三角形的外角-课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∠EFC=
+
,
∠BFC是 ∠BFC>
和 的外角,A
>
.D F E
B
C
2、在⊿ABC中, ∠A等于和它相邻 的外角的四分之一,这个外角等于 ∠B的2倍,那么∠A= 度,∠B = 度,∠C=________ 度。
3、如图,∠1=27.5°,∠2=95°,
∠3=38.5°,则∠4的大小是
.
4
2
1
3
4、⊿ABC中,∠B=∠C,若它的一个 外角等于150°,则∠A =
7.2.2 三角形的外角
动动脑:
• 1、三角形的内角和等于( 180º )
• 2、观察图1:
C
不相邻内角
A
相邻内角
图1
外角
B
D
为承办北京2008奥林匹克运动会,对某体育场馆
进出礼堂的地面图案进行了招标。以下是某公司
设计的地面图案的一部分:
E 思考!
C
(1).请指出图中哪些是
三角形的内角,哪些
60º
钝角三角形
性质1:三角形的一个外角等于与它不相邻的两个内角的和 性质2:三角形的一个外角大于任何一个与它不相邻的内角
练习3:如图4,五角星ABCDE中,请你求
出∠A +∠B+∠C+∠D+∠E的度数。
A
解:∵∠AFE是△FCE的外角
B F G E ∴∠AFE=∠C+ ∠E 同理∠AGB=∠B+∠D
在△AFG中
A
F
B
E
C
D
9、如图∠1是△ABC的一个外角,E为边AC上一点, 延长BC到D,连结DE,试说明∠1 >∠2的理由。
D
2 C
5 E
3
4
61
A
B
10、如图,在△ABC中,D是BC边上一点, ∠1 =∠2, ∠3 =∠4, ∠BAC=60°,求∠ DAC的度数。
A 1
B
2
43
D
C
11、如图所示下列说法一定正确的是
(2) ∠ C的度数。
A
B
D
C
例2:如图,类似于三角形,我们称 ∠1+ ∠2+ ∠3+ ∠4为四边行的外角和, 已知四边形的内角和为360º,你能用今 天所学的方法进行推理计算吗?
C 3
D 4
2 B
1 A
三角形的外角和的规定
• 从与每一个内角相邻的两个外角中分别取一 个相加,得到的和称为三角形的外角和。
E A
1 F
B
2
C
D
解:∵BCD是直线(已知), ∴ ∠2是△ABC外角(外角的定义),
∴∠2 〉∠BAC (三角形的一个外 角大于和它不 相邻的任一内角)。
∵EAC、AFB是直线(已知)
B
∴∠BAC是△AEF的外角 ∴∠BAC 〉∠1 (为什么?) ∴∠2 〉∠1,即∠2 比∠1大。
E
A 1
F
2
(第 3 题)
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/2/272021/2/27Saturday, February 27, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/2/272021/2/272021/2/272/27/2021 12:29:34 PM
α
35º
45º 20º
∠α=(30º)
性质2:三角形的一个外角大于任何一个与它不相邻的内角
例2:如图3,点D在BC上,点E在AD上。请
你不通过度量,比较∠1与∠CDE、 ∠1与
∠B 的大小,说明你的理由。
解:
A
因为∠ 1是△DEC的外角
所以∠ 1 >∠ CDE
E1
同理∠ CDE >∠B
B
D
图3
C 所以∠ 1 >∠ B
∠4 = ∠2 + ∠3 ∠5 = ∠1 + ∠3 ∠6 = ∠1 + ∠2
2 6 31 4
性质2:三角形的一个外角大于任何一个 与它不相邻的内角。
∠4 > ∠2 (或 ∠3 ) ∠5 > ∠1 (或 ∠3 ) ∠6 > ∠1 (或 ∠2 )
1、如图∠BDC是 的外角,
∠BDC=
+
,
∠EFC是
的外角,
2、三角形的一个外角大于任何一个与它 不相邻的内角。 ∠CAD > ∠B, ∠CAD >
∠C
三角形的外角的两条性质:
1.三角形的一个外角等于 与它不相邻的两个内角的和;
2.三角形的一个外角大于任何一个 与它不相邻的内角。
三角形的外角的性质:
性质1:三角形的一个外角等于与它不相邻的
两个内角的和; 5
A
O
B
C
9、如图,P是⊿ABC内任意一点 求证:∠BPC>∠A A
D 1
B
C
10、如图,⊿ABC中,AD⊥BC 于D,AE平分∠BAC ,∠B=80° ∠C=46°求∠DAE的度数。
A
B
DE
C
问1:小明从点C出发,按逆时针方向绕△ABC跑 一圈, 身体转过的角度之和是多少?
问2:对于△ABC来说,∠1、∠2、∠3的共同 特征是什么?
A、 ∠ B> ∠ ACD B 、 ∠ B+ ∠ ACB=180°-∠ A C 、 ∠ B+ ∠ ACB<180 ° D 、 ∠ HEC > ∠AB
E F
(
)
B
C
D
练习: 1.求下列图中∠1的度数。
1 30º 60º
120º 30º 1
1 45º 50º
2.判断∠1与∠2的大小,并说明理由。
3 12
6、如图:已知∠A=20°, ∠ B=162 ° , ∠ C=27 ° ,则∠ D=______。
A
B
D
C
7.求五角星的五个角的度数之和.
8.如图,A 、 B 、 C 、 D 、 E 、 F是平面上的 6个点,则∠A+∠B+∠C+∠D+∠E +∠F 的度数为 ( B )
(A) 180 ° (B) 360 ° (C) 540 ° (D) 720 °
C 图4 D
∠A+∠AFE+∠AGB=180º
∴∠A+ ∠ B+∠C+ ∠ D+∠E= 180º
你能由下图说明三角形的外角和 等于360º,这一结论吗?
A D
B C
例:如图,D是△ ABC的BC边上一点, ∠ B= ∠ BAD, ∠ ADC=80º,∠ BAC=70º, 求:(1) ∠ B的度数;
5、已知,∠B=∠D+∠E ,问: AB与CD平行吗?为什么?
A
B
C
F
D
E
6、如图, ⊿ABC的一个角 A
B
被纸挡住了,请你根据以
下问题中的条件填空:
⑴若∠A=35°∠B=55°则⊿ABC 是 角三角形。
⑵若∠A=48°∠B=43°则⊿ABC 是 角三角形。
⑶若∠A=37°∠B=52°则⊿ABC 是 角三角形。
3、三角形的三个外角中,最多可以有____个锐角 ______个直角______个钝角。
4、三角形的三个外角中,钝角的个数至少是 ( )
A、0个
B 、1个
C 、2个
D 、3个
5、如图,在△ABC中, ∠ A=90°, ∠ D是∠ B, ∠ C外角平分线的夹角,求∠ D的度数。
A
B
1
E
3
2C 4
F
D
推论1:三角形的一个外角大于与它不相邻的任何一 个内角。
A 思考:如图,∠ ACD与∠ A、 ∠ B有 什么关系?
B
CD
1、看图填空,根据图中所示角的度数,求出其中
∠α的度数。
30°
120°
45° α
α
72°
40°
20°α 25°
2、三角形的一个外角与它相邻的内角相等,而且等于 与它不相邻的两角中一角的3倍,则这个三角形各角的 度数是______________。
•
wk.baidu.com
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年2月27日星期 六2021/2/272021/2/272021/2/27
•
15、最具挑战性的挑战莫过于提升自 我。。2021年2月2021/2/272021/2/272021/2/272/27/2021
•
16、业余生活要有意义,不要越轨。2021/2/272021/2/27Februar y 27, 2021
• 如图:你有几种方法计算∠1+∠2+∠3=?
1
3
B2
C
试试看,你能不能独立完成下面一题.
• 例1如图8.2.9,D是△ABC的BC边上一点, ∠B=∠BAD, ∠ADC=80°, ∠ BAC=70°.求: (1)∠B的度数; (2)∠C的度数
图 8.2.9
• 解 (1)因为∠ADC是△ABD的外角,所以
3.如图,计算∠BOC
A
90º
B
20º O
30º C
性质1:三角形的一个外角等于与它不相邻的两个内角的和
例1:求下列各图中∠α的度数。
60º
30º
α
∠α=( 90º)
120º
α
35º α
45º 50º
∠α=( 85º) ∠α=(95º)
25º
123º
35º α
α
80º
∠α=(60º) ∠α=(43º)
是三角形的外角?
40º
A
B
D
(2).计算∠ ABC,∠CBD ,∠ECB 的度数。
(3).你能从(2)的计算结果及已知角的数中发 现什么数量关系吗?
解:因为∠CAD+∠BAC=180º
D
A
∠B+∠C+ ∠BAC=180º
所以∠B+∠C=∠CAD
三角形外角的性质:
B
C
图2
1、三角形的一个外角等于与它不相邻的 两个内角的和。 ∠B+∠C=∠CAD
∠ADC=∠B+∠BAD=80°.
又 ∠B=∠BAD,
所以∠B=80°÷ 2=40°.
(2)在△ABC中,因为
∠B+∠BAC+∠C=180°,
图 8.2.9
所以∠C=180°-∠B-∠BAC
=180°-40°-70°
=70°
例2:如图,已知BCD、CAE、AFB是直线 , 试比较∠1与∠2的大小。
CD
检验一下自己的知识够用不?
• (巩固练习):1) 求下列各图中∠1的度数。
(第1题) (2)如果∠C=4∠A,∠A+∠B=100°,
那么∠A= 20 ° ∠B= 80 ° 与∠C相邻的外角= 100°
• 3)如图,在直角△ABC中,CD是斜边AB上的高, ∠BCD=35°,求∠A与∠EBC的度数.
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/2/272021/2/272021/2/272021/2/27
谢谢观赏
You made my day!
我们,还在路上……
•
11、越是没有本领的就越加自命不凡 。2021/2/272021/2/272021/2/27Feb-2127-Feb-21
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/2/272021/2/272021/2/27Satur day, February 27, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/2/272021/2/272021/2/272021/2/272/27/2021
A
⑷若∠A、∠B都大于45°
B
则⊿ABC是 角三角形。
⑸若∠A、∠B都小于45°,则⊿ABC 是 角三角形。
⑹若∠C= 2∠B=3∠A,则⊿ABC 是 角三角形。
7、如图,D为BC上一点,∠1=∠2, ∠3=∠4, ∠A=50°求∠EDF的度数。
A
E
1
F
54
B
2 3C
D
8、如图,∠BOC=138°, ∠B=36°,∠C=30°, 求∠A的度数。
性质1:三角形的一个外角等于与它不相邻的两个内角的和 性质2:三角形的一个外角大于任何一个与它不相邻的内角
练习1:(口答)一个三角形可以有两个内角 都是直角吗?可以有两个内角都是钝角或都 是锐角吗?为什么? 练习2:你能根据三角形外角的特征把三角 形分类吗?请与同学交流你的想法 。
锐角三角形
直角三角形
问3:一个三角形共有几个外角呢?
答1:∠1+∠2+∠3=360°
2 A 答2:∠1、∠2、∠3都是三角形的一 边与另一边的延长线组成的角,
B
1 叫做三角形的外角。
3
C 答3:一个三角形共有6个外角。
三角形外角的性质:
性质 1:三角形的三个外角的和是360°。
性质 2:三角形的一个外角等于与它不相邻的两 个内角的和。