠DAC,在△ABC中,∠ACB=180°﹣∠ABC﹣∠DAC=120°﹣∠DAC=∠CDE,∵MQ∥AC,∴∠PMQ=∠ACB,∴∠PMQ=∠EDC,∴△MPQ≌△DEC(ASA),∴MQ=CD,∵AC=MQ,∴△APC≌△QPM(AAS),∴CP=MP,∴CM=MP+CP=2DE;(3)如备用图,在MC上取一点P,使PM=DE,由(2)知,MC=2CP=2DE,由(2)知,△ABE≌△APM,∴AB=AP,∵∠ABC=60°,∴△ABP是等边三角形,∴BP=AB,∵BE=BD,∴PE=AD,∴BC=BE+PE+CP=DE+PE+DE=2DE+AD=MC+AD,过点A作AH⊥BC于H,设BH=m,在Rt△ABH中,AH,在Rt△ACH中,∠ACB=45°,∴∠CAH=90°﹣∠ACB=45°=∠ACB,∴CH=AH,AC AH m,∵MC+AD=BC=BH+CH=m m=(m,∴MC+AD.12、【解答】解:(1)8,不会,8;∵∠A=∠C=45°,∠APD=∠QDC=90°,∴△APD ∽△CDQ .∴AP :CD =AD :CQ .∴即AP ×CQ =AD ×CD ,∵AB =BC =4,∴斜边中点为O ,∴AP =PD =2,∴AP ×CQ =2×4=8;将三角板DEF 由图1所示的位置绕点O 沿逆时针方向旋转,设旋转角为α. ∵在△APD 与△CDQ 中,∠A =∠C =45°,∠APD =180°﹣45°﹣(45°+a )=90°﹣a ,∠CDQ =90°﹣a ,∴∠APD =∠CDQ .∴△APD ∽△CDQ . ∴=AP CD AD CQ, ∴AP •CQ =AD •CD =AD 2=(12AC )2=8. (2)当0°<α≤45°时,如图2,过点D 作DM ⊥AB 于M ,DN ⊥BC 于N , ∵O 是斜边的中点,∴DM =DN =2,∵CQ =x ,则AP =8x,∴S △APD =12•8x •2=8x ,S △DQC =12x ×2=x , ∴y =8﹣8x﹣x (2≤x <4), 当45°<α<90°时,如图3,过点D 作DG ⊥BC 于G ,DG =2∵CQ =x ,∴AP =8x, ∴BP =8x ﹣4 ∵=BP BM DG MG, 即82-x =2MG MG,MG =2x 4-x ∴MQ =2x 4-x +(2﹣x )=2x -4x+84-x∴y =2x -4x+84-x(0<x <2); (3)在图(2)的情况下,∵PQ ∥AC 时,BP =BQ ,∴AP =QC∴x =8x,解得x =, ∴当x =时,y =8﹣=8﹣.14、【解答】提出问题:解:在△DBA和△CAB中,∠ADB=∠ACB,∠CAB=∠DBA,AB=BA ∴△DBA≌△CAB(AAS),∴AD=BC;类比探究:结论仍然成立.理由:作∠BEC=∠BCE,BE交AC于E.∵∠ADB+∠ACB=∠AEB+∠BEC=180°,∴∠ADB=∠AEB.∵∠CAB=∠DBA,AB=BA,∴△DBA≌△EAB(AAS),∴BE=AD,∵∠BEC=∠BCE,∴BC=BE,∴AD =BC .综合运用:作∠BEC =∠BCE ,BE 交AC 于E .由(2)得,AD =BC =BE =1.在Rt △ACB 中,∠CAB =18°,∴∠C =72°,∠BEC =∠C =72°.由∠CFB =∠CAB +∠DBA =36°, ∴∠EBF =∠CEB ﹣∠CFB =36°,∴EF =BE =1.在△BCF 中,∠FBC =180°﹣∠BFC ﹣∠C =72°, ∴∠FBC =∠BEC ,∠C =∠C ,∴△CBE ∽△CFB . ∴=CB CF CE CB,令CE =x , ∴1=x (x +1).解得,x∴CF . 由∠FBC =∠C ,∴BF =CF .又AF =BF ,∴AC =2CF .15、【解答】(1)证明:如图1中,∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△EAC≌△DAB(SAS),∴EC=BD.(2)解:如图2中,连接BD.∵AE=AD,∠EAD=60°,∴△AED是等边三角形,∴∠DEA=∠CDE=60°,∵EF⊥AD,∴∠FEA=12∠DEA=30°∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴∠BDA=∠AEC=30°,EC=BD,∴∠EDB=90°,∵AE=4,AF=2,AC,∠EF A=∠AFC=90°,∴EF CF,∴EC=BD=∴BE(3)解:如图3中,作CM⊥CA,使得CM=CA,连接AM,BM.∵CA=CM,∠ACM=90°,∴∠CAM=45°,∵∠CAB=45°,∴∠MAB=45°+45°=90°,设AB=AC=m,则AM m,BMm,∵∠ACM=∠BCD=90°,∴∠BCM=∠ACD,∵CA=CM,CB=CD,∴AD =BM ,∴AD AB . 16、【解答】解:(1)结论:AD =2PD . 理由:如图1中,∵△ABC 是等边三角形,∴∠B =60°,∵∠EDC =120°,∴∠EDB =180°﹣120°=60°, ∴∠B =∠EDB =∠BED =60°, ∴△BDE 是等边三角形,∵BP =PE ,∴DP ⊥AB ,∴∠APD =90°,∵DE =DC ,DE =DB ,∴BD =CD ,∵AB =AC ,∠BAC =60°,∴∠P AD=12∠BAC=30°,∴AD=2PD.(2)结论成立.理由:延长DP到N,使得PN=PD,连接BN,EN,延长ED到M,使得DM=DE,连接BD,BM,CM.∵DE=DC=DM,∠MDC=180°﹣∠EDC=60°,∴△DCM是等边三角形,∵CA=CB,CM=CD,∠DCM=∠ACB=60°,∴∠BCM=∠ACD,∴△BCM≌△ACD(SAS),∴AD=BM,∵PB=PE,PD=PN,∴四边形BNED是平行四边形,∴BN∥DE,BN=DE,∵DE=DM,∴BN=DM,BN∥DM,∴四边形BNDM是平行四边形,∴BM=DN=2PD,∴AD=2PD.(3)如图3中,作∠PDK=∠BDC=120°,且PD=PK,连接PK,CK.∵DB=DC,DP=DK,∠BDC=∠PDK,∴∠BDP=∠CDK,∴△PDB≌△KDC(SAS),∴PB=CK,∵PB+PC=PC+CK=定值,∴P,C,K共线时,PK定值最大,此时PD的值最大,此时,∠DPB=∠DKP=∠DPK=30°,∠PBC=∠DPB+∠DPK=60°.故答案为60°.。

专题24 直角三角形存在性问题(原卷版)-【搞定压轴题】2022年中考数学压轴题全揭秘(四川专用)

专题24 直角三角形存在性问题(原卷版)-【搞定压轴题】2022年中考数学压轴题全揭秘(四川专用)

专题24 直角三角形存在性问题【真题精选】1.(2021·成都)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x 轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.2.(2020•泸州)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.∠求直线BD的解析式;∠已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若∠PQR是以点Q 为直角顶点的等腰直角三角形,求点P的坐标.3.(2018•成都)如图,在平面直角坐标系xOy中,以直线x=52对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若AFFB=34,且∠BCG与∠BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.【例题讲解】例1.(直角不固定)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A、B,与y轴负半轴交于点C,且OC=OB,其中B点坐标为(3,0),对称轴l为直线x=1 2.(1)求抛物线的解析式;(2)在x轴上方有一点P,连接P A后满足∠P AB=∠CAB,记∠PBC的面积为S,求当S=10.5时点P的坐标;(3)在(2)的条件下,当点P 恰好落在抛物线上时,将直线BC 上下平移,平移后的直线y =x +t 与抛物线交于C ′、B ′两点(C ′在B ′的左侧),若以点C ′、B ′、P 为顶点的三角形是直角三角形,求出t 的值.例2. (直角顶点固定)抛物线y =x 2+(m +2)x +4的顶点C 在x 轴正半轴上,直 线y =x +2与抛物线交于A ,B 两点(点A 在点B 的左侧).(1)求抛物线的函数表达式;(2)点P 是抛物线上一点,若S △PAB =2S △ABC ,求点P 的坐标;(3)将直线AB 上下平移,平移后的直线y =x +t 与抛物线交于A ',B '两点(A '在B '的左侧),当以点A ',B '和(2)中第二象限的点P 为顶点的三角形是直角三角形时,求t 的值.【课后训练】1.已知抛物线1l :212y ax =-的项点为P ,交x 轴于A 、B 两点(A 点在B 点左侧),且sin 5ABP ∠=.(1)求抛物线1l 的函数解析式;(2)过点A 的直线交抛物线于点C ,交y 轴于点D ,若ABC ∆的面积被y 轴分为1: 4两个部分,求直线AC 的解析式;(3)在(2)的情况下,将抛物线1l 绕点P 逆时针旋转180°得到抛物线2l ,点M 为抛物线2l 上一点,当点M 的横坐标为何值时,BDM ∆为直角三角形?2.如图,抛物线y =﹣x 2+bx +c 与x 轴交于A (﹣7,0),B (1,0)两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D ,顶点坐标为M .(1)求抛物线的表达式和顶点M 的坐标;(2)如图1,点E (x ,y )为抛物线上一点,点E 不与点M 重合,当﹣7<x <﹣2时,过点E 作EF ∥x 轴,交抛物线的对称轴于点F ,作EH ⊥x 轴与点H ,得到矩形EHDF ,求矩形EHDF 的周长的最大值;(3)如图2,点P 为抛物线对称轴上一点,是否存在点P ,使以点P 、A 、C 为顶点的三角形是直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.3.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使P A +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当∠MAC 是直角三角形时,求点M 的坐标.4.如图,抛物线y =ax 2+bx +c (a ≠0)与直线y =﹣x ﹣2相交于A (﹣2,0),B (m ,﹣6)两点,且抛物线经过点C (5,0).点P 是直线下方的抛物线上异于A 、B 的动点.过点P 作PD ∠x 轴于点D ,交直线于点E .(1)求抛物线的解析式;(2)连结P A 、PB 、BD ,当S ∠ADB ═23S ∠P AB 时,求S ∠P AB ; (3)是否存在点P ,使得∠PBE 为直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.5.如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0),抛物线249y x bx c =-++经过点A 、C ,与AB 交于点D . (1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,∠CPQ 的面积为S .∠求S 关于m 的函数表达式;∠当S 最大时,在抛物线249y x bx c =-++的对称轴l 上,若存在点F ,使∠DFQ 为直角三角形,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线2y ax bx c =++(a≠0)与y 轴交与点C (0,3),与x 轴交于A 、B 两点,点B 坐标为(4,0),抛物线的对称轴方程为x=1. (1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设∠MBN 的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使∠MBN 为直角三角形?若存在,求出t 值;若不存在,请说明理由.7.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B 两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出∠ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k的值;若不存在,请说明理由.8.如图,已知抛物线y=ax2+bx+5与x轴交于A(﹣1,0),B(5,0)两点(点A在点B的左侧),与y轴交于点C.(1)求抛物线的解析式;(2)点D是第一象限内抛物线上的一个动点(与点C,B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.(3)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.9.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A、B,与y轴负半轴交于点C,且OC=OB,其中B点坐标为(3,0),对称轴l为直线x=1 2.(1)求抛物线的解析式;(2)在x轴上方有一点P,连接PA后满足∠PAB=∠CAB,记△PBC的面积为S,求S=10.5时点P的坐标;(3)在(2)的条件下,当点P恰好落在抛物线上时,将直线BC上下平移,平移后的直线y=x+t与抛物线交于C′、B′两点(C′在B′的左侧),若以点C′、B′、P为顶点的三角形是直角三角形,求出t的值.。

中考数学直角三角形的边角关系-经典压轴题附详细答案

中考数学直角三角形的边角关系-经典压轴题附详细答案

中考数学直角三角形的边角关系-经典压轴题附详细答案一、直角三角形的边角关系1.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数2.如图①,抛物线y=ax2+bx+c经过点A(﹣2,0)、B(4,0)、C(0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式.【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--. 【解析】【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0)∴y =a (x+2)(x ﹣4)把点C (0,3)代入得:﹣8a =3∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D∴∠CDP =∠COB =90°∵∠DCP =∠OCB∴△CDP ∽△COB ∴PC PD BC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC∴PD =45PC∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小∵A (﹣2,0),OC ⊥AB ,AE ⊥BC∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90°∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个此时,连接FQ ,过点Q 作QG ⊥x 轴于点G∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点∴F (1,0),FQ =FA =3∵T (﹣4,0)∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ = ∴FG =35FQ =95∴x Q =1﹣9455=-,QG125== ①若点Q 在x 轴上方,则Q (41255-,)设直线l 解析式为:y =kx+b ∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,)∴直线l :334y x =-- 综上所述,直线l 的解析式为334y x =+或334y x =--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q 点是关键,同时不要忘记需要分情况讨论3.在△ABC 中,∠B =45°,∠C =30°,点D 是边BC 上一点,连接AD ,将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接DE .(1)如图①,当点E 落在边BA 的延长线上时,∠EDC = 度(直接填空); (2)如图②,当点E 落在边AC 上时,求证:BD =12EC ; (3)当AB =22,且点E 到AC 的距离等于3﹣1时,直接写出tan ∠CAE 的值.【答案】(1)90;(2)详见解析;(3)633 tan EAC-∠=【解析】【分析】(1)利用三角形的外角的性质即可解决问题;(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP=3x,EH=2PH=2x,由此FH=2x+3﹣1,CF=23x+3﹣3,由△BAD≌△PAE,得BD=EP=3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=1+3,由此tan∠EAF=2﹣3,根据对称性可得tan∠EAC=6-3311.【详解】(1)如图1中,∵∠EDC=∠B+∠BED,∠B=∠BED=45°,∴∠EDC=90°,故答案为90;(2)如图2中,作PA⊥AB交BC于P,连接PE.∵∠DAE=∠BAP=90°,∴∠BAD=∠PAE,∵∠B=45°,∴∠B=∠APB=45°,∴AB=AP,∵AD=AE,∴△BAD≌△PAE(SAS),∴BD=PE,∠APE=∠B=45°,∴∠EPD=∠EPC=90°,∵∠C=30°,∴EC=2PE=2BD;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,∴EP3,EH=2PH=2x,∴FH=31,CF3FH=33∵△BAD≌△PAE,∴BD=EP3,AE=AD,在Rt△ABG中,∵AB=2∴AG=GB=2,在Rt△AGC中,AC=2AG=4,∵AE2=AD2=AF2+EF2,∴22+(23)231)2+(4﹣3﹣32,整理得:9x2﹣12x=0,解得x=43(舍弃)或0∴PH=0,此时E,P,H共点,∴AF=3∴tan∠EAF=EFAF 3131-+=23根据对称性可知当点E在AC的上方时,同法可得tan∠EAC=6-33 11.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.4.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:y=13x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.(1)求边EF的长;(2)将正方形EFGH沿射线FB的方向以每秒10个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).①当点F1移动到点B时,求t的值;②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE 重叠部分的面积.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-43x+40,可求出P点坐标,进而求出F点坐标即可;(2)①易求B(0,5),当点F1移动到点B时,1010=10;②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在Rt△F'NF中,NFNF'=13,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,43MHEM'=,t=4,S=12×(12+454)×11=10238;当点G运动到直线DE上时,在Rt△F'PK中,PKF K'=13,PK=t-3,F'K=3t-9,在Rt△PKG'中,PKKG'=31539tt--+=43,t=7,S=15×(15-7)=120.【详解】(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),∴30040k bb+=⎧⎨=⎩,∴4340 kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),∴EF=15;(2)①易求B(0,5),∴BF=1010,∴当点F1移动到点B时,t=101010÷=10;②当点H运动到直线DE上时,F点移动到F'10,在Rt△F'NF中,NFNF'=13,∴FN=t,F'N=3t,∵MH'=FN=t,EM=NG'=15﹣F'N=15﹣3t,在Rt△DMH'中,43MHEM'=,∴41533tt=-,∴t=4,∴EM=3,MH'=4,∴S=1451023(12)11248⨯+⨯=;当点G运动到直线DE上时,F 点移动到F'的距离是10t , ∵PF =310,∴PF'=10t ﹣310,在Rt △F'PK 中,13PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9,在Rt △PKG'中,PK KG '=31539t t --+=43, ∴t =7,∴S =15×(15﹣7)=120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.5.如图所示的是一个地球仪及它的平面图,在平面图中,点A 、B 分别为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E ,DE =15cm ,AD =14cm .(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm .【解析】【分析】(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD即为OA .(2)用扇形面积公式即可求得.【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DE ODE DO ∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm .(2)∵67ODE ∠=︒,∴157BOC ∠=︒, ∴2360BOC n r S π=扇形 2157 3.1424.52360⨯⨯≈ ()2822cm ≈.答:扇形BOC 的面积约为2822cm .【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.6.如图①,在菱形ABCD 中,60B ︒∠= ,4AB =.点P 从点A 出发以每秒2个单位的速度沿边AD 向终点D 运动,过点P 作PQ AC ⊥交边AB 于点Q ,过点P 向上作//PN AC ,且2PN PQ =,以PN 、PQ 为边作矩形PQMN .设点P 的运动时间为t (秒),矩形PQMN 与菱形ABCD 重叠部分图形的面积为S .(1)用含t 的代数式表示线段PQ 的长.(2)当点M 落在边BC 上时,求t 的值.(3)当0t 1<<时,求S 与t 之间的函数关系式,(4)如图②,若点O 是AC 的中点,作直线OM .当直线OM 将矩形PQMN 分成两部分图形的面积比为12:时,直接写出t 的值【答案】(1)23PQ t =;(2)45;(3)2193403163t t -+-;(4) 23t = 或87t = . 【解析】【分析】(1)由菱形性质得∠D=∠B=60°,AD=AB=CD=4,△ACD 是等边三角形,证出△APQ 是等腰三角形,得出PF=QF ,3,即可得出结果;(2)当点M 落在边BC 上时,由题意得:△PDN 是等边三角形,得出PD=PN ,由已知得3,得出PD=3t ,由题意得出方程,解方程即可; (3)当0<t≤45时,3t ,PN=32PQ=3t ,S=矩形PQMN 的面积=PQ×PN ,即可得出结果;当45<t <1时,△PDN 是等边三角形,得出PE=PD=AD-PA=4-2t ,∠FEN=∠PED=60°,得出NE=PN-PE=5t-4,33(5t-4),S=矩形PQMN 的面积-2△EFN 的面积,即可得出结果;(4)分两种情况:当0<t≤45时,△ACD 是等边三角形,AC=AD=4,得出OA=2,OG 是△MNH 的中位线,得出OG=4t-2,NH=2OG=8t-4,由面积关系得出方程,解方程即可; 当45<t≤2时,由平行线得出△OEF ∽△MEQ ,得出EF OF EQ MQ =233t t EF t -=+,解得EF=243232t t t -,得出2332234t t t t -+,由三角形面积关系得出方程,解方程即可.【详解】(1)∵在菱形ABCD 中,∠B=60°,∴∠D=∠B=60°,AD=AB=CD=4,△ACD 是等边三角形,∴∠CAD=60°,∵PQ ⊥AC ,∴△APQ 是等腰三角形,∴PF=QF,PF=PA•sin60°=2t×32=3t,∴PQ=23t;(2)当点M落在边BC上时,如图2所示:由题意得:△PDN是等边三角形,∴PD=PN,∵PN=32PQ=32×23t=3t,∴PD=3t,∵PA+PD=AD,即2t+3t=4,解得:t=45.(3)当0<t≤45时,如图1所示:PQ=23t,PN=32PQ=32×23t=3t,S=矩形PQMN的面积=PQ×PN=23t×3t=63t2;当45<t<1时,如图3所示:∵△PDN是等边三角形,∴PE=PD=AD-PA=4-2t,∠FEN=∠PED=60°,∴NE=PN-PE=3t-(4-2t)=5t-4,∴FN=3NE=3(5t-4),∴S=矩形PQMN的面积-2△EFN的面积=63t2-2×12×3(5t-4)2=-19t2+403t-163,即S=-19t2+403t-163;(4)分两种情况:当0<t≤45时,如图4所示:∵△ACD是等边三角形,∴AC=AD=4,∵O是AC的中点,∴OA=2,OG是△MNH的中位线,∴OG=3t-(2-t)=4t-2,NH=2OG=8t-4,∴△MNH的面积=12MN×NH=12×23t×(8t-4)=13×63t2,解得:t=23;当45<t≤2时,如图5所示:∵AC∥QM,∴△OEF∽△MEQ,∴EF OFEQ MQ=233ttEF t-=+,解得:2332t t-,∴EQ=2332234t t t t --+, ∴△MEQ 的面积=12×3t×(23323t t t -+)=13×63t 2, 解得:t=87; 综上所述,当直线OM 将矩形PQMN 分成两部分图形的面积比为1:2时,t 的值为23或87. 【点睛】本题是四边形综合题目,考查了菱形的性质、矩形的性质、等边三角形的判定与性质、勾股定理、相似三角形的判定与性质、三角形中位线定理等知识;本题综合性强,难度较大,熟练掌握菱形和矩形的性质,综合运用知识,进行分类讨论是解题的关键.7.如图,在ABC △中,10AC BC ==,3cos 5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P e 与边BC 相切时,求P e 的半径;()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;()3在()2的条件下,当以PE 长为直径的Q e 与P e 相交于AC 边上的点G 时,求相交所得的公共弦的长.【答案】(1)409;(2))25880010320x x y x x -+=<<+;(3)105- 【解析】【分析】(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=45,sinC=HP CP =R 10R -=45,即可求解;(2)PD∥BE,则EBPD=BFPF,即:2248805x x x yx y--+-=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=35,sinC=HPCP=R10R-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,5tan∠()2284x+-2880x x-+25,则525,如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=5,sinβ=5, EB=BDcosβ=(45-25x )×5=4-25x , ∴PD ∥BE ,∴EB PD =BF PF ,即:2248805x x x y x --+-=, 整理得:y=()25x x 8x 800x 103x 20-+<<+; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG=PQ ,即两个圆的半径相等,则两圆另外一个交点为D ,GD 为相交所得的公共弦,∵点Q 时弧GD 的中点,∴DG ⊥EP ,∵AG 是圆P 的直径,∴∠GDA=90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形,∴AG=EP=BD ,∴5设圆的半径为r,在△ADG中,AD=2rcosβ=5,DG=5,AG=2r,5+2r=45,解得:2r=51,则:DG=5=10-25,相交所得的公共弦的长为10-25.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.8.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y轴交于点C.(1)求抛物线表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC下方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,①求点P坐标;②过此二点的直线交y轴于F, 此直线上一动点G,当GB+2GF最小时,求点G坐标.(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313【解析】【分析】(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为GB+2 2GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;(3)先用面积法求出sin∠ACB=213,tan∠ACB=23,在Rt△ABE中,求得圆的直径,因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=MBBN=23,所以BN=32MB,当MB为直径时,BN的长度最大.【详解】(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),∴1412554a ba b-++⎧⎨-++⎩=,=解得16ab⎧⎨-⎩=,=∴抛物线表达式为y=x²﹣6x+4.(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,设直线BC的解析式为y=kx+m,∵B(5,-1),C(0,4),∴154k mm-+⎧⎨⎩==,解得14km=,=-⎧⎨⎩∴直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),∵▱CBPQ的面积为30,∴S△PBC=12×(−t+4−t2+6t−4)×5=15,解得t=2或t=3,当t=2时,y=-4当t=3时,y=-5,∴点P坐标为(2,-4)或(3,-5);②当点P为(2,-4)时,∵直线BC解析式为:y=-x+4, QP∥BC,设直线QP的解析式为:y=-x+n,将点P代入,得-4=-2+n,n=-2,∴直线QP的解析式为:y=-x-2,∴F(0,-2),∠GOR=45°,∴GB+2GF=GB+GR当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,同理可得点G的坐标为(0,-2),(3) )∵A(1,-1),B(5,-1)C(0,4),∴AC=26,BC=52,∵S△ABC=12AC×BCsin∠ACB=12AB×5,∴sin∠ACB=213,tan∠ACB=23,∵AE为直径,AB=4,∴∠ABE=90°,∵sin∠AEB=sin∠ACB=213=4AE,∴AE=213,∵MB⊥NB,∠NMB=∠EAB,∴∠N=∠AEB=∠ACB,∴tanN=MBBN =23,∴BN=32MB,当MB为直径时,BN的长度最大,为313.【点睛】题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.9.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=3A,D两点作⊙O,交AB于点E,(1)求弦AD的长;(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON 等于多少时,三点D、E、M组成的三角形是等腰三角形?(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.【答案】(1)23(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形(3)不变,理由见解析【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后根据含30°的直角三角形三边的关系得DN=1233;当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到33;(3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB,∠AQC=∠P,则∠PAQ=60°,∠CAQ=∠PAD,易证得△AQC≌△APD,得到DP=CQ,则DP-DQ=CQ-DQ=CD,而△ADC为等边三角形,3DP-DQ的值.【详解】解:(1)∵∠BAC=90°,点D是BC中点,BC=3∴AD=12BC=3(2)连DE、ME,如图,∵DM>DE,当ED和EM为等腰三角形EDM的两腰,∴OE⊥DM,又∵AD =AC ,∴△ADC 为等边三角形,∴∠CAD =60°,∴∠DAO =30°,∴∠DON =60°,在Rt △ADN 中,DN =12AD ,在Rt △ODN 中,ON =3DN =1, ∴当ON 等于1时,三点D 、E 、M 组成的三角形是等腰三角形;当MD =ME ,DE 为底边,如图3,作DH ⊥AE ,∵AD =∠DAE =30°,∴DH ∠DEA =60°,DE =2,∴△ODE 为等边三角形,∴OE =DE =2,OH =1,∵∠M =∠DAE =30°,而MD =ME ,∴∠MDE =75°,∴∠ADM =90°﹣75°=15°,∴∠DNO =45°,∴△NDH 为等腰直角三角形,∴NH=DH∴ON ﹣1;综上所述,当ON 等于11时,三点D 、E 、M 组成的三角形是等腰三角形;(3)当⊙O 变动时DP ﹣DQ 的值不变,DP ﹣DQ =.理由如下:连AP 、AQ ,如图2,∵∠C =∠CAD =60°,而DP ⊥AB ,∴AC ∥DP ,∴∠PDB =∠C =60°,又∵∠PAQ =∠PDB ,∴∠PAQ =60°,∴∠CAQ =∠PAD ,∵AC =AD ,∠AQC =∠P ,∴△AQC ≌△APD ,∴DP =CQ ,∴DP ﹣DQ =CQ ﹣DQ =CD =【点睛】本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.10.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°,①如图1,∠DCB等于多少度;②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴△CDB 是等边三角形,∴∠DCB =60°.②如图1,结论:CP =BF .理由如下:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠DCB =60°,∴△CDB 为等边三角形.∴∠CDB =60°∵线段DP 绕点D 逆时针旋转60°得到线段DF ,∵∠PDF =60°,DP =DF ,∴∠FDB =∠CDP ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,在Rt△CDE中,∠DEC=90°,∴tan∠CDE=CE,DE∴CE=DEtanα,∴BC=2CE=2DEtanα,即BF﹣BP=2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP≌△DBF是解此题的关键,综合性比较强,证明过程类似.11.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).【答案】拦截点D处到公路的距离是(500+500)米.【解析】试题分析:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出CF=CD=500米,则DA=BE+CF=(500+500)米.试题解析:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=BC=×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,∴CF=CD=500米,∴DA=BE+CF=(500+500)米,故拦截点D处到公路的距离是(500+500)米.考点:解直角三角形的应用-方向角问题.12.如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,33),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).【答案】(1)D(032)C(12﹣33﹣18);(3)B'(13 0),(2130).【解析】【分析】(1)设OD为x,则3x,在RT△ODA中应用勾股定理即可求解;(2)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为2,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD为x,∵点A(3,0),点B(0,33),∴AO=3,BO=33∴AB=6∵折叠在Rt △ADO 中,OA2+OD2=DA2.∴9+OD2=(33﹣OD )2. ∴OD=3 ∴D (0,3)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD ∥OA∴BD BC BO AB =且BD=AC , ∴6633BD -= ∴BD=123﹣18∴OD=33﹣(123﹣18)=18﹣93∵tan ∠ABO=3OB AO =, ∴∠ABC=30°,即∠BAO=60° ∵tan ∠ABO=3BD 3CD =, ∴CD=12﹣63∴D (12﹣63,123﹣18)(Ⅲ)如图:过点C 作CE ⊥AO 于E∵CE ⊥AO∴OE=2,且AO=3∴AE=1,∵CE ⊥AO ,∠CAE=60°∴∠ACE=30°且CE ⊥AO∴AC=2,3∵BC=AB ﹣AC∴BC=6﹣2=4若点B'落在A 点右边,∴BC=B'C=4,CE⊥OA∴=∴∴B'(0)若点B'落在A点左边,∵折叠∴BC=B'C=4,CE⊥OA∴=∴2∴B'(20)综上所述:B'(0),(20)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.。

2020-2021九年级中考数学直角三角形的边角关系解答题压轴题提高专题练习附答案解析

2020-2021九年级中考数学直角三角形的边角关系解答题压轴题提高专题练习附答案解析

2020-2021九年级中考数学直角三角形的边角关系解答题压轴题提高专题练习附答案解析一、直角三角形的边角关系1.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=, ∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =,∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠,OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P , ∴四边形BOCM 是平行四边形,∴4832BOCM S BO OM =⨯=⨯=Y .故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.2.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN 是水平线,MN ∥AD ,AD ⊥DE ,CF ⊥AB ,垂足分别为D ,F ,坡道AB 的坡度为1:3,DE =3米,点C 在DE 上,CD =0.5米,CD 是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF 的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41, 3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan B =,即可得出tan A ,在Rt △ADE 中,根据勾股定理可求得DE ,即可得出∠1的正切值,再在Rt △CEF 中,设EF =x ,即可求出x ,从而得出CF 3的长.【详解】解:由题意得,3tan 3B =∵MN ∥AD ,∴∠A =∠B ,∴tan A=33,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=33.在Rt△CEF中,设EF=x,CF=3x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CF=3x≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.3.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H作HM EF⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。

中考压轴题《直角三角形的存在性》

中考压轴题《直角三角形的存在性》

《直角三角形的存在性》例题讲解例1 如图,抛物线l:y=ax2+2x-3与r轴交于A,B(3,0)两点(点A在点B的左侧).与y轴交于点C(0,3).已知对称轴为x=1.(1)求抛物线的表达式;(2)设点P是抛物线l上任意一点,点Q在直线x=-3上,问:△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.解:(1)由题意可得点A的坐标为(1,0).所以抛物线表达式可变为y=a(x-3)(x+1)=ax2-2ax-3a由点C的坐标可得-3a=3,a=-1所以抛物线的表达式为y=-x2+2x+3.(2)如图,过点P作PM垂直于直线l,垂足为M.过点B作BN垂直于直线PM.垂足为N.若△PBQ是以点P为直角顶点的等腰直角三角形,无论点P在BQ的上方或下方,由“弦图模型”均可得△PQM∽△BPN.所以PM=BN.设点P的坐标为(m,H,-m2+2m+3).则PM=|m+3|,BN=|-m2+2m+3|,所以|m+3|=|-m2+2m+3|.解得m1=0,m2=1,m3,m4所以点P的坐标为(0,3),(1,4例2 如图,一次函数y=-2x+10的图象与反比例函数y=kx(k>0)的图象相交于A、B 两点(点A在点B的右侧),分别交x轴.y轴于点E,F.若点A的坐标为(4,2).问:反比例函数图象的另一支上是否存在一点P.使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由,解:将点A (4,2)代入反比例函数表达式,得k =8,所以反比例函数为y =8x ,联立方程纽组8210y x y x ⎧=⎪⎨⎪=-+⎩ , 解得1142x y =⎧⎨=⎩,2218x y =⎧⎨=⎩ 所以点B 的坐标为(1,8).由题意可得点E .F 的坐标分剐为(5,0),(0,10), 以AB 为直角迎的直角三角形有两种情况:如图1,当∠PAB =90°时,连结OA ,则OA而AE ,OE =5,所以OA 2+AE 2=OE 2, 即OA ⊥A B .所以A ,O ,P 三点共线. 由O 、A 两点的坐标可得直线AP 的表达式为y =12x . 联立方程组812y xy x ⎧=⎪⎪⎨⎪=⎪⎩解得1142x y =⎧⎨=⎩,2242x y =-⎧⎨=-⎩所以点P 的坐标为(-4,-2).②如图2,当∠PBA =90°时,记BP 与y 轴的交点为G .易证△FBC ∽△FOE ,所以FB FOFG FE =,而FO =10.FEFB可求得FG =52,所以点G 的坐标为(0,152).由B ,G 两点的坐标可得直线BP 的表达式为y =12x +152,联立方程组115228y xyx⎧⎪⎪⎨⎪⎪⎩=+,=,解得1118xy⎧⎨⎩=,=;221612xy⎧⎪⎨⎪⎩=-,=-.所以点P的坐标为(-16,-12);综上可得,满足条件的点P坐标为(-4,-2)或(-16,-12).图2例3 如图,抛物线C1:y=a(x-2)2-5的顶点为P,与x轴相交于A,B两点(点A 在点B的左侧),点A的横坐标是-1.D是x轴负半轴上的一个动点,将抛物线C1绕点D 旋转180°后得到抛物线C2.抛物线C2的顶点为Q,与x轴相交于E,F两点(点E在点F 的左侧).当以点P,Q,E为顶点的三角形是直角三角形时,求顶点Q的坐标.1C解由题意可得点A(-1,0),P(2,-5),B(5,0).设点D的坐标为(m,0),则点Q的坐标为(2m-2,5),E的坐标为(2m-5,0),所以PQ2=(2m-4)2+102,PE2=(2m-7)2+52,EQ2=32+52=34.△PQE为直角三角形有三种情况:①当∠PQE= 90°时,有PE2=PQ2+EQ2,即(2m-7)2+52=(2m-4)2+102+34,解得m=-193,所以点Q的坐标为(-443,5);②当∠QEP=90°时,有PQ2=PE2+EQ2,即(2m -4)2+102=(2m -7)2+52+34,解得m =-23,所以点Q 的坐标为(-103,5);③当∠QPE = 90°时,有EQ 2=PE 2 + PQ 2,即(2m -7)2+52+(2m -4)2+102=34,方程无解,所以此种情况不成立,综上可得,当△PQE 为直角三角形时,顶点Q 的坐标为(-443,5)或(-103,5).例4 如图.在直角梯形ABCD 中,AD ∥BC ,∠B = 90°,AD =2,BC =6,AB =3.E 为BC 边上一点,当BE =2时,以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧.当正方形BEFG 沿BC 向右平移,记平移中的正方形BEFG 为正方形B ′EFG ,当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B 'EFG 的边EF 与AC 交于点M ,连结B ′D ,B 'M ,DM .问:是否存在这样的t ,使△B 'DM 是直角三角形,若存在,求出t 的值;若不存在,请说明理由.EB'MFGCD AB解 存在满足条件的t .理由如下:如图,过点D 作DH ⊥ BC 于点H ,过点M 作MN ⊥DH 于点N , 则BH =AD =2,DH =AB =3.所以BB ′=HE =t ,HB ′=|t -2|,EC =4-t . 易证△MEC ∽△ABC ,可得ME AB =EC BC ,即3ME =46t -,所以ME =2-12t .在Rt △B ′ME 中,有B ′M 2=ME 2+B ′E 2=14t 2-2t +8. 在Rt △DHB ′中,有B ′D 2=DH 2+B ′H 2=t 2-4t +13.在Rt △DMN 中,DN =DH -NH =12t +1.则DM 2=DN 2+MN 2=54t 2+t +1. ①若∠DB'M =90°,则DM 2=B'M 2+B'D 2,即54t 2+t +1=(14t 2-2t +8)+(t 2-4t +13),解得t 1=207; ②若∠B'MD =90°,则B'D 2=B'M 2+DM 2,即t 2-4t +13=(14t 2-2t +8)+(54t 2+t +1),解得t 2=-3,t 3=-3(舍);③若∠B'DM =90°,则B'M 2=B 'D 2+DM 2, 即14t 2-2t +8=(t 2-4t +13)+(54t 2+t +1),此方程无解. 综上所得,当t =207或-3时,△B'DM 是直角三角形. NHBAD CGFM B'E进阶训练1.如图,在平面直角坐标系xOy 中,Rt △OAB 的直角顶点A 在x 轴上,OA =4,AB =3.动点M 从点A 出发,以每秒1个单位长度的速度,沿AO 向终点O 移动;同时点N 从点O 出发,以每秒1.25个单位长度的速度,沿OB 向终点B 移动.当两个动点运动了x (0<x <4)时,解答下列问题:(1)求点N 的坐标(用含x 的代数式表示);(2)在两个动点运动过程中,是否存在某一时刻,使△OMN 是直角三角形?若存在,求出x 的值;若不存在,请说明理由.解:(1)N (x ,34x ); (2)当△OMN 是直角三角形时,x 的值为2或6441. 【提示】(1)过点N 作NP ⊥OA 于点P ,由△PON ∽△AOB 即可求得; (2)分类讨论,通过△OMN 和△OAB 相似即可列出等式求得x 的值.2.如图,在平面直角坐标xOy 中,直线y =kx -3与双曲线y =4x的两个交点为A ,B .其中A (-1,a ).若M 为x 轴上的一个动点,且△AMB 为直角三角形,求满足条件的点M 的坐标.解:满足条件的点M 的坐标为(-5,0),(5,00). 【提示】先求出点A ,B 的坐标,再设点M 的坐标,从而用待定字母表示AM 2,BM 2,AB 2.然后讨论直角,根据勾股定理列方程即可.3.如图,抛物线233384y x x 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A ,B 的坐标;(2)若直线l 过点E (4,0),M 为直线l 上的一个动点,当以A ,B ,M 为顶点所作的直角三角形有且只有三个时,求直线l 的表达式.解:(1)A (﹣4,0),B (2,0);(2)直线l 的表达式为334y x 或334yx .【提示】(2)若△ABM 是直角三角形,则点M 在以AB 为直径的圆上,或过A ,B 且与AB 垂直的直线上(A ,B 两点除外).由题意可得直线l 与以AB 为直径的圆相切(如图),点M 1,M 2,M 3即为满足条件的三个点,此时直线l :334y x ;根据对称性,直线l 还可以为334yx4,如图,顶点为P (4,﹣4)的二次函数图象经过原点O (0,0),点A 在该图象上, OA 交其对称轴l 于点M ,点M ,N 关于点P 对称,连结AN ,ON . (1)求该二次函数的表达式;(2)当点A 在对称轴l 右侧的二次函数图象上运动时,请回答下列问题: ①证明:∠ANM =∠ONM ;②△ANO 能否为直角三角形?如果能,请求出所有符合条件的点A 的坐标;如果不能,请说明理由.解:(1)2124y x x ;(2)①略;②△ANO 能为直角三角形,符合条件的点A 的坐标为(442,4)【提示】(2)①过点A 作AH ⊥l 于点H ,令l 与x 轴的交点为D .设点A (m ,2124m m ),则直线AO 的表达式为1(2)4ym x ,从而求得点M 的坐标为(4,m -8),N 的坐标为(4,﹣m ),只需证明tan∠ANH =tan∠OND 即可;②分类讨论:当∠ANO =90°时,∠ANM =∠ONM =45°,点N 与点P 重合,点M 与点D 重合,不满足M ,N 关于点P 对称,故此时不存在这样的点A ;当∠NOA =90°时,有12OP MN ,求得满足条件的点A (442,4);当∠NAO =90°时,有12APMN ,即22221(4)(24)(4)4m m m m ,解得m =4,此时点A ,P 重合,不满足题意.。

中考数学压轴题专题1《直角三角形的存在性问题》

中考数学压轴题专题1《直角三角形的存在性问题》

中考数学压轴题专题一《直角三角形的存在性问题》【考题研究】这类问题主要是已知直角三角形的一边(即直角三角形的两个点确定),求解第三点。

这类问题主要是和动点问题结合在一起,主要在于考查学生的探寻能力和分类研究的推理能力,也是近几年来各市地对学生能力提高方面的一个考查。

【解题攻略】解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).【解题类型及其思路】当直角三角形存在时可从三个角度进行分析研究:(1)当动点在直线上运动时,常用的方法是①121k k⋅=-,②三角形相似,③勾股定理;(2)当动点在曲线上运动时,情况分类如下,第一当已知点处作直角的方法①121k k⋅=-,②三角形相似,③勾股定理;第二是当动点处作直角的方法:寻找特殊角【典例指引】类型一【确定三角形的形状】典例指引1.(2019·辽宁中考模拟)已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【举一反三】(2019·淮滨县王店乡教育管理站中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c 与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.类型二【确定点的坐标】典例指引2.19.(2019·江西中考模拟)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【举一反三】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.类型三【确定动点运动的时间】典例指引3.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F5AC方向运动.当点E停止运动时,点F 随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【举一反三】(2018·河北中考模拟)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y 轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【新题训练】1.如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.2.如图,抛物线y =mx 2+nx ﹣3(m≠0)与x 轴交于A(﹣3,0),B(1,0)两点,与y 轴交于点C ,直线y =﹣x 与该抛物线交于E ,F 两点.(1)求点C 坐标及抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH ⊥EF 于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,⊙C 上是否存在点D ,使得△BCD 是以CD 为直角边的直角三角形?若存在,直接写出D 点坐标;若不存在,请说明理由.3.(2019·四川)如图,顶点为(3,3)P 的二次函数图象与x 轴交于点(6,0)A ,点B 在该图象上,OB 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、ON .(1)求该二次函数的关系式.(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题:①连接OP ,当12OP MN =时,请判断NOB ∆的形状,并求出此时点B 的坐标. ②求证:BNM ONM ∠=∠.4.(2018·贵州中考)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.5.(2018·四川中考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.6.(2019·云南中考模拟)已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使P A+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.7.(2019·黑龙江中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A (﹣1,0)B(3,0)两点,与y轴交于点C.(1)求抛物线y=ax2+2x+c的解析式:;(2)点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;(3)①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.8.(2019·广西中考模拟)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.(1)若直线y=mx+n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)设点P 为抛物线的对称轴x=﹣1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.9.(2019·山东中考模拟)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB ,tan ∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x 2+bx+c 经过A 、B 两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE . ①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.10.(2019·山东中考模拟)已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.11.(2019·陕西中考模拟)如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.12.(2019·山东中考模拟)如图,已知直线AB经过点(0,4),与抛物线y=14x2交于A,B两点,其中点A的横坐标是2 .(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?13.(2019·河北中考模拟)已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.14.(2019·河南中考模拟)如图所示,菱形ABCD位于平面直角坐标系中,抛物线y=ax2+bx+c 经过菱形的三个顶点A、B、C,已知A(﹣3,0)、B(0,﹣4).(1)求抛物线解析式;(2)线段BD上有一动点E,过点E作y轴的平行线,交BC于点F,若S△BOD=4S△EBF,求点E的坐标;(3)抛物线的对称轴上是否存在点P,使△BPD是以BD为斜边的直角三角形?如果存在,求出点P的坐标;如果不存在,说明理由.15.(2019·临沭县青云镇青云初级中学中考模拟)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P 点,使线段PC 的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求∆PAC 为直角三角形时点P 的坐标.16.(2019·江西中考模拟)如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D . (1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值; ②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.【典例指引】类型一 【确定三角形的形状】典例指引1.(2019·辽宁中考模拟)已知,m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m |<|n |,抛物线y =x 2+bx +c 的图象经过点A (m ,0),B (0,n ),如图所示. (1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或> 【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ=2,∴QF=1. ①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t>3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213(03)22{13 (03)22t t t t t t t 或-+<<-.【举一反三】(2019·淮滨县王店乡教育管理站中考模拟)如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).类型二【确定点的坐标】典例指引2.19.(2019·江西中考模拟)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2﹣3, y=﹣x﹣3;(2)y=2x2﹣4x+1;(3)存在,P为(1172+,﹣2)117-,﹣2)或(9,﹣2)或(﹣8,﹣2).【解析】分析:(1)衍生抛物线顶点为原抛物线与y轴的交点,则可根据顶点设顶点式方程,由衍生抛物线过原抛物线的顶点则解析式易得,MN解析式易得.(2)已知衍生抛物线和衍生直线求原抛物线思路正好与(1)相反,根据衍生抛物线与衍生直线的两交点分别为衍生抛物线与原抛物线的交点,则可推得原抛物线顶点式,再代入经过点,即得解析式.(3)由N(0,﹣3),衍生直线MN绕点N旋转到与x轴平行得到y=﹣3,再向上平移1个单位即得直线y=﹣2,所以P点可设(x,﹣2).在坐标系中使得△POM为直角三角形一般考虑勾股定理,对于坐标系中的两点,分别过点作平行于x轴、y轴的直线,则可构成以两点间距离为斜边的直角三角形,且直角边长都为两点横纵坐标差的绝对值.进而我们可以先算出三点所成三条线的平方,然后组合构成满足勾股定理的三种情况,易得P 点坐标.本题解析:(1)∵抛物线y=x2﹣2x﹣3过(0,﹣3),∴设其衍生抛物线为y=ax2﹣3,∵y=x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴衍生抛物线为y=ax2﹣3过抛物线y=x2﹣2x﹣3的顶点(1,﹣4),∴﹣4=a•1﹣3,解得a=﹣1,∴衍生抛物线为y=﹣x2﹣3.设衍生直线为y=kx+b,∵y=kx+b过(0,﹣3),(1,﹣4),∴304bk b -=+⎧⎨-=+⎩,∴13 kb=-⎧⎨=-⎩,∴衍生直线为y=﹣x﹣3.(2)∵衍生抛物线和衍生直线两交点分别为原抛物线与衍生抛物线的顶点,∴将y=﹣2x2+1和y=﹣2x+1联立,得22121y xy x⎧=-+⎨=-+⎩,解得1xy=⎧⎨=⎩或11xy=⎧⎨=-⎩,∵衍生抛物线y=﹣2x2+1的顶点为(0,1),∴原抛物线的顶点为(1,﹣1).设原抛物线为y=a(x﹣1)2﹣1,∵y=a(x﹣1)2﹣1过(0,1),∴1=a(0﹣1)2﹣1,解得a=2,∴原抛物线为y=2x2﹣4x+1.(3)∵N(0,﹣3),∴MN绕点N旋转到与x轴平行后,解析式为y=﹣3,∴再沿y轴向上平移1个单位得的直线n解析式为y=﹣2.设点P坐标为(x,﹣2),∵O(0,0),M(1,﹣4),∴OM2=(x M﹣x O)2+(y O﹣y M)2=1+16=17,OP2=(|x P﹣x O|)2+(y O﹣y P)2=x2+4,MP2=(|x P﹣x M|)2+(y P﹣y M)2=(x﹣1)2+4=x2﹣2x+5.①当OM2=OP2+MP2时,有17=x2+4+x2﹣2x+5,解得,即P,﹣2)或P,﹣2).②当OP2=OM2+MP2时,有x2+4=17+x2﹣2x+5,解得x=9,即P(9,﹣2).③当MP2=OP2+OM2时,有x2﹣2x+5=x2+4+17,解得x=﹣8,即P(﹣8,﹣2).综上所述,当P为(1172+,﹣2)或(1172-,﹣2)或(9,﹣2)或(﹣8,﹣2)时,△POM为直角三角形.【名师点睛】本题考查了一次函数、二次函数图象及性质,勾股定理及利用其表示坐标系中两点距离的基础知识,特别注意的是:利用其表示坐标系中两点距离,是近几年中考的热点,需学生熟练运用.【举一反三】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2﹣4x+5.(2)372;(3)P坐标为(﹣2,7)或(﹣2,﹣3)或(﹣2,6)或(﹣2,﹣1).【解析】试题分析:(1)利用待定系数法即可解决问题; (2)构建二次函数利用二次函数的性质即可解决问题;(3)分三种情形分别求解①当90,ACP ∠=o由222AC PC PA +=,列出方程即可解决.②当90CAP ∠=︒时,由222AC PA PC +=, 列出方程即可解决.③当90APC ∠=︒ 时,由222PA PC AC +=,列出方程即可; 试题解析:(1)把A (−5,0),B (1,0)两点坐标代入2y x bx c =-++,得到255010b c b c --+=⎧⎨-++=⎩,解得45b c =-⎧⎨=⎩,∴抛物线的函数表达式为24 5.y x x =--+ (2)如图1中,∵抛物线的对称轴x =−2,2(,45)E x x x ,--+ ∴2452EH x x EF x =--+=--,,∴矩形EFDH 的周长225372()2(53)2().22EH EF x x x =+=--+=-++ ∵−2<0, ∴52x =-时,矩形EHDF 的周长最大,最大值为37.2 (3)如图2中,设P (−2,m )①当90,ACP ∠=o ∵222AC PC PA +=, ∴22222(52)2(5)3m m ++-=+, 解得m =7, ∴P 1(−2,7).②当90CAP ∠=o 时,∵222AC PA PC +=, ∴22222(52)32(5)m m ++=+-, 解得m =−3, ∴P 2(−2,−3).③当90APC ∠=o 时,∵222PA PC AC +=, ∴2222232(5)(52)m m ,+++-= 解得m =6或−1, ∴P 3(−2,6),P 4(−2,−1),综上所述,满足条件的点P 坐标为(−2,7)或(−2,−3)或(−2,6)或(−2,−1).类型三 【确定动点运动的时间】典例指引3.已知二次函数y =ax 2+bx -2的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当x =-2和x =5时二次函数的函数值y 相等.(1)求实数a ,b 的值;(2)如图①,动点E ,F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F AC 方向运动.当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将△AEF 沿EF 翻折,使点A 落在点D 处,得到△DEF.①是否存在某一时刻t ,使得△DCF 为直角三角形?若存在,求出t 的值;若不存在,请说明理由;②设△DEF 与△ABC 重叠部分的面积为S ,求S 关于t 的函数关系式.【解析】试题分析:(1)根据抛物线图象经过点A 以及“当x =﹣2和x =5时二次函数的函数值y 相等”两个条件,列出方程组求出待定系数的值.(2)①首先由抛物线解析式能得到点A 、B 、C 三点的坐标,则线段OA 、OB 、OC 的长可求,进一步能得出AB 、BC 、AC 的长;首先用t 表示出线段AD 、AE 、AF (即DF )的长,则根据AE 、EF 、OA 、OC 的长以及公共角∠OAC 能判定△AEF 、△AOC 相似,那么△AEF 也是一个直角三角形,及∠AEF 是直角;若△DCF 是直角,可分成三种情况讨论:i )点C 为直角顶点,由于△ABC 恰好是直角三角形,且以点C 为直角顶点,所以此时点B 、D 重合,由此得到AD 的长,进而求出t 的值;ii )点D 为直角顶点,此时∠CDB 与∠CBD 恰好是等角的余角,由此可证得OB =OD ,再得到AD 的长后可求出t 的值;iii )点F 为直角顶点,当点F 在线段AC 上时,∠DFC 是锐角,而点F 在射线AC 的延长线上时,∠DFC 又是钝角,所以这种情况不符合题意. ②此题需要分三种情况讨论:i )当点E 在点A 与线段AB 中点之间时,两个三角形的重叠部分是整个△DEF ;ii )当点E 在线段AB 中点与点O 之间时,重叠部分是个不规则四边形,那么其面积可由大直角三角形与小钝角三角形的面积差求得;iii )当点E 在线段OB 上时,重叠部分是个小直角三角形.试题解析:解:(1)由题意得: 16420{4222552a b a b a b +-=--=+-,解得:a =12,b =32-.(2)①由(1)知二次函数为213222y x x =--.∵A (4,0),∴B (﹣1,0),C (0,﹣2),∴OA =4,OB =1,OC =2,∴AB =5,AC =BC AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形,且∠ACB =90°.∵AE=2t,AF,∴2AF ABAE AC==.又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF=12AE=t.假设△DCF为直角三角形,当点F在线段AC上时:ⅰ)若C为直角顶点,则点D与点B重合,如图2,∴AE=12AB=52t=52÷2=54;ⅱ)若D为直角顶点,如图3.∵∠CDF=90°,∴∠ODC+∠EDF=90°.∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,∴∠ODC=∠OBC,∴BC=DC.∵OC⊥BD,∴OD=OB=1,∴AD=3,∴AE=32,∴t=34;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.综上所述,存在时刻t,使得△DCF为直角三角形,t=34或t=54.②ⅰ)当0<t≤54时,重叠部分为△DEF,如图1、图2,∴S=12×2t×t=t2;ⅱ)当54<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GH⊥BE于H,设GH=m,则BH= 12m,DH=2m,∴DB=32m.∵DB=AD﹣AB=4t﹣5,∴32m=4t﹣5,∴m=23(4t﹣5),∴S=S△DEF﹣S△DBG=12×2t×t﹣12(4t﹣5)×23(4t﹣5)=2134025333t t-+-;ⅲ)当2<t≤52时,重叠部分为△BEG,如图5.∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),∴S=12×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.综上所述:2225(0)41340255{(2)3334542025(2)2t tS t t tt t t<≤=-+-<≤-+<≤.【名师点睛】此题主要考查的是动点函数问题,涉及了函数解析式的确定、直角三角形以及相似三角形的判定和性质、等腰三角形的性质以及图形面积的解法等综合知识;第二题的两个小题涉及的情况较多,一定要根据动点的不同位置来分类讨论,抓住动点的关键位置来确定未知数的取值范围是解题的关键所在. 【举一反三】(2018·河北中考模拟)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值. 【答案】(1)A (,0)、B (3,0);(2)存在.S △PBC 最大值为2716;(3)2m 2=-或1m =-时,△BDM 为直角三角形. 【解析】 【分析】(1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值. 【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=. ∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--.设P (p ,213p p 22--),∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+().∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716.(3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -), ∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+, 解得:12m =-,22m =(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+, 解得:1m 1=-,2m 1=(舍去) . 综上所述,2m 2=-或1m =-时,△BDM 为直角三角形. 【新题训练】1.(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【答案】(1)y =﹣34x +3;(2)R (1,92);(3)BT =2或BT =165.【详解】解:(1)令y=0,即2333084x x -++=,解得122,4x x =-=, ∵点A 在点B 的左侧。

中考数学直角三角形的边角关系-经典压轴题及答案

中考数学直角三角形的边角关系-经典压轴题及答案

⊙O 于点 I,连接 IC,AB 与 OD 相交于点 M,连接 OB,易证∠ GBN=∠ ABC,所以 BG=BQ.
在 Rt△ BNQ 中,根据 tan∠ ABC= ,可求得 NQ、BQ 的长.利用圆周角定理可求得 IC 和 AI
的长度,设 QH=x,利用勾股定理可求出 QH 和 HD 的长度,利用垂径定理可求得 ED 的长
4.已知:△ ABC 内接于⊙O,D 是弧 BC 上一点,OD⊥BC,垂足为 H. (1)如图 1,当圆心 O 在 AB 边上时,求证:AC=2OH; (2)如图 2,当圆心 O 在△ ABC 外部时,连接 AD、CD,AD 与 BC 交于点 P,求证: ∠ ACD=∠ APB; (3)在(2)的条件下,如图 3,连接 BD,E 为⊙O 上一点,连接 DE 交 BC 于点 Q、交 AB 于点 N,连接 OE,BF 为⊙O 的弦,BF⊥OE 于点 R 交 DE 于点 G,若∠ ACD﹣
中考数学直角三角形的边角关系-经典压轴题及答案
一、直角三角形的边角关系
1.已知:如图,在四边形 ABCD 中, AB∥ CD, ∠ ACB =90°, AB=10cm, BC=8cm, OD 垂 直平分 A C.点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s;同时,点 Q 从点 D 出 发,沿 DC 方向匀速运动,速度为 1cm/s;当一个点停止运动,另一个点也停止运动.过点 P 作 PE⊥AB,交 BC 于点 E,过点 Q 作 QF∥ AC,分别交 AD, OD 于点 F, G.连接 OP, EG.设运动时间为 t ( s )(0<t<5) ,解答下列问题: (1)当 t 为何值时,点 E 在 BAC 的平分线上? (2)设四边形 PEGO 的面积为 S(cm2) ,求 S 与 t 的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出 t 的值;若不存在,请说明理由; (4)连接 OE, OQ,在运动过程中,是否存在某一时刻 t ,使 OE⊥OQ?若存在,求出 t 的值;若不存在,请说明理由.

中考数学压轴题专题解析---直角三角形中的动点问题

中考数学压轴题专题解析---直角三角形中的动点问题

中考数学压轴题专题解析---直角三角形中的动点问题这节课我们学什么1.动点直角三角形一线三直角问题2.动点直角三角形SAS问题3.动点直角三角形三角比问题4.动点直角三角形勾股定理问题知识点梳理动点直角三角形问题,一般都需要讨论哪个角是可能构成直角,然后根据题型,运用不同的方法.如下为总结的四种方法:1.先讨论哪个角是直角,然后第一类用一线三直角构造相似求解,分别用未知数的式子表示出一线三直角模型的边长;2.用边角边,即两边对应成比例夹角相等,一般是动点构成的直角三角形与已知的直角三角形相似,需要求出已知直角三角形的边长,以及用未知数的式子求出动点直角三角形的边长,通过对应边成比例建立等式;3.利用三角比来求解,实际上这个和上面一种情况类似,但是动点构成的直角三角形中,某个锐角的三角比已知,这样,直接在动点三角形中运用三角比直接可以建立等式;4.第四种方法就比较简单粗暴了,就是把动点直角三角形三边的长度用未知数的式子,或者直接是数字表示出来,用勾股定理建立等式,求解出未知数.典型例题分析1、动点直角三角形一线三直角问题; 例1.已知如图在平面直角坐标系xoy 中,抛物线与轴分别交于点(2,0)A 、点B (点B 在点A 的右侧),与y 轴交于点C ,1tan 2CBA ∠=. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ABCD 的面积;(3)设抛物线上的点E 在第一象限,BCE ∆是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.【答案:(1)∵当时,,∴(0,3)C在Rt COB ∆中,∵∴∴∴点(6,0)B把(2,0)A (6,0)B 分别代入,得:得解得:∴该抛物线表达式为(2)∵∴顶点41D -(,) ∴(3)点E 的坐标是108(,)或1635(,)】2、动点直角三角形SAS 问题 例2.已知:如图,抛物线2445y x mx =-++与y 轴交于点C ,与x 轴交于点A 、B ,(点A 在点B 的左侧)且满足4OC OA =.设抛物线的对称轴与x 轴交于点M . (1)求抛物线的解析式及点M 的坐标;(2)联接CM ,点Q 是射线CM 上的一个动点,当QMB ∆与COM ∆相似时,求直线AQ 的解析式.【答案:(1)根据题意:04C (,)∵4OC OA = ∴0A (-1,) 把点A 代入得4045m =--+ 解得∴抛物线的解析式∴(2)根据题意得:3BM =,2tan CMO ∠=,直线CM :4y x =+ (i )当90COM MBQ ∠=∠=︒时,COM QBM ∆∆∽ ∴2BQtan BMQ BM∠== ∴6BQ =即5,6Q -()∴AQ :(ii )当90COM BQM ∠=∠=︒时,COM BQM ∆∆∽ 同理Q () ∴AQ :】例3.如图,在ABC Rt ∆中,︒=∠90C ,5=AB ,43tan =B ,点D 是BC 的中点,点E 是AB 边上的动点,DE DF ⊥交射线AC 于点F . (1)求AC 和BC 的长;(2)当EF BC //时,求BE 的长;(3)联结EF ,当DEF ∆和ABC ∆相似时,求BE 的长.【答案:解:(1)在中,∠C ∵43tan ==BC AC B ,∴设k AC 3=,k BC 4= ∴55==k AB ,∴1=k ∴3=AC ,4=BC(2)过点E 作BC EH ⊥,垂足为H .A C易得EHB ACB ∆∆∽设k CF EH 3==,k BH 4=,k BE 5=∵EF BC //∴FDC EFD ∠=∠∵︒=∠=∠90C FDE ∴EFD FDC ∆∆∽ ∴CDFDFD EF =∴CD EF FD ⋅=2 即)44(2492k k -=+化简,得04892=-+k k 解得91324±-=k (负值舍去)∴92013105-==k BE(3)过点E 作BC EH ⊥,垂足为H .易得EHB ACB ∆∆∽ 设k EH 3=,k BE 5=∵︒=∠+∠90HDE HED ︒=∠+∠90HDE FDC ∴FDC HED ∠=∠∵︒=∠=∠90C EHD ∴EHD DCF ∆∆∽∴DFDECD EH =当DEF ∆和ABC ∆相似时,有两种情况:①43==BC AC DF DE ;∴43=CD EH 即4323=k 解得21=k ∴255==k BE②34==AC BC DF DE ;∴34=CD EH 即3423=k 解得98=k∴9405==k BE综合①、②,当DEF ∆和ABC ∆相似时,BE 的长为25或940.】3、动点直角三角形三角比问题例4.已知:如图,在Rt ABC ∆中,90C ∠=︒,2BC =,4AC =,P 是斜边AB 上的一个动点,PD AB ⊥,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且EPD A ∠=∠.设A 、P 两点的距离为x ,BEP ∆的面积为y . (1)求证:2AE PE =;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当BEP ∆与ABC ∆相似时,求BEP ∆的面积.【答案:(1)∵90APD C ∠=∠=︒,A A ∠=∠,∴ADP ABC ∆∆∽.∴21==AC BC AP PD . ∵EPD A ∠=∠,PED AEP ∠=∠,∴EPD EAP ∆∆∽. ∴21==AP PD AE PE . ∴2AE PE =.(2)由EPD EAP ∆∆∽,得21==AP PD PE DE ,∴2PE DE =. ∴24AE PE DE ==. 作EHAB ⊥,垂足为点H .∵AP x =,∴x PD 21=.∵PD HE //,∴34==AD AE PD HE .∴x HE 32=. 又∵52=AB ,∴x x y 32)52(21⋅-=,即x x y 352312+-=.定义域是5580<<x .另解:由EPD EAP ∆∆∽,得21==AP PD PE DE ,∴2PE DE =. ∴24AE PE DE ==.ABD E∴x x AE 3522534=⨯=.∴12233ABE S x x ∆⋅⨯==.∴AB BP S S ABE BEP =∆∆,即5252352x xy-=.∴x x y 352312+-=.定义域是5580<<x . (3)由PEH BAC ∆∆∽,得AC AB HE PE =,∴x x PE 352532=⋅=.当BEP ∆与ABC ∆相似时,只有两种情形:90BEP C ∠=∠=︒或90EBP C ∠=∠=︒.(i )当90BEP ∠=︒时,AB BC PB PE =,∴515235=-x x.解得453=x . ∴1625453352516931=⨯+⨯⨯-=y . (ii )当90EBP ∠=︒时,同理可得253=x ,45=y .】PGABCDFPGABCD例5.已知ABC ∆为等边三角形,6AB =,P 是AB 上的一个动点(与A 、B 不重合),过点P 作AB 的垂线与BC 相交于点D ,以点D 为正方形的一个顶点,在ABC ∆内作正方形DEFG ,其中D 、E 在BC 上,F 在AC 上,(1)设BP 的长为x ,正方形DEFG 的边长为y ,写出y 关于x 的函数解析式及定义域;(2)当2BP =时,求CF 的长;(3)GDP ∆是否可能成为直角三角形?若能,求出BP 的长;若不能,请说明理由.【答案:(1)∵ABC ∆为等边三角形, ∴60B C ∠=∠=︒,6AB BC AC ===. ∵DP AB ⊥,BP x =,∴2BD x = 又∵四边形DEFG 是正方形, ∴EF BC ⊥,EF DE y ==, ∴y EC 33=. ∴6332=++y y x , ∴339)33(-+-=x y .(≤<3)(2)当2BP =时,3392)33(-+⨯-=y 33-=.DEFBC23232-==y CF .(3)GDP ∆能成为直角三角形. ①90PGD ∠=︒时,y y x +=-36,61)3)9x x -=⋅+-得到:113630-=x . ②90GPD ∠=︒时,y x x 234+=, ⋅+=234x x ]339)33[(-+-x , 得到:336-=x .∴当GDP ∆为直角三角形时,BP 的长为113630-或者336-=x .】DABCGP EF4. 二动点直角三角形勾股定理问题例6.如图,AOB ∆的顶点A 、B 在二次函数21332y x bx =-++的图像上,又点A 、B 分别在y 轴和x 轴上,tan 1ABO ∠=.(1)求此二次函数的解析式;(2)过点A 作AC BO //交上述函数图像于点C ,点P 在上述函数图像上,当POC ∆与ABO ∆相似时,求点P【答案:(1)∵点A 在二次函数23312++-=bx x y 的图像上,)23,0(A 在Rt AOB ∆中,︒=∠90AOB ∵1tan ==∠BO AO ABO ,∵23==AO BO ,∴)0,23(-B ∵点B 在二次函数23312++-=bx x y 的图像上 ∴02323)23(312=+--⨯-b ∴21=b ∴2321312++-=x x y (2)∵AC BO //交上述函数图像于点C ,∴设)23,(x C ∴232321312=++-x x ,解得23,021==x x ∵)23,23(C ∴23==AO AC ,223=OC 设抛物线2321312++-=x x y 与x 轴的另一交点为D 可得,)0,3(D∴223)230()233(22=-+-=CD ,3=OD ∴222OD CD OC =+,∴︒=∠90OCD易得,Rt OCA Rt ABO ∆∆∽,Rt ODC Rt ABO ∆∆∽ ∴)23,0(P 或)0,3(P 】课后练习练1.如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点(0,3)C -,点P 是直线BC 下方抛物线上的任意一点;(1)求这个二次函数2y x bx c =++的解析式;(2)联结PO 、PC ,并将POC ∆沿y 轴对折,得到四边形POP C ',如果四边形POP C '为菱形,求点P 的坐标;(3)如果点P 在运动过程中,能使得以P 、C 、B 为顶点的三角形与AOC ∆相似,请求出此时点P 的坐标.【答案:】练2.如图,直角坐标平面内的梯形OABC ,OA 在x 轴上,OC 在y 轴上,//OA BC ,点E 在对角线OB 上,点D 在OC 上,直线DE 与x 轴交于点F ,已知2OE EB =,3CB =,6OA =,BA =5OD =.(1)求经过点A 、B 、C 三点的抛物线解析式:(2)求证:ODE OBC ∆∆∽:(3)在y 轴上找一点G ,使得OFG ODE ∆∆∽,直接写出点G 的坐标.【答案:(1)2163y x x =-++或者436)23(312+--=x y(2)24E (,),OE =,OB =OE OC OD OB==,DOE BOC ∠=∠ 故得证 (3)05(,)、05-(,)、020(,)、020-(,)】练3.已知:如图,二次函数22416333y x x =--的图像与x 轴交于点A 、B (点A 在点B 的左侧),抛物线的顶点为Q ,直线QB 与y 轴交于点E .(1)求点E 的坐标;(2)在x 轴上方找一点C ,使以点C 、O 、B 为顶点的三角形与BOE ∆相似,请直接写出点C 的坐标.【答案:(1)令0y =,得224160333x x --= 解方程得122,4x x =-=(4,0)B 又22(1)63y x =-- ∴(1,6)Q -设直线BQ :(0)y kx b k =+≠406k b k b +=⎧⎨+=-⎩解得28y x =-(0,8)E ∴-(2)12345616848(0,2),(0,8),(4,2),(4,8),(,),(,)5555C C C C C C 】练4.已知:正方形ABCD 的边长为4,点E 为BC 边的中点,点P 为AB 边上一动点长,沿PE 翻折BPE ∆得到FPE ∆,直线PF 交CD 边于点Q ,交直线AD 于点G .(1)如图,当 1.5BP =时,求CQ 的长;(2)如图,当点G 在射线AD 上时,设BP x =,DG y =,求y 关于x 的函数关系式,并写出x 的取值范围;(3)延长EF 交直线AD 于点H ,若CQE FHG ∆∆∽,求BP 的长.【答案:(1)由题意,得,90,BE EF PFE B BEP FEP =∠=∠=︒∠=∠ ∵点E 为BC 的中点22BE EC EF EC ∴==∴== 又90,EFQ C EQ EQ ∠=∠=︒=∴EFQ ECQ ∆∆≌,90FEQ CEQ BEP CEQ ∴∠=∠∴∠+∠=︒又90BPE BEP BPE CEQ ∠+∠=︒∴∠=∠90B C ∠=∠=︒∴BPE CEQ ∆∆∽ 1.522BP BE EC QC CQ ∴==即83CQ ∴= (2)由(1)知:BPE CEQ ∆∆∽,BP BE EC CQ ∴= 242x CQ CQ x ∴=∴=44DQ x ∴=- ∵QD AP //4,4DG DQ AP x AG y AG AP∴==-=+又 4444y x y x -∴=+-21616(12)4x y x x -∴=<<-(3)由题意知:90C GFH ∠︒∠==①当点G 在线段AD 的延长线上时,由题意知:G CQE ∠∠=∵CQE FQE ∠∠=∴22DQC FQC CQE G ∠∠∠∠===∴90DQG G ∠+∠︒=∴30G ∠︒=∴30BQP CQE G ∠∠∠︒===tan30BP BE ∴=⋅︒=②当点G 在线段DA 的延长线上时,由题意知:G QCE ∠=∠同理可得:30G ∠=︒30BPE G ∴∠=∠=︒cot30BP BE ∴=⋅︒=综上所述,BP 】课后小测验1.如图,二次函数2y x bx c =++图像经过原点和点(2,0)A ,直线AB 与抛物线交于点B ,且45BAO ∠=︒.(1)求二次函数解析式及其顶点C 的坐标;(2)在直线AB 上是否存在点D ,使得BCD ∆为直角三角形.若存在,求出点D 的坐标,若不存在,说明理由.【答案:(1)(2)由可以知道直线AB 的一次项系数为-1,从而可求得直线AB 的解析式为.当时.根据相互垂直的两直线的一次项系数之积等于-1可求得直线CD 的解析式为,将与联立可求得点D 的坐标为;当时.将与联立得求得点B 的坐标为,然后根据待定系数法求得直线BC 的解析式为直线BC 的解析式为,根据相互垂直的两直线的一次项系数之积等于-1可求得直线CD 的解析式为,将与联立可求得点D 的坐标为。

专题02 直角三角形三种压轴题型全攻略(解析版)

专题02 直角三角形三种压轴题型全攻略(解析版)

专题02 直角三角形三种压轴题型全攻略 类型一、与直角三角形有关最值问题例、如图,在ABC 中,90C ∠=︒,30A ∠=︒,点D 为边AB 的中点,点P 在边AC 上,则PDB△周长的最小值等于( ).A .AC AB +B .ABC .AC BC +D .AC【答案】C 【详解】解:作点B 关于AC 的对称点H ,连接HP 、HD ,如图所示:∴BP HP =,BC HC =,∴90C ∠=︒,30A ∠=︒,∴2AB BC BH ==,∴点D 为边AB 的中点,∴2AB BD =,∴BC BD =,∴ABC HBD ∠=∠,∴ABC HBD ≌(SAS ),∴AC HD =,∴PBD C BP PD BD HP PD BD =++=++,要使其最小,则需满足H 、P 、D 三点共线,即BP PD +的最小值为HD 的长,∴PBD △的周长最小值为AC BC +;故选C .【变式训练1】如图,在R t∴ABC 中,∴ACB =90°,将R t∴ABC 绕顶点C 逆时针旋转得到R t∴A 'B 'C ,M 是BC 的中点,P 是A ′B '的中点,连接PM .若BC =2,∴BAC =30°,则线段PM 的最大值为( ).A .2.5B .C .3D .4【答案】C 【详解】如图,连接PC在Rt ABC 中,2BC =,30BAC ∠=︒,∴24AB BC ==∴将ABC 绕顶点C 逆时针旋转得到A B C ''△∴A B C ''△也是直角三角形,且4A B AB ''==∴P 是A B ''的中点,∴122PC A B =''= ∴M 是BC 的中点。

∴1CM BM ==则由三角形的三边关系定理得:PC CM PM PC CM -<<+即13PM <<当点P 恰好在MC 的延长线上时,213PM PC CM =+=+=当点P 恰好在CM 的延长线上时,211PM PC CM =-=-=综上,13PM ≤≤则线段PM 的最大值为3故选:C .【变式训练2】如图,在ABC 中,90ACB ∠=︒,30CAB ∠=︒,=AC D 为AB 上一动点(不与点A 重合),AED 为等边三角形,过D 点作DE 的垂线,F 为垂线上任意一点,G 为EF 的中点,则线段BG 长的最小值是( )A.B .6 C.D .9【答案】B 【详解】解:如图,连接DG ,AG ,设AG 交DE 于点H ,DE DF ⊥,G 为EF 的中点,DG GE ∴=,∴点G 在线段DE 的垂直平分线上, AED 为等边三角形,AD AE ∴=,∴点A 在线段DE 的垂直平分线上,AG ∴为线段DE 的垂直平分线,AG DE ∴⊥,1302DAG DAE ∠=∠=︒, ∴点G 在射线AH 上,当BG AH ⊥时,BG 的值最小,如图所示,设点G '为垂足, 90ACB ∠=︒,30CAB ∠=︒,ACB AG B '∴∠=∠,CAB BAG '∠=∠,则在BAC 和BAG '△中,ACB AG B CAB BAG AB AB ∠=∠⎧⎪∠=∠='⎨'⎪⎩,()BAC BAG AAS '∴≅.BG BC '∴=,∴90ACB ∠=︒,30CAB ∠=︒,=AC ∴12BC AB =,222BC AB +=,∴222(2)BC BC +=,解得:6BC =,∴6BG BC '==故选:B . 【变式训练3】如图,长方形ABCD 中,6AB =,8BC =,E 为BC 上一点,且2BE =,F 为AB 边上的一个动点,连接EF ,将EF 绕着点E 顺时针旋转30°到EG 的位置,连接FG 和CG ,则CG 的最小值为______.【答案】2【详解】解:如图,将线段BE 绕点E 顺时针旋转30°得到线段ET ,连接GT ,过E 作EJ CG ⊥,垂足为J ,∴四边形ABCD 是矩形,∴AB =CD =6,∴B =∴BCD =90°,∴∴BET =∴FEG =30°,∴∴BEF =∴TEG ,在∴EBF 和∴TEG 中,EB ET BEF TEG EF EG =⎧⎪∠=∠⎨⎪=⎩,∴∴EBF ∴∴ETG (SAS ),∴∴B =∴ETG =90°,∴点G 的在射线TG 上运动,∴当CG ∴TG 时,CG 的值最小,∴∴EJG =∴ETG =∴JGT =90°,∴四边形ETGJ 是矩形,∴∴JET =90°,GJ =TE =BE =2,∴∴BET =30°,∴∴JEC =180°-∴JET -∴BET =60°,∴8BC =,∴6,3,EC BC BE EJ CJ =-===∴CG =CJ +GJ=2.∴CG的最小值为2+.故答案为:2.类型二、直角三角形中的存在性问题例、(1)在图1中,已知△ABC 中,∴B >∴C ,AD ∴BC 于D ,AE 平分∴BAC ,∴B =70°,∴C =40°,求∴DAE 的度数.(2)在图2中,∴B =x ,∴C =y ,其他条件不变,若把AD ∴BC 于D 改为F 是AE 上一点,FD ∴BC 于D ,试用x 、y 表示∴DFE = :(3)在图3中,当点F 是AE 延长线上一点,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么.(4)在图3中,分别作出∴BAE 和∴EDF 的角平分线,交于点P ,如图4.试用x 、y 表示∴P = .【答案】(1)15°;(2)1122x y -;(3)结论应成立.1122x y -(4)3144x y -. 【详解】解:(1)∴∴B =70°,∴C =40°,∴∴BAC =180°-∴B -∴C =180°-70°-40°=70°,∴AE 平分∴BAC ,∴∴BAE =11703522BAC ∠=⨯︒=︒, ∴AD ∴BC ,∴∴BDA =90°,∴∴B +∴BAD =90°,∴∴BAD =90°-∴B =90°-70°=20°,∴∴DAE =∴BAE -∴BAD =35°-20°=15°;(2)∴∴B =x ,∴C =y ,∴∴BAC =180°-∴B -∴C =180°- x -y ,∴AE 平分∴BAC ,∴∴EAC =()1111180902222BAC x y x y ∠=⨯︒--=︒--, ∴FD ∴BC ,∴∴EDE =90°,∴∴DFE +∴FED =90°,∴∴FED 是△AEC 的外角,∴∴FED =∴C +∴EAC =111190902222y x y x y +︒--=︒-+, ∴∴DFE =90°-∴FED =1122x y -, 故答案为:1122x y -; (3)结论应成立.过点A 作AG ∴BC 于G ,∴∴B =x ,∴C =y ,∴∴BAC =180°-∴B -∴C =180°- x -y ,∴AE 平分∴BAC ,∴∴BAE =()1111180902222BAC x y x y ∠=⨯︒--=︒--, ∴AG ∴BC ,∴∴AGB =90°,∴∴B +∴BAG =90°,∴∴BAG =90°-∴B =90°-x ,∴∴GAE =∴BAE -∴BAG =()11909022x y x ︒---︒-=1122x y -, ∴FD ∴BC ,AG ∴BC ,∴AG ∥FD ,∴∴EFD =∴GAE =1122x y -(4)设AF 与PD 交于H ,∴FD ∴BC ,PD 平分∴EDF ,∴∴HDF =11904522EDF ∠=⨯︒=︒, ∴P A 平分∴BAE ,∴BAE =()1111180902222BAC x y x y ∠=⨯︒--=︒--, ∴∴P AE =1111119045222244BAE x y x y ⎛⎫∠=︒--=︒-- ⎪⎝⎭, ∴∴AHP =∴FHD ,∴EFD =1122x y - ∴∴P +∴P AE =∴HDF +∴EFD ,即∴P +114544x y ︒--=45°+1122x y -, ∴∴P =1111314545224444x y x y x y ⎛⎫︒+--︒--=- ⎪⎝⎭, 故答案为:3144x y -.【变式训练1】综合与探究:如图①,在∴ABC 中,∴C >∴B ,AD 是∴BAC 角平分线.(1)探究与发现:如图①,AE ∴BC 于点E ,①若∴B =30°,∴C =70°,则∴CAD = °,∴DAE = °;②若∴B =45°,∴C =65°,则∴DAE = °;③试探究∴DAE 与∴B 、∴C 的数量关系,并说明理由.(2)判断与思考:如图②,F 是AD 上一点,FE ∴BC 于点E ,这时∴DFE 与∴B 、∴C 又有怎样的数量关系?【答案】(1)①40,20;②10;③∴DAE =12(∴C -∴B ),理由见解析;(2)∴DFE =12(∴C ﹣∴B ),理由见解析【详解】解:(1)①∴∴B =30°,∴C =70°,∴18080BAC B C ∠=︒-∠-∠=︒,∴AD 是∴BAC 角平分线,∴1402CAD BAD CAB ∠=∠=∠=︒,∴AE ∴BC ,∴90AEC ∠=︒,∴907020CAE ∠=︒-︒=︒,∴402020DAE CAD CAE ∠=∠-∠=︒-︒=︒,故答案为:40,20;②∴∴B =45°,∴C =65°,∴18070BAC B C ∠=-∠-∠=︒︒,∴AD 是∴BAC 角平分线,∴1352CAD BAD CAB ∠=∠=∠=︒,∴AE ∴BC ,∴90AEC ∠=︒,∴906525CAE ∠=︒-︒=︒,∴352510DAE CAD CAE ∠=∠-∠=︒-︒=︒,故答案为:10;③∴DAE =12(∴C -∴B ),理由如下:在∴AEC 中,∴AEC +∴C +∴EAC =180°,∴∴EAC =180°-∴AEC -∴C =180°-90°-∴C =90°-∴C ,∴∴DAE =∴CAD -∴EAC =12×(180°-∴B -∴C )=(90°-12∴B -12∴C )-( 90°-∴C )=12 (∴C -∴B ); (2)判断与思考;∴DFE =12(∴C ﹣∴B ),理由如下:证明:∴AD 平分∴BAC ,∴∴BAD =01802B C -∠-∠=90°-12(∴C +∴B ), ∴∴ADC 为∴ABD 的外角,∴∴ADC =∴B +90°-12(∴C +∴B )=90°+12(∴B -∴C ),∴FE ∴BC ,∴∴FED =90°,∴∴DFE =90°- [90°+12(∴B -∴C )]=90°-90°-12(∴B -∴C ),∴∴DFE =12(∴C -∴B ).【变式训练2】已知在直角三角形ABC 中,90C ∠=︒,AD 平分CAB ∠.(1)如图1,若DA DB =,求B 的度数;(2)如图2,点E 在AB 上,连接CE 交AD 于F ,若BCE BAD ∠=∠,求证:AC AE =; (3)如图3,在(2)的条件下,点M 在AB 上,连接CM 交AD 于G ,过点G 作GN BC ⊥于N ,交CF 于H ,2ACM B ∠=∠,2CH =,3DF =,求CGD △的面积.【答案】(1)30°;(2)见解析;(3)20【详解】证明:(1)∴DA =DB ,∴∴DAB =∴B ,∴AD 平分∴CAB ,∴∴CAD =∴DAB ,∴∴C =90°,∴∴B +∴CAB =90°,∴3∴B =90°,∴∴B =30°.(2)∴AD 平分∴CAB ,∴∴CAD =∴BAD ,∴∴BAD =∴BCE ,∴∴CAD =∴BCE ,∴∴BCE +∴ACE =90°,∴∴CAD +∴ACE =90°,∴∴AFE =∴AFC =90°,∴∴F AE +∴AEC =90°,∴∴ACE =∴AEC ,∴AC =AE .(3)设∴ACM =α,∴CAB =2β,∴∴BCM =90°-α.∴2∴ACM =∴B ,∴∴B =2α,∴∴BMC =90°-α.∴AC =AE ,∴∴AEC =90°-β,∴∴MCE =180°-∴BMC -∴AEC =α+β.∴2α+2β=90°,∴∴MCE =45°.∴∴CFG =90°,∴∴FGC =∴FCG ,∴FC =FG .∴GN ∴CD ,∴∴GNC =90°.∴∴FCD +∴FDC =∴FGH +∴FDC ,∴∴FCD =∴FGH .∴∴FGH ∴∴FCD ,∴FH =FD =3.∴CH =2,∴CF =GF =5,GD =8,∴∴CGD 的面积为11852022DG CF ⋅=⨯⨯=. 【变式训练3】已知:40MON ∠=︒,OE 平分MON ∠,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设OAC x ∠=︒. (1)如图,若//AB ON ,则①ABO ∠的度数是______;②当BAD ABD ∠=∠时,x =______;当BAD BDA ∠=∠时,x =______.(2)如图,若AB OM ⊥,则是否存在这样的x 的值,使得ADB △中有两个相等的角?若存在,请画出图形,并求出x 的值;若不存在,说明理由.【答案】(1)①20°;②120,60;(2)存在,图形见解析,20x 、35、50、125【详解】解:(1)解:(1)①∴40MON ∠=︒,OE 平分MON ∠,∴20AOB BON ∠=∠=︒, ∴//AB ON ,∴20ABO ∠=︒;②当BAD ABD ∠=∠,∴20BAD ABD ︒∠=∠=,∴180OAC BAD MAB ∠+∠+∠=︒,∴//AB ON ,∴40MAB MON ∠=∠=︒,∴180120OAC MAB BAD ∠=︒-∠-∠=︒,当BAD BDA ∠=∠,20ABO ∠=︒,∴80BAD ∠=︒,∴180OAC BAD MAB ∠+∠+∠=︒,∴//AB ON ,∴40MAB MON ∠=∠=︒,∴18060OAC MAB BAD ∠=︒-∠-∠=︒;故答案为:①20°;②120,60;(2)①当点D 在线段OB 上时,∴OE 是MON ∠的角平分线,∴1202AOB MON ∠=∠=︒, ∴AB OM ⊥,∴90AOB ABO ∠+∠=︒,∴70ABO ∠=︒,若70BAD ABD ∠=∠=︒,则907020OACOAB BAD ,∴20x ; 若()118070552BAD BDA ∠=∠=-︒=︒︒,则905535OAC OAB BAD ,∴35x =;若70ADB ABD ∠=∠=︒,则18027040BAD ∠=-︒⨯=︒︒,904050OAC OAB BAD ,∴50x =;②当点D 在射线BE 上时,因为110ABE ∠=︒,且三角形的内角和为180°, 所以只有1(180110)352BAD BDA ∠=∠=︒-︒=︒, 则9035125OAC OAB BAD ,∴125x =,综上可知,存在这样的x 的值,使得ADB △中有两个相等的角,且20x 、35、50、125.类型三、等腰三角形中的动点问题例、如图,在∴ABC 中,BC =7cm ,AC =24cm ,AB =25cm ,CD 为AB 边上的高,点E 从点B 出发沿直线BC 以2cm/s 的速度移动,过点E 作BC 的垂线交直线CD 于点F . (1)求证:∴A =∴BCD ;(2)问:点E 运动多长时间,CF =AB ?说明理由.【答案】(1)见解析;(2)312或172,理由见解析 【详解】解:(1)22222272425AC BC AB +=+==,∴∴ACB =90°∴CD ∴AB ,∴∴ADC =90°∴∴A +∴ACD =90°,∴BCD +∴ACD =90°,∴∴A =∴BCD ;(2)①点E 在BC 延长线上∴∴A =∴BCD =∴ECF ,∴ACB =∴FEC =90°, CF =AB∴∴ACB ∴∴CEF (AAS ),∴EC =AC =24 ,∴EB =31,∴t =312; ②点E 在CB 延长线上,同理∴ACB ∴∴CE''F'(AAS ),24E C AC '==,∴17E B '=,∴172t =综上所述,t =312或172.【变式训练1】如图1,在∴ABC 中,∴B <∴C ,AD 平分∴BAC ,E 为AD (不与点A ,D 重合)上的一动点,EF ∴BC 于点F .(1)若∴B =40°,∴DEF =20°,求∴C 的度数.(2)求证:∴C ﹣∴B =2∴DEF .(3)如图2,在∴ABC 中,∴B <∴C ,AD 平分∴BAC ,E 为AD 上一点,EF ∴AD 交BC 延长线于点F ,∴ACB =m °,∴B =n °,直接写出∴F 的度数(用含m ,n 的代数式表示).【答案】(1)80︒;(2)证明过程见解析;(3)1122F m n ∠=︒-︒ 【详解】(1)∴EF ∴BC ,∴90EFD ∠=︒,又∴20DEF ∠=︒,∴90902070EDF DEF ∠=︒-∠=︒-︒=︒,又∴EDF B BAD ∠=∠+∠,∴704030BAD EDF B ∠=∠-∠=︒-︒=︒,又∴AD 平分∴BAC ,∴223060BAC BAD ∠=∠=⨯︒=︒,∴180180406080C B BAC ∠=︒-∠-∠=︒-︒-︒=︒;(2)由(1)可知,90EDF DEF B BAD ∠=︒-∠=∠+∠,90DEF B BAD ∠=︒-∠-∠,1902B BAC =︒-∠-∠, ()1901802B C B =︒-∠-︒-∠-∠, 1122C B =∠-∠, ∴2C B DEF ∠-∠=∠;(3)∴AD 平分∴BAC , ∴12BAD BAC ∠=∠,EDF B BAD ∠=∠+∠, ∴EF AD ⊥,∴90FED ∠=︒,∴9090F EDF B BAD ∠=︒-∠=︒-∠-∠,1902B BAC =︒-∠-∠, ()1901802B B ACB =︒-∠-︒-∠-∠, 1122ACB B =∠-∠, 1122m n =︒-︒, ∴1122F m n ∠=︒-︒. 【变式训练2】如图所示,在ABC 中,9cm,12cm,15cm AB BC CA ===,点P 从点A 开始沿AB 边向B 点以每秒1cm 的速度移动,点Q 从点B 沿BC 边向点C 以每秒2cm 的速度移动,如果同时出发,问过3秒时,BPQ 的面积为多少?【答案】218cm 【详解】解:AB =9cm ,BC =12cm ,AC =15cm , ∴AB 2+BC 2=AC 2,∴∴ABC 是直角三角形,过3秒时,9316BP =-⨯=cm ,BQ =2×3=6cm , 11661822BPQ S BP BQ ∴==⨯⨯=2cm , 故过3秒时,∴BPQ 的面积为218cm .。

中考数学直角三角形的边角关系-经典压轴题

中考数学直角三角形的边角关系-经典压轴题

∴ PD = PE = DE =2, DO DE OE
∴ DE=2OE,

Rt△
OED
中,OE2+DE2=OD2,即
5OE2=
5 2
2
=
25 4

∴ OE= 5 . 2
【点睛】 本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用
tan∠ PDA= 3 ,得线段的长是解题关键. 4
∴ ∠ GBO=∠ EPO .∴ △ BOG≌ △ POE(AAS).
(2) BF 1 .证明如下: PE 2
如图,过 P 作 PM//AC 交 BG 于 M,交 BO 于 N,
∴ ∠ PNE=∠ BOC=900, ∠ BPN=∠ OCB.
∵ ∠ OBC=∠ OCB =450, ∴ ∠ NBP=∠ NPB.
则 BE=(3 3 +3)米.
在直角△ BEQ 中,QE= 3 BE= 3 (3 3 +3)=(3+ 3 )米. 33
∴ PQ=PE-QE=9+3 3 -(3+ 3 )=6+2 3 ≈9(米).
答:电线杆 PQ 的高度约 9 米. 考点:解直角三角形的应用-仰角俯角问题.
2.在正方形 ABCD 中,对角线 AC,BD 交于点 O,点 P 在线段 BC 上(不含点 B),
(1)由正方形的性质可由 AAS 证得△ BOG≌ △ POE.
(2)过 P 作 PM//AC 交 BG 于 M,交 BO 于 N,通过 ASA 证明△ BMN≌ △ PEN 得到
BM=PE,通过 ASA 证明△ BPF≌ △ MPF 得到 BF=MF,即可得出 BF 1 的结论. PE 2

专题03 含30°角的直角三角形必考压轴题(老师版)

专题03 含30°角的直角三角形必考压轴题(老师版)

专题03含30°角的直角三角形一.选择题1.(2分)(2022秋•江夏区校级期末)如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于点D,交AB于点E.若DB=12cm,则AC=()A.4cm B.5cm C.6cm D.7cm解:如图,连接AD,∵DE是AB的垂直平分线,DB=12cm,∴DA=DB=12cm,∵∠B=15°,∴∠DAB=∠B=15°,∴∠ADC=∠DAB+∠B=30°,在△ACD中,∠C=90°,∴.故选:C.2.(2分)(2022春•碑林区校级月考)如图,已知∠AOB=60°,点P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=2,则△PMN的周长是()A.14B.15C.16D.17解:过P作PD⊥OB于点D,在Rt△OPD中,∵∠ODP=90°,∠POD=60°,∴∠OPD=30°,∴OD=OP=×8=4,∴PD=,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴PM=,∴△PMN的周长为:PM+PN+MN=7+7+2=16.故选:C.3.(2分)(2022春•临湘市期中)如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE⊥AC,垂足分别为D、E,设PA=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵PA=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.4.(2分)(2021春•覃塘区期中)在△ABC中,若∠A:∠B:∠C=1:2:3,且最长边的长为6,则最短边的长是()A.2B.3C.1D.4解:∵∠A:∠B:∠C=1:2:3,∴设∠A=x,∠B=2x,∠C=3x,∴x+2x+3x=180°,解得x=30°,则∠A=30°,∠C=3×30°=90°,∵30°的角所对的直角边是斜边的一半,∴最短边的长是:=3.故选:B.5.(2分)(2021•广西模拟)如图,在△ABC中,∠C=60°,AD是BC边上的高,点E为AD的中点,连接BE并延长交AC于点F.若∠AFB=90°,EF=2,则BF长为()A.4B.6C.8D.10解:∵在△ABC中,∠C=60°,AD是BC边上的高,∴∠DAC=90°﹣∠C=90°﹣60°=30°,∵∠AFB=90°,EF=2,∴AE=2EF=4,∵点E为AD的中点,∴DE=AE=4,∵∠C=60°,∠BFC=180°﹣90°=90°,∴∠EBD=30°,∴BE=2DE=8,∴BF=BE+EF=8+2=10,故选:D.6.(2分)(2020秋•乳山市期中)如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=2cm,则BC的长等于()A.8cm B.6cm C.4cm D.2cm解:∵AB=AC,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB⊥AD,AD=2cm,∴∠BAD=90°,BD=2AD=4cm,∴∠DAC=120°﹣90°=30°,∴AD=CD=2cm,∴CB=DB+CD=6cm.故选:B.7.(2分)(2020秋•天宁区校级期中)如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P在斜边AB所在的直线m上运动,连接PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.8.(2分)(2022春•漳州期中)在等腰三角形ABC中,AD是△ABC的高,若AD=BC,则△ABC的底角的度数为()A.15°或45°B.30°或90C.30°或60°或90°D.15°或45°或75°解:如图,∵AB=AC,AD⊥BC,∴BD=CD=BC,∵BC=2AD,∴AD=BD=CD,∴∠B=∠BAD=(180°﹣90°)=45°.当AB=BC,AD垂直于BC延长线,∠B=150°,底角=15°;当AB=BC,AD垂直于BC,∠B=30°;底角=75°,故选:D.9.(2分)(2022春•龙华区校级期中)如图,△ABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EF∥AB,AE=2,结论错误的是()A.∠ADE=30°B.AD=4C.△ADE的面积为4D.△EFC的周长为18解:∵△ABC是等边三角形,∴∠A=60°,AB=BC=AC,∵DE⊥AC,∴∠AED=90°,∴∠ADE=30°,故A选项正确;∵AE=2,∴AD=2AE=4,故选项B正确,∵DE=,=,故选项C错误.∴S△ADE∵EF∥AB,∴∠CEF=∠A=60°,∠EFC=∠B=60°,∴△EFC是等边三角形,∵D为BA的中点,∴AC=AB=2AD=8,∴CE=AC﹣AE=8﹣2=6,∴△EFC的周长=3×6=18,故选项D正确,故选:C.10.(2分)(2022秋•越秀区校级期末)如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列三个结论:①∠AOB=90°+∠C;②当∠C=60°时,AF+BE=ab.其中正确的是()=AB;③若OD=a,AB+BC+CA=2b,则S△ABCA.①②B.②③C.①②③D.①③解:∵∠BAC和∠ABC的平分线相交于点O,∴∠OBA=∠CBA,∠OAB=∠CAB,∴∠AOB=180°﹣∠OBA﹣∠OAB=180°﹣∠CBA﹣∠CAB=180°﹣(180°﹣∠C)=90°+∠C,①正确;∵∠C=60°,∴∠BAC+∠ABC=120°,∵AE,BF分别是∠BAC与ABC的平分线,∴∠OAB+∠OBA=(∠BAC+∠ABC)=60°,∴∠AOB=120°,∴∠AOF=60°,∴∠BOE=60°,如图,在AB上取一点H,使BH=BE,∵BF是∠ABC的角平分线,∴∠HBO=∠EBO,在△HBO和△EBO中,,∴△HBO≌△EBO(SAS),∴∠BOH=∠BOE=60°,∴∠AOH=180°﹣60°﹣60°=60°,∴∠AOH=∠AOF,在△HAO和△FAO中,,∴△HAO≌△FAO(ASA),∴AF=AH,∴AB=BH+AH=BE+AF,故②正确;作OH⊥AC于H,OM⊥AB于M,∵∠BAC 和∠ABC 的平分线相交于点O,∴点O 在∠C 的平分线上,∴OH=OM=OD=a,∵AB+AC+BC=2b∴S △ABC =×AB×OM+×AC×OH+×BC×OD=(AB+AC+BC)•a=ab,③正确.故选:C.二.填空题(共8小题,满分16分,每小题2分)11.(2分)(2022春•柯桥区期中)如图,把含45°,30°角的两块直角三角板放置在同一平面内,若AB∥CD,AB=CD=6,则以A,B,C,D 为顶点的四边形的面积是18+12.解:连接AC,BD 交于O′∵AB∥CD,AB=CD,∴四边形ABCD 是平行四边形,∴O 到AB,CD 的距离和=O′到AB,CD 的距离和,∴以A,B,C,D 为顶点的四边形的面积=2(S △ABO +S △CDO ),∵AB=CD=6,∴AO=BO=3,CO=CD=2,∴以A,B,C,D 为顶点的四边形的面积=2(S △ABO +S △CDO )=2(××)=18+12,故答案为:18+12.12.(2分)(2021秋•藁城区期末)如图,已知∠AOB=60°,点P 在边OA 上,OP=10,点M,N 在边OB 上,PM =PN,若MN=2,则OM=4.解:作PH⊥MN 于H,如图,∵PM=PN,∴MH=NH=MN=1,在Rt△POH中,∵∠POH=60°,∴∠OPH=30°,∴OH=OP=×10=5,∴OM=OH﹣MH=5﹣1=4.故答案为4.13.(2分)(2022春•平南县期末)如图,放置的一副三角板,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,若AC=2,则CD=3﹣.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=2,∴∠ABC=30°,∴AB=2AC=4.∴BC=,∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=,∴CM==3,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=,∴CD=CM﹣MD=3﹣,故答案为:3﹣.14.(2分)(2022春•平顶山期末)如图,在△ABC中,AB=AC=10,∠ABC=15°,则△ABC的面积为25.解:∵AB=AC,∠ABC=15°,∴∠ACB=∠ABC=15°,∴∠DAC=∠ABC+∠ACB=30°,∵AB=AC=10,∴CD=AC=5,∴△ABC的面积为:.故答案为:25.15.(2分)(2022•吉林一模)如图,Rt△ABC,∠C=90°,∠ABC=60°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心,大于的长为半径画弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若BG=2,则△ABG的面积为.解:由作图可知:BG平分∠ABC,∵∠ABC=60°,∴∠ABG=∠CBG=30°,∵BG=2,∴CG=BG=1,∴BC=,∵∠C=90°,∴∠A=30°,∴AG=BG=2,=AG•BC=×2×=,∴S△ABG故答案为:.16.(2分)(2022春•吉安期末)已知等腰△ABC中,BD⊥AC,且BD=AC,则等腰△ABC的顶角度数为90°或30°或150°.解:如图1中,当AB=AC时,∵BD⊥AC,BD=AC,∴AB=2BD,∴∠A=30°,如图2中,当AB=AC,∵BD⊥AC,BD=AC,∴AB=2BD,∴∠DAB=30°,∴∠BAC=150°,如图3中,当BA=BC,∵BD⊥AC,BA=BC,∴BD=AD=DC,∴∠A=∠ABD=∠CBD=∠C=45°,∴∠ABC=90°,综上所述,满足条件的等腰三角形的顶角的度数为30°或150°或90°.故答案为:30°或150°或90°.17.(2分)(2021秋•滑县期末)如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE⊥AC于点E,Q为BC延长线上一点,取PA=CQ,连接PQ,交AC于M,则EM的长为.解:过P作PF∥BC交AC于F,如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFM=∠QCM,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ,在△PFM和△QCM中,,∴△PFM≌△QCM(AAS),∴FM=CM,∵AE=EF,∴EF+FM=AE+CM,∴AE+CM=ME=AC,∵AC=3,∴ME=,故答案为:.18.(2分)(2020春•碑林区校级月考)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4.如果在三角形内部有一条动线段MN∥AC,且MN=2,则AM+BN+CN的最小值为2.解:在AC上取一点A′,使得AA′=MN=2,连接A′N.∵AA′=MN,AA′∥MN,∴四边形AMNA′是平行四边形,∴AM=A′N,∴AM+BN+CN=A′N+BN+CN,将△NCB绕点C顺时针旋转60°得到△GCT,连接NG,过点T作TH⊥AC交AC的延长线于H.∵CN=CG,∠NCG=60°,∴△NCG是等边三角形,∴CN=NG,∴A′N+CN+BN=A′N+NG+GT,∵A′N+NG+GT≥A′T,∵∠ACB=90°,∠BAC=30°,AB=4,∴BC=CT=AB=2,AC=BC=6,∴CA′=6﹣2=4,∵∠ACH=90°,∠BCT=60°,∴∠TCH=30°,∵∠THC=90°,∴TH=CT=,CH=TH=3,∴A′H=4+3=7,∴A′T===2.∴AM+BN+CN≥2,∴AM+BN+CN的最小值为2,故答案为:2.三.解答题(共9小题,满分64分)19.(6分)(2022春•岳阳期末)如图,在△ABC中,∠C=90°,∠B=30°,DE是AB的垂直平分线,垂足为点E,DE交BC于D点,连接AD.(1)求证:DC=DE;(2)若CD=3,求BD的长.(1)证明:∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠DBA=30°.∵∠C=90°,∠B=30°,∴∠CAD=∠BAD=30°.∵DC⊥AC,DE⊥AB,∴DC=DE;(2)解:∵DC=DE,CD=3,∴DE=3.∵∠B=30°,DE⊥AB,∴BD=2DE=6.20.(8分)(2022春•上杭县校级月考)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C 出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)当t为何值时,△DEF为直角三角形?请说明理由.(1)证明:∵Rt△ABC中,∠B=90°,∠A=60°,∴∠C=90°﹣∠A=30°.在Rt△CDF中,∠C=30°,CD=4t,∴DF=CD=2t,∵点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,∴AE=2t,∴AE=DF;(2)解:①当∠DEF=90°时,由(2)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=t,又AD=60﹣4t,即60﹣4t=t,解得t=12;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即60﹣4t=4t,解得t=.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=或12秒时,△DEF为直角三角形,故答案为:或12.21.(6分)(2022春•雁塔区校级期中)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.若CD=3cm,求EF的长.解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=3,∵∠DEF=90°,∠F=30°,∴DF=2DE=6,∴EF=.22.(6分)(2022春•灞桥区校级月考)如图,在△ABC中,∠BAC=120°,AB=AC=6,过点A作AD⊥BC于点D,过点D作DF∥AC,DF交∠CAD的平分线于点F,求AF长.解:过D作DE⊥AF,垂足为E,∵AD⊥BC,∴∠ADC=90°,∵AB=AC=6,∠BAC=120°,∴∠B=∠C=30°,∴∠CAD=60°,AD=3,∵AF平分∠CAD,∴∠CAF=∠DAF=30°,∵DE⊥AF,∴∠ADE=90°,∴DE=AD=,∴AE=,∵DF∥AC,∴∠F=∠CAF,∴∠F=∠DAF,∴AD=FD,∴AF=2AE=.23.(8分)(2019•六合区模拟)图1所示的是某超市入口的双翼闸门,如图2,当它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°,求当双翼收起时,可以通过闸机的物体的最大宽度.解:如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),答:当双翼收起时,可以通过闸机的物体的最大宽度为64cm.24.(6分)(2020秋•东湖区校级期中)如图,已知等边△ABC,点D是AB的中点,过点D作DF⊥AC,垂足为点F,过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为4,求BH的长.解:在Rt△ADF中,∵∠A=60°,∠DFA=90°,∴∠ADF=30°,∵D是AB的中点,∴AD=,∴AF=,∴CF=AC﹣AF=4﹣1=3,在Rt△FHC中,∵∠C=60°,∠FHC=90°,∴∠HFC=30°,∴HC=,∴BH=BC﹣HC=4﹣1.5=2.5.25.(8分)(2022秋•商丘期中)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=12cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为多少时,△PBQ是等边三角形?(2)P、Q在运动过程中,△PBQ的形状不断发生变化,当t为多少时,△PBQ是直角三角形?请说明理由.解:(1)要使△PBQ是等边三角形,即可得:PB=BQ,在Rt△ABC中,∠C=90°,∠A=30°,BC=12cm.∴AB=24cm,可得:PB=(24﹣2t)cm,BQ=tcm,即24﹣2t=t,解得:t=8,故答案为:8;(2)当t为6s或s时,△PBQ是直角三角形,理由如下:∵∠C=90°,∠A=30°,BC=12cm,∴AB=2BC=12×2=24(cm),∵动点P以2cm/s,Q以1cm/s的速度出发,∴BP=AB﹣AP=(24﹣2t)cm,BQ=tcm,∵△PBQ是直角三角形,∴BP=2BQ或BQ=2BP,当BP=2BQ时,24﹣2t=2t,解得t=6;当BQ=2BP时,t=2(24﹣2t),解得t=.所以,当t为6s或s时,△PBQ是直角三角形.26.(8分)(2019春•曾都区校级期中)如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,点M、N分别是BC、DE的中点.(1)猜想,MN与DE的位置关系,并证明;(2)若∠A=60°,求的值.(1)证明:MN⊥DE,理由是:连接EM、DM,∵BD⊥AC,CE⊥AB,点M是BC的中点,∴EM=BC,DM=BC,∴ME=MD,又点N是DE的中点,∴MN⊥DE;(2)解:∵MD=ME=BM=CM,∴∠BME+∠CMD=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB),∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∴∠BME+∠CMD=360°﹣2×120°=120°,∴∠DME=60°,∴△MED是等边三角形,∴=.27.(8分)(2020春•揭阳期末)如图,在Rt△ABC中,∠ACB=90°,D是BC延长线上的一点,线段BD的垂直平分线EG交AB于点E,交BD于点G.(1)当∠B=30°时,AE和EF有什么关系?请说明理由;(2)当点D在BC延长线上(CD<BC)运动时,点E是否在线段AF的垂直平分线上?解:(1)AE=EF,理由是:∵线段BD的垂直平分线EG交AB于点E,交BD于点G,∴DE=BE,∵∠B=30°,∴∠D=∠B=30°,∴∠DEA=∠D+∠B=60°,∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∴∠A=∠DEA=60°,∴△AEF是等边三角形,∴AE=EF;(2)点E是在线段AF的垂直平分线,理由是:∵∠B=∠D,∠ACB=90°=∠FCD,∴∠A=∠DFC,∵∠DFC=∠AFE,∴∠A=∠AFE,∴EF=AE,∴点E是在线段AF的垂直平分线。

解直角三角形九年级精品复习压轴题

解直角三角形九年级精品复习压轴题

一、选择题1, 若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45° B. 45°<α<60°C. 60°<α<90°D. 30°<α<60°2. 如图,一艘海轮位于灯塔P的北偏东方向55°,距离灯塔为2 海里的点A处.如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长是()(A)2 海里(B)海里(C)海里(D)海里3. 如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是( )A. 4B. 2C. 8D. 44.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值()A.B.C.D.5. 如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米二.填空题1.已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β= .2.在平面直角坐标系xOy中,过点P(0,2)作直线l:y=x+b(b为常数且b<2)的垂线,垂足为点Q,则tan∠OPQ=.3.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为.4.如图,△ABC 中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE .若BE =9,BC =12,则cosC = .5.如图,在△ABC 中,AB =BC =4,AO=BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当△P AB 为直角三角形时,AP 的长为 .6. 如图,某建筑物BC 上有一旗杆AB ,从与BC 相距38m 的D 处观测旗杆顶部A 的仰角为50°,观测旗杆底部B 的仰角为45°.则旗杆的高度约为 m .(结果精确到0.1m ,参考数据:sin 50°≈0.77, cos 50°≈0.64,tan 50°≈1.19)三.解答题1.(﹣1)4﹣2tan 60°++. 10)21(41)1(45cos 2-+++-︒π2. 如图,矩形纸片ABCD ,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM ),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP ,△BPQ ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由) (2)如果AM =1,sin ∠DMF =,求AB 的长.(第14题)O ABCP3.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若P A=2,cosB=,求⊙O半径的长.4. 在一个三角形中,各边和它所对角的正弦的比相等.即.利用上述结论可以求解如下题目.如:在中,若,,,求.解:在中,问题解决:如图,甲船以每小时海里的速度向正北方航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,且乙船从处按北偏东方向匀速直线航行,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里. (1)判断的形状,并给出证明.(2)乙船每小时航行多少海里?5. 如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.6.如图,已知△AB C .按如下步骤作图:①以A 为圆心,AB 长为半径画弧;②以C 为圆心,CB 长为半径画弧,两弧相交于点D ;③连结BD ,与AC 交于点E ,连结AD ,C D .(1)求证:△ABC≌△ADC ;(2)若∠BAC =30°,∠BCA =45°,AC =4,求BE 的长.7. 数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度,如图,老师测得升旗台前斜坡FC 的坡比为i FC =1:10(即EF :CE =1:10),学生小明站在离升旗台水平距离为35m (即CE =35m )处的C 点,测得旗杆顶端B 的仰角为α,已知tanα=,升旗台高AF =1m ,小明身高CD =1.6m ,请帮小明计算出旗杆AB 的高度.8.如图所示,某数学活动小组选定测量小河对岸大树BC 的高度,他们在斜坡上D 出测得大树顶端B 的仰角是48°. 若坡角∠F AE =30°,求大树的高度. (结果保留整数,参考数据:sin 48°≈0.74,cos 48°≈0.67,tan 48°≈1.11,3≈1.73)9. 如图,在楼房AB 和塔CD 之间有一棵树EF ,从楼顶A 处经过树顶E 点恰好看到塔的底部D 点,且俯角α为45°.从距离楼底B 点1米的P 点处经过树顶E 点恰好看到塔的顶部C 点,且仰角β为30°.已知树高EF =6米,求塔CD 的高度.(结果保留根号)FD 第2030°48°E ACBBDECA10. 如图,某市对位于笔直公路AC 上两个小区A 、B 的供水路线进行优化改造,供水站M 在笔直公路AD 上,测得供水站M 在小区A 的南偏东60°方向,在小区B 的西南方向,小区A 、B 之间的距离为300(3+1)米,求供水站M 分别到小区A 、B 的距离。

专题02 直角三角形三种压轴题型全攻略(解析版)

专题02 直角三角形三种压轴题型全攻略(解析版)

专题02 直角三角形三种压轴题型全攻略(解析版)专题02 直角三角形三种压轴题型全攻略(解析版)一、题型一:已知直角三角形两条直角边求斜边长度的题目直角三角形是其中一条边为直角边的三角形。

已知一个直角三角形的两条直角边长度,求斜边长度是我们经常碰到的一种题型。

解题步骤如下:1. 首先,根据题目已知条件,确定两条直角边的长度,并进行标记。

2. 根据勾股定理,直角三角形的斜边长度等于两条直角边长度的平方和的平方根。

即斜边长度= √(直角边1^2 + 直角边2^2)。

3. 将直角三角形的斜边长度计算出来,并将结果写在答案中。

举个例子:已知直角三角形的直角边分别为3和4,求斜边的长度。

解题步骤如下:1. 标记直角边1为3,直角边2为4。

2. 根据勾股定理,斜边长度= √(3^2 + 4^2) = √9 + 16 = √25 = 5。

3. 得出答案,斜边的长度为5。

以上就是题型一的解题步骤。

二、题型二:已知直角三角形一条直角边和斜边长度求另一直角边长度的题目题型二是已知直角三角形的一条直角边和斜边长度,求另一直角边长度的题目。

解题步骤如下:1. 首先,根据题目已知条件,确定直角边和斜边的长度,并进行标记。

2. 根据勾股定理,直角三角形的斜边长度等于两条直角边长度的平方和的平方根。

即斜边长度= √(直角边1^2 + 直角边2^2)。

3. 将已知条件代入上述公式,求解未知直角边的长度。

举个例子:已知直角三角形的斜边长度为5,直角边长度为3,求另一直角边的长度。

解题步骤如下:1. 标记直角边为3,斜边为5。

2. 根据勾股定理,5 = √(3^2 + 直角边2^2)。

3. 将已知条件代入公式,5 = √(9 + 直角边2^2)。

4. 平方去根,5^2 = 9 + 直角边2^2。

5. 计算得到直角边2的长度,直角边2^2 = 5^2 - 9 = 16。

6. 计算得到直角边2的长度,直角边2 = √16 = 4。

7. 得出答案,另一直角边的长度为4。

中考压轴题---因动点产生的直角三角形问题[含答案]

中考压轴题---因动点产生的直角三角形问题[含答案]

因动点产生的直角三角形问题例1(2011年沈阳市中考第25题)如图1,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式; (2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段34P Q A B =时,求tan ∠CED 的值;②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.图1满分解答(1)设抛物线的函数表达式为2(1)y x n =-+,代入点C (0,-3),得4n =-.所以抛物线的函数表达式为22(1)423y x x x =--=--.(2)由223(1)(3)y x x x x =--=+-,知A (-1,0),B (3,0).设直线BC 的函数表达式为y kx b =+,代入点B (3,0)和点C (0,-3),得30,3.k b b +=⎧⎨=-⎩ 解得1k =,3b =-.所以直线BC 的函数表达式为3y x =-.(3)①因为AB =4,所以334P Q A B ==.因为P 、Q 关于直线x =1对称,所以点P 的横坐标为12-.于是得到点P的坐标为17,24⎛⎫-- ⎪⎝⎭,点F 的坐标为70,4⎛⎫- ⎪⎝⎭.所以75344F C O C O F =-=-=,522E CF C ==.进而得到51322O E O C E C =-=-=,点E 的坐标为10,2⎛⎫- ⎪⎝⎭. 直线BC:3y x =-与抛物线的对称轴x =1的交点D 的坐标为(1,-2).过点D 作DH ⊥y 轴,垂足为H .在Rt △EDH 中,DH =1,13222EH O H O E =-=-=,所以tan ∠CED 23D HE H==.②1(12,2)P --,265(1,)22P --.图2 图3 图4考点伸展第(3)题②求点P 的坐标的步骤是:如图3,图4,先分两种情况求出等腰直角三角形CDE 的顶点E 的坐标,再求出CE 的中点F 的坐标,把点F 的纵坐标代入抛物线的解析式,解得的x 的较小的一个值就是点P 的横坐标.例2(2011年浙江省中考第23题)设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.图1满分解答(1)直线①和③是点C 的直角线.(2)当∠APB =90°时,△BCP ∽△POA .那么B C P O C PO A=,即273P O P O=-.解得OP =6或OP =1.如图2,当OP =6时,l 1:162y x =+, l 2:y =-2x +6.如图3,当OP =1时,l 1:y =3x +1, l 2:113y x =-+.图2 图3例3(2010年北京市中考第24题)在平面直角坐标系xOy 中,抛物线22153244m m y x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上. (1)求点B 的坐标;(2)点P 在线段OA 上,从点O 出发向点A 运动,过点P 作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当点P 运动时,点C 、D 也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若点P 从点O 出发向点A 作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从点A 出发向点O 作匀速运动,速度为每秒2个单位(当点Q 到达点O 时停止运动,点P 也停止运动).过Q 作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当点Q 运动时,点M 、N 也随之运动).若点P 运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.图1满分解答(1) 因为抛物线22153244m m y x x m m -=-++-+经过原点,所以2320m m -+=. 解得12m =,21m =(舍去).因此21542y x x =-+.所以点B 的坐标为(2,4).(2) ①如图4,设OP 的长为t ,那么PE =2t ,EC =2t ,点C 的坐标为(3t , 2t ).当点C 落在抛物线上时,2152(3)342t t t =-⨯+⨯.解得229t O P ==.②如图1,当两条斜边PD 与QM 在同一条直线上时,点P 、Q 重合.此时3t =10.解得103t =.如图2,当两条直角边PC 与MN 在同一条直线上,△PQN 是等腰直角三角形,PQ =PE .此时1032t t -=.解得2t =. 如图3,当两条直角边DC 与QN 在同一条直线上,△PQC 是等腰直角三角形,PQ =PD .此时1034t t -=.解得107t =.图1 图2 图3考点伸展在本题情境下,如果以PD 为直径的圆E 与以QM 为直径的圆F 相切,求t 的值.如图5,当P 、Q 重合时,两圆内切,103t =.如图6,当两圆外切时,30202t =-.图4 图5 图6例4(2009年嘉兴市中考第24题)如图1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =.(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?图1满分解答(1)在△ABC 中,1=AC ,x AB =,x BC -=3,所以⎩⎨⎧>-+->+.31,31x x x x 解得21<<x .(2)①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,此方程无实根. ②若AB 为斜边,则1)3(22+-=x x ,解得35=x ,满足21<<x . ③若BC 为斜边,则221)3(x x +=-,解得34=x ,满足21<<x .因此当35=x 或34=x 时,△ABC 是直角三角形.(3)在△ABC 中,作AB CD ⊥于D ,设h CD =,△ABC 的面积为S ,则xhS 21=.①如图2,若点D 在线段AB 上,则x h x h =--+-222)3(1.移项,得2221)3(hx hx --=--.两边平方,得22222112)3(h h x x h x -+--=--.整理,得4312-=-x h x .两边平方,得16249)1(222+-=-x x h x .整理,得16248222-+-=x x h x所以462412222-+-==x xhx S 21)23(22+--=x (423x <≤).当23=x 时(满足423x <≤),2S 取最大值21,从而S 取最大值22.图2 图3②如图3,若点D 在线段MA 上,则x h h x =----2221)3(. 同理可得,462412222-+-==x xhx S 21)23(22+--=x (413x <≤).易知此时22<S .综合①②得,△ABC 的最大面积为22.考点伸展第(3)题解无理方程比较烦琐,迂回一下可以避免烦琐的运算:设a AD =, 例如在图2中,由2222BD BCADAC -=-列方程222)()3(1a x x a---=-.整理,得xx a 43-=.所以21a -22216248431x x x x x -+-=⎪⎭⎫⎝⎛--=. 因此462)1(412222-+-=-=x x a x S.例5(2008年河南省中考第23题)如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由; ③在运动过程中,当△MON 为直角三角形时,求t 的值.图1满分解答(1)直线434+-=x y 与x 轴的交点为B (3,0)、与y 轴的交点C (0,4).Rt △BOC 中,OB =3,OC =4,所以BC =5.点A 的坐标是(-2,0),所以BA =5.因此BC =BA ,所以△ABC 是等腰三角形.(2)①如图2,图3,过点N 作NH ⊥AB ,垂足为H .在Rt △BNH 中,BN =t ,4sin 5B =,所以45N H t =.如图2,当M 在AO 上时,OM =2-t ,此时211424(2)22555S O M N H t t t t =⋅⋅=-⨯=-+.定义域为0<t ≤2.如图3,当M 在OB 上时,OM =t -2,此时211424(2)22555S O M N H t t t t =⋅⋅=-⨯=-.定义域为2<t ≤5.图2 图3②把S =4代入22455S t t =-,得224455t t -=.解得1211t =+,2211t =-(舍去负值).因此,当点M 在线段OB 上运动时,存在S =4的情形,此时211t =+.③如图4,当∠OMN =90°时,在Rt △BNM 中,BN =t ,BM 5t =-,3cos 5B =,所以535t t-=.解得258t =.如图5,当∠OMN =90°时,N 与C 重合,5t =.不存在∠ONM =90°的可能. 所以,当258t =或者5t =时,△MON 为直角三角形.图4 图5考点伸展在本题情景下,如果△MON 的边与AC 平行,求t 的值.如图6,当ON //AC 时,t =3;如图7,当MN //AC 时,t =2.5.图6 图7例6(2008年天津市中考第25题)已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图1,求证:222BNAMMN +=;(2)当扇形CEF 绕点C 旋转至图2的位置时,关系式222BNAMMN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.图1 图2满分解答(1)如图3,将△ACM 沿直线CE 对折,得△DCM ,连DN ,则△DCM ≌△ACM .因此CA CD =,AM DM =,ACM DCM ∠=∠,A CDM ∠=∠.又由CBCA =,得 CBCD =.由D CD C ME CF D C N ∠-︒=∠-∠=∠45,ACM ECF ACB BCN ∠-∠-∠=∠ACM ACM ∠-︒=∠-︒-︒=454590,得BCN DCN ∠=∠.又CN CN =,所以△CDN ≌△CBN .因此BN DN =,B CDN ∠=∠.所以︒=∠+∠=∠+∠=∠90B A CDN CDM MDN . 在Rt △MDN 中,由勾股定理,得222DNDMMN+=.即222BNAMMN+=.图3 图4(2)关系式222BNAMMN+=仍然成立.如图4,将△ACM 沿直线CE 对折,得△DCM ,连DN ,则△DCM ≌△ACM . 所以CA CD =,AM DM =,ACM DCM ∠=∠,CAM CDM ∠=∠. 又由CBCA =,得 CB CD =.由︒+∠=∠+∠=∠45DCM ECF DCM DCN ,ACM ACM ECF ACN ACB BCN ∠+︒=∠-∠-︒=∠-∠=∠45)(90,得BCN DCN ∠=∠.又CN CN =,所以△CDN ≌△CBN .因此BN DN =,45=∠=∠B CDN . 又由于︒=∠-︒=∠=∠135180CAB CAM CDM ,所以9045135=-=∠-∠=∠CDN CDM MDN .在Rt △MDN 中,由勾股定理,得222DNDMMN +=.即222BNAMMN+=.考点伸展当扇形CEF 绕点C 旋转至图5,图6,图7的位置时,关系式222BNAMMN +=仍然成立.图5 图6 图7。

中考数学直角三角形的边角关系-经典压轴题含答案解析

中考数学直角三角形的边角关系-经典压轴题含答案解析

中考数学直角三角形的边角关系-经典压轴题含答案解析一、直角三角形的边角关系1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,33米,∵AB=AE-BE=6米,则3,解得:3则BE=(33+3)米.在直角△BEQ中,QE=33BE=33(33+3)=(3+3)米.∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.2.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.3.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB–∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tan PHPAH∠=33=503,∵AC ∥BD ,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD –∠PBD=45°, 则PH=BH=50,∴AB=AH+BH=503+50,∵60千米/时=503米/秒,∴时间t=50350503+=3+33≈8.1(秒), 即车辆通过AB 段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。

中考数学压轴题专题直角三角形的存在性

中考数学压轴题专题直角三角形的存在性

专题22 直角三角形的存在性破解策略以线段AB 为边的直角三角形构造方法如右图所示:A BAB ECFEFABC直角三角形的另一个顶点在以A 在以AB 为直径的圆上,或过A 、B 且与AB 垂直的直线上(A ,B 两点除外).解直角三角形的存在性问题时,若没有明确指出直角三角形的直角,就需要进行分类讨论.通常这类问题的解题策略有:(1)几何法:先分类讨论直角,再画出直角三角形,后计算.如图,若∠ACB =90°.过点A 、B 作经过点C 的直线的垂线,垂足分别为E 、F .则△AEC ∽△CF B .从而得到线段间的关系式解决问题.(2)代数法:先罗列三边长,再分类讨论直角,根据勾股定理列出方程,然后解方程并检验.有时候将几何法和代数法相结合.可以使得解题又快又好! 例题讲解例1 如图,抛物线l :y =ax 2+2x -3与r 轴交于A ,B (3,0)两点(点A 在点B 的左侧).与y 轴交于点C (0,3).已知对称轴为x =1. (1)求抛物线的表达式;(2)设点P 是抛物线l 上任意一点,点Q 在直线x =-3上,问:△PBQ 能否成为以点P 为直角顶点的等腰直角三角形?若能,求出符合条件的点P 的坐标;若不能,请说明理由.xy CB AOlxyCMNABOQlP xylQA O NB PM解:(1)由题意可得点A 的坐标为(1,0).所以抛物线表达式可变为y =a (x -3)(x +1)=ax 2-2ax -3a 由点C 的坐标可得-3a =3,a =-1所以抛物线的表达式为y =-x 2+2x +3.(2)如图,过点P 作PM 垂直于直线l ,垂足为M .过点B 作BN 垂直于直线PM .垂足为N .若△PBQ 是以点P 为直角顶点的等腰直角三角形,无论点P 在BQ 的上方或下方,由“弦图模型”均可得△PQM ∽△BPN . 所以PM =BN .设点P 的坐标为(m ,H ,-m 2+2m +3).则PM =|m +3|,BN =|-m 2+2m +3|,所以|m +3|=|-m 2+2m +3|.解得m 1=0,m 2=1,m 3=3+332,m 4=3332- 所以点P 的坐标为(0,3),(1,4),(3+132,332-9-),(3332-,32+3-9)例2 如图,一次函数y =-2x +10的图象与反比例函数y =kx(k >0)的图象相交于A 、B两点(点A 在点B 的右侧),分别交x 轴.y 轴于点E ,F .若点A 的坐标为(4,2).问:反比例函数图象的另一支上是否存在一点P .使△PAB 是以AB 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由,xy B AFPO Exy OPEBFA解:将点A (4,2)代入反比例函数表达式,得k =8, 所以反比例函数为y =8x, 联立方程纽组8210y x y x ⎧=⎪⎨⎪=-+⎩ , 解得1142x y =⎧⎨=⎩,2218x y =⎧⎨=⎩ 所以点B 的坐标为(1,8).由题意可得点E .F 的坐标分剐为(5,0),(0,10), 以AB 为直角迎的直角三角形有两种情况:如图1,当∠PAB =90°时,连结OA ,则OA 2242+25而AE 2212+5,OE =5,所以OA 2+AE 2=OE 2, 即OA ⊥A B .所以A ,O ,P 三点共线. 由O 、A 两点的坐标可得直线AP 的表达式为y =12x . 联立方程组812y xy x ⎧=⎪⎪⎨⎪=⎪⎩解得1142x y =⎧⎨=⎩,2242x y =-⎧⎨=-⎩所以点P的坐标为(-4,-2).②如图2,当∠PBA=90°时,记BP与y轴的交点为G.易证△FBC∽△FOE,所以FB FO FG FE=,而FO=10.FEFB可求得FG=52,所以点G的坐标为(0,152).由B,G两点的坐标可得直线BP的表达式为y=12x+152,联立方程组115228y xyx⎧⎪⎪⎨⎪⎪⎩=+,=,解得1118xy⎧⎨⎩=,=;221612xy⎧⎪⎨⎪⎩=-,=-.所以点P的坐标为(-16,-12);综上可得,满足条件的点P坐标为(-4,-2)或(-16,-12).图2例3 如图,抛物线C1:y=a(x-2)2-5的顶点为P,与x轴相交于A,B两点(点A 在点B的左侧),点A的横坐标是-1.D是x轴负半轴上的一个动点,将抛物线C1绕点D旋转180°后得到抛物线C2.抛物线C2的顶点为Q,与x轴相交于E,F两点(点E在点F的左侧).当以点P,Q,E为顶点的三角形是直角三角形时,求顶点Q的坐标.C解 由题意可得点A (-1,0),P (2,-5),B (5,0).设点D 的坐标为(m ,0),则点Q 的坐标为(2m -2,5),E 的坐标为(2m -5,0),所以PQ 2=(2m -4)2 +102,PE 2=(2m -7)2+52,EQ 2=32+52=34. △PQE 为直角三角形有三种情况:①当∠PQE = 90°时,有PE 2=PQ 2+ EQ 2,即(2m -7)2+52=(2m -4)2+102+34,解得m =-193,所以点Q 的坐标为(-443,5);②当∠QEP =90°时,有PQ 2=PE 2 +EQ 2,即(2m -4)2+102=(2m -7)2+52+34,解得m =-23,所以点Q 的坐标为(-103,5);③当∠QPE = 90°时,有EQ 2=PE 2 + PQ 2,即(2m -7)2+52+(2m -4)2+102=34,方程无解,所以此种情况不成立,综上可得,当△PQE 为直角三角形时,顶点Q 的坐标为(-443,5)或(-103,5). 例4 如图.在直角梯形ABCD 中,AD ∥BC ,∠B = 90°,AD =2,BC =6,AB =3.E 为BC 边上一点,当BE =2时,以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧.当正方形BEFG 沿BC 向右平移,记平移中的正方形BEFG 为正方形B ′EFG ,当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B 'EFG 的边EF 与AC 交于点M ,连结B ′D ,B 'M ,DM .问:是否存在这样的t ,使△B 'DM 是直角三角形,若存在,求出t 的值;若不存在,请说明理由.EB'MFGCD AB解 存在满足条件的t .理由如下:如图,过点D 作DH ⊥ BC 于点H ,过点M 作MN ⊥DH 于点N , 则BH =AD =2,DH =AB =3.所以BB ′=HE =t ,HB ′=|t -2|,EC =4-t . 易证△MEC ∽△ABC , 可得ME AB =EC BC ,即3ME =46t -,所以ME =2-12t . 在Rt △B ′ME 中,有B ′M 2=ME 2+B ′E 2=14t 2-2t +8. 在Rt △DHB ′中,有B ′D 2=DH 2+B ′H 2=t 2-4t +13. 在Rt △DMN 中,DN =DH -NH =12t +1. 则DM 2=DN 2+MN 2=54t 2+t +1. ①若∠DB'M =90°,则DM 2=B'M 2+B'D 2,即54t 2+t +1=(14t 2-2t +8)+(t 2-4t +13), 解得t 1=207; ②若∠B'MD =90°,则B'D 2=B'M 2+DM 2,即t 2-4t +13=(14t 2-2t +8)+(54t 2+t +1), 解得t 2=-3+17,t 3=-3-17(舍);③若∠B'DM =90°,则B'M 2=B 'D 2+DM 2,即14t 2-2t +8=(t 2-4t +13)+(54t 2+t +1), 此方程无解. 综上所得,当t =207或-3+17时,△B'DM 是直角三角形. NHBAD CGFM B'E进阶训练1.如图,在平面直角坐标系xOy 中,Rt △OAB 的直角顶点A 在x 轴上,OA =4,AB =3.动点M 从点A 出发,以每秒1个单位长度的速度,沿AO 向终点O 移动;同时点N 从点O 出发,以每秒1.25个单位长度的速度,沿OB 向终点B 移动.当两个动点运动了x (0<x <4)时,解答下列问题:(1)求点N 的坐标(用含x 的代数式表示);(2)在两个动点运动过程中,是否存在某一时刻,使△OMN 是直角三角形?若存在,求出x 的值;若不存在,请说明理由.yMN O解:(1)N (x ,34x ); (2)当△OMN 是直角三角形时,x 的值为2或6441. 【提示】(1)过点N 作NP ⊥OA 于点P ,由△PON ∽△AOB 即可求得; (2)分类讨论,通过△OMN 和△OAB 相似即可列出等式求得x 的值.POBA N M xy2.如图,在平面直角坐标xOy 中,直线y =kx -3与双曲线y =4x的两个交点为A ,B .其中A (-1,a ).若M 为x 轴上的一个动点,且△AMB 为直角三角形,求满足条件的点M 的坐标.AxyBO解:满足条件的点M 的坐标为(-5,0),(5,0),(3412-,0)或(3412+,0). 【提示】先求出点A ,B 的坐标,再设点M 的坐标,从而用待定字母表示AM 2,BM 2,AB 2.然后讨论直角,根据勾股定理列方程即可.3.如图,抛物线233384yx x 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A ,B 的坐标; (2)若直线l 过点E (4,0),M 为直线l 上的一个动点,当以A ,B ,M 为顶点所作的直角三角形有且只有三个时,求直线l 的表达式.OCBAy xD EM 3M 2M 1OCBAyx解:(1)A (﹣4,0),B (2,0);(2)直线l 的表达式为334yx 或334y x . 【提示】(2)若△ABM 是直角三角形,则点M 在以AB 为直径的圆上,或过A ,B 且与AB 垂直的直线上(A ,B 两点除外).由题意可得直线l 与以AB 为直径的圆相切(如图),点M 1,M 2,M 3即为满足条件的三个点,此时直线l :334yx ;根据对称性,直线l 还可以为334yx4,如图,顶点为P (4,﹣4)的二次函数图象经过原点O (0,0),点A 在该图象上, OA 交其对称轴l 于点M ,点M ,N 关于点P 对称,连结AN ,ON . (1)求该二次函数的表达式;(2)当点A 在对称轴l 右侧的二次函数图象上运动时,请回答下列问题: ①证明:∠ANM =∠ONM ;②△ANO 能否为直角三角形?如果能,请求出所有符合条件的点A 的坐标;如果不能,请说明理由.解:(1)2124y x x ;(2)①略;②△ANO 能为直角三角形,符合条件的点A 的坐标为(442,4)【提示】(2)①过点A 作AH ⊥l 于点H ,令l 与x 轴的交点为D .设点A (m ,2124m m ),则直线AO 的表达式为1(2)4ym x ,从而求得点M 的坐标为(4,m -8),N 的坐标为(4,﹣m ),只需证明tan∠ANH =tan∠OND 即可;②分类讨论:当∠ANO =90°时,∠ANM =∠ONM =45°,点N 与点P 重合,点M 与点D 重合,不满足M ,N 关于点P 对称,故此时不存在这样的点A ; 当∠NOA =90°时,有12OP MN ,求得满足条件的点A (442,4);当∠NAO =90°时,有12APMN ,即22221(4)(24)(4)4m m m m ,解得m =4,此时点A ,P 重合,不满足题意.5.抛物线y =﹣x 2+2x +3的顶点为C ,点A 的坐标为(﹣1,4),其对称轴l 上是否存在点M ,使线段MA 绕点M 逆时针旋转90°得到线段MB ,且点B 恰好落在抛物线上?若存在,求出点M 的坐标;若不存在,请说明理由. 解:存在,点M 的坐标为(1,2)或(1,5).【提示】如图,连结AC ,则AC ⊥l ,作BD ⊥l 于点D ,则△MCA ≌△BDM ,从而MD =AC =2,BD =M C .无论点A ,B 在l 同侧还是异侧,设点M (1,m ),都可得B (m -3,m -2),代入抛物线表达式即可求得m =2或5,从而点M 的坐标为(1,2)或(1,5).B 2M 2M 1D 2D 1OC B 1Al yx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(2010江苏省徐州市中考网上阅卷作答训练)如图,在平面直角坐标OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.(1)请用含t的代数式表示出点D的坐标;(2)求t为何值时,△DP A的面积最大,最大为多少?(3)在点P从O向A运动的过程中,△DP A能否成为直角三角形?若能,求t的值;若不能,请说明理由;(4)请直接..写出随着点P的运动,点D运动路线的长.2、(2010甘肃省天水市、庆阳市、定西市、白银市、嘉峪关市等九市联考)如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标;(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.3、(2010贵州省铜仁地区)如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (3,0),C (0,2),点P 是OA 边上的动点(与点O 、A 不重合).现将△P AB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合. (1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点M ,使△PEM 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点M 的坐标.图1 图24、(2010云南省楚雄自治州)已知:如图,⊙A与y轴交于C、D的切线交x轴于点B.(1)求切线BC的解析式;(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.(1)求抛物线的解析式;(2)动点P在线段AC上,过点P作x轴的垂线与抛物线相交于点E,求线段PE长度的最大值;(3)当线段PE的长度取得最大值时,在抛物线上是否存在点Q,使△PCQ是以PC为直角边的直角三角形?若存在,请求出Q点的坐标;若不存在,请说明理由.6、(2010四川省达州市)如图,对称轴为x=3的抛物线y=ax2+2x与x轴相交于点B、O.(1)求抛物线的解析式,并求出顶点A的坐标;(2)连结AB,把AB所在的直线平移,使它经过原点O,得到直线l,点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边,若存在,直接写出点Q的坐标;若不存在,说明理由.(1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐标;(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.8、(2010湖南省郴州市)如图(1),抛物线y=x2+x-4与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线y=x+b与抛物线交于点B、C.(1)求点A的坐标;(2)当b=0时(如图(2)),△ABE与△ACE的面积大小关系如何?当b>-4时,上述关系还成立吗,为什么?(3)是否存在这样的b,使得△BOC是以BC为斜边的直角三角形,若存在,求b的值;若不存在,说明理由.图(1)图(2)(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值;(3)当t >2时,连接PQ 交线段AC 于点R .请探究RQCQ是否为定值,若是,试求这个定值;若不是,请说明理由.10、(2010广东省河源市、梅州市)如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC 为直径的圆交x轴于E,D两点(D点在E点右方).(1)求点E、D 的坐标;(2)求过B、C、D三点的抛物线的函数关系式;(3)过B、C、D三点的抛物线上是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.11、(2010内蒙古包头市)如图,抛物线y=-x2+(m+2)x-3(m-1)交x轴于点A、B(点A在点B的左侧),交y轴于点C,直线y=(m+1)x-3经过点B.(1)求该抛物线的解析式;(2)P为线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP,当△CPD的面积最大时,求点P的坐标;(3)在(2)的条件下,将直线y=(m+1)x-3沿y轴向上平移,平移后的直线与该抛物线交于M、N 两点.在直线平移过程中,是否存在某一位置使得△PMN为直角三角形?若存在,请求出此时直线向上平移了几个单位;若不存在,请说明理由.+1)x-312、(2010内蒙古呼伦贝尔市)如图,在平面直角坐标系中,矩形OABC的顶点A的坐标为(0,12),顶点C的坐标为(25,0),O为坐标原点,点D是边OC上一点,AD⊥BD,且OD<DC.(1)求点D的坐标;(2)动点P从点A出发,以每秒3个单位的速度沿折线AD→DB→BA运动,动点Q从点O出发,以每秒1个单位的速度沿边OC向点C运动,两动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设动点的运动时间为t秒,△PQD的面积为S,求S关于t的函数关系式;(3)当△PQD为直角三角形时,直接写出t的值.13、(2010内蒙古乌海市)如图,抛物线y =ax2+bx +c 与x 轴交于点A 、B ,与y 轴交于点C ,OC =4,OA =2OC ,且抛物线的对称轴为直线x =-3.(1)求该抛物线的函数表达式;(2)矩形DEFG 的边DE 在线段AB 上,顶点F 、G 分别在AC 、BC 上,设OD =m ,矩形DEFG 的面积为S ,当S 取最大值时,连结DF并延长至点H ,使FH =52DF ,求出此时点H 的坐标;(3)若点Q 是抛物线上一点,且横坐标为-4,点P 是y 轴上一点,是否存在这样的点P ,使得△BPQ 是直角三角形,若存在,求出点P 的坐标,若不存在,请说明理由.14、(2010黑龙江省牡丹江市、鸡西市、森工总局)如图,矩形OABC在平面直角坐标系中,若OA、2)2=0.OC的长满足|OA-2|+(OC-3(1)求B、C两点的坐标.(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BB′的解析式.(3)在直线BB′上是否存在点P,使△ADP为直角三角形?若存在,请直接写出P点坐标;若不存在,请说明理由.15、(2010辽宁省盘锦市)如图,在菱形ABCD中,AB=10,∠ABC=60°.动点P从点B出发沿BC边以每秒1个单位长的速度匀速运动;运动,过点P作PF⊥BC,交折线AB-AC于点E,交直线AD于点F.若P、Q两点同时出发,当其中一点到达终点时整个运动随之停止,设运动时间为t秒.(1)当t为何值时,QE⊥AB?(2)设△PQE的面积为S,求S与t的函数关系式;(3)当Q在线段CA上运动时,若△PQF为等腰三角形,求t的值;(4)在整个运动过程中(不包括动点的起始位置),是否存在时刻t,使得△PQF为直角三角形?若存在,请直接写出此时t的值;若不存在,说明理由.16、(2010辽宁省铁岭市)如图,在平面直角坐标系中,已知点A 、B 、C 的坐标分别为(-1,0),(5,0),(0,2).(1)求过A 、B 、C 三点的抛物线解析式.(2)若点P 从A 点出发,沿x 轴正方向以每秒1个单位长度的速度向B 点移动,连接PC 并延长到点E ,使CE =PC ,将线段PE 绕点P 顺时针旋转90°得到线段PF ,连接FB .若点P 运动的时间为t 秒(0≤t ≤6),设△PBF 的面积为S . ①求S 与t 的函数关系式. ②当t 是多少时,△PBF 的面积最大,最大面积是多少? (3)点P 在移动的过程中,△PBF 能否成为直角三角形?若能,直接写出点F 的坐标;若不能,请说明理由. 17、(2009辽宁省营口市)如图,正方形ABCO 的边长为5,以O为原点建立平面直角坐标系,点A 在x 轴的负半轴上,点C 在y 轴的正半轴上,把正方形ABCO 绕点O 顺时针旋转后得到正方形A 1B 1C 1O (α<45º),B 1C 1交y 轴于点D ,且D 为B 1C 1的中点,抛物线y =ax2+bx +c 过点A 1、B 1、C 1.(1)求tan α的值;(2)求点A 1的坐标,并直接写出....点B 1、点C 1的坐标; (3)求抛物线的函数表达式及其对称轴;(4)在抛物线的对称轴上....是否存在点P ,使△PB 1C 1为直角三角形?若存在,直接写出....所有满足条件的P 点坐标;若不存在,请说明理由. 18、(2009辽宁省朝阳市)如图①,点A ′ ,B ′ 的坐标分别为(2,0)和(0,-4),将△A ′B ′O 绕点O 按逆时针方向旋转90°后得△ABO ,点A ′的对应点是点A ,点B ′的对应点是点B .(1)写出A ,B 两点的坐标,并求出直线AB 的解析式; (2)将△ABO 沿着垂直于x 轴的线段CD 折叠,(点C 在x 轴上,点D 在AB 上,点D 不与A ,B 重合)如图②,使点B 落在x 轴上,点B 的对应点为点E .设点C 的坐标为(x ,0),△CDE 与△ABO 重叠部分的面积为S .ⅰ)试求出S 与x 之间的函数关系式(包括自变量x 的取值范围); ⅱ)当x 为何值时,S 的面积最大?最大值是多少?ⅲ)是否存在这样的点C ,使得△ADE 为直角三角形?若存在,直接写出点C 的坐标;若不存在,请说明理由.CA O xB P EF y B Ay OC xA 1B 1C 1D 图① B ′A ′ A OB x y 图② AO B x y DC E19、(2009广西玉林市、防城港市)如图,在平面直角坐标系中,直线y =-34(x -6)与x 轴、y 轴分别相交于A 、D 两点,点B 在y 轴上,现将△AOB 沿AB 翻折180°,使点O 刚好落在直线AD 的点C 处.(1)求BD 的长.(2)设点N 是线段AD 上的一个动点(与点A 、D 不重合),S △NBD =S 1,S △NOA =S 2,当点N 运动到什么位置时,S 1·S 2的值最大,并求出此时点N 的坐标.(3)在y 轴上是否存在点M ,使△MAC 为直角三角形?若存在,请写出所有符合条件的点M 的坐标,并选择一个写出其求解过程;若不存在,简述理由. 20、(2009四川省成都市)在平面直角坐标系xO y 中,已知抛物线y =a (x +1)2+c (a >0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M .若直线MC 的函数表达式为y =kx -3,与x 轴的交点为N ,且cos ∠BCO =10103. (1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C 的点P ,使以N 、P 、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)过点A 作x 轴的垂线,交直线MC 于点Q .若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?21、(2009福建省龙岩市初中毕业班质量检查)如图,已知抛物线y =ax2-5ax+4a (a >0)与x 轴交于A 、B 两点,与y 轴交于C 点. (1)试写出A 、B 两点的坐标:A (____,0),B (____,0);(2)记经过A 、B 、C 三点的圆为⊙M ,若⊙M 恰好与y 轴相切于点C ,试求抛物线的解析式;(3)探究:在(2)中的抛物线的对称轴右侧图形上是否存在点P ,使△PAC 是以AC 为一条直角边的直角三角形.若存在,试求出点P 的坐标;若不存在,请说明理由. 22、(2009福建省三明市初中毕业班质量检查)如图,抛物线y =ax2+bx +2与x 轴的交点是A (3,0)、B (6,0),与y 轴的交点是C . (1)求抛物线的函数表达式;(2)设P (x ,y )(0<x<6)是抛物线上的动点,过点P 作PQ ∥y 轴交直线BC 于点Q .①当x 取何值时,线段PQ 的长度取得最大值?其最大值是多少?②是否存在这样的点P ,使△OAQ 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.23、(2009福建省宁德市)如图,已知抛物线C 1:y =a (x +2)2-5的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q图(1)图(2)。

相关文档
最新文档