一次函数与三角形面积问题专题练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与三角形面积问题专题练习
思路:画出草图,把要求的图形构建出来,根据面积公式,把直线与坐标轴的交点计算出来,把坐标转化成线段,代入面积公式求解。
规则图形 (公式法) 不规则图形 (切割法) 不含参数问题 含参数问题(用参数表示点坐标,转化成线段)
注意:坐标的正负、线段的非负性。
求面积时,尽量使底或高中的一者确定下来(通过对图像的观察,确定底和高),然后根据面积公式,建立等式。
1、求直线y = -2x +4,y = 2x -4及y 轴围成的三角形的面积。
2、已知正比例函数y = 2x 与一次函数y = x +2相交于点P ,则在x 上是否存在一点A ,使S △POA=4?若存在,求出点有坐标;若不存在,请说明理由。
3、如下图,一次函数的图像交正比例函数的图像于M 点,交x 轴于点N (-6,0),已知点M 在第二象限,其横坐标为-4,若S △NOM=15,求正比例函数的解析式。
x
4、如图,直线1l 的解析表达式为y=-3x+3,且1l 与x
B ,直线
1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;
(4)在直线2l 上存在异于点C 的另一点P ,使得
ADP △与ADC △的面积相等,请直接写出点P 的坐标.
图11
5、如图,直线L 的解析表达式为y = -x +2,且与x 轴、y 轴交于点A 、B ,在y 轴上有一
2
1
点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动。(1)求A 、B 两点的坐标;
(2)△COM 的面积S 与M 的移动时间t 之间的函数关系式;(3)当何值时△COM ≌△AOB ,并求出此时M 点的坐标。
x
6、如图,直线的解析式为y=-x+4,它与轴、轴分别相交于两点.平行于直线的直线从
l x y A B 、l m 原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两O x x y M N 、点,设运动时间为秒(0 t (1)求两点的坐标;(2)用含的代数式表示的面积; A B 、t MON △1S (3)以为对角线作矩形,记和重合部分的面积为,MN OMPN MPN △OAB △2S ①当2 2S t ②在直线的运动过程中,当为何值时,为面积的 ?m t 2S OAB △516 m 7、如图,直线与两坐标轴分别相交于A.B 点,点M 是线段AB 上任意一点(A.B 两点除4+-=x y 外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D . (1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由;(2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少? (3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为 ,正方形OCMD 与△ AOB 重叠部分的面积为S .试求S 与的函数关系式并画出该函数的