人教版高中数学必修三第二章第1节 2.1.1简单随机抽样 课件(共20张PPT)
合集下载
高中数学人教版必修3 2.1.1简单随机抽样 ppt课件(共5套 打包下载)
步 骤
名师点拨抽签法与随机数法的异同点
相同点:(1)都是简单随机抽样,并且要求被抽取样本的总体所含的个体 是有限的;(2)都是从总体中逐个地、不放回地抽取. 不同点:(1)抽签法比随机数法简单;(2)随机数法更适用于总体中的个 体数较多的时候,而抽签法适用于总体中的个体数相对较少的情况,所以当 总体中的个体数较多时,应当选用随机数法.
规律方法如果一个总体满足下列两个条件,那么可用简单
随机抽样抽取样本: (1)总体中的个体之间无差异; (2)总体中的个体数不多.
探究二抽签法的应用
抽签法的优缺点 (1)优点:简单易行.当总体的个数不多时,使总体处于“搅拌均匀”的状 态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代 表性. (2)缺点:仅适用于个体数较少的总体.当总体容量非常大时,费时费力 又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平. 【典型例题 2】 要从某汽车厂生产的 30 辆汽车中随机抽取 3 辆进行测 试,请选择合适的抽样方法,并写出抽样过程. 思路分析:总体中共有 30 个个体,样本容量为 3,所以用抽签法抽取样 本.
解:第一步,将原来的编号调整为 001,002,003,…,120; 第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.例 如,选第 9 行第 7 个数“3”,向右读; 第三步,从“3”开始,向右读,每次读取三位,凡不在 001~120 中的数跳过 去不读,前面已经读过的也跳过去不读,依次可得到 074,100,094,052,080,003,105,107,083,092; 第四步,对应原来编号 74,100,94,52,80,3,105,107,83,92 的机器便是要抽 取的对象.
步 骤
名师点拨(1)利用抽签法抽取样本时,编号问题可视情况而
2.1.1《简单随机抽样》PPT课件(新人教A版必修3)
候选人 查兰顿 罗斯福 预测结果 57 43 选举结果 38 62
思考:你认为预测结果出错的原因是什么? 原因是:用于统计推断的样本来自少数富人,只能代表富人 的观点,不能代表全体选民的观点(样本不具有代表性)。
诱思探究4
在调查中,你认为抽样调查和普查有什么不同?
抽样调查 节省人力、物力和财力 可以用于带有破坏性的检查 结果与实际情况之间有误差 普查 需要大量的人力、物力和财力 不能用于带有破坏性的检查 在操作正确情况下,能得到准 确结果
诱思探究2
要了解全国高中生的视力情况,在全国抽取了15所中学 你知道考察对象是什么吗? 的全部高中生15000人进行视力测试。 全国高中生的视力 全国每位高中学生的 视力情况。 这15000名学生的视力 情况又组成一个集体 15000 在统计中,我们把所要考察的对象 的全体叫做总体 把组成总体的每一个考察的对象叫 做个体 从总体中取出的一部分个体的集体 叫做这个总体的一个样本。 样本中的个体的数目叫做样本 的容量。
诱思探究5
假设你作为一名食品卫生工作人员,要对某食品 店内的一批小包装饼干进行卫生达标检验,你准备怎 样做? 显然,你只能从中抽取一定数量的饼干作为检验 的样本.(为什么?)那么,应当怎样获取样本呢?
设计抽样方法时,在考虑样本的代表性的前提下, 应努力使抽样过程简便易行. 得到样本饼干的一个方法是,将这批小包装饼干 放入一个不透明的袋子中,搅拌均匀,然后不放回地摸 取(这样可以保证每一袋饼干被抽中的机会相等),这 样我们就可以得到一个简单随机样本,相应的抽样方 法就是——简单随机抽样. 一.简单随机抽样: (一)简单随机抽样的概念:一般地,设一个总体含 有N个个体,从中逐个不放回地抽取n个个体作为样本 (n≤N),如果每次抽取时总体内的各个个体被抽到的 机会都相等,这种抽样方法叫做简单随机抽样.
思考:你认为预测结果出错的原因是什么? 原因是:用于统计推断的样本来自少数富人,只能代表富人 的观点,不能代表全体选民的观点(样本不具有代表性)。
诱思探究4
在调查中,你认为抽样调查和普查有什么不同?
抽样调查 节省人力、物力和财力 可以用于带有破坏性的检查 结果与实际情况之间有误差 普查 需要大量的人力、物力和财力 不能用于带有破坏性的检查 在操作正确情况下,能得到准 确结果
诱思探究2
要了解全国高中生的视力情况,在全国抽取了15所中学 你知道考察对象是什么吗? 的全部高中生15000人进行视力测试。 全国高中生的视力 全国每位高中学生的 视力情况。 这15000名学生的视力 情况又组成一个集体 15000 在统计中,我们把所要考察的对象 的全体叫做总体 把组成总体的每一个考察的对象叫 做个体 从总体中取出的一部分个体的集体 叫做这个总体的一个样本。 样本中的个体的数目叫做样本 的容量。
诱思探究5
假设你作为一名食品卫生工作人员,要对某食品 店内的一批小包装饼干进行卫生达标检验,你准备怎 样做? 显然,你只能从中抽取一定数量的饼干作为检验 的样本.(为什么?)那么,应当怎样获取样本呢?
设计抽样方法时,在考虑样本的代表性的前提下, 应努力使抽样过程简便易行. 得到样本饼干的一个方法是,将这批小包装饼干 放入一个不透明的袋子中,搅拌均匀,然后不放回地摸 取(这样可以保证每一袋饼干被抽中的机会相等),这 样我们就可以得到一个简单随机样本,相应的抽样方 法就是——简单随机抽样. 一.简单随机抽样: (一)简单随机抽样的概念:一般地,设一个总体含 有N个个体,从中逐个不放回地抽取n个个体作为样本 (n≤N),如果每次抽取时总体内的各个个体被抽到的 机会都相等,这种抽样方法叫做简单随机抽样.
新人教版数学必修三2.1.1《简单随机抽样》课件
第五步:则Leabharlann 0个号码对应的日光灯管寿命就构成了 一个简单随机样本.
抽签法的步骤: 编号 做签 搅拌 抽取 得到样本
2.1.1 y 简单随机抽样 随机数表法 A sin(x —— )的图象( 函数 3) 【实例2】要考察某种品牌的850颗种子的发芽率, 从中抽取50颗种子进行实验.用抽签法可以完成吗? 实施过程中会遇到哪些问题?还有没有更好的办法解 决问题?
随机数表 48628 50089 38155 69882 27761 73903 53014 98720 41571 79413 53666 08912 48395 32616 34905 63640 57931 72328 49195 17699 00620 79613 29901 92364 38659 64526 20236 29793 09063 99398 98246 18957 91965 13529 97168 97299 68402 68378 89201 67871 01114 19048 00895 91770 95934 31491 72529 39980 45750 14155
阅读教材(50下—51页)后回答问题?
1.什么是随机数表? 2.怎样编号,要求是什么? 3.怎样定要求,怎样读数?
随机数表法 2.1.1 简单随机抽样 y A sin(—— x —— )随机数表法 函数 的图象( 3) 编号
1.将850颗种子编号为001,002,003,…,850.
定规则 2.使用的随机数表是5个数一组,要求用每组的 前3位,从各组数中任意选一个起始号码. 例如:从第一行第7组开始,取出530作为抽取的50颗种 子的第1个的代号.从左向右依次读取满足要求的数字, 如此下去直到得出在001~850之间的50个三位数. 读数 3.读数:530,415, … 得到样本 4.根据编号得到要研究的50颗种子
《简单随机抽样》教学课件(共20张PPT)
同一种抽样方法,每次抽样得到的数据也可能不同.
方当法调一 查.的2对0象名个数同较少学,的调查调容易查进行,时,发我们现一有般采1用6普人查的是方式因进行为。没有吃早餐而去买零食。由此
怎么样得到咱班骑自行车上学的人数呢?
还 不有同其的他 抽推抽 样样 方断调 法查 ,,的 所方 得我法到校吗 的? 样8本0可%能的不同学; 生在家不吃早餐。”
般采用普查的方式进行。但当调查的结果对调查对象具
有破坏性或者会产生一定的危害性时,通常采用抽样调 查。
2.当调查对象的个数较多,调查不易进行时,我们 常采用抽样调查的方式进行调查。当调查的结果有特别 要求时,或调查的结果有特殊意义时,仍须采用普查的 方式进行。
情境引入
为了解本校学生暑假期间参加体育活动的情况,学 校准备抽取一部分学生进行调查,你认为按下面的调查 方法取得的结果能反映全校学生的一般情况吗?如果不 能反映,应当如何改进调查方法?
方法1:调查学校田径队的30名同学; 方法2:调查每个班的男同学;
方法3:从每班抽取1名同学进行调查;
方法4:选取每个班中的一半学生进行调查。
请同学自由讨论,并发表自己的看法。
情境引入
方法一. 选取的样本是田径队的同学,他们暑假 中体育活动多;
方法二. 只调查男同学,没调查女同学;
方法三. 选取的样本容量太小; 方法四. 选取的容量太大,需要花费较多的时间和 人力.
1.了解并掌握:普查、抽样调查、总体、样本、个体这些基本概念;
1由. 此推断本,我中校8没0%的有学生被在家不重吃早复餐。抽取的个体,便于进行有关的分析和计算。
当调查对象的个数较多,调查不易进行时,我们常采用抽样调查的方式进行调查。
2.它每一次抽取时总体中的每个个体有相同的抽取机 只调查男同学,没调查女同学;
方当法调一 查.的2对0象名个数同较少学,的调查调容易查进行,时,发我们现一有般采1用6普人查的是方式因进行为。没有吃早餐而去买零食。由此
怎么样得到咱班骑自行车上学的人数呢?
还 不有同其的他 抽推抽 样样 方断调 法查 ,,的 所方 得我法到校吗 的? 样8本0可%能的不同学; 生在家不吃早餐。”
般采用普查的方式进行。但当调查的结果对调查对象具
有破坏性或者会产生一定的危害性时,通常采用抽样调 查。
2.当调查对象的个数较多,调查不易进行时,我们 常采用抽样调查的方式进行调查。当调查的结果有特别 要求时,或调查的结果有特殊意义时,仍须采用普查的 方式进行。
情境引入
为了解本校学生暑假期间参加体育活动的情况,学 校准备抽取一部分学生进行调查,你认为按下面的调查 方法取得的结果能反映全校学生的一般情况吗?如果不 能反映,应当如何改进调查方法?
方法1:调查学校田径队的30名同学; 方法2:调查每个班的男同学;
方法3:从每班抽取1名同学进行调查;
方法4:选取每个班中的一半学生进行调查。
请同学自由讨论,并发表自己的看法。
情境引入
方法一. 选取的样本是田径队的同学,他们暑假 中体育活动多;
方法二. 只调查男同学,没调查女同学;
方法三. 选取的样本容量太小; 方法四. 选取的容量太大,需要花费较多的时间和 人力.
1.了解并掌握:普查、抽样调查、总体、样本、个体这些基本概念;
1由. 此推断本,我中校8没0%的有学生被在家不重吃早复餐。抽取的个体,便于进行有关的分析和计算。
当调查对象的个数较多,调查不易进行时,我们常采用抽样调查的方式进行调查。
2.它每一次抽取时总体中的每个个体有相同的抽取机 只调查男同学,没调查女同学;
人教版高中数学必修三2.1.1《简单随机抽样》ppt课件_
练习3、下列抽取样本的方式是属于简单随机抽样的 是( C ) ①从无限多个个体中抽取100个个体作样本; ②盒子里有80个零件,从中选出5个零件进行质量检 验,在抽样操作时,从中任意拿出一个零件进行质
量检验后,再把它放回盒子里;
③从8台电脑中不放回的随机抽取2台进行质量检验
(假设8台电脑已编好号,对编号随机抽取)
(2)用随机数表进行抽样的步骤:将总体中个体 编号;选定开始的数字;获取样本号码。 (3)用随机数表抽取样本,可以任选一个数作为
开始,读数的方向可以向左,也可以向右、向上、 向下等等。因此并不是唯一的.
(4)由于随机数表是等概率的,因此利用随机数
表抽取样本保证了被抽取个体的概率是相等的。
探究:抽签法和随机数表法的异同
例1 下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取20个个体作为样本. (2)从50台冰箱中一次性抽取5台冰箱进行质量检查. (3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛. (4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽 出6个号签.
例3:要考察某种品牌的850颗种子的发芽率,从中抽 取50颗种子作为样本进行试验.
由于需要编号,如果总体中的个体数太多, 采用抽签法进行抽样就显得不太方便了
第一步,先将850颗种子编号,可以编为001,002,… ,850.
所谓编号,实际上是编数字号码.不 要编号成:0,1,2,…,850
第二步,在随机数表中任选一个数作为开始,例如从第1行第1列的数4开始 . 为了保证所选定数字的随机性,应在面对 随机数表之前就指出开始数字的纵横位置
给出的随机数表中是5个数一组,我们使用各个5位数 组的前3位,不大于850且不与前面重复的取出,否则 第三步,获取样本号码. 就跳过不取,如此下去直到得出50个三位数
课件_人教版数学必修三《简单随机抽样》课堂PPT课件_优秀版
思考6:假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本
2.1.1 简单随机抽样 时应如何操作?
第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上. 方案一:通过互联网调查.
问题提出
1.我们生活在一个数字化时代,时 刻都在和数据打交道,例如,产品的合 格率,农作物的产量,商品的销售量, 电视台的收视率等.这些数据常常是通 过抽样调查而获得的,如何从总体中抽 取具有代表性的样本,是我们需要研究 的课题.
简单随机抽样的含义:
一般地,设一个总体有N个个体, 你认为预测结果出错的原因是什么?
思考7:如果从100个个体中抽取一个容量为10的样本,你认为对这100个个体进行怎样编号为宜?
从中逐个不放回地抽取n个个体作为样 缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.
一般地,设一个总体有N个个体, 从中逐个不放回地抽取n个个体作为样本(n≤N), 如果每次抽取时总体内的各个个体被抽到的机会都相 等, 则这种抽样方法叫做简单随机抽样.
第一步,将800袋牛奶编号为000,001, 002,…,799.
第二步,在随机数表中任选一个数作为 起始数(例如选出第8行第7列的数7为 起始数).
第三步,从选定的数7开始依次向右读 (读数的方向也可以是向左、向上、向 下等),将编号范围内的数取出,编号 范围外的数去掉,直到取满60个号码为 止,就得到一个容量为60的样本.
2.要判断一锅汤的味道需要把整锅 汤都喝完吗?应该怎样判断?
将锅里的汤“搅拌均匀”,品尝 一小勺就知道汤的味道,这是一个简 单随机抽样问题,对这种抽样方法, 我们从理论上作些分析.
知识探究(一):简单随机抽样的基本思想
2.1.1 简单随机抽样 时应如何操作?
第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上. 方案一:通过互联网调查.
问题提出
1.我们生活在一个数字化时代,时 刻都在和数据打交道,例如,产品的合 格率,农作物的产量,商品的销售量, 电视台的收视率等.这些数据常常是通 过抽样调查而获得的,如何从总体中抽 取具有代表性的样本,是我们需要研究 的课题.
简单随机抽样的含义:
一般地,设一个总体有N个个体, 你认为预测结果出错的原因是什么?
思考7:如果从100个个体中抽取一个容量为10的样本,你认为对这100个个体进行怎样编号为宜?
从中逐个不放回地抽取n个个体作为样 缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.
一般地,设一个总体有N个个体, 从中逐个不放回地抽取n个个体作为样本(n≤N), 如果每次抽取时总体内的各个个体被抽到的机会都相 等, 则这种抽样方法叫做简单随机抽样.
第一步,将800袋牛奶编号为000,001, 002,…,799.
第二步,在随机数表中任选一个数作为 起始数(例如选出第8行第7列的数7为 起始数).
第三步,从选定的数7开始依次向右读 (读数的方向也可以是向左、向上、向 下等),将编号范围内的数取出,编号 范围外的数去掉,直到取满60个号码为 止,就得到一个容量为60的样本.
2.要判断一锅汤的味道需要把整锅 汤都喝完吗?应该怎样判断?
将锅里的汤“搅拌均匀”,品尝 一小勺就知道汤的味道,这是一个简 单随机抽样问题,对这种抽样方法, 我们从理论上作些分析.
知识探究(一):简单随机抽样的基本思想
【人教版A版高中数学必修三PPT课件】2.1.1简单随机抽样
题型探究
重点难点 个个击破
类型一 简单随机抽样的基本思想 例1 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次 序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样 方式是不是简单随机抽样?为什么? 解 不是简单随机抽样.因为简单随机抽样的实质是逐个地从总体中随机 抽取样本,而这里只是随机确定了起始牌,其他各张牌虽然是逐张搬牌, 但是各张在谁手里已被确定,所以不是简单随机抽样.
思考二;你认为预测结果出错的原因是什么?
原因是:用于统计推断的样本来自少数 富人,只能代表少数富人的观点,不能代 表全体选民的观点。
思考三
问题: 如何科学地抽取样本?
使得样本能比较准确地反映总体
使得每个个体被抽取的机会均等 合理、公平
这种抽样叫随机抽样
第二章 统计 2.1 随机抽样 2.1.1 简单随机抽样
(4)从箱中每次抽出1个号签,并记 录其编号,连续抽出n次; (5)将总体中与抽到的号签编号一致 的n个个体取出。
开始 编号 制签 搅匀 抽签 取出个体 结束
思考2:用抽签法(抓阄法)确定人选,具体如何操作?
1.每个同学编号 2.用大小质地相同的小纸条写上编号 3.小纸条放在盒子里,并搅拌均匀, 4.然后从中随机逐个不放回抽出5个学号, 5.被抽到学号的同学即为参加活动的人选.
解析答案
类型二 抽签法 例2 某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医 疗小组去参加救治工作,请用抽签法设计抽样方案. 解 方案如下: 第一步,将18名志愿者编号,号码为01,02,03,…,18. 第二步,将号码分别写在相同的纸条上,揉成团,制成号签. 第三步,将得到的号签放到一个不透明的盒子中,充分搅匀. 第四步,从盒子中逐个不放回的取出6个号签,并记录上面的编号. 第五步,与所得号码对应的志愿者就是医疗小组成员.
高中数学 2.1.1简单随机抽样 新人教A版必修3
缺点:当总体个数较多时很难搅拌均匀, 产生的样本代表性差的可能性很大.
ppt课件
思考5:从0,1,2,…,9十个数中每 次随机抽取一个数,依次排列成一个数 表称为随机数表(见教材P103页),每 个数每次被抽取的概率是多少?
思考6:假设我们要考察某公司生产的 500克袋装牛奶的质量是否达标,现从 800袋牛奶中抽取60袋进行检验,利用 随机数表抽取样本时应如何操作?
品店的一批小包装饼干进行卫生达标检
验,打算从中抽取一定数量的饼干作为
检验的样本.其抽样方法是,将这批小包
装饼干放在一个麻袋中搅拌均匀,然后
逐个不放回抽取若干包,这种抽样方法
就是简单随机抽样.那么简单随机抽样的
含义如何?
ppt课件
简单随机抽样的含义: 一般地,设一个总体有N个个体,
从中逐个不放回地抽取n个个体作为样 本(n≤N), 如果每次抽取时总体内 的各个个体被抽到的机会都相等, 则 这种抽样方法叫做简单随机抽样.
思考7:如果从100个个体中抽取一个容 量为10的样本,你认为对这100个个体进 行怎样编号为宜? 思考8:一般地,利用随机数表法从含 有N个个体的总体中抽取一个容量为n的 样本,其抽样步骤如何?
ppt课件
第一步,将总体中的所有个体编号.
第二步,在随机数表中任选一个数作为 起始数.
第三步,从选定的数开始依次向右(向 左、向上、向下)读,将编号范围内的 数取出,编号范围外的数去掉,直到取 满n个号码为止,就得到一个容量为n的 样本.
ppt课件
知识探究(二):简单随机抽样的方法
思考1:假设要在我们班选派5个人去参 加某项活动,为了体现选派的公平性, 你有什么办法确定具体人选?
思考2:用抽签法(抓阄法)确定人选, 具体如何操作?
ppt课件
思考5:从0,1,2,…,9十个数中每 次随机抽取一个数,依次排列成一个数 表称为随机数表(见教材P103页),每 个数每次被抽取的概率是多少?
思考6:假设我们要考察某公司生产的 500克袋装牛奶的质量是否达标,现从 800袋牛奶中抽取60袋进行检验,利用 随机数表抽取样本时应如何操作?
品店的一批小包装饼干进行卫生达标检
验,打算从中抽取一定数量的饼干作为
检验的样本.其抽样方法是,将这批小包
装饼干放在一个麻袋中搅拌均匀,然后
逐个不放回抽取若干包,这种抽样方法
就是简单随机抽样.那么简单随机抽样的
含义如何?
ppt课件
简单随机抽样的含义: 一般地,设一个总体有N个个体,
从中逐个不放回地抽取n个个体作为样 本(n≤N), 如果每次抽取时总体内 的各个个体被抽到的机会都相等, 则 这种抽样方法叫做简单随机抽样.
思考7:如果从100个个体中抽取一个容 量为10的样本,你认为对这100个个体进 行怎样编号为宜? 思考8:一般地,利用随机数表法从含 有N个个体的总体中抽取一个容量为n的 样本,其抽样步骤如何?
ppt课件
第一步,将总体中的所有个体编号.
第二步,在随机数表中任选一个数作为 起始数.
第三步,从选定的数开始依次向右(向 左、向上、向下)读,将编号范围内的 数取出,编号范围外的数去掉,直到取 满n个号码为止,就得到一个容量为n的 样本.
ppt课件
知识探究(二):简单随机抽样的方法
思考1:假设要在我们班选派5个人去参 加某项活动,为了体现选派的公平性, 你有什么办法确定具体人选?
思考2:用抽签法(抓阄法)确定人选, 具体如何操作?
人教版数学必修三2.1.1《简单随机抽样》ppt课件
98 65 36 98 96 64 25 21 45 78 56 50 26 71 07 96 96 68 27 31 90 60 24 52 52 57 48 56 35 87 75 60 36 95 05
33 35 36 98 93 56 98 75 45 56 32 90 79 78 53 05 03 72 93 15 57 56 68 42 66 45 32 56 82 54 36 87 95 02 42
33 35 36 98 93 56 98 75 45 56 32 90 79 78 53 05 03 72 93 15 57 56 68 42 66 45 32 56 82 54 36 87 95 02 42
64 25 21 45 78 06 55 48 78 36 13 55 38 58 59 57 12 10 14 21 85 87 47 70 01 56 68 97 80 12 63 68 79 25 42
① 先将850颗种子编号为001,…,850; ② 在随机数表中任选一个数; ③ 从选定的数开始向右(读数的方向可以是向 左,向上,向下等),得到满足的数将它取出, 继续向右读,直到样本的50个号码全部取出。
为什么编号要从001开始取?
练习:从全班同学构成的总体中,用随机
数表法抽取6人分取6块糖,如何抽取?
简单随机抽样
(1)被抽取样本的总体的个体数有限;
(2)从总体中逐个进行抽取; (3)一种不放回抽样; ( 4 )每个个体能被选入样本的可能性是相 同的。
简单随机抽样
一般地,从元素个数为 N 的总体中不放 回地抽取容量为 n样本,如果每一次抽取时 总体中的各个个体有相同的可能性被抽,这 种抽样方法叫做简单随机抽样。这样抽取的 样本,叫做简单随机样本。
人教版高中数学必修三第二章第1节 2.1.1简单随机抽样 课件(共20张PPT)
随机从中抽出3个签 取出个体
对对应号结码束的学生检查
编号一致的m个个体取出。
一编二制结三束 拌四抽
思考:抽签法中确保样本代表性的关键是 (B)
解:步骤如下:
(1)A将.44编名号同学编号,号B码.是制1,2签,3、,…搅,拌44均;匀
(2)C将.以逐上4一4个抽号取码分别D写.在抽44取张不相同放的回小纸条上,揉
2.简单随机抽样操作办法:
抽签法
随机数表法
抽的注签随:法机随—性机;编抽随号样机、并数制不表签是法、随搅—意拌编或、号随抽、便取选抽,数取关、,键取因是号为、“随抽搅意取拌或,”后
其随中便取抽号取位都置会与带方有向主具观有或任客意观性的.影响因素.
中定相好应的.的个体,得到总体的一个样本.
步 骤: 编号、选数、取号、抽取.
练习3:从10个篮球中任取一个,检查其质量,
用随机数法抽取样本,则应编号为( D )
A.1,2,3,4,5,6,7,8,9,10 B.-5,-4,-3,-2,-1,0,1,2,3,4 C.10,20,30,40,50,60,70,80,90,100 D.0,1,2,3,4,5,6,7,8,9 解析:用随机数法抽取样本,为了方便读数, 所编的号码的位数尽量少,且所有号码的位数 相同.
量是否达标,现从800袋牛奶中抽取60袋进行 检验,若用抽签法抽取,请写出其过程。
思考:用抽签法抽取样本时,编号的过程有
时可以省略(如果已有编号),但制签的过程 就难以省去了,而且制签也比较麻烦,当个 体比较多时,搅拌均匀也很难操作。
用抽签法产生的样本代表性差的可能性很大。 如何提高样本的代表性?.网
有在N利个用)随编机号数,法抽样的过程中应注意以
随 机
人教版高中数学必修三第二章第1节 2.1.1简单随机抽样 课件共18张PP
我们只需要按一定的规则到随机数表中 选取号码就可以了,这种抽样方法叫做 随机数表法
随 机 数 表
教 材 105 页
例题: 要考察某公司生产的500克袋装牛奶的质量
是否达标,现从800袋牛奶中抽取60袋进行检验, 用随机数表法抽取的过程如下
第一步,先将800袋牛奶编号,可以编为000,001,…,799
没有调查,就没有发言权。 —毛泽东
2.1.1 简 单 随 机 抽 样
回顾(初中知识):总体、个体、样本、样本容 量的概念. 总体:所要考察对象的全体。
个体: 总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这 个总体的一个样本。
样本容量: 样本中个体的数目。
引例
1、当一锅汤的味道很淡时,我们需要 再加入一点盐,加完之后我们是怎么判断 出汤的味道咸淡适中的了呢?
一般地,设一个总体含有N个个体 ,从中逐个 不放回地抽取n个个体作为样本 (n≤N),如果每次抽 取时总体内的各个个体被抽到的机会都相等,这种 抽样方法叫做简单随机抽样。注意以下四点: (源自)它要求被抽取样本的总体的个体数有限;
(2)它是从总体中逐个进行抽取; (3)它是一种不放回抽样; (4)它是一种等机会抽样(每个个体入样的可能性都是 n/N )。
左、向上、向下等),得到一个 三位数 785,由于785<
799,说明号码785在总体内,将它取出;继续向右读,得到
916,由于916>799,将它去掉,按照这种方法继续向右读,
又取出567,199,507,…,依次下去,直到样本的60个号码
全部取出,这样我们就得到一个容量为60的样本.
步 骤:
编号 巩固练习
87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28
随 机 数 表
教 材 105 页
例题: 要考察某公司生产的500克袋装牛奶的质量
是否达标,现从800袋牛奶中抽取60袋进行检验, 用随机数表法抽取的过程如下
第一步,先将800袋牛奶编号,可以编为000,001,…,799
没有调查,就没有发言权。 —毛泽东
2.1.1 简 单 随 机 抽 样
回顾(初中知识):总体、个体、样本、样本容 量的概念. 总体:所要考察对象的全体。
个体: 总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这 个总体的一个样本。
样本容量: 样本中个体的数目。
引例
1、当一锅汤的味道很淡时,我们需要 再加入一点盐,加完之后我们是怎么判断 出汤的味道咸淡适中的了呢?
一般地,设一个总体含有N个个体 ,从中逐个 不放回地抽取n个个体作为样本 (n≤N),如果每次抽 取时总体内的各个个体被抽到的机会都相等,这种 抽样方法叫做简单随机抽样。注意以下四点: (源自)它要求被抽取样本的总体的个体数有限;
(2)它是从总体中逐个进行抽取; (3)它是一种不放回抽样; (4)它是一种等机会抽样(每个个体入样的可能性都是 n/N )。
左、向上、向下等),得到一个 三位数 785,由于785<
799,说明号码785在总体内,将它取出;继续向右读,得到
916,由于916>799,将它去掉,按照这种方法继续向右读,
又取出567,199,507,…,依次下去,直到样本的60个号码
全部取出,这样我们就得到一个容量为60的样本.
步 骤:
编号 巩固练习
87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28
人教版高中数学必修三第二章第1节 2.1.1简单随机抽样 课件(共21张PPT)
某学校高一年级有12名女排运动员,要从中选出3人调查学 习负担情况,记做(2).
那么完成上述2项调查应采用的抽样方法是( B)
A (1)用随机抽样法, (2)用系统抽样法 B (1)用分层抽样法, (2)用随机抽样法 C (1)用系统抽样法, (2)用分层抽样法
D (1)用分层抽样法, (2)用系统抽样法
统计的相关概念
总体——所要考察对象的全体 个体——总体中的每一个考察对象 样本——从总体中抽取的一部分个体叫总体的一个样本 样本容量——样本中个体的数目。 例:从某班50名学生中抽取6名学生进行视力的统计分析
总体:50名学生的视力 个体:每名学生的视力 样本:抽取的6名学生的视力 样本容量:6
提出问题
2、简单随机抽样适用于:样本容量不多。
下面的抽样方法是否是简单随机抽样? (1)某班 45 名同学,指定个子最高的 5 名同学参加学校组织的某项活动; (2)从 20 个零件中一次性抽出 3 个进行质 量检验; (3)一儿童从玩具箱的 20 件玩具中随意 拿出一件来玩,玩后放回,再拿一件,连续 拿了 5 件.
运动员有6人,则抽取的男运动员有___8_
变式: 一支田径运动队有98人.现用分层抽样的方法 抽取14人,若抽取的男运动员有8人,则运动队
中,男运动员有___5_ 6
某社区有500个家庭,其中高收入家庭125户,中等收入家庭 280户,低收入家庭 95户,为了调查社会购买力的某项指标,要 从中抽取1个容量为100的样本,记做(1);
2.1.1简单随机抽样
一、统计学: 它是关于数据的搜集、整理、归纳和分析方法的学科。
二、统计的基本思想: 用样本估计总体,通过从总体中抽取样本, 根据样本的情况去估计总体的相应情况。 三、统计的原则: 每个个体有相同的机会被抽中
那么完成上述2项调查应采用的抽样方法是( B)
A (1)用随机抽样法, (2)用系统抽样法 B (1)用分层抽样法, (2)用随机抽样法 C (1)用系统抽样法, (2)用分层抽样法
D (1)用分层抽样法, (2)用系统抽样法
统计的相关概念
总体——所要考察对象的全体 个体——总体中的每一个考察对象 样本——从总体中抽取的一部分个体叫总体的一个样本 样本容量——样本中个体的数目。 例:从某班50名学生中抽取6名学生进行视力的统计分析
总体:50名学生的视力 个体:每名学生的视力 样本:抽取的6名学生的视力 样本容量:6
提出问题
2、简单随机抽样适用于:样本容量不多。
下面的抽样方法是否是简单随机抽样? (1)某班 45 名同学,指定个子最高的 5 名同学参加学校组织的某项活动; (2)从 20 个零件中一次性抽出 3 个进行质 量检验; (3)一儿童从玩具箱的 20 件玩具中随意 拿出一件来玩,玩后放回,再拿一件,连续 拿了 5 件.
运动员有6人,则抽取的男运动员有___8_
变式: 一支田径运动队有98人.现用分层抽样的方法 抽取14人,若抽取的男运动员有8人,则运动队
中,男运动员有___5_ 6
某社区有500个家庭,其中高收入家庭125户,中等收入家庭 280户,低收入家庭 95户,为了调查社会购买力的某项指标,要 从中抽取1个容量为100的样本,记做(1);
2.1.1简单随机抽样
一、统计学: 它是关于数据的搜集、整理、归纳和分析方法的学科。
二、统计的基本思想: 用样本估计总体,通过从总体中抽取样本, 根据样本的情况去估计总体的相应情况。 三、统计的原则: 每个个体有相同的机会被抽中
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.“从大连、青岛、上海、广东近海分别取一杯海水,检测海 水污染情况”,这是用简单随机抽样抽取样本吗? 提示:不是简单随机抽样,因为海水可看作是一个无限的总体, 不符合简单随机抽样的概念.
1.“从10 000个人中,抽取10个人进行某项检测”和“从100 个人中抽取10人进行某项检测”,你认为哪种更适合用抽签法 来抽取样本? 提示:“从100个人中抽取10个人,进行某项检测”更适用于 抽签法,因为“备签”这一步,总体有多少个体,就要准备多 少号签,因此抽签法主要是在总体个数较少时应用的. 2.抽签法如何保证每个个体都有相同的概率被抽到? 提示:①号签“形状、大小”相同.②每次抽取前,都要“搅 拌均匀”.
个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做 这个总体的一个样本。
样本容量:样本中个体的数目。
“普查”与“抽样”的优劣对比:
方式
优点
缺点
普查
得到的信息全 面、系统
工作量大,时间长, 耗人力、物力、财力
抽样
迅速;及时; 节约人力、物 力、财力
获得的信息不够全面、 系统 Nhomakorabea一议同学们觉得在什么时候用普查方式较好?什么 时候用抽样调查方式较好呢?
课堂小结
一般地,设一个总体的个体数为N,如果通过逐个 不放回地抽取的方法从中抽取一个样本,且每次抽取时 各个个体被抽到的概率相等,就称这样的抽样为简单随 机抽样。
在没找到重新开始的理由前,别给自己太多退却的借口。就在那一瞬间,我仿佛听见了全世界崩溃的声音。因为穷人很多,并且穷人没有钱,所以,他们才会在网络上聊 了答应自己要做的事情,别忘了答应自己要去的地方,无论有多难,有多远。分手后不可以做朋友,因为彼此伤害过;不可以做敌人,因为彼此深爱过,所以只好成了最 只有站在足够的高度才有资格被仰望。渐渐淡忘那些过去,不要把自己弄的那么压抑。往往原谅的人比道歉的人还需要勇气。因为爱,割舍爱,这种静默才是最深情的告 时光已成过往,是我再也回不去的远方。不要把自己的伤口揭开给别人看,世界上多的不是医师,多的是撒盐的人。这世界,比你不幸的人远远多过比你幸运的人,路要 的那一步很激动人心,但大部分的脚步是平凡甚至枯燥的,但没有这些脚步,或者耐不住这些平凡枯燥,你终归是无法迎来最后的'那些激动人心。一个人害怕的事,往往 都会有乐观的心态,每个人也会有悲观的现状,可事实往往我们只能看到乐观的一面,却又无视于悲观的真实。从来没有人喜欢过悲观,也没有人能够忍受悲观,这就是 就会缅怀过去,无论是幸福或是悲伤,苍白或是绚烂,都会咀嚼出新的滋味。要让事情改变,先改变我自己;要让事情变得更好,先让自己变得更好。当日子成为照片当 背对背行走的路人,沿着不同的方向,固执的一步步远离,再也没有回去的路。想要别人尊重你,首先就要学会尊重别人。所有的胜利,与征服自己的胜利比起来,都是 与失去自己的失败比起来,更是微不足道。生命不在于活得长与短,而在于顿悟的早与晚。既不回头,何必不忘。既然无缘,何须誓言。感谢上天我所拥有的,感谢上天 千万条,成功的人生也有千万种,选对适合自己的那条路,走好自己的每段人生路,你一定会是下一个幸福宠儿。活在别人的掌声中,是禁不起考验的人。每一次轻易的 笔。什么时候也不要放弃希望,越是险恶的环境越要燃起希望的意志。现实会告诉你,没有比记忆中更好的风景,所以最好的不要故地重游。有些记忆就算是忘不掉,也 满,现实很骨感。我落日般的忧伤就像惆怅的飞鸟,惆怅的飞鸟飞成我落日般的忧伤。舞台上要尽情表演,赛场上要尽力拼搏,工作中要任劳任怨,事业上要尽职尽责。 乐,今天的抗争为了明天的收获!积德为产业,强胜于美宅良田。爱情永远比婚姻圣洁,婚姻永远比爱情实惠。爱有两种,一种是抓住,你紧张他也紧张;一种是轻松拖 人无忧,智者常乐。并不是因为所爱的一切他都拥有了,而是所拥有的一切他都爱。原来爱情不是看见才相信,而是相信才看得见。磨难是化了妆的幸福。如果你明明知 者选择说出来,或者装作不知道,万不要欲言又止。有时候留给别人的伤害,选择沉默比选择坦白要痛多了。我爱自己的内心,慢慢通过它,慢慢抵达世界,或者,抵达 我忘记一切,时间不会改变痛,只会让我适应痛。人生不容许你任性,接受现实,好好努力。曾经以为爱情是甜蜜,幸福的,不知道它也会伤人,而且伤的很痛,很痛。 出的代价却是好些年的失败。时间几乎会愈合所有事情,请给时间一点时间。蚁穴虽小,溃之千里。多少人要离开这个世间时,都会说出同一句话,这世界真是无奈与凄 孵出来的却是失败。太完美的爱情,我不相信,途中聚聚散散难舍难分,终有一天会雨过天晴。我分不清东南西北,却依然固执的喜欢乱走。若是得手,便是随手可丢; 爱情不是寻找共同点,而是学会尊重不同点。总有一天我会从你身边默默地走开,不带任何声响。我错过了狠多,我总是一个人难过,3、戏路如流水,从始至终,点滴不 未变,终归大海。一步一戏,一转身一变脸,扑朔迷离。真心自然流露,举手投足都是风流戏。一旦天幕拉开,地上再无演员。 相信自己有福气,但不要刻意拥有;相信
简单随机抽样是在特定总体中抽取样本,总体中每一 个体被抽取的可能性是等同的,而且任何个体之间彼此 被抽取的机会是独立的。如果用从个体数为N的总体中抽 取一个容量为n的样本,那么每个个体被抽取的概卒等n于
N
1.“从20个零件中一次性抽取3个进行质量检测”是不是采用 了简单随机抽样? 提示:不是简单随机抽样,因为一次性抽取3个不是逐个抽取, 不符合简单随机抽样的概念.
从20个零件中抽取3个进行质量检测,怎么抽取 这3个零件?
简单随机抽样
一般地,设一个总体的个体数为N,如果通过逐个 不放回地抽取的方法从中抽取一个样本,且每次抽取时 各个个体被抽到的概率相等,就称这样的抽样为简单随 机抽样。
注意以下四点: (1)它要求被抽取样本的总体的个数有限; (2)它是从总体中逐个进行抽取; (3)它是一种不放回抽样; (4)它是一种等概率抽样。
简单随机抽样
1、什么叫普查?
2、什么叫抽样调查? 抽样调查。即按照一定的方法从调查对象中抽取一部分, 进行调查或观测,获取数据,并以此对调查对象的某项指标 做出推断,这种调查方式称为抽样调查。
调查对象的全体称为 总体 被抽取的一部分称为 样本
总体、个体、样本、样本容量 总体:在统计中,所有考察对象的全体。
2.有同学认为:“随机数表只有一张,并且读数时只能按照从 左向右的顺序读取,否则产生的随机样本就不同了,对总体的 估计就不准确了”,你认为正确吗? 提示:不正确.随机数表的产生是随机的,读数的顺序也是随 机的,可以按“从左到右”的顺序,也可以按“向左,再向上, 向右, 再向右,向下…”的随机顺序,虽得到不同的样本, 但不同的样本对总体的估计相差不大.
(1)当调查的对象个数较少,调查容易进行时,我们一般采
用普查的方式进行。 (2)当调查的结果对调查对象具有破坏性时,或者会产生一 定的危害性时,或不大经济可行我们通常采用抽样调查的方式 进行调查。 (3)当调查对象的个数较多,调查不易进行时,我们常采用 抽样调查的方式进行调查。
泰和六中共学生900人,现学校想对全校学生的身 高情况做一次调查,为了不影响正常教学,准备抽取 50名学生作为调查对象,你能帮学校设计一个抽取方 案吗?
2、用随机数表法进行抽取
(1)随机数表是统计工作者用计算机生成的随机数,并 保证表中的每个位置上的数字是等可能出现的。
(2)随机数表并不是唯一的,因此可以任选一个数作为开 始,读数的方向可以向左,也可以向右、向上、向下等等。 (3)用随机数表进行抽样的步骤:将总体中个体编号;选 定开始的数字;获取样本号码。
(4)由于随机数表是等概率的,因此利用随机数表抽取样 本保证了被抽取个体的概率是相等的。
随机抽样并不是随意或随便抽取,因为随 意或随便抽取都会带有主观或客观的影响因素
1.当总体个数为1 000个,则用随机数表法抽样时,如何编号? 提示:编号为000,001,…,999,保证数字编号位数相同, 以利于快捷、方便选取样本.