二维随机变量函数的概率分布.ppt
合集下载
第三章 多维随机变量及其分布 第一节 二维随机变量及其分布函数 概率论课件

前面我们介绍了二维随机变量的概 念, 二维随机变量的分布函数及其性质。
二维随机变量也分为离散型和连续型, 下面我们分别讨论它们。
三、二维离散型随机变量 及其概率分布
如果二维随机变量(X,Y)的每个分 量都是离散型随机变量,则称(X,Y)是 二维离散型随机变量.
二维离散型随机变量(X,Y)所有可 能取的值也是有限个或可列无穷个.
求: 二维随机变量(X,Y)的概率分布和其边缘分 布.
解: (X,Y)所有可能取的值是
(0,0),(0,1),(1,0,),(1,1).
P{X=0,Y=0}
=P{第一次取到正品且第二次也取到正品},
利用古典概型,得: P{X=0,Y=0}=(76)/(109)=7/15
同理求得:
P{X=0,Y=1}=(73)/(109)=7/30
第三章
多维随机变量及其分布
一般地,我们称n个随机变量的整体
X=(X1, X2, …,Xn)为n维随机变量或随
机向量. 以下重点讨论二维随机变量.
请注意与一维情形的对照 .
第三章 第一节
二维随机变量及其分布函数
一、二维随机变量
设随机试验E的样本空间是Ω,X=X() 和Y=Y()是定义在Ω上的随机变量, 由它们 构成的向量(X,Y),称为二维随机变量(向量)。
而把F(x,y)称为X和Y的联合分布函数。
注意
X与Y的边缘分布函数,实质上就是一维随 机变量X或Y的分布函数。称其为边缘分布函数 的原因是相对于(X,Y)的联合分布而言的。
同样地,(X,Y)的联合分布函数F(x, y)是相 对于(X,Y)分量X与Y的分布而言的。
求法
FX(x)=P{X≤x}=P{X≤x,Y<∞}=F(x,∞) FY(y)=P{Y≤y}=P{X<∞,Y≤y}=F(∞,y)
概率论二维随机变量及其分布 ppt课件

二维随机变量的分布函数
F ( x , y ) P { X x , Y y } 就是随机点 (X,Y)落入区域
{t,s ( )|t x ,s y }
的概率(如图1).
由概率的加法法则,随机点(X,Y)落入矩形域
{ x 1 x x 2 ,y 1 y y 2 }
的概率
P { x 1 x x 2 ,y 1 y y 2 } F ( x 2 ,y 2 ) F ( x 2 ,y 1 )
F (x ,y)1 2 2arc 2 x t 2a anrc 3 y .ta
(2)由 (1)式得
P { 2 X , 0 Y 3 } F ( , 3 ) F ( , 0 ) F ( 2 , 3 ) F ( 2 , 0 ) 1/1.6
完 21
三、二维离散型随机变量及其概率分布
Pi1
i
Pi 2
Pij
i
27
联合概率分布表
对离散型随机变量而言,联合概率分布不仅比联合
分布函数更加直观,而且能够更加方便地确定(X,Y)
取值于任何区域 D上的概率. 设二维离散型随机变
量的概率分布为
P { X x i , Y y j } p i ( i j , j 1 , 2 , )
二维离散型随机变量及其概率分布
分布:
p i ( i 1 , 2 , )p , j( j 1 , 2 ).
p i P {X x i} p i,ji 1 ,2 , j
p j P { Y y j}p i,jj 1 ,2 ,25 i
二维离散型随机变量及其概率分布
分布: p i ( i 1 , 2 , )p , j( j 1 , 2 ).
F X ( x ) P { X x } P { X x , Y } F(x, )
《概率论与数理统计》课件3-1二维随机变量及其联合分布

P{a X b} = F(b) − F(a) + P{X = a}
二维随机变量联合分布函数
F(x,y) = P{X x,Y y}
(1) 有界性 0 F(x,y) 1,且有F(− ,y) = lim F(x,y) = 0
x→−
F(x,− ) = lim F(x,y) = 0 F(− ,− ) = lim F(x,y) = 0 ,
1
F(
) 1 F( y) 0 F(x ) 0
F ( , ) A(B )(C ) 1
2
2
F ( , y) A(B )(C arctan y) 0 2
F ( x,
) A( B arctan x) ( C
)0
2
A
F (x, y) y).
1
2
,
B
1
2 (2
C.
2
arctan x)( 2
arctan
(2) P 0 X , 0 Y 1 F( ,1) F(0,1) F( , 0) F(0, 0) .
则〈
l
0,
它
P 恳1 < X 共 2,3 < Y 共 5}
x > 0, y > 0 其
= F(2,5) − F(1,5) − F(1,3) + F(2,3)
A) V
B) 根
A
B
提交
1 F(x, y) A(B arctan x)(C arctan y).
1
A, B,C 2 P 0 X , 0 Y 1
A.
B.
C.
D.
A
C
B
D
提交
1. F(x, y) P{X x,Y y}.
2.
二维随机变量联合分布函数
F(x,y) = P{X x,Y y}
(1) 有界性 0 F(x,y) 1,且有F(− ,y) = lim F(x,y) = 0
x→−
F(x,− ) = lim F(x,y) = 0 F(− ,− ) = lim F(x,y) = 0 ,
1
F(
) 1 F( y) 0 F(x ) 0
F ( , ) A(B )(C ) 1
2
2
F ( , y) A(B )(C arctan y) 0 2
F ( x,
) A( B arctan x) ( C
)0
2
A
F (x, y) y).
1
2
,
B
1
2 (2
C.
2
arctan x)( 2
arctan
(2) P 0 X , 0 Y 1 F( ,1) F(0,1) F( , 0) F(0, 0) .
则〈
l
0,
它
P 恳1 < X 共 2,3 < Y 共 5}
x > 0, y > 0 其
= F(2,5) − F(1,5) − F(1,3) + F(2,3)
A) V
B) 根
A
B
提交
1 F(x, y) A(B arctan x)(C arctan y).
1
A, B,C 2 P 0 X , 0 Y 1
A.
B.
C.
D.
A
C
B
D
提交
1. F(x, y) P{X x,Y y}.
2.
二维随机变量的函数的分布

即 pij pi p j .
(2) 设连续型随机变量( X ,Y )的概率密度为f ( x, y) , 边缘概率密度分别为f X ( x) , fY ( y) ,则有
X 和Y 相互独立 f ( x, y) f X ( x) fY ( y).
在f ( x, y) , f X ( x) , fY ( y)的一切连续点(x, y)处
Z=X+Y的概率密度。
解
fX (x)
1
x2
e 2,
2
fY ( y)
1
y2
e 2 ,( x, y )
2
fZ (z) fX ( x) fY (z x)dx
t 2(x z ) 2
1
x2
e2
2
1 e dx
(
z x 2
0.1 0.3 0.3 0.1 0.2
X与Y独立,X,Y取0,1,2,…,则Z=X+Y Z=max(X,Y)
的分布律
设X与Y独立,分别服从参数为 1 ,2 的泊松分布, 证明Z=X+Y服从参数为 1 2 的泊松分布。
【注】分布具有可加性
二项分布的可加性(P89)
二、 连续型随机变量的函数的分布
例2 设随机变量X和Y相互独立,且X和Y都是(0,a) 上的均匀分布,求Z=X+Y的概率密度。
例2 在一简单电路中,两电阻R1和R2串联联接,设
R1, R2相f (互x)独 立1,050它x 们, 的0 概x率密10度, 均为 z
0,
其 它.
求总电阻R=R1+R2的概率密度.
z=x+10 z=x
0,
, x 0, 其它.
(2) 设连续型随机变量( X ,Y )的概率密度为f ( x, y) , 边缘概率密度分别为f X ( x) , fY ( y) ,则有
X 和Y 相互独立 f ( x, y) f X ( x) fY ( y).
在f ( x, y) , f X ( x) , fY ( y)的一切连续点(x, y)处
Z=X+Y的概率密度。
解
fX (x)
1
x2
e 2,
2
fY ( y)
1
y2
e 2 ,( x, y )
2
fZ (z) fX ( x) fY (z x)dx
t 2(x z ) 2
1
x2
e2
2
1 e dx
(
z x 2
0.1 0.3 0.3 0.1 0.2
X与Y独立,X,Y取0,1,2,…,则Z=X+Y Z=max(X,Y)
的分布律
设X与Y独立,分别服从参数为 1 ,2 的泊松分布, 证明Z=X+Y服从参数为 1 2 的泊松分布。
【注】分布具有可加性
二项分布的可加性(P89)
二、 连续型随机变量的函数的分布
例2 设随机变量X和Y相互独立,且X和Y都是(0,a) 上的均匀分布,求Z=X+Y的概率密度。
例2 在一简单电路中,两电阻R1和R2串联联接,设
R1, R2相f (互x)独 立1,050它x 们, 的0 概x率密10度, 均为 z
0,
其 它.
求总电阻R=R1+R2的概率密度.
z=x+10 z=x
0,
, x 0, 其它.
二维正态分布.ppt

第三节 二维正态分布
数学与信息技术系
定义 设二维连续随机变量(X,Y)的联合概率密度为
f (x, y)
1
2 x y 1 r2
2
1 (1
r
2
)
(
x
x
2 x
)2
2
r
(
xx
)( y x y
y
)
(
y
y
2 y
)2
e 其中 x , y , x 0, y 0, r r 1 是分布参数
这种分布叫做二维正态分布。
x
)
t,得到
I(x) y1 r2来自t1r2
r(x x) x
t2 e 2 dt
y 1 r2
te
t2 2
dt
r
y
(x
x
)
1 r2
t 2
e 2 dt
x
r y (x x )
1 r2
t 2
e 2 dt
x
r y (x x ) 2 1 r2 x
t2
e 2 dt 2 ,
当z≤0时,显然, FZ(z)=0;当z>0时,
1
x2 y2
FZ (z)
2
e
x2 y2 z
2 dxdy
1
2
d
z
2
e2
d
1
z
e2
2 0
0
所以 Z的分布函数为
FZ
(z)
1
e
z 2
,
z
0
0, z 0
由此Z的概率密度为
fZ
(z)
1 2
e
z 2
,
z
0
数学与信息技术系
定义 设二维连续随机变量(X,Y)的联合概率密度为
f (x, y)
1
2 x y 1 r2
2
1 (1
r
2
)
(
x
x
2 x
)2
2
r
(
xx
)( y x y
y
)
(
y
y
2 y
)2
e 其中 x , y , x 0, y 0, r r 1 是分布参数
这种分布叫做二维正态分布。
x
)
t,得到
I(x) y1 r2来自t1r2
r(x x) x
t2 e 2 dt
y 1 r2
te
t2 2
dt
r
y
(x
x
)
1 r2
t 2
e 2 dt
x
r y (x x )
1 r2
t 2
e 2 dt
x
r y (x x ) 2 1 r2 x
t2
e 2 dt 2 ,
当z≤0时,显然, FZ(z)=0;当z>0时,
1
x2 y2
FZ (z)
2
e
x2 y2 z
2 dxdy
1
2
d
z
2
e2
d
1
z
e2
2 0
0
所以 Z的分布函数为
FZ
(z)
1
e
z 2
,
z
0
0, z 0
由此Z的概率密度为
fZ
(z)
1 2
e
z 2
,
z
0
二维连续随机变量及其概率分布

P{x1 X x2, y1 Y y2} P{x1 X x2}P{y1 Y y2}
定理2 二维随机变量(X,Y)的两个分量独立的充 分必要条件是: 对任意实数x, y有
P{X x,Y y} P{X x}P{Y y}
定理3 若(X , Y ) 是离散型随机变量,则X与Y相 互独立的充分必要条件是
lim F ( x, y) 0
x
lim F ( x, y) 0
y
lim F ( x, y) 1
x, y
性质3 对于x 和y,F(x, y)都是右连续的,即对任意 的实数x0和y0,均有
Lim xx0 F(x, y)=F(x0 , y), Lim yy0 F( x, y )=F(x, y0 )
(3) f (x, y)与 fX (x), fY (y)之间的关系
f X (x)
f (x, y)dy
fY ( y) f (x, y)dx.
例3 设随机变量X 和Y 具有联合分布
f
(
x,
y)
6, 0,
求X 和Y 边缘密度
x2 y x 其他
解:
f X (x)
f (x, y)dy
x
6dy x2
0
x 0, y 0 其它
求 (X, Y )的边缘分布函数。
解: X的边缘分布函数为
FX
(x)
F
( x,)
lim
y
F ( x,
y)
1 ex x 0
0 x0
1 ex ey exyxy x 0, y 0
(X ,Y) ~ F(x, y)
0
其它
Y的边缘分布函数为
FY
(
y)
F
(,
定理2 二维随机变量(X,Y)的两个分量独立的充 分必要条件是: 对任意实数x, y有
P{X x,Y y} P{X x}P{Y y}
定理3 若(X , Y ) 是离散型随机变量,则X与Y相 互独立的充分必要条件是
lim F ( x, y) 0
x
lim F ( x, y) 0
y
lim F ( x, y) 1
x, y
性质3 对于x 和y,F(x, y)都是右连续的,即对任意 的实数x0和y0,均有
Lim xx0 F(x, y)=F(x0 , y), Lim yy0 F( x, y )=F(x, y0 )
(3) f (x, y)与 fX (x), fY (y)之间的关系
f X (x)
f (x, y)dy
fY ( y) f (x, y)dx.
例3 设随机变量X 和Y 具有联合分布
f
(
x,
y)
6, 0,
求X 和Y 边缘密度
x2 y x 其他
解:
f X (x)
f (x, y)dy
x
6dy x2
0
x 0, y 0 其它
求 (X, Y )的边缘分布函数。
解: X的边缘分布函数为
FX
(x)
F
( x,)
lim
y
F ( x,
y)
1 ex x 0
0 x0
1 ex ey exyxy x 0, y 0
(X ,Y) ~ F(x, y)
0
其它
Y的边缘分布函数为
FY
(
y)
F
(,
《概率论与数理统计》第3章 二维随机变量及其分布

23 April 2012
第三章 多维随机变量及其分布
注意点
第32页
(1) X 与Y是独立的其本质是: 任对实数a, b, c, d,有
Pa X b, c Y d Pa X b Pc Y d
(2) X 与Y 是独立的,则g(X)与h(Y)也是独立的.
23 April 2012
0
=A/6
所以, A=6
23 April 2012
第三章 多维随机变量及其分布
第22页
例3.3.2
若
(X,
Y)
~
p( x,
y)
6e(2x3y) , 0,
x 0, y 0 其它
试求 P{ X< 2, Y< 1}.
23 April 2012
第三章 多维随机变量及其分布
第23页
y
解: P{ X<2, Y<1} p(x, y)dxdy
3.1.2 联合分布函数
定义3.1.2 (以下仅讨论两维随机变量)
任对实数 x 和 y, 称 F(x, y) = P( X x, Y y)
为(X, Y) 的联合分布函数.
注意:
F(x, y)为(X, Y)落在点(x, y)的左下区域的概率.
23 April 2012
第三章 多维随机变量及其分布
x1 x2 … xi …
23 April 2012
y1 y2 … yj …
p11 p12 … p1j … p21 p22 … p2j … … … ……… pi1 pi2 … pi j … … … ………
第三章 多维随机变量及其分布
第9页
联合分布列的基本性质
(1) pij 0, i, j = 1, 2,… (非负性)
3.1 二维随机变量及其分布

可得
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求:(1)c 的值;(2)两个边缘密度。
解:(2)由 概率密度函数性质 4,即
即Y的边缘 密度函数为
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求:(1)c 的值;(2)两个边缘密度。
解:(2)由 概率密度函数性质 4,即
即X的边缘 密度函数为
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求两个边缘密度。
解:由 概率密度函数性质 4,即
三、二维连续型随机变量及其概率分布
例:设二维随机变量(X, Y)具有概率密度
试求两个边缘密度。
解:由 概率密度函数性质 4,即
三、二维连续型随机变量及其概率分布
解:依题意知,概率密度函数为
由 概率密度函数性质 4,得
三、二维连续型随机变量及其概率分布
解:依题意知,概率密度函数为
三、二维连续型随机变量及其概率分布
两个常见二维连续型概率分布
三、二维连续型随机变量及其概率分布
关于二维正态分布的说明 (1)服从二维正态分布的密度函数的典型图形见下图; (2)二维正态分布的两个边缘分布是一维正态分布。
解:(1)由二维随机变量分布函数的性质, 可得
一、二维随机变量及其分布函数
例:设二维随机变量(X, Y)的分布函数为
解:由(1)式可得
第一节 二维随机变量及其分布
二维随机变量及其分布函数
二维离散型随机变量及其概率分布 二维连续型随机变量及其概率密度
二、二维离散型随机变量及其概率分布
《二维随机变量》课件

详细描述
二维随机变量是概率论中的一个概念 ,它由两个随机变量组成,每个随机 变量都可以取不同的值,这些值之间 有一定的概率分布关系。
性质
总结词
二维随机变量具有独立性、对称性、可加性等性质。
详细描述
独立性是指两个随机变量之间没有相互影响,一个随机变量的取值不会影响到另一个随机变量的取值。对称性是 指两个随机变量的取值概率相同,即P(X=x, Y=y) = P(X=y, Y=x)。可加性是指两个随机变量的和仍然是一个随 机变量,其概率分布可以通过两个随机变量的概率分布计算得出。
CHAPTER 03
二维随机变量的函数
Z变换
定义
Z变换是数学中的一种变换方法,用于将离散信号或序列转换为复 平面上的函数。在二维随机变量的背景下,Z变换可以用于分析两
个随机变量之间的关系。
应用
通过Z变换,我们可以研究两个随机变量之间的依赖关系,例如相 关性、条件概率等。此外,Z变换还可以用于信号处理、控制系统
线性变换在统计学、概率论和数据分 析等领域有广泛应用,例如在回归分 析和主成分分析中常用到线性变换。
标准化变换
标准化变换的定义
标准化变换是将二维随机变 量的每个分量分别减去其均 值并除以其标准差,从而将 原始变量转换为标准正态分
布的随机变量。
标准化变换的性质
标准化变换将原始变量的均 值为0、标准差为1的标准正 态分布,保持了变量的方差 、协方差等统计特性不变。
03
当相关系数为0时,协方差也 为0,表示两个随机变量之间 没有线性相关性。
CHAPTER 06
二维随机变量的函数变换
线性变换
01
线性变换的定义
线性变换是二维随机变量的变换方式 之一,它通过一个线性方程组将原始 变量转换为新的变量。
二维随机变量是概率论中的一个概念 ,它由两个随机变量组成,每个随机 变量都可以取不同的值,这些值之间 有一定的概率分布关系。
性质
总结词
二维随机变量具有独立性、对称性、可加性等性质。
详细描述
独立性是指两个随机变量之间没有相互影响,一个随机变量的取值不会影响到另一个随机变量的取值。对称性是 指两个随机变量的取值概率相同,即P(X=x, Y=y) = P(X=y, Y=x)。可加性是指两个随机变量的和仍然是一个随 机变量,其概率分布可以通过两个随机变量的概率分布计算得出。
CHAPTER 03
二维随机变量的函数
Z变换
定义
Z变换是数学中的一种变换方法,用于将离散信号或序列转换为复 平面上的函数。在二维随机变量的背景下,Z变换可以用于分析两
个随机变量之间的关系。
应用
通过Z变换,我们可以研究两个随机变量之间的依赖关系,例如相 关性、条件概率等。此外,Z变换还可以用于信号处理、控制系统
线性变换在统计学、概率论和数据分 析等领域有广泛应用,例如在回归分 析和主成分分析中常用到线性变换。
标准化变换
标准化变换的定义
标准化变换是将二维随机变 量的每个分量分别减去其均 值并除以其标准差,从而将 原始变量转换为标准正态分
布的随机变量。
标准化变换的性质
标准化变换将原始变量的均 值为0、标准差为1的标准正 态分布,保持了变量的方差 、协方差等统计特性不变。
03
当相关系数为0时,协方差也 为0,表示两个随机变量之间 没有线性相关性。
CHAPTER 06
二维随机变量的函数变换
线性变换
01
线性变换的定义
线性变换是二维随机变量的变换方式 之一,它通过一个线性方程组将原始 变量转换为新的变量。
东华大学《概率论与数理统计》课件 第三章 二维随机变量

Y
X
y1
y2
yn
x1
p11
p12
p1 n
x2
p21
p22
p2n
n
pi• =
pij
j =1
p1•
p2•
xm
pm1
pm2
pmn
m
p• j =
pij
p•1
p•2
p• n
i =1
其中, pij = P( X = xi ,Y = y j ) ,
pm•
n
m
p• j = pi• = 1
j −1
( x,
y)
=
1 s
,
0,
(x, y) S (x, y) S
3.体积为v的空间区域V上
(
x,
y,
z)
=
1 v
,
0,
(x, y, z) V (x, y, z) V
基本概念:随机向量、联合分布函数。 离散型随机变量:联合概率分布、阶梯型分布函
数。 连续型随机变量:概率密度函数、连续型分布函
数。
即
FY
(
y)
=
F
(+,
y)
=
lim
x→+
F
(
x,
y)
F ( x) = F ( x,+)
1 = F(+,+)
0 = F(−, y) O
二维随机变量 (X ,Y) 的分布函数: F(x, y) = P(X x,Y y)
y
y
(x,y)
0
x
x
二维分布函数 F(x,y) 的性质: (1)(非降性) F(x, y) 是 x 或 y 的单调非降函数.
概率统计与随机过程.ppt

P(X u,Y u) P(X u)P(Y u)
FX (u)FY (u)
FN (v) P(min{X ,Y} v) 1 P(min{X ,Y} v) 1 P(X v,Y v) 1 P(X v)P(Y v)
1 (1 FX (v))(1 FY (v))
例2 已知 ( X ,Y ) 的联合密度函数为
3x, 0 x 1, 0 y x
f
(x,
y)
0,
其他
Z = X + Y ,求 f Z (z) 解:(图形定限法)
由公式(1)
fZ (z) f (x, z x)dx
f
(x,
z
x)
3x,
0,
0 x 1,0 z x x 其他
f (x, y)dxdy
1
x yz
x
当z < 0 时,
FZ (z) 0
当0 z < 1 时,
fZ (z) BA f (x, y)dy
2
0
1dy
z
y 1
•z •z
1 x
当1 z < 2 时,
fZ
(z)
1
z 1
1dy
fZ (z) 2 z
y 1 •z
1 ex
n j1
jk
n Cnjjejx 1 ex n j
jk
n Cnj jejx 1 ex n j
jk 1
Cnk kekx (1 ex )nk
f
X
(
x)
Cnk
FX (u)FY (u)
FN (v) P(min{X ,Y} v) 1 P(min{X ,Y} v) 1 P(X v,Y v) 1 P(X v)P(Y v)
1 (1 FX (v))(1 FY (v))
例2 已知 ( X ,Y ) 的联合密度函数为
3x, 0 x 1, 0 y x
f
(x,
y)
0,
其他
Z = X + Y ,求 f Z (z) 解:(图形定限法)
由公式(1)
fZ (z) f (x, z x)dx
f
(x,
z
x)
3x,
0,
0 x 1,0 z x x 其他
f (x, y)dxdy
1
x yz
x
当z < 0 时,
FZ (z) 0
当0 z < 1 时,
fZ (z) BA f (x, y)dy
2
0
1dy
z
y 1
•z •z
1 x
当1 z < 2 时,
fZ
(z)
1
z 1
1dy
fZ (z) 2 z
y 1 •z
1 ex
n j1
jk
n Cnjjejx 1 ex n j
jk
n Cnj jejx 1 ex n j
jk 1
Cnk kekx (1 ex )nk
f
X
(
x)
Cnk
[课件]概率与统计 3.1 二维随机变量及其分布
![[课件]概率与统计 3.1 二维随机变量及其分布](https://img.taocdn.com/s3/m/d9eb504de518964bcf847c0c.png)
d c (c , d )的长度 P {c X d } b a (a , b )的长度
借助于几何度量指标(长度, 面积, 体积等)
计算概率, 可建立 “几何概型” .
例3.1.6 例3.1.7
电子科技大学
联合分布
五.二维正态分布 定义 二维随机变量( X ,Y )的联合概率密 度为
1 e 2 x x 0 FX (x ) 其他 0
1 e FY ( y ) 0
3 y
y0 其他
电子科技大学
联合分布
联合分布函数的性质
1.单调不减性 F(x, y)分别对x , y单调不减.
当x1 x2 , F ( x1 , y ) F ( x2 , y ), y R;
(X , Y )的联合概率密度.
电子科技大学
联合分布
密度性质 1) f ( x , y ) 0;
这两条可作为判断 一个二元函数是否是 联合概率密度的标准
2) f ( x , y )dxdy 1.
3) 若f ( x , y )在( x , y )处连续, 则 F ( x, y) f ( x, y) xy 4) 若G R 2 , 有
电子科技大学
联合分布
三.联合概率密度
定义 二维随机变量( X , Y )的联合分布函
数为F(x , y),如果存在非负的函数f (x , y)使
得对任意实数对(x , y),有
F ( x, y )
y
x
f (u, v )dudv
称(X ,Y )是连续型随机变量,称f (x , y ) 为
联合分布函数为
F ( x , y ) P{ X x ,Y y }
概率论与数理统计课件 2.6 二维随机变量的边缘分布

xi
pi1
pi 2
pij
pi
p j
p1
p2
p j
1
例2 设随机变量 X 在数1,2,3,4中等可能取值,另一个随机变量 Y
在1至 X 之间等可能取值,试求二维随机变量 (X ,Y )的联合
分布律与边缘分布律.
1
解
P(X i,Y j) P(X i)P(Y j | X i) ,
§2.6 二维随机变量的边缘分布
一、二维随机变量的边缘分布函数
FX (x) P(X x) P(X x,Y ) F(x, )
二、二维离散型随机变量的边缘分布律
pi P( X xi ) pij , i 1, 2, 3, . j 1
三、二维连续型随机变量的边缘密度函数
若二维随机变量 (X ,Y ) 的联合分布函数为 F(x, y) ,则 (X ,Y )
中随机变量 X 的分布函数称为 (X ,Y )关于 X 的边缘分布函数,
记为
FX (x) P(X x) P(X x,Y ) F(x, )
二维随机变量 (X ,Y )关于随机变量 Y 的边缘分布函数
fY
( y)
f
(x,
y)dx
3(1 0,
y ),
0 y 1, 其它.
均匀分布的边缘分布不一定是均匀分布
若 D 是矩形区域, 则 (X ,Y) 的边缘分布仍为均匀分布
解 (X ,Y ) 的联合分布律为
关于X 的边缘分布
关于 Y 的边缘分布
几何分布
帕斯卡分布.
例4 已知随机变量 X 和 Y 的分布律分别为
概率论与数理统计3.3二维随机变量函数的分布ppt课件

解:
1 x2 y2
f (x, y) e 2 , ( x , y )
2
FZ (z) P(Z z) P( X 2 Y 2 z)
当z<0,显然FZ(z)=0,
当z≥0,
FFFFZZZZ((((zzzz))))xx2xx222yy2yy222zz2zz22222122111eeeexx2xx22222y22y2yy2d22dddxxxxddddyyyy
( x z )2 2
e dx 22 2
2
2 e 令x z t e2 e e edt dx 2 e 2
zzz44222
e2 dx e2 4
z
2
4
(( xx
t
2
zz 22
))22
(x
z 2
)2
z2 4
1
z2
e4
2
X~ N(μ1 , σ12) Y~ N(μ2 , σ22) X与Y相互独立
二维离散型随机变量函数的分布
设(X,Y)为离散型随机变量,
P(X xi ,Y y j ) pij, i, j 1,2,...
Z=g(X,Y)为一维离散型随机变量.若对于 不同的(xi,yj),g (xi,yj)的值互不相同,则Z的 分布律为
P(Z g(xi , y j )) pij i, j 1,2,...
k
p(i)q(k i) i0
离散型 卷积公式
例3:设X,Y相互独立,且X~P(λ1), Y~P(λ2) 证明:Z=X+Y~P(λ1+λ2)
证: P( X k) 1k e1 , k0,1,2,,
k!
P(Y k) k2 e2 , k0,1,2,,
k!
P(Z k) P( X Y k) Pik0( X i,Y k i)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 x 1, 其 它.
fY
y
e y 0,
,
y 0, y 0.
设随机变量Z=X+Y的密度函数fZ(z),则有
fZ z f X x fY z xdx 0 x 1, z x 0
随机变量函数的分布
f Z z f X x fY z xdx, z
不可能事件的0概率x等于10,. z x 0 1
随机变量函数的分布
在实际问题中,常常会遇到需要求随机变量函数的
分布问题。例如:在下列系统中,每个元件的寿命
分别为随机变量 X,Y ,它们相互独立同分布。我们 想知道系统寿命 Z 的分布。
1)
Z min(X ,Y )
2)
Z max(X ,Y )
3)
Z X Y
这就是求随机变量函数的分布问题。
离散型随机变量、
x
FZ z PZ z PX Y z
O
f x, ydxdy
x yzz ຫໍສະໝຸດ zxdddxxu fffx,xx,,uuyxdxdyudx
作变换:y u x,
随机变量函数的分布
z
F (z) du f x, u xdx
利用分布函数与密度函数的关系,对FZ(z)求导, 得Z=X+Y的密度函数:
1 4
0
82
1 8
5 8
由此得 Z=X+Y的分布律
Z123 P 1/4 1/8 5/8
随机变量函数的分布
2.连续型随机变量和的分布
设(X,Y)是二维连续型随机变量,其联合概率密度
函数为f (x , y), 令:Z=X+Y.试求随机变量Z的密度函
数fZ(z).
y
1.计算随机变量Z=X+Y的分布函数FZ(z).
我们称上式为函数fX(x)与 fY(y) 的卷积.记为: fX(x)* fY(y).
fZ z fX x* fY y
随机变量函数的分布
例2 设随机变量X和Y相互独立,X服从区间(0,1)上 的均匀分布,Y服从λ=1的指数分布.令Z=X+Y,试求 随机变量Z的密度函数.
解 由题意知:
f
X
x
1, 0,
§4.5 多维随机变量函数的分布
一般情形求随机变量函数分布 的方法
和的分布 最值分布
随机变量函数的分布
一、二维随机变量函数的概念
定义:设Z=g(X,Y)是定义在随机变量(X,Y)一切可能取值(x,y)
的集合上的函数,如果对于(X,Y)每一对取值(x,y),另一个 随机变量Z相应地取值为z=f (x , y),于是确定一个随机变量 Z,称Z为(X,Y)的函数。记为:Z=g(X,Y).
说明:二维随机变量(X,Y)的函数Z=g(X,Y)是一维随机变量,
若设(X,Y)的联合概率密度函数为z=f (x, y),则二维随机变量 (X,Y)的函数Z=g(X,Y)是一维连续型随机变量.
随机变量函数的分布
解题步骤: 已知二维随机变量(X,Y)的联合密度为f (x, y),
g(x , y)是二元连续函数,欲求随机变量 Z=g (X,Y)的 概率密度。
e 2 e 2 dx
2
1 e 1 e du 1
z2
e 1 e dx 4
2
z2 2
2
x
z
2
2
u2 2
u
x z du dx
22 2 2z2 2
2
22
1
e 2
2
2
2 2
Z ~ N 0, 2.
随机变量函数的分布
结论1: 如果随机变量与Y相互独立,且X~N(μ1, σ12), Y~N(μ2, σ22),令Z=X+Y,则Z ~N(μ1 +μ2,σ12 +σ22).
令: Z=X+Y, 试求随
1 1/4 0
机变量Z的分布律.
2 1/8 5/8
解 由随机变量X,Y的取值,知Z的可能取值是1,2,3.
PZ 1 PX 1, Y 0 1 ; 4
随机变量函数的分布
PZ 2 PX 1, Y 1 PX 2, Y 0
0 1 1; 88
Y X
0
1
PZ 3 PX 2, Y 1 5 ; 1
设(X,Y)是二维独立随机变量,其联合分布函数 为F(x,y),边缘分布函数分别为FX(x)和FY(y).
1.M maxX ,Y的分布.
FM z PM z PX z,Y z F z, z
FX zFY z
X与Y相互独立
2.N minX ,Y的分布.
FN z PN z 1 PN z 1 PX z,Y z
1.求 Z gX, Y 的分布函数FZ z,
FZ z PZ z f ( x, y)dxdy gx, yz
2, 求 Z gX, Y 的密度函数 fZ z FZ z.
随机变量函数的分布
二、和Z=X+Y的分布
1.离散型随机变量和的分布
例 1 设二维离散型随机变量(X,Y)的联合分布律为
Y
X
01
1 1 FX z1 FY y
X与Y相互独立
随机变量函数的分布
f Z z FZ z f x, z xdx (1)
同理可得
f Z z f z y, ydy (2)
随机变量函数的分布
如果随机变量X,Y相互独立,则有
f x, y f X x fY y.
于是,(1)(2)式可写为:
fZ z fX x fY z xdx ; fZ z fX z y fY ydy
结论2:如果随机变量X1, X2,…, Xn相互独立,且
Xi~N(μi,σi2) (i=1,2,…,n), 又a1, a2,…, an为n个
实常数,令
n
Z ai X i,则
i 1
Z
~
N
n
a
i
,
i
i 1
i
n 1
a
i2
2 i
随机变量函数的分布
三、极值分布 M maxX ,Y, N minX ,Y
0
随机变量函数的分布
例3: 设随机变量X和Y相互独立,X~N(0,1),Y~N(0,1)
令Z=X+Y,试求随机变量Z的密度函数.
解
由题意知:
fX x fY x
1
x2
e2
2
x ,
设随机变量Z=X+Y的密度函数fZ(z),则有
fZ
z fX
x
fY
z x dx
1
x2 z x 2
zx0
(于1)是若得z≤随0机,则变f量Z(zX)=+0Yz的密度函数为
(2) 若0<z<1, f Z z 1 e (zx)dx
0
1
x
00 z
z0
(3)
fZ z
若z≥1,
fZe
1 eez z e 10
zz1 ee(zz
x
dx01ze1
x)dxz 1
z
01
e z e x dx e z1 e z