磁分离技术与应用#(精选.)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分离工程期末论文
磁分离技术与应用Magnetic separation technology and
application
学院:化学工程学院
专业班级:化学工程与工艺化工081
学生姓名:樊波学号:050811101 指导教师:戴卫东(副教授)
2011年6月
磁分离技术
1 引言
磁化技术是将物质进行磁场处理,并导致物质的宏观性质发生某些变化,从而实现某种工程或工艺目的【1】。液态物质磁场处理技术的研究工作起始于60年代,近半个世纪来获得飞速发展,给科技进步和社会经济的发展注入了新的活力。
随着强磁场、高梯度磁分离技术的问世,磁分离技术的应用已经从分离强磁性大颗粒到去除弱磁性及反磁性的细小颗粒、从最初的矿物分选、煤脱硫发展到工业水处理、从磁性与非磁性元素的分离发展到抗磁性流体均相混合物组分的分离。
2 正文
2.1 磁分离技术研究历史
采用超导磁体分离矿石、煤、高岭土等固体物质中磁性杂质在国内外已得到广泛应用,但用于废水分离净化尚少涉及。主要原因是对于废水中的有机、无机污染物,由于这些污染物本身没有磁性,靠磁场产生的磁吸引力无法分离。日本大阪大学Nshijima研究组最早开始超导磁分离污水处理研究,并建立了示范装置,用于分离造纸厂污水,分离后污水COD(化学需氧值)可由起始的110mg/L,降到25mg/L,去除率近80%。他们采用的是预先在污水中添加Fe3O4"磁种子"颗粒和聚氯化铝絮凝剂,絮凝剂将污水中有害物质和Fe3O4磁性颗粒一起絮凝,这样通过超导磁体吸引分离。尽管分离效果很好,但由于还需加入有机絮凝剂,没有完全摆脱因有机絮凝剂的加入带来的二次污染,此外超导磁体冷却采用的是液氦浸泡冷却,对于我国,氦资源贫乏,这将导致大规模应用推广的限制。
而李来凤的研究却克服了以上问题,采用等离子有机覆膜技术在Fe3O4磁性颗粒表面生长带活性基团的有机薄膜,这层纳米厚度的薄膜可以有效地捕捉污水中的有机物、无机离子,代替了有机絮凝剂的加入,而且由于有机膜与Fe3O4有很强的结合力,使得这种新型复合"磁种子"材料可以重复使用,较单纯的Fe3O4磁种子材料有明显优势【2】。因此开展新型、高效、低成本超导磁分离工业废水处理技术的研究对我国节能减排具有重要意义,是未来极具潜在应用价值的技术。
2.2 磁分离技术的现状
从1993年开始,洛阳石化总厂、洛阳石化工程公司炼制所和中南工业大学合作致力于FCC废催化剂磁分离技术的开发,到1995年底,在洛阳石化总厂建
成了我国第一套用于回收利用FCC废催化剂的电磁式高梯度磁分离装置,由于国内无先例可供参考造成新建的磁分离装置存在一些事先没有预计到的技术难题,在通过攻关解决了存在的技术难题并加强内部沟通争取各方面支持后,我们于1999年1~3月份进行了工业应用实验,取得了节约新鲜催化剂20%以上的满意效果。随后该装置一直在的FCC废催化剂回收利用方面发挥着积极而且重要的作用。截止目前,共向催化装置提供低磁高活性剂 1200余t,仅节约新鲜催化剂的直接经济效益就达到800多万元[3]。技术于2001年 4月获得中国石化集团公司科技进步奖三等奖,先后取得两项国家专利,分别是:ZL98 1 10319.7催化裂化废催化剂磁分离机与工艺流程及配套装置和ZL 98 2 21637.8催化裂化废催化剂磁分离装置。
1998年石家庄炼油厂与中科院电工所合作进行了永磁辊式FCC废催化剂磁分离技术研究,但没有达到最终成功。武汉新通创科技有限公司从1997年开始研制废催化剂磁分离技术,成功地开发出永磁型磁分离装置,于2000年12月至2001年3月在济南炼油厂完成了该技术的工业应用实验[4]。
2.3 磁分离技术分离原理
2.3.1催化裂化废催化剂磁分离技术工作原理
由于原油性质的变重,为了增加轻质油品的产量,催化裂化工艺装置的数量和加工能力不断增加。截止1999年底,我国炼油原油一次加工能力达到276 Mt/a,当年实际加工了176 Mt,我国石油、石化两大集团的催化裂化加工能力占原油一次加工能力的34.5%[3]。
催化裂化生产过程中,原料油在与催化剂混合反应时,原料油中所含的金属杂质连同生焦物质在高温条件下沉积在催化剂粒子上。在再生过程中,催化剂粒子上的焦碳被烧掉,而金属杂质保留了下来,随着催化剂的不断循环使用,金属杂质就在催化剂粒子上积累增加,从而使催化剂的活性和选择性下降,因此为了保持催化剂具有适当的活性和选择性,生产过程中必须不断向装置补充新鲜催化剂并分离出一些已达平衡催化剂。然而在分离出来的催化剂中含有部分未达平衡的催化剂,此部分催化剂仍然含有比较高的活性与选择性,如果将这些催化剂分离出来并重复使用就可达到节约成本的目的【5】。
实验显示:催化裂化催化剂主要受到铁、镍和钒等金属杂质污染,而这些金属均具有一定的磁性因此那些使用寿命短的催化剂粒子,由于铁、镍和钒杂质含量低,磁性就弱;而那些使用寿命长的催化剂粒子,由于铁、镍和钒杂质含量高,磁性就强。在一定强度的磁场存在下,可以做到使后者吸着,而前者不被吸着,从而实现两者的分离,这就是磁分离技术的基本原理【6】。
2.3.2 高梯度磁分离工作原理[7]
高梯度磁分离器由轭铁、电磁线圈和装填不锈钢毛的分离容器组成。通电时,电磁线圈产生电磁场,流过分离器的废水中的颗粒物在磁场中受到磁力的作用,被基质──钢毛捕获。磁力愈强,捕获颗粒物的可能性愈大。在理论上,颗粒物所受的磁力(Fm)同磁场强度(H)、磁场梯度(dH/dx)和颗粒物的磁化率(x)和体积(V)等呈正相关关系,因此,在磁场强度相同的情况下,高梯度磁分离器的分离能力比常规磁分离器要高,梯度越高,分离能力越强。
所谓磁场梯度是指单位距离内磁场强度的变化。在一定的磁场强度下,梯度的高低同基质的磁化强度、形状、直径、填装率等有关。纤维状不锈钢毛基质磁化强度高,锐边多,直径小,填装率低(4~6%),梯度可高达1000高斯/微米,是普通的小铁球、齿板、钢针等基质所不能比拟的。所以,采用钢毛基质的高梯度磁分离器可以分离一般磁分离器不能分离的磁化率低、体积小的弱磁性细颗粒物。此外,钢毛基质还具有一定的物理和化学稳定性,矫顽力小,捕集点多,过水性能好,是目前公认的最好基质材料。
2.4 磁分离技术工艺流程
2.4.1 电磁式磁分离工艺流程[8]