加速度传感器选用
振动试验中加速度传感器的选择
振动试验中加速度传感器的选择导语:振动试验中,我们对控制点、监测点等的振动量值大多是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。
影响振动试验中振动量值的正确获得,除了与传感器的安装位置、试件的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。
本文结合理论及实际经验,介绍振动试验中压电式加速度传感器的选择。
振动试验中,我们对控制点、监测点等的振动量值大多是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。
影响振动试验中振动量值的正确获得,除了与传感器的安装位置、试件的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。
本文结合理论及实际经验,介绍振动试验中压电式加速度传感器的选择。
1.灵敏度压电式加速度传感器的灵敏度有两种表示方法,一个是电荷灵敏度Sq,另一个是电压灵敏度Sv,其电学特性等效电路如图1。
图1压电式加速度传感器的是电学特性等效电路压电片上承受的压力为F1=ma,在压电片的工作表面上产生的qa 与被测振动的加速度a成正比:即展开剩余85%Qa=Sqa其中,比例系数Sq就是压电式加速度传感器的电荷灵敏度,量纲是[pC/ms²]。
传感器的开路电压:Ua=Qa/Ca式中,Ca为传感器的内部电容量,对于一个特定的传感器来说,Ca为一个确定值。
所以也就是说,加速度传感器的开路电压Ua也与被测加速度a成正比,比例系数Sv就是压电式加速度传感器的电压灵敏度,量纲是[mV/ms²]。
Ua=(Sq/Ca)*a在压电式加速度传感器的使用说明书上所标出的电压灵敏度,一般是指在限定条件下的频率范围内的电压灵敏度Sv。
在通常条件下,当其它条件相同时,几何尺寸较大的加速度传感器有较大的灵敏度。
使用说明书上还会给出最小加速度测量值,也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可能值,以确保最佳信噪比。
速度和加速度传感器选用参数
iii.环境温度:-55~121度C
e.330525压电晶体速度传感器
i.坚固性的330500
ii.灵敏度系数3.94,4.5~2kHz +/- 3dB
iii.环境温度:-55~121度C
f.330530射线防护型压电晶体速度传感器
i.可防gamma射线
ii.灵敏度系数3.94,6~2.5kHz +/- 3dB
iii.环境温度:-55~121度C
g.330750,330752高温压电晶体速度传感器(HTVS)
i.灵敏度系数5.7,15~2kHz +/- 3dB
ii.探头部分温度:-55~400度C;电子元件部分温度:-55~121度C
iii.前者是四角安装,后者是中间螺纹安装
iv.环境温度:-54~121度C
ii.环境温度:-55~121度C
j.330450高温加速度传感器(HTAS)
i.灵敏度系数100,15~10kHz +/- 3dB
ii.探头部分温度:-55~400度C;电子元件部分温度:-55~121度C
k.200150/200155/200157加速度传感器
i.主要用于TM系统
ii.灵敏度系数100
本特利速度、加速度传感器
1.速度传感器
a.低频速度传感器330505
i.低频至4Hz以下的运动绕组两线接头传感器
ii.用于水电机组,转速低且要求低的信噪比
iii.内部有调制电路,可直接接3500/46
iv.与TM系列没.不能用于机器自动保护,只能用于早期报警和故障诊断
iv.安装件的固有频率要大于15KHz
v.速度输出:3.94灵敏度,18Hz~1KHz +/- 5%;10Hz~2KHz +/-3 dB
加速度传感器类型种类【大全】
加速度传感器是一种能够测量加速度的传感器。
通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。
传感器在加速过程中,通过对质量块所受惯性力的测量,利用牛顿第二定律获得加速度值。
根据传感器敏感元件的不同,常见的加速度传感器包括电容式、电感式、应变式、压阻式、压电式等。
加速度传感器工作原理线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量)我们只需要测量F就可以了。
怎么测量F?用电磁力去平衡这个力就可以了。
就可以得到F对应于电流的关系。
只需要用实验去标定这个比例系数就行了。
当然中间的信号传输、放大、滤波就是电路的事了。
现代科技要求加速度传感器廉价、性能优越、易于大批量生产。
在诸如军工、空间系统、科学测量等领域,需要使用体积小、重量轻、性能稳定的加速度传感器。
以传统加工方法制造的加速度传感器难以全面满足这些要求。
于是应用新兴的微机械加工技术制作的微加速度传感器应运而生。
这种传感器体积小、重量轻、功耗小、启动快、成本低、可靠性高、易于实现数字化和智能化。
而且,由于微机械结构制作精确、重复性好、易于集成化、适于大批量生产,它的性能价格比很高。
可以预见在不久的将来,它将在加速度传感器市场中占主导地位。
加速度传感器按工作原理可分为压电式、压阻式和电容式。
1、压电式传感器:压电式传感器是通过利用某些特殊的敏感芯体受振动加速度作用后会产生与之成正比的电荷信号的特性,来实现振动加速度的测量的,这种传感器一般都具有测量频率范围宽、量程大、体积小、重量轻、结构简单坚固、受外界干扰小以及产生电荷信号不需要任何外界电源等优点,它最大的缺点是不能测量零频率信号。
1)按敏感芯体材料按敏感芯体材料分为压电晶体(一般为石英)和压电陶瓷两类。
压电陶瓷比压电晶体的压电系数要高,而且各项机电系数随温度时间等外界条件的变化相对较小,因此一般更常用的是压电陶瓷。
2)按敏感芯体结构形式按敏感芯体结构形式分为压缩式、剪切式和弯曲变形梁式。
加速度传感器主要技术指标
加速度传感器主要技术指标1. 测量范围(Measurement Range):加速度传感器能够测量的加速度的范围。
常见的测量范围从几个g到几百g不等,其中1g等于地球上的重力加速度9.8m/s²。
2. 分辨率(Resolution):加速度传感器能够区分的最小加速度变化。
通常以m/s²或g为单位。
3. 灵敏度(Sensitivity):加速度传感器输出信号相对于输入加速度的变化率,常以mV/g或mV/m/s²表示。
灵敏度越高,传感器对于微小加速度的响应越快。
4. 零点偏移(Zero Offset):在没有加速度作用下,传感器输出的信号不为零。
零点偏移指的是传感器输出信号与零点之间的差值。
通常以mV为单位。
5. 频率响应(Frequency Response):加速度传感器能够测量的加速度变化的频率范围。
常见的频率范围从几Hz到几千Hz不等。
6. 噪声(Noise):传感器输出信号的不确定性。
传感器噪声越小,对于微小加速度的测量越精确。
7. 非线性度(Nonlinearity):传感器输出信号与输入加速度之间的偏差。
常表示为百分比或者以g为单位。
8. 温度稳定性(Temperature Stability):传感器在不同温度下的输出信号的变化范围。
温度稳定性越好,传感器的测量精度越高。
9. 动态测量范围(Dynamic Range):加速度传感器能够测量的最大加速度和最小加速度之间的比值。
动态测量范围越大,传感器能够测量的加速度范围越宽。
10. 失真(Distortion):因非线性效应导致的传感器输出信号与实际加速度之间的偏差。
失真常以百分比表示。
此外,加速度传感器还可能具有以下特殊技术指标:11. 反向振动抑制特性(Anti-vibration Characteristics):传感器在高频振动环境下的稳定性能。
反向振动抑制特性好的传感器能够减小振动对于测量结果的影响。
加速度传感器参数说明【详解】
参数说明及工作原理:1.电荷灵敏度加速度计一般采用PZT压电陶瓷材料,利用晶体材料在承受一定方向的应力或形变时,其极化面会产生与应力相应的电荷,压电元件表面产生的电荷正比于作用力,因此有Q=dF其中,Q为电荷量,d为压电元件的压电常数,F为作用力。
加速度计的电荷灵敏度则是加速度计输出的电荷量与其输入的加速度值之比。
电荷量的单位取pC,加速度单位为m/s2。
(1g=9.8m/s2)2.电压灵敏度如果要换算加速度计的电压灵敏度,则可用下面公式得到SqSa = (v/ms-2)CaSq为电荷灵敏度,单位pC/ms-2;Ca为电容量,单位pF。
Sa电压灵敏度单位V。
3.频率响应(1)谐振频率,为加速度计安装时的共振频率,随产品附有谐振频率曲线(低频传感器不附图)。
(2)频率响应一般采用谐振频率的1/3—1/5。
加速度计频响在1/3谐振频率时,频响与参考灵敏度偏差≤1dB,(误差<10%)。
频响在1/5谐振频率时,频响与参考灵敏度≤ 0.5dB (误差<5%)。
我公司传感器频响均以1/3谐振频率计算。
4.最大横向灵敏度比加速度计受到垂直于安装轴线的振动时,仍有信号输出,即垂直于轴线的加速度灵敏度与轴线加速度之比称横向灵敏度。
5. 电荷输出的压电式加速度计配合电荷放大器,其系统的低频响应下限主要取决于放大器的频响。
二、安装技术及注意事项:(一)安装方式用加速度计进行测量,为使数据准确和使用方便,可使用多种方法安装,现介绍几种供选用。
1.螺钉安装RC6000系列加速度计有M5、M3安装孔及传感器自带螺栓等形式,以M5孔居多。
加速度计随产品附有安装螺钉。
使用螺钉安装,它的使用频率响应可近似原标定的频率响应,且称刚性安装。
螺钉安装是在允许打孔的被测物上沿振源轴线方向打孔攻丝。
2.粘接安装在被测物体不允许钻孔时,可使用各种粘接剂,如“502”、环氧树脂胶、双面粘胶带、橡皮泥。
应注意,前二种方法的使用频率接近刚性安装方法,后两种一般用于低频现场,且会使被测频率大大降低。
振动试验中加速度传感器的选择
振动试验中加速度传感器的选择The Choice of Acceleration Sensor in the Vibration Testing环境适应性和可靠性2009.3国家电子计算机质量监督检验中心符瑜慧李雪松杨红左进凯 FU Yu-hui LI Xue-song YANG Hong ZUO Jin-kai摘要:参与振动试验中振动量值的获得,最直接也是主要的单元之一是加速度传感器。
本文将重点对压电式加速度传感器的工作原理及影响其选型的主要因素进行探讨。
关键词:传感器;选择Abstract: Getting the vibration force in the vibration testing, there is a unit-sensor which is directness and importance. This paper will talk about that the voltage acceleration sensor function and the important factor which must think about in choosing the sensor type.Key Words:sensor ; choice.1 引言振动试验中,我们对控制点、监测点等的振动量值都是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。
如果控制点所得到的数值不真实,就会影响到我们对试验样品的振动应力施加,可能是欠应力或过应力,欠应力会导致不能真实反应样品的质量信息,达不到预期考察样品“抗振”的试验目的,过应力可能会使样品损害,或据此以样品进行改进设计,增加企业成本;如果监测点所得到的数值不真实,监测的作用就推动了应有的作用,达不到监测振动台面和样口某薄弱环节的作用,甚至会带来不必要的错误改进。
因此,影响振动试验中振动量值的正确获得,除了与传感器的安装位置、样品的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。
加速度传感器的原理及其选型方法
加速度传感器的原理及其选型方法
加速度传感器的原理是基于牛顿第二定律,即力等于质量乘以加速度。
传感器内部有一个质量块,当物体加速时,质量块会受到一个力,从而产
生一个与加速度成正比的电信号。
这个电信号可以被读取和分析,从而得
到物体的加速度。
选型加速度传感器时,需要考虑以下几个因素:
1.测量范围:加速度传感器的测量范围是指它可以测量的最大加速度。
根据应用需求选择适当的测量范围,以确保传感器可以准确地测量所需的
加速度。
2.灵敏度:加速度传感器的灵敏度是指它可以检测到的最小加速度变化。
灵敏度越高,传感器可以检测到更小的加速度变化。
在选择传感器时,需要考虑应用中所需的精确度和灵敏度。
3.频率响应:加速度传感器的频率响应是指它可以测量的加速度变化
的最高频率。
根据应用需求选择具有适当频率响应的传感器,以确保传感
器可以捕捉到所需的高频加速度变化。
4.温度特性:加速度传感器的性能可能会受到温度变化的影响。
在选
择传感器时,需要考虑传感器在不同温度下的性能表现,以确保传感器在
所需的温度范围内能够提供准确的测量结果。
5.接口类型:加速度传感器可以采用不同的接口类型,如模拟输出、
数字输出或无线输出。
根据应用需求选择适当的接口类型,以便传感器可
以与其他设备进行通信和集成。
综上所述,选型加速度传感器时需要考虑测量范围、灵敏度、频率响应、温度特性和接口类型等因素。
根据应用需求选择适当的传感器,以确保能够获得准确可靠的加速度测量结果。
加速度传感器主要参考性能指标
一、加速度传感器主要技术指标:序号项目技术指标1 测量范围±6g2 测量轴数3轴3 分辨率<10-5g4 灵敏度>200mV/g(提供高温、高压时的灵敏度指标)5 满量程输出±5.0v,单端、差分输出可选。
线性度≤1%67 频率选择0.2Hz~1kHz(应避开谐振频率)8 噪声均方根值<610 g9 温度稳定性灵敏度变化应≤±0.06%/℃10 零点漂移(-20~60)℃<500μg/℃n11 运行环境温度(-18~121)℃12 迟滞<0.1%满量程13 自动零位调整如仪器具备自动零位调校功能,该功能应能由用户根据需要自行开启或关闭。
14 功能测试要求可提供自振频率和阻尼输出信号来检查加速度计工作情况15 相对湿度>95%16 其他要求应给出加速度计输出电阻、输出极性,安装方式、安装角度范围、重量、外形尺寸以及最大能承受的极限加速度和运输过程中允许的最大冲击加速度,提供相应加速度计端电连接器。
整体上应满足信号波动小、稳定性好、抗干扰好,可长线使用(能适合300米以下水深的使用要求)等。
二、数据采集系统主要技术指标:序号项目技术指标1 最高采样率(Hz)>5002 采样精度(Bit)243 分辨率(Bit)244 记录容量>512 MB5 无线传输距离>2 Km6 单台通道数8个以上7 使用环境温度(-18~121)℃8 湿度>95%9 供电方式电池(持续供电时间)和外部供电10 程控放大倍数1、2、4、8、16、32、64、12811 程控滤波(Hz)5、10、20、50、100、200、500、1K、2K、5K、10K12 增益误差百万分之几(ppm)13 非线性度(INL)积分非线性和(DNL)差分非线性整体上要满足无线、抗干扰、精度高、数据传输快、传输距离远、便于野外操作等条件。
加速传感器的技术指标
加速传感器的技术指标加速传感器是一种常用的测量物体加速度的传感器,主要应用在汽车、飞机、数码相机等领域中。
准确度和稳定性是衡量加速传感器性能的重要指标,而在具体应用中,传感器的灵敏度、频率范围等指标也是非常重要的考虑因素。
常用的技术指标1. 灵敏度加速传感器的灵敏度用于描述传感器输出信号相对于其输入的敏感程度。
传感器的灵敏度通常以 mV/g(每克毫伏)为单位进行表示。
例如,具有 100 mV/g 灵敏度的传感器将在受到 1g 加速度时产生 100 毫伏的电压输出信号。
2. 动态范围传感器的动态范围是指能够测量的加速度范围。
动态范围通常以 g 为单位进行表示。
例如,一个10g 动态范围的传感器可以测量-10g 到+10g 的一切加速度值。
3. 分辨率分辨率指传感器测量能力的精度,它是传感器所能检测到的两个信号间最小可测量的差异。
分辨率的单位是 g,通常表示在传感器没有噪声干扰的情况下,最小可测的加速度的大小。
4. 偏移传感器的偏移指传感器在加速度为 0 的情况下产生的输出差异。
传感器的偏移通常以 mg(每克毫克)为单位进行表示。
5. 基本频率基本频率是指传感器能够测量的最高频率。
它取决于传感器的自然频率和防抖措施的质量。
6. 稳定性稳定性是指传感器在不同时间或环境下,输出信号的变化程度。
稳定性通常以ppm(每百万分比)或 mg/h 为单位进行表示。
如何选择加速传感器在选择加速传感器时,需要考虑以下因素:1.应用场景。
不同场景下的应用要求传感器具有不同的技术指标,如车载、航空等领域。
2.环境特征。
如温度、湿度等环境特征对传感器的影响,以及传感器的灵敏度是否满足需求等。
3.精度要求。
不同的使用场景需要具有不同的精度和稳定性要求。
4.可靠性要求。
对于一些关键应用,传感器的性能指标不仅需要满足特定的要求,还需要具备较高的可靠性。
5.成本。
在选择加速传感器时,成本也是重要的考虑因素之一。
总结加速传感器是一种常用的传感器类型,根据传感器的技术指标可以判断传感器是否适合应用场景,从而选择更加合适的传感器。
加速度传感器原理与使用选择
加速度传感器原理与使用选择
在选择加速度传感器时,需要考虑以下几个因素:
1.测量范围:加速度传感器的测量范围是指它可以测量的加速度的最大值和最小值。
根据需要测量的物体运动状态,选择合适的测量范围。
2.精度:精度是指传感器测量结果与真实值之间的偏差。
通常以百分比或者最大偏差来表示。
选择精度较高的传感器可以提高测量结果的准确性。
3.输出类型:加速度传感器的输出类型可以是模拟信号或数字信号。
根据系统的要求和接口的兼容性,选择合适的输出类型。
4.尺寸和重量:加速度传感器尺寸和重量的大小对于特定应用场景很重要。
如果应用场景对于尺寸和重量有限制,选择体积小、重量轻的传感器。
5.工作温度范围:加速度传感器的工作温度范围是指它可以正常工作的环境温度范围。
根据应用场景的温度条件,选择具有合适工作温度范围的传感器。
6.耐久性和可靠性:加速度传感器需要具有较好的耐久性和可靠性,以保证长时间稳定工作。
选择经过可靠性测试和具有较长使用寿命的传感器。
7.电源和功耗:加速度传感器需要供电才能正常工作,而不同的传感器的电源要求和功耗也会有所不同。
根据系统的电源供给和功耗限制,选择合适的传感器。
总之,选择合适的加速度传感器需要综合考虑以上几个因素,根据应用场景的需求和约束条件来进行选择。
加速度传感器主要技术指标
加速度传感器主要技术指标1.测量范围:加速度传感器的测量范围指的是能够准确测量的加速度范围。
通常以重力加速度(g)作为单位,常见的测量范围有±2g、±4g、±8g、±16g等。
选择合适的测量范围要根据具体应用需求而定,避免数据超出测量范围导致失真或损坏。
2.灵敏度:加速度传感器的灵敏度指的是单位加速度变化所引起的传感器输出变化。
一般以mV/g或mV/m/s²作为单位,越高代表灵敏度越高。
高灵敏度的传感器可以提供更精确的测量结果,但也容易受到噪音的影响。
3.频率响应:加速度传感器的频率响应指的是传感器能够测量的有效频率范围。
频率响应通常以Hz为单位,常见的范围为0-1000Hz或更高。
高频率响应对于测量快速加速度变化的场景非常重要。
4.噪音水平:加速度传感器的噪音水平是一个重要的指标,它影响了传感器的信号质量和测量精度。
噪音通常用加速度单位(g)表示,即m/s²。
噪音水平越低代表传感器测量结果更准确。
5.非线性误差:加速度传感器有一个称为非线性误差的指标,它描述了传感器输出与实际加速度之间的偏差。
非线性误差通常以百分比或最大误差(最大偏差值)来表示。
较小的非线性误差意味着较高的测量精度。
6.温度稳定性:加速度传感器的测量结果可能会受到温度变化的影响,因此温度稳定性是一个重要的指标。
它描述了传感器在温度变化时输出是否稳定。
常见的温度范围为-40°C至+125°C。
7.冲击和振动耐受性:加速度传感器常常用于测量冲击和振动,因此它们需要具备良好的冲击和振动耐受性。
这些指标通常以g为单位,描述了传感器可以承受的最大冲击和振动力的大小。
8.供电电压和功耗:加速度传感器的供电电压和功耗是设计和应用中需要考虑的重要因素。
供电电压通常为3.3V或5V,功耗越低代表传感器使用电池的续航时间越长。
9.接口:加速度传感器常常需要与其他设备进行数据交换,因此传感器的接口也是需要考虑的指标。
压电加速度传感器选择和使用时的注意事项
压电加速度传感器选择和使用时的注意事项压电式加速度计具有体积小、重量轻(一般重几十克,最轻的甚至只有0.4克)、量程大(可达104g)、工作频带宽(本身固有频率最高的可达105Hz以上)等优点,是广泛采用的振动传感器。
根据各种测量要求,压电式加速度计有多种型号可供选择。
在选择和使用压电式加速度计时,还应注意以下各点:1. 灵敏度和频率范围之间的矛盾通常几何尺寸较小的加速度计具有较高的固频率,因而具有较高的工作频带;但是几何尺寸较小的加速度计其灵敏度也较低。
2. 注意安装固定方法加速度计的主轴方向应与被侧振动方向一致。
对于体积较小的加速度计,做到这一点是必须十分仔细的。
当存在与主轴方向向垂直的振动时,在保持主轴方向与被侧振动方向严格一致的同时,最好注意使横向最小灵敏度方向与垂直振动方向一致。
许多加速度计上用一红点来标明最小灵敏度方向。
3. 接线电缆的固定由于压电式加速度计是高阻抗仪器,要特别注意防止所谓“噪声干扰”。
接线电缆受到动力弯曲、压缩、拉伸等作用时会引起导体和屏蔽之间的局部电容和电荷的变化,从而形成“噪声干扰”。
因此,接线电缆要尽可能固定好,以避免相对运动。
4. 避免接地回路加速度计的安装以及与前置放大器、分析仪等仪表的连接,若形成接地回路,则通过地回路压降将影响测量效果,测量信号会混入“交流声”。
避免形成接地回路的方法是保证整个测量系统只在一点接地。
5. 背景噪声水平的监测为了保证测量结果的精确性,最好能经常检测振动量测系统的背景噪声水平。
方法是将加速度计安装在现场的“无振动”物体上,测量此时的“视在振动”水平。
要想在实际振动测量中获得合理的精确度,“视在振动水平”应小于被测振动量的1/3。
换句话说,背景噪声的电平至少要比被测振动电平低10dB。
6. 加速度计极性的考虑对于振动测量,可不必考虑加速度计极性;对于冲击测量时,应了解后续三次仪表是否对极性有要求。
7. 测试构件安装表明处理一般,传感器的底面经研磨光洁度<>8. 测试构件传感器安装孔深度及安装力矩测试构件的安装孔需要配合螺栓确定其深度,且安装力矩要合适,推荐安装力矩为3Nm。
冲击加速度传感器的选择该怎么做呢
冲击加速度传感器的选择该怎么做呢在工业领域,冲击加速度传感器是一种广泛使用的传感器类型,被广泛应用于测量冲击、振动和震动等应用场景中。
从汽车制造到医疗设备再到工业控制,冲击加速度传感器可以提供准确的数据,以帮助优化系统性能和生产率。
然而,为了选购一款合适的冲击加速度传感器,我们需要了解一些重要的性能指标和选购因素。
1. 频率响应频率响应是决定传感器能否准确地测量特定频率振动的最重要因素之一。
不同应用场景下的传感器需要有不同的频率响应能力。
通常情况下,我们要选用适合我们应用场景中振动频率的冲击加速度传感器。
如果我们选择的传感器频率响应太低,可能会导致丢失重要的振动信息。
选择频率响应范围更宽的传感器通常意味着更高的成本,因此权衡成本和准确性,进行选型。
2. 测量范围另一个我们需要考虑的重要性能指标是测量范围。
这是传感器能够正常工作的振动水平范围。
我们需要测量的振动水平决定了我们需要选择多大的测量范围。
如果传感器不能测量预期的最大振动水平,它就可能无法提供有用的测量数据。
另一方面,如果传感器被过度震动,会对传感器造成伤害,甚至可能打破传感器。
因此,选用适宜的测量范围是至关重要的。
3. 灵敏度灵敏度指的是给定的加速度水平下输出传感器的电信号值。
通过了解传感器的灵敏度,我们可以确定测量的精度,并将数据与其他传感器进行比较。
灵敏度通常用“mv/g”(mv每重力单位)表示。
越高的灵敏度通常意味着更准确的测量,但也需要更高的价格。
因此,合理的选择增益是非常重要的。
4. 工业环境要求在工业环境中,冲击加速度传感器需要承受极其严苛的条件。
因此,对于不同的工业环境,我们需要选择不同类型的传感器。
例如,在化学品生产线上,我们需要使用耐腐蚀的传感器;在油田中选择有防水和防尘功能的传感器。
关注并了解传感器的材料和防护等级是非常关键的。
5. 品牌与可靠性最后,品牌与可靠性也是我们一定要考虑的因素。
在选择冲击加速度传感器时,我们要选择知名品牌的传感器,并通常会选择在市场上备受好评的厂家。
冲击加速度传感器的选择
冲击加速度传感器的选择冲击加速度传感器是一种具有高精度、高灵敏度和高可靠性的测量装置,常用于工业控制、运动测量、安全监测等领域。
在选择一款适合自己的冲击加速度传感器时,需要考虑多种因素,如量程、灵敏度、传感器类型、安装方式、信号输出方式等。
量程量程是指传感器能够测量的最大加速度范围,通常以g为单位。
传感器的量程应该与测量对象的加速度范围相匹配,否则将无法正确测量。
一般来说,传感器的量程应该略大于测量对象的最大加速度值,但是也不宜选取过大的量程,因为过大的量程会降低传感器的测量灵敏度。
灵敏度灵敏度是指传感器的输出电压或电流与其所受外部加速度之间的比值。
传感器的灵敏度应该与测量对象的加速度变化范围相适应,如果灵敏度过低,则无法测量微小的加速度变化;如果灵敏度过高,则可能因环境噪声等原因产生误差。
一般来说,灵敏度应该在0.1 mV/g至100 mV/g之间。
传感器类型冲击加速度传感器根据其工作原理可以分为压电型、压阻型、微机械制造型等多种类型。
不同类型的传感器具有不同的测量范围、工作温度范围和稳定性等特点。
在选择传感器类型时,应该根据具体的应用需求进行综合考虑。
安装方式传感器的安装方式对其测量结果有很大的影响。
传感器安装时应该避免振动、冲击等外部干扰,并确保与测量对象之间的接触良好。
一般来说,传感器的安装应该在原材料的生产过程中进行,以便更好地控制测量对象的状态,并且能够减少测量误差。
信号输出方式冲击加速度传感器的信号输出方式通常有模拟输出和数字输出两种。
模拟输出通常是输出电压或电流等模拟信号,需要使用模拟信号采集卡进行采集和处理;数字输出则直接输出数字信号,可以直接与计算机等设备相连。
在选择信号输出方式时,应该根据具体的应用场景和设备要求进行综合考虑。
综上所述,选择冲击加速度传感器时,应该根据测量对象的加速度范围、输出信号等特点进行综合考虑,以选择适合自己的传感器。
在使用传感器时,应该注意传感器的安装方式和环境条件,以确保传感器的测量结果准确可靠。
加速度传感器
加速度传感器————————————————————————————————作者: ————————————————————————————————日期:加速度传感器一、简介加速度传感器是一种能够测量加速度的传感器。
通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。
传感器在加速过程中,通过对质量块所受惯性力的测量,利用牛顿第二定律获得加速度值。
根据传感器敏感元件的不同,常见的加速度传感器包括电容式、电感式、应变式、压阻式、压电式等。
二、分类压电式压电式加速度传感器又称压电加速度计。
它也属于惯性式传感器。
压电式加速度传感器的原理是利用压电陶瓷或石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。
当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。
压阻式基于世界领先的MEMS硅微加工技术,压阻式加速度传感器具有体积小、低功耗等特点,易于集成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监测等领域。
电容式电容式加速度传感器是基于电容原理的极距变化型的电容传感器。
电容式加速度传感器/电容式加速度计是对比较通用的加速度传感器。
在某些领域无可替代,如安全气囊,手机移动设备等。
电容式加速度传感器/电容式加速度计采用了微机电系统(MEMS)工艺,在大量生产时变得经济,从而保证了较低的成本。
伺服式伺服式加速度传感器是一种闭环测试系统,具有动态性能好、动态范围大和线性度好等特点。
其工作原理,传感器的振动系统由"m-k”系统组成,与一般加速度计相同,但质量m 上还接着一个电磁线圈,当基座上有加速度输入时,质量块偏离平衡位置,该位移大小由位移传感器检测出来,经伺服放大器放大后转换为电流输出,该电流流过电磁线圈,在永久磁铁的磁场中产生电磁恢复力,力图使质量块保持在仪表壳体中原来的平衡位置上,所以伺服加速度传感器在闭环状态下工作。
由于有反馈作用,增强了抗干扰的能力,提高测量精度,扩大了测量范围,伺服加速度测量技术广泛地应用于惯性导航和惯性制导系统中,在高精度的振动测量和标定中也有应用。
加速度传感器原理与使用选择
加速度传感器原理与使用选择一、加速度传感器的原理常见的加速度传感器有压电式加速度传感器和微机电系统(MEMS)加速度传感器。
1.压电式加速度传感器压电式加速度传感器是一种利用压电效应测量加速度的传感器。
压电材料具有压电效应,即在施加压力时会产生电荷。
压电式加速度传感器包含一个压电材料晶体和一个负载电容。
当传感器受到加速度时,晶体会受到压力变形,从而产生电荷。
通过测量负载电容的电荷变化,可以间接测量加速度。
2.MEMS加速度传感器MEMS加速度传感器利用微机电系统技术制造,是一种微小化的加速度传感器。
MEMS加速度传感器通常由微小质量的振动结构和感应器件组成。
当传感器受到加速度时,振动结构会产生微小的位移,感应器件可以测量位移并将其转换为电信号。
MEMS加速度传感器具有体积小、功耗低、成本低等优点。
二、加速度传感器的使用选择在选择加速度传感器时,需要考虑以下因素:1.测量范围:加速度传感器的测量范围决定了可以测量的最大加速度值。
根据具体应用需求选择适当的测量范围,避免传感器过载或无法测量。
2.精度:传感器的精度决定了其测量结果的准确性。
根据应用需求选择合适的精度,例如在高精度测量领域需要选择高精度传感器。
3.响应频率:加速度传感器的响应频率决定了传感器对高频振动的响应能力。
根据应用需求选择适当的响应频率,以确保传感器能够满足测量要求。
4.接口类型:加速度传感器的接口类型包括模拟接口和数字接口。
根据系统要求选择合适的接口类型,以便与系统进行数据通信。
5.工作温度范围:加速度传感器的工作温度范围决定了其在不同环境下的适用性。
根据应用环境选择适当的工作温度范围,以确保传感器能够正常工作。
6.供电电压:加速度传感器的供电电压决定了传感器的电源要求。
根据系统电源供应情况选择合适的供电电压。
7.封装类型:加速度传感器的封装类型决定了传感器的外形和安装方式。
根据具体应用需求选择适当的封装类型,以方便传感器的安装和使用。
选择振动测量加速度传感器的方法
工业级别振动测量加速度传感器实际应用是根据测量对象和与测量系统的组合。
在类似情况下对测量对象进行实时监测即所谓在线监测其次需要定期对测量对象巡回检测。
相对于其他的环境工业振动测量的周边环境相对都比较恶劣,在线监测的加速度传感器到数字采集系统一般都有需要在一定的距离,因此高阻抗的电荷信号就非常容易受干扰。
除现场是高温测量外,工业振动在线监测用的传感器通常都选用带内置电路的电压输出型。
而对巡回检测用传感器往往因为出于对成本的考虑大多使用电荷输出型压电加速度传感器。
工业操作振动的测量一般的灵敏度考虑在50mV/g, 100mV/g 和 200 mV/g 的加速度传感器,然而对传感器的频率范围则必须根据不同的测量对象进行选择。
需要指出的是加速度传感器的安装形式和质量好坏以及不同的电缆配备都会直接影响到传感器的高频使用。
这些影响频响的因素虽不能从传感器的技术指标上完全反映,但都是工业振动加速度传感器使用中常见的问题。
一般情况下使用加速度传感器测量旋转冲击设备的振动速度是非常理想的,虽然有需要考虑温度对测量的结果有所影响,这个也是如今加速度测量的一个难题。
但是如果真正的考虑,主要问题然而也不是温度,而是量程和灵敏度。
如果加速度传感器的偏置电压不稳定,这将直接影响测量信号。
目前法国的传感器在这些方面的改进是最理想的,由于工业测量现场环境条件复杂多变,因此在电缆选择时首先要确保信号的质量,将外部噪声对信号的干扰降低到最小;可以直流电压供电,输出4-20mA的专业工业加速度传感器,其次是考虑电缆的寿命和使用方便程度。
在法国加速度传感器也称加计,高低精度的加速度传感器、微加速度计、加表,不同响应频率,各种精度。
可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。
微机械结构,微型尺寸,可以直接焊接在PCB版上。
传感器的灵敏度和量程如何选择
压电型式的加速度计是振动测试的最主要传感器。
虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。
作为选用振动传感器的一般原则:正确的选用应该基于对测量信号以下三方面的分析和估算。
a.被压电型式的加速度计是振动测试的最主要传感器。
虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。
作为选用振动传感器的一般原则:正确的选用应该基于对测量信号以下三方面的分析和估算。
a.被测振动量的大小b.被测振动信号的频率范围c.振动测试现场环境以下将针对上述三个方面并参照传感器的相关技术指标对具体的选用作进一步地讨论传感器的灵敏度与量程范围传感器的灵敏度是传感器的最基本指标之一。
灵敏度的大小直接影响到传感器对振动信号的测量。
不难理解,传感器的灵敏度应根据被测振动量(加速度值)大小而定,但由于压电加速度传感器是测量振动的加速度值,而在相同的位移幅值条件下加速度值与信号的频率平方成正比,所以不同频段的加速度信号大小相差甚大。
大型结构的低频振动其振动量的加速度值可能会相当小,例如当振动位移为1mm, 频率为1 Hz 的信号其加速度值仅为0.04m/s2(0.004g);然而对高频振动当位移为0.1mm,频率为10 kHz的信号其加速度值可达4 x 10 5m/s2 (40000g)。
因此尽管压电式加速度传感器具有较大的测量量程范围,但对用于测量高低两端频率的振动信号,选择加速度传感器灵敏度时应对信号有充分的估计。
最常用的振动测量压电式加速度计灵敏度,电压输出型(IEPE 型)为50——100 mV/g,电荷输出型为10 ——50 pC/g。
加速度值传感器的测量量程范围是指传感器在一定的非线性误差范围内所能测量的最大测量值。
通用型压电加速度传感器的非线性误差大多为1%。
作为一般原则,灵敏度越高其测量范围越小,反之灵敏度越小则测量范围越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程振动量值的物理参数常用位移、速度和加速度来表示。
由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。
常用单位为:米/秒2 (m/s2),或重力加速度(g)。
描述振动信号的另一重要参数是信号的频率。
绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。
对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。
最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。
压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。
传感器的种类选择·压电式- 原理和特点压电式传感器是利用弹簧质量系统原理。
敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。
压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。
虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常大。
与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。
·压阻式应变压阻式加速度传感器的敏感芯体为半导体材料制成电阻测量电桥,其结构动态模型仍然是弹簧质量系统。
现代微加工制造技术的发展使压阻形式敏感芯体的设计具有很大的灵活性以适合各种不同的测量要求。
在灵敏度和量程方面,从低灵敏度高量程的冲击测量,到直流高灵敏度的低频测量都有压阻形式的加速度传感器。
同时压阻式加速度传感器测量频率范围也可从直流信号到具有刚度高,测量频率范围到几十千赫兹的高频测量。
超小型化的设计也是压阻式传感器的一个亮点。
需要指出的是尽管压阻敏感芯体的设计和应用具有很大灵活性,但对某个特定设计的压阻式芯体而言其使用范围一般要小于压电型传感器。
压阻式加速度传感器的另一缺点是受温度的影响较大,实用的传感器一般都需要进行温度补偿。
在价格方面,大批量使用的压阻式传感器成本价具有很大的市场竞争力,但对特殊使用的敏感芯体制造成本将远高于压电型加速度传感器。
·电容式电容型加速度传感器的结构形式一般也采用弹簧质量系统。
当质量受加速度作用运动而改变质量块与固定电极之间的间隙进而使电容值变化。
电容式加速度计与其它类型的加速度传感器相比具有灵敏度高、零频响应、环境适应性好等特点,尤其是受温度的影响比较小;但不足之处表现在信号的输入与输出为非线性,量程有限,受电缆的电容影响,以及电容传感器本身是高阻抗信号源,因此电容传感器的输出信号往往需通过后继电路给于改善。
在实际应用中电容式加速度传感器较多地用于低频测量,其通用性不如压电式加速度传感器,且成本也比压电式加速度传感器高得多。
压电式传感器的敏感芯体材料和结构形式·压电材料压电材料一般可以分为两大类,即压电晶体和压电陶瓷。
在压电型加速度计的最常用的压电晶体为石英,其特点为工作温度范围宽,性能稳定,因此在实际应用中经常被用作标准传感器的压电材料。
由于石英的压电系数比其他压电材料低得多,因此对通用型压电加速度计而言更为常用的压电材料为压电陶瓷。
压电陶瓷中锆钛酸铅(PZT)是目前压电加速度计中最经常使用的压电材料。
其特点为具有较高的压电系数和居里点,各项机电参数随温度时间等外界条件的变化相对较小。
必须指出的是,就同一品种的压电陶瓷而言,虽然都有相同的基本特性,但由于制作工艺不同可以使两个相同材料的压电陶瓷的具体性能指标相差甚大。
这种现象可以通过典型的国产传感器和进口传感器的比较得以反映,国内振动测试业几十年的经验对此深有体会。
·传感器敏感芯体的结构形式压电加速度传感器的敏感芯体一般由压电材料和附加质量块组成,当质量块受到加速度作用后便转换成一个与加速度成正比并加载到压电材料上的力,而压电材料受力后在其表面产生一个与加速度成正比的电荷信号。
压电材料的特性决定了作用力可以是受正应力也可以是剪应力,压电材料产生的电荷大小随作用力的方向以及电荷引出表面的位置而变。
根据压电材料不同的受力方法,常用传感器敏感芯体的结构一般有以下三种形式:1)压缩形式–压电材料受到压缩或拉伸力而产生电荷的结构形式。
压缩式敏感芯体是加速度传感器中最为传统的结构形式。
其特点是制造简单方便,能产生较高的自振谐振频率和较宽的频率测量范围。
而最大的缺点是不能有效地排除各种干扰对测量信号的影响。
2)剪切形式–通过对压电材料施加剪切力而产生电荷的结构形式。
从理论上分析在剪切力作用下压电材料产生的电荷信号受外界干扰的影响甚小,因此剪切结构形式成为最为广泛使用的加速度传感器敏感芯体。
然而在实际制造过程中,确保剪切敏感芯体的加速度计持有较高和稳定的频率测量范围却是传感器制造中工艺中最为困难的一个环节。
北智BW-Sensor 采用进口记忆金属材料的紧固件从而保证传感器具有稳定可靠的谐振频率和频率测量范围。
3)弯曲变形梁形式- 压电材料受到弯曲变形而产生电荷的结构形式。
弯曲变形梁结构可产生比较大的电荷输出信号,也较容易实现控制阻尼;但因为其测量频率范围低,更由于此结构不能排除因温度变化而极容易产生的信号漂移,所以此结构在压电型加速度计的设计中很少被采用。
压电式加速度传感器的信号输出形式·电荷输出型传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。
实际使用中传感器输出的高阻抗电荷信号必须通过二次仪表将其转换成低阻抗电压信号才能读取。
由于高阻抗电荷信号非常容易受到干扰,所以传感器到二次仪表之间的信号传输必须使用低噪声屏蔽电缆。
由于电子器件的使用温度范围有限,所以高温环境下的测量一般还是使用电荷输出型。
北智BW-Sensor采用进口陶瓷的加速度计可在温度-40o C~250o C 范围内长期使用。
·低阻抗电压输出型(IEPE)IEPE 型压电加速度计即通常所称的ICP 型压电加速度计。
压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。
IEPE 型传感器通常为二线输出形式,即采用恒电流电压源供电;直流供电和信号使用同一根线。
通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。
IEPE 型传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的数采系统很多已配备恒流电压源,因此,IEPE 传感器能与数采系统直接相连而不需要任何其它二次仪表。
在振动测试中IEPE 传感器已逐渐取代传统的电荷输出型压电加速度计。
传感器的灵敏度,量程和频率范围的选择压电型式的加速度计是振动测试的最主要传感器。
虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。
作为选用振动传感器的一般原则:正确的选用应该基于对测量信号以下三方面的分析和估算。
a.被测振动量的大小b.被测振动信号的频率范围c.振动测试现场环境以下将针对上述三个方面并参照传感器的相关技术指标对具体的选用作进一步地讨论·传感器的灵敏度与量程范围传感器的灵敏度是传感器的最基本指标之一。
灵敏度的大小直接影响到传感器对振动信号的测量。
不难理解,传感器的灵敏度应根据被测振动量(加速度值)大小而定,但由于压电加速度传感器是测量振动的加速度值,而在相同的位移幅值条件下加速度值与信号的频率平方成正比,所以不同频段的加速度信号大小相差甚大。
大型结构的低频振动其振动量的加速度值可能会相当小,例如当振动位移为1mm, 频率为1 Hz 的信号其加速度值仅为0.04m/s2(0.004g);然而对高频振动当位移为0.1mm,频率为10 kHz的信号其加速度值可达4 x 10 5m/s2 (40000g)。
因此尽管压电式加速度传感器具有较大的测量量程范围,但对用于测量高低两端频率的振动信号,选择加速度传感器灵敏度时应对信号有充分的估计。
最常用的振动测量压电式加速度计灵敏度,电压输出型(IEPE 型)为50~100 mV/g,电荷输出型为10 ~ 50 pC/g。
加速度值传感器的测量量程范围是指传感器在一定的非线性误差范围内所能测量的最大测量值。
通用型压电加速度传感器的非线性误差大多为1%。
作为一般原则,灵敏度越高其测量范围越小,反之灵敏度越小则测量范围越大。
IEPE电压输出型压电加速度传感器的测量范围是由在线性误差范围内所允许的最大输出信号电压所决定,最大输出电压量值一般都为±5V。
通过换算就可得到传感器的最大量程,即等于最大输出电压与灵敏度的比值。
需要指出的是IEPE 压电传感器的量程除受非线性误差大小影响外,还受到供电电压和传感器偏置电压的制约。
当供电电压与偏置电压的差值小于传感器技术指标给出的量程电压时,传感器的最大输出信号就会发生畸变。
因此IEPE 型加速度传感器的偏置电压稳定与否不仅影响到低频测量也可能会使信号失真;这种现象在高低温测量时需要特别注意,当传感器的内置电路在非室温条件下不稳定时,传感器的偏置电压很可能不断缓慢地漂移而造成测量信号忽大忽小。
而电荷输出型测量范围则受传感器机械刚度的制约,在同样的条件下传感敏感芯体受机械弹性区间非线性制约的最大信号输出要比IEPE型传感器的量程大得多,其值大多需通过实验来确定。
一般情况下当传感器灵敏度高,其敏感芯体的质量块也就较大,传感器的量程就相对较小。
同时因质量块较大其谐振频率就偏低这样就较容易激发传感器敏感芯体的谐振信号,结果使谐振波叠加在被测信号上造成信号失真输出。
因此在最大测量范围选择时,也要考虑被测信号频率组成以及传感器本身的自振谐振频率,避免传感器的谐振分量产生。
同时在量程上应有足够的安全空间以保证信号不产生失真。
加速度传感器灵敏度的标定方法通常采用比较法检定,被校传感器在特定频率(通常为159 Hz 或80 Hz)振动的输出与标准传感器读得加速度值的比即为传感器灵敏度。
而对冲击传感器的灵敏度则通过测量被校传感器对一系列不同冲击加速度值的输出响应,获得传感器在其测量范围内输入冲击加速度值和电输出之间的对应关系,再通过数值计算获得与各点之间差值最小的直线,而这直线的斜率即是传感器的冲击灵敏度。
冲击传感器的非线性误差可以有两种方法表示:全量程偏差或按分段量程的线性误差。
前者是指传感器的全量程输出为基准的误差百分数,即无论测量值得大小其误差均为按全量程百分数计算而得的误差值。