数字地形模型与地形分析
第9章-数字地形模型与地形分析-第一讲
▪ DEM数据的高程分层设色显示 ▪ DEM数据与影像数据联结三维场景显示 ▪ 三维静态场景的输出功能 ▪ 三维动态飞行场景的录制与播放功能 ▪ 简单DEM模型分析功能
GIS 电子沙盘 ——高程分层设色
GIS DEM应用举例 ——城市景观
城市景观系统通过运用数字技术构造出某一区域的 虚拟场景来辅助人们进行观测, 是一个可视现实和虚拟 现实集成的系统。
垂直线 典型线
山脊线 谷底线 海岸线 坡度变换线
GIS 3.DEM的表示法
数学方法 整体拟合方法, 即根据区域所有的高程点
数据, 用傅立叶级数和高次多项式拟合统 一的地面高程曲面 局部拟合方法, 将地表复杂表面分成正方 形规则区域或面积大致相等的不规则区 域进行分块搜索, 根据有限个点进行拟合 形成高程曲面
➢DEM的表示方法
➢一个地区的地表 高程的变化可以
采用多种方法表
达
DEM 表示方法
➢用数学定义的表 面或点、线、影 像都可用来表示 DEM
数学方法 图形法
整体 局部 点数据
线数据
傅立叶级数 高次多项式
规则数学分块
不规则数学分块
密度一致
规则
密度不一致
不规则 典型特征 水平线
三角网 邻近网 山峰、洼坑
隘口、边界
点信息
ID
边1 边2 边3
1
E1
E3
E9
2
E2
E3
E4 面
3
E4
E5
E6
信 息
4
E6
E7
E8
5
E7
E9
E10
ID
起点
终点
左多 边形
右多 边形
如何利用数字高程模型进行地形分析
如何利用数字高程模型进行地形分析数字高程模型(Digital Elevation Model,简称DEM)是一种通过遥感技术和地理信息系统(GIS)技术获取的用于表示地球表面高程信息的数字模型。
利用数字高程模型进行地形分析可以帮助我们更好地理解和研究地球的地形特征,以及对其进行合理的规划和管理。
本文将探讨如何利用数字高程模型进行地形分析,并介绍相关的方法和应用。
一、数字高程模型的概念和获取方式数字高程模型是用数字形式描述地面高程变化的空间数据模型。
它采用网格化的方式记录不同位置的高程值,能够以图像的形式展示地表地形特征。
获取数字高程模型的常用方法包括航空摄影、卫星遥感、激光雷达等。
其中,激光雷达技术是最常用、精度最高的数字高程模型获取方式之一。
二、数字高程模型的常用地形分析方法1. 地形倾斜度分析地形倾斜度分析是利用数字高程模型计算地表坡度的方法。
通过计算不同位置处的高程差异,可以揭示地表的陡峭程度和坡度变化。
地形倾斜度分析在环境评价、土壤侵蚀评估、高山滑坡预测等领域具有广泛的应用。
2. 流域分析流域分析是研究地表水流发展方向和流域特征的方法。
利用数字高程模型可以计算流域的流量、水流路径和水动力特性,对于水文模拟、洪水预测等问题具有重要意义。
3. 剖面分析剖面分析是根据数字高程模型绘制地表剖面图,以获取地表地形的纵向变化信息。
剖面分析可用于地质勘探、公路设计、隐患分析等领域,帮助我们了解地理地貌的垂直变化规律。
4. 可视化和三维重建数字高程模型可通过可视化技术和三维重建技术呈现出真实的地表地形景观。
借助数字高程模型,我们可以进行虚拟地形导览、地形模拟和景观规划等相关工作,为各类地理研究和规划提供更直观的视觉表达手段。
三、数字高程模型地形分析的应用案例1. 自然灾害风险评估利用数字高程模型分析地区地形特征,可以帮助进行自然灾害风险评估。
例如,在地震灾害评估中,通过分析数字高程模型可以判断出可能发生滑坡、崩塌等地质灾害的潜在区域,并进行相应的防灾和救援准备工作。
使用数字高程模型进行地形分析的步骤和技巧
使用数字高程模型进行地形分析的步骤和技巧使用数字高程模型(Digital Elevation Model,简称DEM)进行地形分析可以帮助我们更深入地了解地球表面的形态和特征。
在这个过程中,我们需要遵循一系列的步骤和技巧,以确保我们能够获得准确和可靠的分析结果。
首先,进行地形分析的第一步是获取合适的DEM数据。
DEM数据可以从多个渠道获取,包括地理信息系统(Geographic Information System,简称GIS)数据提供机构、地方政府和学术机构等。
我们可以根据自己的需求选择合适的DEM数据集,确保数据的分辨率和精度能够满足我们的要求。
在获得DEM数据后,我们需要对数据进行预处理,以便使其更适合用于地形分析。
这包括数据的清理和修复,以去除潜在的错误或缺失值。
同时,我们还可以对DEM数据进行滤波平滑以去除噪声,并进行坡度校正,以便更准确地表示地形特征。
一旦我们获得了处理后的DEM数据,我们就可以开始进行地形分析了。
其中最常见的一项分析是计算地形坡度。
坡度是地形表面上某一点的下降速率,通常以百分比或度数表示。
我们可以使用坡度计算公式来计算不同地点的坡度,并根据坡度值的分布来理解地形的陡峭程度和地形特征。
另外,地形坡向是另一个重要的地形分析指标。
它指示了地表的方向,即水流的路径。
为了计算地形坡向,我们可以使用计算水流路径的算法,如D8流向算法或D-inf流向算法。
通过分析地形坡向,我们可以更好地了解地表水流的分布和汇集情况。
此外,地形曲率也是一个常见的地形分析指标。
地形曲率表示地表曲线在某一点的曲率程度,可以帮助我们理解地形特征的起伏和起伏的连续性。
为了计算地形曲率,我们可以使用基于邻域统计的计算方法,例如偏导数方法或滑动窗口方法。
通过分析地形曲率,我们可以更好地理解地形的起伏和地貌特征。
除了这些常见的地形分析指标之外,我们还可以根据自己的需求选择其他合适的地形分析方法和技术。
例如,我们可以使用地形剖面来展示地形剖面线上的高程变化情况,或者使用地形阴影来模拟地表在不同光照条件下的阴影效果。
6、数字地形模型与地形分析
11
激活专题Height_tin,选用菜单Surface/Create Contours…,在弹出的对话框中按以下设置:
12
13
②不规则三角网和距离倒数权重法插值比较
从文件菜单中加载(栅格)空间分析扩展模块。
14
激活专题“Spot.shp”,选用菜单 Surface/Interpolate Grid…,在弹出的对话框重按 以下设置:
49
生成坡度专题图
50
51
52
53
⑤创建坡向专题图
激活plne。
54
55
56
57
58
3.工程中的土方计算
所需数据:Cnt_dsn.shp,工程中的设计等高线; Cnt_ext.shp,工程中的现状等高线; Bound.shp,工程场地的边界。 该习作主要包括两部分:①由等高线生成不规 则三角网;②计算工程挖填方。
3
①由点状要素产生不规则三角网
启动系统并加载3D分析扩展模块。
4
打开一个新视图,将Spot.shp和Bound.shp加到视 图中,并从视图下拉菜单中选择属性,将地图单 位设置为米。
5
6
激活专题“Spot.shp”,选择菜单Surface/Create TIN from Features…,在弹出的对话框中按以下设置:
4.视域分析
所需数据:observer.shp,观察点数据文件; viewroad.shp,道路数据文件; d_tin,TIN高 程数据文件。 本习作主要包括两个部分:①基于观察点的视 域分析;②基于路径的视域分析。
75
①基于观察点的视域分析
启动系统并加载3D分析扩展模块,并新建视图。
76
83
GIS原理——数字地形模型(DTM)与地形分析
是反映地表的起伏变化和侵蚀程度的指标,一般定义为地表单元 的曲面面积与其水平面上的投影面积之比。
Grid DEM上制作坡度、坡向图
(二)等高线的绘制
在格网DEM上自动绘制等高线主要包括两个步骤: 1、等高线追踪,利用DEM矩形格网点的高程内插出格网边上的等 高线点,并将这些等高线点排序; 2、等高线光滑,进一步加密等高线点并绘制光滑曲线。
此外,从DEM还能派生以下主要产品:平面等高线图、立体等高线图、 等坡度图、晕渲图、通视图、纵横断面图、三维立体透视图、三维立体彩色 图等。
二、DEM建立
1、数据获取与处理 1)数据采集
选点采集 沿断面采集
2) 数据处理
2、DEM 生成
1)人工网格法
在地形图上蒙上格网,逐 格读取中心点或交点的高程 值。
2)三角网法
对有限个离散点,每三个邻近点 联结成三角形,每个三角形代表一个 局部平面,再根据每个平面方程,可 计算各格网点高程,生成DEM。
2、D3E)M曲生面成拟合法
根据有限个离散点的高程,采用多项式或样条函数求 得拟合公式,再逐个计算各点的高程,得到拟合的DEM。 可反映总的地势,但局部误差较大。
DTM:当z为其他二维表面上连续变化的地理特征,如地 面温度、降雨、地球磁力、重力、土地利用、土壤类型等 其他地面诸特征,此时的DEM成为DTM(Digital Terrain Models)。
一、DEM 概述
2、表示法
1) 等高线法
等高线通常被存储成一个有序的坐标点 序列,可以认为是一条带有高程值属性的简 单多边形或多边形弧段。由于等高线模型只 是表达了区域的部分高程值,往往需要一种 插值方法来计算落在等高线以外的其他点的 高程。
如何掌握测绘技术中的数字地形模型生成与分析方法
如何掌握测绘技术中的数字地形模型生成与分析方法引言测绘技术在现代社会发展中具有重要地位和作用。
其中,数字地形模型(Digital Terrain Model,DTM)是测绘技术的重要组成部分。
它是一种基于地理数据和数字技术建立的地形模型,能够精确描述地球表面各种大地现象。
掌握数字地形模型的生成与分析方法对于地理信息系统、城市规划和环境评估等方面具有重要意义。
本文将介绍一些常用的数字地形模型生成与分析方法,帮助读者更好地掌握测绘技术。
一、数据采集与预处理数字地形模型的生成需要通过数据采集与预处理来获取原始地形数据。
常用的采集方法包括地面控制点采集、航空摄影测量和卫星遥感等。
在采集数据时需要注意选择适当的采集设备和技术,确保数据的准确性和可靠性。
采集完成后,还需要进行数据预处理,包括数据清洗、数据校正和数据匹配等。
这些步骤能够提高数字地形模型的质量和精度。
二、数字地形模型生成方法1. 面状插值法面状插值法是数字地形模型生成的常用方法之一。
它通过对地面点数据进行插值,生成连续表面来描述地形。
常用的插值方法有三角网格插值、反距离加权插值和克里金插值等。
这些方法各有特点,可以根据具体需求选择合适的方法。
2. 栅格插值法栅格插值法是另一种数字地形模型生成方法。
它将地面点数据按照一定的分辨率划分成栅格,然后利用插值方法填充栅格,生成数字地形模型。
常用的栅格插值方法有反距离加权法、克里金法和多层感知机等。
栅格插值法适用于大规模地形数据的生成,具有较高的效率和稳定性。
三、数字地形模型分析方法1. 坡度与坡向分析坡度与坡向是数字地形模型分析的重要指标,它能够反映地形的陡峭程度和方向特征。
通过计算每个地点的坡度和坡向,并进行分析,可以帮助确定地形特点和地形发展趋势。
2. 剖面分析剖面分析是对数字地形模型进行纵向剖面展示和分析的方法。
通过选择两个地点,并绘制其之间的剖面线,可以得到沿该剖面线的地形高程变化情况。
剖面分析可以帮助确定地形的起伏程度和地形过程特征。
第4讲 数字地形模型与地形分析
DEM模型之间的相互转换
由不规则点集生成TIN 由规则格网DEM生成TIN 由等高线转换为格网DEM 又TIN生成等高线
-- TIN模型 Delaunay 三角形是Voronoi的对偶图
-- TIN模型 Delaunay 三角形的判别法则
Delaunay 三角形的判别法则: A、 外接圆判别法:过某三角形三角点
规则 不规则
密度一致
密度不一致
三角网 邻近网
典型特征 山峰、坑洼 隘口、边界
水平线 垂直线
山脊线 山谷线
典型线 海岸线
坡度变换线
规则格网模型—表示方法
91 78 63 53 94 81 64 51 100 84 66 55 103 84 66 56 规则格网DTM
规则格网模型—人工生成方法
将地形图蒙上格网,逐格读取中心或角 点的高程值、构成数字高程模型。
的外接圆内不含有离散点集合中除这三 点外的任何其他点。 B、极大—极小角判别法则:在三角网中, 所有Delaunay 三角形的最小角度都达到 最大。
TIN的生成方法
首先取其中任一点P,在其余各点中寻找与此 点距离最近的点P2,连接P1P2构成第一边,然 后在其余所有点中寻找与这条边最近的点,找 到后即构成第一个三角形,再以这个三角形新 生成的两边为底边分别寻找距它们最近的点构 成第二个、第三个三角形,依此类推,直到把 所有的点全部连入三角网中,
动提取流域地形等
缺点
– 不能准确表达地形的结构和细部 – 数据量过大
等高线模型
等高线模型的数据组织
用二维链表来存储坐标点对系列 用图来表示等高线的拓扑关系:
– 区域表示为图的结点 – 用边来表示等高线本身
使用数字高程模型进行地形分析与地貌测绘
使用数字高程模型进行地形分析与地貌测绘地形是地球表面上的起伏现象,从凹坑到山峰,从峡谷到河流,每一个地貌特征都承载着地球的奇妙之美。
为了深入了解地球的地形,科学家们一直在寻找更好的方法和工具进行地形分析与地貌测绘。
其中,数字高程模型(Digital Elevation Model,DEM)是一种重要的工具,它基于地球表面高度数据的数学建模,使得我们能够快速、准确地了解地球上的地貌特征。
数字高程模型的制作过程主要包括数据获取、数据处理和数据分析三个步骤。
首先,为了获取地球表面的高程数据,我们可以使用多种技术,比如地面测量、航空摄影、卫星遥感等。
这些技术可以提供大量的高程数据,涵盖了不同地域、不同地貌特征的信息。
然后,我们需要对这些数据进行处理,消除噪声、填充缺失值、插值等,以得到高精度、连续分布的数字高程模型。
最后,我们可以利用这个数字高程模型进行地形分析和地貌测绘。
在地形分析方面,数字高程模型能够提供丰富的地貌信息,帮助我们了解地球表面的特征和演化过程。
通过对数字高程模型的处理和分析,我们可以获得坡度、坡向、流域等地形参数,进而研究地表水文过程、土地利用变化等问题。
此外,数字高程模型还可以用于洪水预测、土壤侵蚀评估、地质灾害分析等方面,为环境保护和灾害管理提供科学依据。
在地貌测绘方面,数字高程模型可以帮助我们更好地理解地球表面的变化和地貌特征的形成。
通过对数字高程模型的可视化和分析,我们可以直观地观察地球的地形变化,利用三维重建技术重现地表形貌。
同时,数字高程模型还可以用于制作地形图、地貌图等专业地图,记录和传播地球上丰富多样的地貌。
数字高程模型的应用不仅局限于科学研究和地图制作,在各行各业中也有广泛应用。
地形分析和地貌测绘在城市规划中扮演着重要角色。
通过对数字高程模型的分析,城市规划师可以评估建筑物的遮挡效应,优化交通布局,改善环境条件。
同时,数字高程模型还可以在土地开发、资源管理、农业生产等方面发挥重要作用,提高效率和减少成本。
第八章 DEM分析
4、DEM应用
1)作为国家地理信息的基础数据; 2)土木工程、景观建筑与矿山工程规划与设计; 3)为军事目的而进行的三维显示; 4)景观设计与城市规划; 5)流水线分析、可视性分析; 6)交通路线的规划与大坝选址; 7)不同地表的统计分析与比较; 8)生成坡度图、坡向图、剖面图、辅助地貌分析、估计侵蚀和径流等; 9)作为背景叠加各种专题信息如土壤、土地利用及植被覆盖数据等,以 进行显示与分析; 10)与GIS联合进行空间分析; 11)虚拟现实(Virtual Reality);
在计算出各地表单元的坡度后,可对不同的坡度设定不同的灰度 级,可得到坡度图。
2、坡向
坡向是地表单元的法向量在水平面上的投影与X轴之间的夹角,
在计算出每个地表单元的坡向后,可制作坡向图,通常把坡向分为东、 南、西、北、东北、西北、东南、西南8类,再加上平地,共9类,用 不同的色彩显示,即可得到坡向图。
2)三角网法
对有限个离散点,每三个邻近点 联结成三角形,每个三角形代表一个 局部平面,再根据每个平面方程,可 计算各格网点高程,生成DEM。
2、DEM 生成 3)曲面拟合法
根据有限个离散点的高程,采用多项式或样条函数求 得拟合公式,再逐个计算各点的高程,得到拟合的DEM。 可反映总的地势,但局部误差较大。
(三)基于DEM的可视化分析
1、剖面分析
1)意义:
常常可以以线代面,研究区域的地貌形态、轮廓形状、 地势变化、地质构造、斜坡特征、地表切割强度等。
如果在地形剖面上叠加其它地理变量,例如坡度、土 壤、植被、土地利用现状等,可以提供土地利用规划、工 程选线和选址等的决策依据。
使用数字地形模型进行地形分析与量算的方法
使用数字地形模型进行地形分析与量算的方法使用数字地形模型(Digital Elevation Model, DEM)进行地形分析与量算是现代地理信息系统(Geographic Information System,GIS)和遥感技术领域的重要应用之一。
数字地形模型通过获取地表高程数据,可以构建具有空间坐标的三维地形模型,为地形分析和量算提供了丰富的数据源和工具。
本文将介绍数字地形模型的原理、应用和方法,并探讨其中的一些关键技术。
一、数字地形模型的概念和构建原理数字地形模型是对地表高程进行描述的数学模型,它以地形数据为基础,通过像元(pixel)或点(point)间的高程插值,构建出具有空间坐标的地形模型。
常见的数字地形模型包括数字高程模型(Digital Elevation Model, DEM)和数字地表模型(Digital Surface Model, DSM)。
在数字地形模型的构建过程中,主要有两种获取高程数据的方法:一种是通过遥感技术获取的遥感影像,利用影像解译和测量技术提取地表高程信息;另一种是通过地面测量,利用全站仪、GPS等工具进行点测量并插值生成高程模型。
这两种方法在不同场景和精度要求下有各自的适用性。
二、数字地形模型的应用数字地形模型在地形分析和量算中有广泛的应用。
首先,数字地形模型可以用于地形可视化和表达。
通过将地形模型渲染成立体图像或三维模型,可以直观地展示地表的起伏和地势特征,帮助人们更好地认识地形。
其次,数字地形模型可以用于地形分析和地貌研究。
通过对地形模型进行光滑、分级、剖面等处理,可以提取地形参数和特征,揭示地貌演化过程和地理环境变化。
再次,数字地形模型可以用于水文分析和水资源评估。
通过分析地形模型的水文特征,如流域面积、等高线密度等,可以评估水文条件和洪涝风险,指导水资源管理。
此外,数字地形模型还可以应用于地形量测、地质勘探、土地利用规划等领域。
三、数字地形模型的分析和量算方法在数字地形模型的分析和量算过程中,关键的方法包括地形提取、地势分析、地形剖面、等高线生成等。
如何利用数字地面模型进行地形分析和规划
如何利用数字地面模型进行地形分析和规划数字地面模型(Digital Elevation Model, DEM)是利用空间数据采集方法获取的地面高程数值数据,它是进行地形分析和规划的重要工具。
本文将探讨如何利用数字地面模型进行地形分析和规划,以及其在城市规划、环境保护和土地利用等领域的应用。
一、数值地形模型的生成与应用数字地面模型的生成利用遥感技术、全球导航卫星系统(GNSS)和地面测量方法等,构建高精度的地面数字模型。
生成的数字地面模型具有丰富的地形信息,包括地面高程、坡度、坡向等参数,为地形分析和规划提供了基础数据。
数字地面模型在城市规划中扮演着重要的角色。
通过分析数字地面模型,可以准确了解地形条件,进而确定适宜的建筑布局和交通网络规划。
此外,数字地面模型还可用于水资源管理、防洪预警等领域,提供科学依据和技术支持。
二、地形分析1. 坡度分析坡度是描述地面曲率变化的参数之一,可以通过DEM计算得出。
坡度分析对于土地利用、土壤侵蚀、灾害风险评估等有重要意义。
不同坡度的地形特征可以指导农田规划、森林资源管理和山地旅游等领域的决策。
2. 坡向分析坡向是地表水流的方向指示。
通过数字地面模型的坡向分析,可以预测水流的路径和分布,为水资源管理和防洪工程提供重要依据。
3. 流域分析流域是地理空间内水流的收集和排泄系统,通过数字地面模型可以模拟出流域的形状和大小,并对流域进行分析。
流域分析可以为水资源规划、流域生态保护提供参考,促进水资源的合理利用和环境保护。
三、地形规划1. 地形视觉效果分析数字地面模型可以模拟实际地貌,通过可视化分析,帮助规划师更好地了解景观面貌。
在城市规划中,地形视觉效果分析可以评估建筑物对周边环境视觉效果的影响,指导建筑规划和景观设计。
2. 地形地貌保护和修复规划数字地面模型为地形地貌保护和修复规划提供了依据。
通过分析数字地面模型,可以评估地质灾害潜在风险,提出合理的地质灾害防治措施。
同时,利用数字地面模型,可以实现地貌修复规划,保护和恢复自然地形特征。
数字地形模型与地貌分析技术介绍与应用案例
数字地形模型与地貌分析技术介绍与应用案例一、引言地貌是地球表面形态的总称,对于地形的研究对于我们了解地球的结构和演化过程具有重要意义。
而数字地形模型(Digital Elevation Model,DEM)与地貌分析技术则提供了一种高分辨率和高精度的地貌表征与研究方法。
本文将介绍数字地形模型的基本原理以及地貌分析技术的应用案例。
二、数字地形模型的原理数字地形模型是利用地球表面高程数据构建的计算机模型。
常见的数据来源有航空摄影测量、卫星遥感、雷达全地球扫描仪等技术手段。
其原理是通过收集地表高度数据,建立高程模型,实现对地球表面形态的数字化描述。
数字地形模型主要有两种类型:离散点模型和连续模型。
离散点模型使用一系列离散的高程点来表示地表形态,常见的如地图上的等高线。
而连续模型则通过对离散点进行插值处理,构建连续的地表高程模型。
三、数字地形模型的应用1. 地形分析与地貌研究利用数字地形模型,地学家可以对地面的高程、坡度、坡向等地形参数进行计算和分析。
通过地形参数的分析,可以揭示地球表面的动力学过程和地貌演化的规律,进而研究地球的演化历史。
2. 地形辅助决策数字地形模型在城市规划、水资源管理、环境保护等领域起着重要作用。
通过对地形进行模拟和分析,可以确定最佳的建设位置,减轻自然灾害对城市的影响,提高城市的抗灾能力。
同时,数字地形模型可用于流域的水资源管理和河道的治理设计,为环境保护和生态恢复提供科学依据。
四、地貌分析技术的应用案例1. 山地地貌研究数字地形模型为山地地貌研究提供了有力工具。
以喀斯特地貌为例,通过对地形参数的分析,可以揭示喀斯特地貌的形成机制和发育过程。
同时,数字地形模型还能够为山地旅游规划和生态环境保护提供参考依据。
2. 海岸地貌研究海岸地貌是陆地与海洋交界处的地貌形态。
数字地形模型可以对海岸线进行精确测绘,分析海洋侵蚀与沉积的地貌特征,并预测海岸地貌演化趋势。
这对于海岸沿线的开发利用和防止沿海灾害具有重要意义。
5数字地形模型(DTM)分析 (1)
11
பைடு நூலகம்
3 DEM的数据采集
3.1 DEM数据源类型
1)航空和航天遥感资料 航空:可量取密集高程数据用来建立DEM,适用于大比例尺的 数字地形制图; 航天:主要用于小比例尺数字地形数据源 2)各种地形图 3)地面实测记录 地面实测记录得到的大比例尺数据,如全站仪、测距经纬仪、 GPS等 4)数字摄影测量数据 立体测图仪或立体坐标仪,解析测图仪(半自动立体测图仪)及数 字测量系统 12
3 DEM的数据采集
3.3 数字摄影测量获取DEM 4)选择采样 为了准确反映地形,可根据地形特征进行选择采样,例如沿山脊 线、山谷线、断裂线进行采集以及离散碎部点(如山顶)的采 集。这种方法获取的数据尤其适合于不规则三角网 DEM 的建 立。 5)混合采样 为了同步考虑采样的效率与合理性,可将规则采样(包括渐进采 样)与选择性采样结合进行混合采样,即在规则采样的基础上 再进行沿特征线、点采样。 6)自动化DEM数据采集 上述方法均是基于解析测图仪或机助制图系统利用半自动的方法 进行 DEM 数据采集,现在已经可以利用自动化测图系统进行 完全自动化的DEM数据采集。 16
a1:用格网计算坡度、坡向的算法: 第三种:由Sharpnack等(1969) 提出,也采用直接与中心点单元邻 接的八个单元,但每个单元的权重相同都为1。 S=(((e1+e4+e6)-(e3+e5+e8))2+((e6+e7+e8)-(e1+e2+e3))2)0.5/6d ei为邻接单元值,d为单元大小。C0的nx分量为((e1+e4+e6)(e3+e5+e8)) , C0的ny分量为((e6+e7+e8)-(e1+e2+e3)) ,将S乘以 100可算得C0点的坡度百分数。 S的方位角D计算公式为: D=arctan(((e6+e7+e8)-(e1+e2+e3)) /((e1+e4+e6)-(e3+e5+e8))) 采用同上面的算法把D转化成坡度,即变为以北为0度的度数制。 e1 e4 e6 e2 C0 e7 e3 e5 e8 21
如何使用数字地形模型进行测绘分析与应用
如何使用数字地形模型进行测绘分析与应用数字地形模型(Digital Elevation Model,简称DEM)是地表及地形数据以数字化形式表达的一种方式。
DEM已经在测绘领域得到广泛应用,并且为地理信息系统(GIS)的发展提供了重要的支持。
本文将探讨如何使用数字地形模型进行测绘分析与应用,并且介绍DEM的基本原理与数据获取方式。
一、数字地形模型的基本原理数字地形模型是通过对地球表面的高程进行采样,并记录在离散数据点上,最终形成高度值的数值化表示。
这种数值化的高程数据可以存储在栅格、矢量或点云形式中。
数字地形模型的基本原理是通过采集地球表面上的高程数据,并使用插值方法进行处理,最终生成一个连续的表面模型。
这个模型可以反映出地形的起伏和曲线,提供了对地形特征的直观认识。
二、数字地形模型的数据获取方式1. 光学遥感数据获取方式在使用数字地形模型进行测绘分析与应用时,可以使用光学遥感数据获取地表高程信息。
这种方式通过对航空或卫星影像进行解译与处理,可以提取出地形的高程数据。
2. 激光雷达获取方式激光雷达是一种常见的数据获取方式,通过激光束与地面进行反射,可以精确测量地形的高程。
这种方式可以快速获取大范围的高程数据,并且有较高的精度。
三、数字地形模型的测绘分析与应用1. 地形分析使用数字地形模型可以对地表的高程特征进行分析,包括高度、坡度、坡向等参数。
这些参数可以帮助我们了解地面的地形变化和地貌特征,从而提供决策支持。
2. 洪水模拟与分析使用数字地形模型可以进行洪水的模拟与分析,通过模拟洪水的演变过程,可以帮助我们预测洪水的范围和影响,并制定相应的应对措施。
3. 自然灾害风险评估数字地形模型可以用于自然灾害风险评估,通过分析地形特征和环境因素,可以预测自然灾害的可能性和程度,并制定相应的防灾减灾方案。
4. 土地利用规划使用数字地形模型可以进行土地利用规划,通过分析地形特征和地理信息,可以确定不同地区的适宜用地类型,为土地的合理利用提供基础数据和科学依据。
网格化数字地形模型的构建与分析方法
网格化数字地形模型的构建与分析方法数字地形模型(Digital Terrain Model,DTM)是通过数字化地表高程数据构建的地形模型。
随着技术的发展,越来越多的研究和应用领域开始需要高精度和高分辨率的数字地形模型。
网格化数字地形模型的构建与分析方法成为研究和应用领域的关注点之一。
本文将就网格化数字地形模型的构建方法、性能评估以及相关的分析方法进行探讨。
一、数字地形模型构建方法1. 激光雷达扫描法激光雷达扫描法是一种常用的数字地形模型构建方法。
通过激光雷达设备对地面进行扫描,获取多个点云数据,然后通过点云数据的处理与过滤,提取出地面点,最终构建数字地形模型。
这种方法具有高精度、高效率的特点,被广泛应用于地形测绘、城市规划等领域。
2. 遥感影像解译法遥感影像解译法是另一种常用的数字地形模型构建方法。
通过分析遥感影像中的地物特征,如纹理、颜色等,利用图像处理算法提取出地面特征,构建数字地形模型。
这种方法适用于大范围、连续的地形建模,具有覆盖范围广、成本较低的优势。
3. 高精度测量法高精度测量法是一种精度要求较高的数字地形模型构建方法。
通过使用全站仪、GPS等高精度测量设备,对地表进行多个采样点的测量,然后通过插值算法将测量数据进行空间插值,得到数字地形模型。
这种方法适用于对特定区域进行高精度建模,如交通规划、基础设施建设等领域。
二、数字地形模型性能评估1. 精度评估数字地形模型的精度是衡量其质量的重要指标。
可以通过与实地测量数据进行对比,计算出误差值,进而评估数字地形模型的精度。
同时也可以利用地形分析工具,进行地形曲率、坡度、坡向等指标的计算,从而评估数字地形模型的几何特征。
2. 数据密度评估数据密度是指数字地形模型中数据点的分布情况。
数据密度评估可以通过统计每个网格单元内的数据点数量,并计算出平均密度值。
高密度的数字地形模型能够更准确地反映地形的细节特征。
3. 数据分辨率评估数据分辨率是指数字地形模型中每个网格单元的大小。
如何进行数字地形模型的生成和分析
如何进行数字地形模型的生成和分析数字地形模型(DTM)的生成和分析是现代地理信息系统(GIS)和遥感技术的重要应用之一。
DTM通过获取地面表面的数字高程和坐标数据,以三维形式呈现地形特征,为各种领域的研究和决策提供支持。
本文将介绍数字地形模型的生成和分析的基本原理和方法。
一、数字地形模型的生成1.高程数据的获取生成DTM的首要任务是获得地面的高程数据。
常用的获得高程数据的方法有测量和遥感技术。
测量方法包括全站仪测量、GPS测量和实地勘测等,适用于较小范围的地形特征获取。
而遥感技术则通过卫星、飞机和无人机等平台获取地表高程数据,具有较大范围和高时效性的优势。
2.数据预处理获取到的高程数据通常会包含一些噪声和孤立点,需要经过预处理来提高数据的可靠性和准确性。
预处理的方法包括数据滤波、数据插值和数据平滑等。
数据滤波可以去除噪声和异常点,数据插值可以填补缺失的数据,数据平滑可以减小数据之间的不规则性。
3.数据格式转换在进行数字地形模型生成之前,还需要将高程数据转换为标准的数字格式。
常用的数据格式有ASCII格式、LAS格式和DEM格式等。
ASCII格式是一种简单的文本格式,适用于小范围的数据;LAS格式是一种用于存储激光雷达数据的二进制格式,适用于大范围的数据;DEM格式是一种常用的栅格格式,适用于进行地形分析和可视化。
二、数字地形模型的分析1.地形特征提取数字地形模型可以提供详细的地形信息,可以通过分析和挖掘这些信息来获得有关地形特征的辅助信息。
常用的地形特征包括地形起伏度、坡度、坡向和几何形状等。
地形起伏度可以反映地形的变化强度,坡度可以反映地表的陡峭程度,坡向可以反映地表的朝向特征,几何形状可以反映地表的几何特征。
2.地形分析利用数字地形模型可以进行各种地形分析,以支持不同领域的研究和决策。
其中包括:(1)水文分析:通过分析地形的坡度、坡向和流向等特征,可以模拟水文过程和预测洪灾等水文灾害。
(2)土壤侵蚀分析:通过分析地形起伏度和坡度等特征,可以评估土壤侵蚀的潜力和风险。
使用数字高程模型进行地形分析与建模的方法与技巧
使用数字高程模型进行地形分析与建模的方法与技巧简介:数字高程模型(Digital Elevation Model,DEM)是一种表示地面高程的数字模型,可以用于地形分析与建模。
本文将介绍使用DEM进行地形分析与建模的方法与技巧,包括数据获取、数据处理、地形分析以及建模方法。
一、数据获取1. 遥感数据:使用卫星影像或航空影像进行地形数据的采集。
高分辨率的遥感影像可以提供精确的地形信息。
2. 激光雷达数据:激光雷达系统可以通过测量地面和物体表面的反射光来获取精确的地形数据。
激光雷达数据有较高的垂直精度和水平分辨率。
3. GPS测量:使用全球卫星定位系统(GPS)进行地面测量,可以获取具有较高精度的地形数据。
二、数据处理1. 数据格式转换:将获取的地形数据转换为常见的DEM格式,如GeoTIFF、ASCII等,以便进行后续的分析与建模。
2. 数据校正:对采集的地形数据进行精确性校正,纠正可能存在的误差。
3. 数据去噪:使用滤波算法或插值算法对地形数据进行去噪处理,以提高数据的可靠性和精度。
三、地形分析1. 高程变化分析:通过计算DEM中相邻像元之间的高程差异,可以揭示地形的变化趋势。
这可以帮助确定地形特征,如山脉、河流等。
2. 坡度和坡向分析:通过计算DEM中每个像元的坡度和坡向,可以确定各个区域的地势倾向和水流方向。
3. 流域分析:通过计算每个像元的流量累积,可以确定汇水流域和水系网络,从而了解地形的水文特征。
四、地形建模1. 三维可视化:使用地形数据创建三维模型,通过调整视角和光照效果,可以直观地展示地形特征和地势变化。
2. 地形模拟:使用地形数据进行地形模拟,可以模拟洪水、泥石流等地质灾害发生的过程,评估潜在的风险和影响。
3. 地形剖面设计:利用地形数据进行地形剖面设计,可以帮助规划土地开发和基础设施建设,确保工程的稳定性和安全性。
结论:使用数字高程模型进行地形分析与建模可以提供准确的地理信息和地形特征,为地质、环境、城市规划等领域的研究和决策提供重要支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.DEM的主要表示模型 2.2等高线模型
等高线通常被存成一个有序的坐标点对序列, 可以认为是一条带有高程值属性的简单多边形 或多边形弧段。由于等高线模型只表达了区域 的部分高程值,往往需要一种插值方法来计算 落在等高线外的其它点的高程,又因为这些点 是落在两条等高线包围的区域内,所以,通常 只使用外包的两条等高线的高程进行插值。 等高线通常可以用二维的链表来存储。另外的 一种方法是用图来表示等高线的拓扑关系,将 等高线之间的区域表示成图的节点,用边表示 等高线本身。
2.DEM的主要表示模型 2.1规则格网模型
对于每个格网的数值有两种不同的解释。第一种是格网栅格观点,认为 该格网单元的数值是其中所有点的高程值,即格网单元对应的地面面积 内高程是均一的高度,这种数字高程模型是一个不连续的函数。第二种 是点栅格观点,认为该网格单元的数值是网格中心点的高程或该网格单 元的平均高程值,这样就需要用一种插值方法来计算每个点的高程。计 算任何不是网格中心的数据点的高程值,使用周围4个中心点的高程值, 采用距离加权平均方法进行计算,当然也可使用样条函数和克里金插值 方法
1.概述 1.2DEM表示法
1)数学方法 用数学方法来表达,可以采用整体拟合方法,即 根据区域所有的高程点数据,用傅立叶级数和高 次多项式拟合统一的地面高程曲面。也可用局部 拟合方法,将地表复杂表面分成正方形规则区域 或面积大致相等的不规则区域进行分块搜索,根 据有限个点进行拟合形成高程曲面。
1.概述 1.2DEM表示法
2.DEM的主要表示模型 2.3不规则三角网模型
TIN的数据存储方式比格网DEM复杂,它不仅要存储每个点的高程,还要 存储其平面坐标、节点连接的拓扑关系,三角形及邻接三角形等关系。 TIN模型在概念上类似于多边形网络的矢量拓扑结构,只是TIN模型不需 要定义“岛”和“洞”的拓扑关系。 有许多种表达TIN拓扑结构的存储方式,一个简单的记录方式是:对于每 一个三角形、边和节点都对应一个记录,三角形的记录包括三个指向它三 个边的记录的指针;边的记录有四个指针字段,包括两个指向相邻三角形 记录的指针和它的两个顶点的记录的指针;也可以直接对每个三角形记录 其顶点和相邻三角形(图9-5)。
1.概述
数字地形模型(DTM, Digital Terrain Model)最初是为了高速公路的自动 设计提出来的(Miller,1956)。此后,它被用于各种线路选线(铁路、公 路、输电线)的设计以及各种工程的面积、体积、坡度计算,任意两点间 的通视判断及任意断面图绘制。在测绘中被用于绘制等高线、坡度坡向图、 立体透视图,制作正射影像图以及地图的修测。在遥感应用中可作为分类 的辅助数据。它还是地理信息系统的基础数据,可用于土地利用现状的分 析、合理规划及洪水险情预报等。在军事上可用于导航及导弹制导、作战 电子沙盘等。对DTM的研究包括DTM的精度问题、地形分类、数据采集、 DTM的粗差探测、质量控制、数据压缩、DTM应用以及不规则三角网 DTM的建立与应用等
2.DEM的主要表示模型 2.2等高线模型
B C
F
E
A
D
G
H
2.DEM的主要表示模型 2.3不规则三角网模型
尽管规则格网DEM在计算和应用方面有许多优点, 但也存在许多难以克服的缺陷: 1)在地形平坦的地方,存在大量的数据冗余; 2)在不改变格网大小的情况下,难以表达复杂地 形的突变现象; 3)在某些计算,如通视问题,过分强调网格的轴 方向。 不规则三角网(Triangulated Irregular Network, TIN)是另外一种表示数字高程模型的方法[Peuker 等,1978],它既减少规则格网方法带来的数据冗余, 同时在计算(如坡度)效率方面又优于纯粹基于等 高线的方法。
2.DEM的主要表示模型 2.1规则格网模型
规则网格,通常是正方形,也可以是矩形、三角 形等规则网格。规则网格将区域空间切分为规则 的格网单元,每个格网单元对应一个数值。数学 上可以表示为一个矩阵,在计算机实现中则是一 个二维数组。每个格网单元或数组的一个元素, 对应一个高程值,如下图所示。
2.DEM的主要表示模型 2.1规则格网模型
2)图形方法 (1)线模式 等高线是表示地形最常见的形式。其它的地形特征线 也是表达地面高程的重要信息源,如山脊线、谷底线、 海岸线及坡度变换线等。 (2)点模式 用离散采样数据点建立DEM是DEM建立常用的方法 之一。数据采样可以按规则格网采样,可以是密度一 致的或不一致的;可以是不规则采样,如不规则三角 网、邻近网模型等;也可以有选择性地采样,采集山 峰、洼坑、隘口、边界等重要特征点。
2.DEM的主要表示模型 2.3不规则三角网模型
1 XYZ 2 XYZ 3 XYZ 4 XYZ 5 XYZ 6 6 XYZ 7 XYZ 8 XYZ
点文件
1
221 5Fra bibliotek3 4
4
56
8
7
8
7
顶点
邻接三角形
1 2 33 4 5 6 7 8
156 145 124 234 568 458 478 347
25X 136 X4 2 3 X8 1 X6 257 68X 47X
1.概述 1.2DEM表示法
DEM表示方法可分为两类:
➢数学方法
➢图形方法
数学方法
DEM 表示方法 图形法
整体 局部 点数据
线数据
傅立叶级数 高次多项式
规则数学分块
不规则数学分块
密度一致
规则
密度不一致
不规则 典型特征
三角网 邻近网 山峰、洼坑
隘口、边界
水平线
垂直线 典型线
山脊线 谷底线 海岸线 坡度变换线
1.概述 1.1DTM与DEM
从数学的角度,高程模型是高程Z关于平面坐标 X,Y两个自变量的连续函数,数字高程模型 (DEM)只是它的一个有限的离散表示。高程 模型最常见的表达是相对于海平面的海拔高度, 或某个参考平面的相对高度,所以高程模型又叫 地形模型。实际上地形模型不仅包含高程属性, 还包含其它的地表形态属性,如坡度、坡向等。 在地理信息系统中,DEM是建立DTM的基础数 据,其它的地形要素可由DEM直接或间接导出, 称为“派生数据”,如坡度、坡向。