第五章 化学热力学基础PPT课件
第五章化学热力学基础
状态 (II)
U1
U2
U2 = U1 + Q + W
热力学第一定律数学表达式:
ΔU = U2 – U1 = Q + W (封闭体系) ●热力学第一定律: 能量具有不同的形式, 它们之间可以相互转化和传递,而且在转化 和传递过程中,能量的总值不变。
8
● Q与W的正负号:
体系从环境吸热,Q取+;体系向环境放热,Q取- 环境对体系做功,W取+;体系对环境做功,W取-
第五章 化学热力学基础
•热力学:研究体系状态变化时能量相互转换规律的科 学。 其基础是 热力学第一定律 (主要基础)
热力学第二定律 热力学第三定律 •化学热力学:将热力学原理和方法用于研究化学现象 以及与化学有关的物理现象。 •主要研究内容 化学反应进行的方向 化学反应进行的限度 化学反应的热效应
1
MnO(s) + CO(g) = Mn(s) + CO2(g)的反应热rHm。
解:
(1) Mn(s) + 1/2 O2(g) = MnO(s) rH1 = fHm(MnO)
(2) C(s) + 1/2 O2(g) = CO(g) rH2 = fHm(CO)
(3) C(s) + O2(g) = CO2(g)
§5.1 热力学第一定律
一、基本概念与术语
1、体系与环境
• 体系(系统):被划分出来作为研究对象的那 部分物质或空间。
• 环境:体系之外并与体系密切相关的其余部分。 体系可分为:• 敞开体系——体系与源自境之间既有物质交换又 有能量交换;
• 封闭体系——体系与环境之间没有物质交换只 有能量交换;
• 孤立体系——体系与环境之间既没有物质交换 也没有能量交换。
无机化学-第五章-化学热力学基础
注:①G为广度性质,与参与过程的物质的量成正 比。
②逆过程G与正过程的G数值相等,符号相反。 等于各③反如应果一G个之反总应和是。多个反应的和,总反应的rG
化学热力学的四个重要状态函数
判断一个反应进行的方向时,如果: rG<0反应自发进行 rG>0反应不自发进行 rG=0平衡状态 当rG<0时(产物的G<反应物的G)该反应就自动 向生成产物的方向进行,在反应中反应物不断减 小而产物不断增加,G为广度性质,当G反应物=G产 物即rG=0时反应就不再朝一个方向进行了,这就 是化学反应的限度,即化学平衡。
状态函数。
化学热力学的四个重要状态函数
二、焓(H) 设一封闭体系在变化中只做体积功,不做其它功, 则U=Q+W中W代表体积功:-pV(N/m2×m3)
W=Fl=pSl=-pV
V=V2-V1 若体系变化是恒容过程(体积不变),即没有体积功 则W=0,U=Qv Qv为恒容过程的热量,此式表示在不做体积功的 条件下体系在恒容过程中所吸收的热量全部用来增 加体系的内能。
我们可以从体系和环境间的热量传递来恒量体系 内部焓的变化。
如果化学反应的H为正值,表示体系从环境吸收 热能,称此反应为吸热反应。即:
∑H反应物<∑H生成物 ∑H(生成物-反应物)>0 如果化学反应的H为负值,则表示体系放热给环 境,称此反应为放热反应。即:
∑H反应物>∑H生成物 ∑H(生成物-反应物)<0
rG=-RTlnKa
此式只表示在等温下,rG与K平衡在数值上的关 系。
∴rG=-RTlnKa+RTlnJa
=RTln(Ja/Ka)
2024《化学热力学基础》PPT课件
《化学热力学基础》PPT课件目录CONTENCT •引言•热力学基本概念与定律•热化学与化学反应的热效应•熵与熵增原理•自由能与化学平衡•相平衡与相图•结论与展望01引言化学热力学的定义与重要性定义化学热力学是研究化学变化过程中热量和功的相互转化以及有关热力学函数的科学。
重要性化学热力学是化学、化工、材料、能源等领域的重要基础,对于理解化学反应的本质、优化化学反应条件、开发新能源等具有重要意义。
化学热力学的发展历史早期发展19世纪初,随着工业革命的发展,热力学理论开始形成,并逐步应用于化学领域。
经典热力学建立19世纪中叶,经典热力学理论建立,包括热力学第一定律、热力学第二定律等基本定律被提出。
现代热力学发展20世纪以来,随着量子力学、统计力学等理论的发展,化学热力学在微观层面上的研究取得了重要进展。
课程目标与学习内容课程目标掌握化学热力学的基本概念、基本原理和基本方法,能够运用热力学知识分析和解决实际问题。
学习内容包括热力学基本概念、热力学第一定律、热力学第二定律、化学平衡、相平衡、化学反应热力学等。
通过学习,学生将了解热力学在化学领域的应用,培养分析和解决化学问题的能力。
02热力学基本概念与定律80%80%100%系统与环境系统是指我们研究对象的那一部分物质或空间,具有明确的边界。
环境是指与系统发生相互作用的其他部分,是系统存在和发展的外部条件。
系统与环境之间通过物质和能量的交换而相互影响。
系统的定义环境的定义系统与环境的相互作用状态是系统中所有宏观物理性质的集合,用于描述系统的状况。
状态的概念状态函数的定义常见状态函数状态函数是描述系统状态的物理量,其值只取决于系统的始态和终态,与路径无关。
温度、压力、体积、内能等。
030201状态与状态函数热力学第一定律热力学第一定律的表述热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
热力学第一定律的数学表达式ΔU=Q+W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示外界对系统所做的功。
第五章 化学热力学基础
5-2 基本概念
5-2-1 系统与环境 5-2-2相 5-2-3状态与状态函数 5-2-4过程 5-2-5 热与功 5-2-6 热力学标准态
5-2-1 系统与环境
被人为划定的作为研究对象的物质叫 系
统(体系或物系) 系统(体系)以外的与系统有密切关系 的周围部分称为环境。
系统的分类
按照系统和环境之间的物质、能量的交换关系, 将系统分为三 类: (1)开放系统 体系和环境之间既有物质的交换又有能量的交换。
5-2-5 热与功
1. 定义:
热(Q)是体系与环境之间因温度差异而引起的能量传递 形式。即热不是物质,不是系统的性质,而是大量物质微 粒作无序运动引起的能量传递形式。 除热之外,体系与环境之间所有其他能量传递形式都叫功 (W)。 在热力学中又把功分为两大类,一类叫膨胀功(体积 功);另一类则是除膨胀功而外的 “其他功”,或叫“有 用功”,也叫非体积功。
非均相系统(或多相系统)
1、定义: 状态:由表征体系宏观性质的物理量所确定的体系存 在形式称为体系的状态。表征体系宏观性质的 物理量主要有P、V、T、n 、U 、H、S、G等。 状态函数: 确定体系状态的物理量, 如P、V、T、n 、U 、 H、S、G 等是状态函数。 2、状态函数的分类: (1)广度性质,也称容量性质:它的数值与体系中的 物质的数量成正比。在一定的条件下,具有加合性。 如V 、 n 、 m 、 U 、H、S、G等。 (2)强度性质:它的数值与体系中的物质的数量无 关,没有加合性,仅有体系中物质本身的特性所决定 的。如T、P、密度、粘度等性质, 无加合性, 称强度 性质的物理量。
注意:热力学标准态未对温度加以限定,所以任何温度 下都有热力学标态。环境状态:298K,101.325kPa;理 想气体标准状态:273K,101.325kPa。 一般情况下,如果未指定温度时,温度T=298.15K 。
2024版大学化学热力学基础课件
大学化学热力学基础课件contents •热力学基本概念与定律•热力学基本量与计算•热力学过程与循环•热力学在化学中的应用•热力学在物理化学中的应用•热力学在材料科学中的应用目录01热力学基本概念与定律孤立系统与外界既没有物质交换也没有能量交换的系统。
开放系统与外界既有能量交换又有物质交换的系统。
封闭系统与外界有能量交换但没有物质交换的系统。
热力学系统及其分类状态函数与过程函数状态函数描述系统状态的物理量,如内能、焓、熵等。
状态函数的变化只与系统的初、终态有关,与过程无关。
过程函数描述系统变化过程的物理量,如热量、功等。
过程函数的变化与具体的路径有关。
能量守恒定律能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。
热力学第一定律表达式ΔU = Q + W,其中ΔU表示系统内能的变化,Q表示系统与外界交换的热量,W表示外界对系统所做的功。
热力学第二定律的表述不可能从单一热源吸热并全部转化为有用功而不引起其他变化。
熵增原理在孤立系统中,一切不可逆过程必然朝着熵增加的方向进行。
熵是描述系统无序度的物理量,熵增加意味着系统无序度增加。
02热力学基本量与计算温度是表示物体冷热程度的物理量,是热力学中最重要的基本量之一。
温度的概念温标的定义温度的测量温标是用来衡量温度高低的标准,常见的有摄氏温标、华氏温标和开氏温标等。
温度的测量通常使用温度计,其原理是利用物质的热胀冷缩性质或其他物理效应来测量温度。
030201温度与温标压力的概念压力是单位面积上受到的垂直作用力,是描述气体状态的重要物理量。
体积的概念体积是物体所占空间的大小,对于气体而言,体积通常是指气体所充满的容器的容积。
压力与体积的关系在温度不变的情况下,气体的压力与体积成反比关系,即波义耳定律。
压力与体积030201热量的概念热量是物体之间由于温差而传递的能量,是热力学中重要的基本概念之一。
功的概念功是力在力的方向上移动的距离的乘积,是描述系统能量转化或传递的物理量。
化学热力学基础素材PPT课件
1. 定容热
∵ △V = 0
∴ △U = QV
在此条件下,体系吸收的热量,只用于改变内能。
第32页/共89页 返回主目录 返回回次主目目录录 返回次目录
2. 等压热与焓变
external
2.2.2 内能与热力学第一定律
内能U :
又称热力学能,它是体系内部物质各种微观形式能量的总 和(包括分子、原子的动能,势能,核能,电子的动 能……,以及一些尚未研究的能量),用符号 U 表示。 内能是体系的状态函数。且具有加和性。 体系内能的绝对值至今尚无法知道。
热力学中将内能作为一个整体来讨论,研究的是内能的变
3 过程与途径
过程: 体系状态发生变化的经过称为过程。 途径: 完成过程的具体步骤称为途径。
1 ×105 Pa 2L
0.5 ×105 Pa 4L
途径Ⅰ
途径Ⅱ
4 ×105 Pa 0.5 第L13页/共89页
2 ×105 Pa 1L
返回主目录 返回回次主目目录录
返回次目录
按过程发生时的条件,热力学中基本过程有:
第6页/共89页 返回主目录 返回回次主目目录录 返回次目录
孤立体系:
体系与环境之间,既无物质交换,又无能量交换。 孤立体系也称为隔离体系。(体系+环境)
绝热装置盛水 体系:水+水蒸气+绝热装置
第7页/共89页 返回主目录 返回回次主目目录录 返回次目录
孤立体系
敞开体系
封闭体系
第8页/共89页 返回主目录 返回回次主目目录录 返回次目录
热力学:
研究物理的和化学的变化过程中能量变化规律的科学。
化学热力学:
化学热力学基础--化学热力学的四个重要状态函数.ppt
H2(g) + 1/2 O2(g)
H2O
△ fHm (H2O ,g,298.15K) = -241.82kJ·mol-1
△ fHm (参考态单质,T)=0
2019年8月25
感谢你的观看
19
5. 标准摩尔燃烧焓
在温度T下, 物质B (νB= -1)完全氧化成指
定产物时的标准摩尔焓变,称为物质B的标 准摩尔燃烧焓。
△ cHm(B,相态,T) ,单位是kJ·mol-1
C
CO2
H
H2O
CH3OH(l)
3 2
O2
(g)
CO2(g) 2H2O(l)
△ cHm(CH3OH ,l,298.15K) = -440.68kJ·mol-1
△ cHm(CO2,g,T ) 0 △ cHm(H2O,l,T ) 0
2019年8月25
因H, T, S都是体系的状态函数, 所以G也必定是体系的状态函数, 具有容量性质.
G: 化学反应方向的判据, 并初步回答了反应限度的问题. 在等温等压下不做非体积功的化学反应的判据为: G < 0 反应以不可逆方式自发进行(正向自发) G = 0 反应以可逆方式进行(平衡状态) G > 0 反应不能进行 (逆向自发)
24
5.2.3吉布斯自由能
Gibbs Free Energy
实验 实验 实验
2H2(g) + O2(g) = 2H2O(l) S < 0 H < 0
氢气在空气中燃烧
Na(s) + H2O(l) = NaOH(aq) + 1/2H2(g) S > 0 H < 0 金属钠与水的反应
NH4Cl(s) H2O NH4+(aq) + Cl-1(aq) S > 0 H > 0
化学热力学基础PPT课件
相平衡条件
在三组分系统中,除了温度、压 力恒定外,还需要满足各相中三 组分的摩尔分数相等。
三组分系统
含有三个组分的系统。
相图复杂性
由于三组分系统的自由度增加, 相图的复杂性也显著增加,需要 借助计算机模拟等手段进行分析 。
应用领域
三组分系统相图在石油化工、冶 金、陶瓷等领域有广泛应用,用 于指导多组分体系的分离、提纯 和合成等过程。
热力学第一定律
能量守恒定律
能量不能凭空产生或消失,只能从一种形式转化为另一种 形式。
热力学第一定律的表述
热量可以从一个物体传递到另一个物体,也可以与机械能 或其他能量互相转换,但是在转换过程中,能量的总值保 持不变。
热力学第一定律的数学表达式
ΔU = Q + W,其中ΔU表示系统内能的变化,Q表示系统 与外界交换的热量,W表示外界对系统所做的功。
工业生产应用
氯碱工业、电解冶炼、有机电化学合成、电化学分析等。
06
界面现象与胶体性质探讨
表面张力和表面能概念引入和计算方法
表面张力定义
作用于液体表面,使液体表面积 缩小的力。
表面能定义
恒温恒压下,增加单位表面积时, 体系自由能的增加值。
计算方法
通过测量液体表面张力或表面能相 关的物理量,如接触角、表面张力 系数等,利用相关公式进行计算。
01
胶体性质
丁达尔效应、电泳现象、布朗运 动等。
02
03
稳定性影响因素
分析方法
电解质种类和浓度、pH值、温 度等。
通过实验研究不同因素对胶体稳 定性的影响,利用相关理论进行 解释和预测。
界面现象在日常生活和工业生产中应用举例
日常生活应用
第五章化学热力学基础
例2:混合气体中有4.4 g CO2,14 g N2 和12.8 g O2 , 总压为2.026×105Pa,求各组分气体的分压。 解:n(CO2)=4.4 g/44 g· -1=0.10 mol mol n(N2) =14 g/28 g· -1=0.50 mol mol n(O2) =12.8 g/32 g· -1=0.40 mol mol n总= n(CO2)+ n(N2) +n(O2) =1 mol x(CO2)= n(CO2)/ n总=0.10 x(N2) = n(N2) /n总= 0.50 x(O2) = n(O2) /n总= 0.40 p(CO2)= 0.10 × 2.026×105Pa =2.0×104Pa p(N2) = 0.50 × 2.026×105Pa = 1.0×105Pa p(O2) = 0.40 × 2.026×105Pa = 8.1×104Pa
pB = nB RT/V
无机 化学精品课程
设有一混合气体,其中有i 个组分则:
pi = ni RT/V pT = p1 + p2 + p3 + p4 + pj =n1 RT/V +n2RT/V+n3RT/V+ …… + niRT/V =(n1+n2+……ni)RT/V =nTRT/V p1/pT =n1/nT; p2/pT = n2/nT…….pi/pT =ni/nT p1 =pT×x1; p2 =pT×x2……pi =pT×xi
无机 化学精品课程
2.注意:
在使用物质的量时,基本单元应指明,可以是原子,分 子,离子,电子或这些粒子的特定组合. 物质的量: 单位名称为 摩尔 单位符号为 mol ● 摩尔是用以计算系统物质中所含微观基本单元数目 多少的一个物质的量 ● 摩尔体积: 1 mol 物质的体积,符号Vm, 单位m3·mol-1或L·mol-1
5-1 第五章 化学热力学
第一节
1 基本概念
(1) 系统和环境
化学热力学初步
系统: 系统:划分为研究对象的这一部分物质 或空间系统) (或空间系统)。 系统外与其密切相关的部分。 环境 : 系统外与其密切相关的部分。 敞开系统: 敞开系统:与环 境有物质交换也有能 量交换;
封闭系统: 封闭系统:与环 境有能量交换无物质 交换; 交换;
θ ∆ f H m / kJ·mol -1
CO2
- 393.52
H2
0
CO
- 110.52
H2O
-241.81
θ ∆ r H m (298 K) = - 393.52 + 0 + (- 110.52)×( -1 ) + (-
241.81 )×( -1 )
= - 41.19 kJ·mol -1
思考
?
功:体系与环境之间除热之外以其它形式 传递的能量。 功不是状态函数。做功, W>0 环境对体系做功, 环境对体系做功, W<0
Q >0
Q<0
W< 0
W>0
体积功: 体积功:由于系统体积变化反抗外力所 做的功 。
W = P ⋅ ∆ V = P (V 2 − V1 )
θ
θ
2.3
热化学
(1)化学计量数
(2)反应进度(ξ) 反应进度( 衡量化学反应进行程度的物理量。 衡量化学反应进行程度的物理量。 对任一反应: 对任一反应: dD + eE = fF + gG 移项后: 移项后: 简化为: 简化为: 0 = -dD -eE + fF + gG
0 = ∑ν B B
2024版大学化学热力学基础ppt课件
在化学反应中,反应前后物质的焓的差值称为 焓变,用ΔH表示;反应前后物质的熵的差值 称为熵变,用ΔS表示。
11
热力学性质图表
01
温度-熵图(T-S图)
以温度为纵坐标、熵为横坐标的 图示方法,用于表示物质在不同 温度下的熵值变化。
02
压力-体积图(p-V 图)
以压力为纵坐标、体积为横坐标 的图示方法,用于表示物质在不 同压力下的体积变化。
28
非平衡态热力学基本概念
非平衡态定义
系统内部存在不均匀性,导致物 理量(如温度、压力、浓度等) 在空间或时间上呈现不均匀分布 的状态。
热力学流与力
描述非平衡态系统中,各种物理 量的流动(如热流、粒子流、信 息流等)及其驱动力(如温度梯 度、浓度梯度等)。
局域平衡假设
在非平衡态系统中,可以将其划 分为若干小区域,每个小区域内 达到局部平衡状态,从而可以应 用平衡态热力学的理论。
内容
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值 保持不变。
数学表达式
ΔU = Q - W,其中ΔU为系统内能的变化,Q为系统吸收的热量,W为系统对外所做的功。
2024/1/25
6
热力学第二定律
内容
不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源 取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微 增量总是大于零。
热力学第三定律 在热力学温度零度(即T=0开)时,一切完美晶体的熵值等于零。
10
热力学性质的计算
热容
系统在某一过程中,温度升高(或降低)1K 所吸收(或放出)的热量,称为该系统在该过 程中的“热容”,用C表示。
大学化学热力学基础课件
大学化学热力学基础课件一、教学内容本节课的教学内容选自人教版《大学化学》的第五章热力学基础。
该章节主要内容包括热力学第一定律、热力学第二定律和熵的概念。
具体讲解如下:1. 热力学第一定律:能量守恒定律,指出在一个封闭系统中,能量不会凭空产生也不会凭空消失,只会从一种形式转化为另一种形式,系统的内能变化等于系统所吸收的热量减去系统对外做的功。
2. 热力学第二定律:熵增定律,指出在自然过程中,一个孤立系统的总熵不会减少,即自然界的过程总是向着熵增加的方向进行。
3. 熵的概念:熵是衡量系统无序程度的物理量,是一个系统在热力学平衡状态下的状态函数。
二、教学目标1. 理解热力学第一定律和第二定律的基本概念和原理。
2. 掌握熵的概念及其在热力学中的应用。
3. 能够运用热力学基本定律分析实际问题,提高解决实际问题的能力。
三、教学难点与重点重点:热力学第一定律和第二定律的基本概念和原理,熵的概念及其在热力学中的应用。
难点:热力学定律在实际问题中的应用。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:教材、笔记本、笔。
五、教学过程1. 实践情景引入:以日常生活为例,如烧水、做饭等,引导学生思考这些现象背后所蕴含的热力学原理。
2. 知识讲解:讲解热力学第一定律、第二定律和熵的概念,通过举例和实例让学生理解这些基本原理。
3. 例题讲解:选取具有代表性的例题,讲解热力学定律在实际问题中的应用。
4. 随堂练习:为学生提供一些实际问题,让学生运用所学的热力学定律进行分析和解答。
5. 知识拓展:介绍热力学在现代科学技术中的应用,如热力学在能源、环境等领域的重要性。
六、板书设计板书内容主要包括热力学第一定律、第二定律和熵的概念,以及这些定律在实际问题中的应用。
板书设计要简洁明了,突出重点。
七、作业设计1. 请简述热力学第一定律和第二定律的基本概念和原理。
2. 请解释熵的概念及其在热力学中的应用。
3. 请举例说明热力学定律在实际问题中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
功(W ):系统与环境之间除热之外以
其它形式传递的能量。
系统对环境做功,W<0 环境对系统做功,W>0
11
体积功:由于系统体积 变化而与环境交换的功, 称为体积功。
W F ex l
p ex A l
p ex V 1 V 2
V1
焓: HUpV
焓变:QpH2H1H
吸热H 反 0,应 放热H 反 0应 16
2. 热化学方程式
表示化学反应及其反应热关系的化学 反应方程式
2H 2gO 2g2H 2O g
rH m298.15K 483.64kJm ol-1
r H m 称为反应的标准摩尔焓变。
标准状态:
气体
T、 pp10k0Pa
于恒压反应热Qp 。
该装置主要用于测定燃烧热。 20
5.2.5 Hess定律
1. 标准摩尔生成焓
在标准状态下,由参考状态单质生成单位 物质B的量的标准摩尔焓变,称为物质B的标准摩 尔生成焓。
f Hm(B,相态 ,T) 单位k是 Jmo-1l
H2g1 2O2gH2Og fHmH2Og,2, 9.18K 524.81k2Jm-o1 l
rHm(2)
途径2
rH m ( 1 ) rH m (2 ) rH m ( 3 )
r H m ( 3 Δ r H m ) ( 1 Δ r H m ) ( 2 ) 1.5 1 k m 3 0 J
24
解法二: C (O s2()g )C2(O g r)Hm(1)
)CO 1 2O 2 ((g g ) C )2 (O )g rHm(2) C( s1 2)O2(g ) CO(rg Hm)(3)
7
5.1.4 相 系统中物理性质和化学性质完全相同 的任何均匀部分。 均相系统(或单相系统) 非均相系统(或多相系统)
8
5.2 热力学第一定律
热和功 热力学能 热力学第一定律 焓变和热化学方程式 Hess定律
9
5.2.1 热和功
热(Q):系统与环境之间由于存在温差
而传递的能量。 热不是状态函数。
特点:(1)状态一定,状态函数一定。 (2)状态变化,状态函数也随之而变, 且状态函数的变化值只与始态、 终态有关,而与变化途径无关。
6
5.1.3 过程、途径和可逆过程 定温过程:T1T2 Tex 定压过程:p1p2 pex 定容过程:V1 V产生的一切影响。可逆过程是理想 化过程,无限接近平衡态。
液体、固体 T, p下,纯物质
溶质、溶液B b Bb 1 mo kl g 11 7
2H 2gO 2g2H 2O g
rH m298.15K 483.64kJm ol-1
聚集状态不同时, r H m 不同。
2H 2gO 2g2H 2O (l)
rH m298.15K571.66kJm ol-1
化学计量数不同时, r H m 不同。
H2g1 2O2gH2Og rHm298.15K241.82kJmol-1
18
正确写出热化学方程式必须注意以下 几点:
o 必须注明化学反应计量式中各物质的 聚集状态 o 反应方程式必须配平 o 必须注明反应温度
19
两种实验室常用量热计
简易量热计
弹式量热计
测量中和热、溶解热及其
它溶液反应的热效应,属 此法测定的是恒容热效应Qv,
25
结论 aA+bB→yY+zZ
rH m (T ) B Δ fH m (B ,相 ,T )
26
5.3 自发变化和熵
自发变化 焓和自发变化 混乱度、熵和微观态数 热力学第三定律和标准熵 化学反应熵变和热力学第二定律
27
自发变化
• 水从高处流向低处; • 热从高温物体传向低温物体; • 铁在潮湿的空气中锈蚀; • 锌置换硫酸铜溶液反应: Zn(s)+Cu2+(aq) Zn2+(aq)+Cu(s)
fHm(参考态单 ,T)质 0
21
2. Hess定律 始态 r H m
终态
r H m,1
r H m,2
中间态
rHmrHm,1ΔrHm,2
或 rHmΔrHmi)(
化学反应不管是一步完成还是分几步完成, 其反应热总是相同的。
22
例:已知298.15K下,反应
1 .C (O s2()g)C2(O )g
U2U 1QW
U2 U1 QW
对于封闭系统热力学第一定律为:
UQW
14
5.2.4 焓变和热化学方程式 1.焓和焓变
对于封闭系统,在定容过程中,
V=0,W=0
QV U
QV为定容反应热。
15
在定压过程中:
U Qp pexV
U2 U1 Qp pex V2 V1 U2 U1 Qp p2V2 p1V1 Qp (U2 p2V2 ) U1 p1V1
pex
p ex V
l
非体积功
功不是状态函数
12
5.2.2 热力学能
热力学能(U):系统内所有微观粒子的全部
能量之和,也称内能。
U是状态函数
U2U1U
热力学能变化只与始态、终态有关, 与变化途径无关。
13
5.2.3 热力学第一定律 热力学定律的实质是能量守恒与转化定律。
U1 得吸 功 W热 Q U2
3
5.1.1系统和环境 系统:被研究对象。 环境:系统外与其密切相关的部分。 敞开系统:与环境有物质交换也有能量交换。 封闭系统:与环境有能量交换无物质交换。 隔离系统:与环境无物质、能量交换。
4
敞开系统
封闭系统
隔离系统
5
5.1.2 状态和状态函数
状态:体系的物理性质和化学性质的综合表现
状态函数:描述系统性质的物理量(如p,V,T)。
第五章 化学热力学基础
5.1 热力学术语及基本概念 5.2 热力学第一定律 5.3 自发变化和熵 5.4 吉布斯自由能及其应用
1
标题添加
点击此处输入相 关文本内容
前言
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
2
5.1 热力学的术语和基本概念 系统和环境 状态和状态函数 过程、途径和可逆过程 相 化学反应计量式和反应进度
rH m (1)39 .53 k1Jmo 1 l 2.CO(1 2O g2)(g)C2O (g)
rH m (2)28 .92 k8Jmo 1 l
计算298.15K下,CO的标准摩尔生成焓。
23
解:利用Hess定律
C(s)O2(g) rHm(3)
途径1
1 2O2(g)C(O g)
r Hm (1)
CO2g