三角形中位线定理巩固练习

合集下载

三角形的中位线定理练习题

三角形的中位线定理练习题

三角形的中位线定理练习题一、填空选择题:1.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm2、三角形三条中位线的长分别为3、4、5,则此三角形的面积为_________3.三角形的三边长分别为12cm、16cm、20cm,则它的中位线构成的三角形的周长与面积分别为____ 和___.4.三角形一条中位线分三角形所成的新三角形与原三角形周长之和为60 cm ,则原三角形的周长为_______. 5.三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是6.已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是(C )A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定7、在平行四边形ABCD中,AB=2AD,∠A=60°,E,F分别是AB,CD的中点,且EF=1cm,那么对角线BD=____cm.8、在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是____度.18°9.梯形的上底长4cm,下底长6cm,则梯形的中位线长为( B )A.12cmB.5cmC.10cmD.20cm10.如果梯形的一底为6,中位线为8,则另一底为( C ) A.4 B.7 C.10 D.14 11.已知等腰梯形ABCD的中位线EF的长为5,腰AD的长为4,则这个等腰梯形的周长为. 18 12.在四边形ABCD中,对角线AC=BD,那么顺次连结四边形ABCD各边的中点所得的四边形一定是( ) 13.梯形的中位线长16cm,梯形的一条对角线把中位线分成两条线段,这两条线段的差是4cm,则梯形上底长是cm. 12 cm14.梯形ABCD中,AD//BC,BD为对角线,中位线EF交BD于O点,若FO-EO=3,则BC-AD等于(B )A.4 B.6 C.8 D.1015.梯形ABCD中,AD∥BC,AD=12,BC=16,中位线EF与对角线分别相交于H和G,则GH的长是. 216.如图,梯形ABCD中,AD∥BC,EF为中位线,G为BC上任一点,如果S△GEF=cm2,那么梯形的面积是cm2.217.如图,EF 是△ABC 的中位线,BD 平分∠ABC 交EF 于D ,若DE =2,则EB =_____.2二、证明题:1.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点. 求证:四边形DEFG 是平行四边形.3.如图,已知四边形ABCD 中,点E ,F ,G ,H 分别是AB 、CD 、AC 、BD 的中点,并且点E 、F 、G 、H 有在同一条直线上.求证:EF 和GH 互相平分.4.如图,同底边BC 的△ABC 与△DBC 中,E 、F 、G 、H 分别是AB 、AC 、DB 、DC 的中点,求证:EH 与FG 互相平分。

人教版八年级数学下册《三角形的中位线定理》练习

人教版八年级数学下册《三角形的中位线定理》练习
∵E为AB的中点,AD=DF,
∴DE是△ABF的中位线,
∴DE= BF=2,
故选:A。
3.【答案】C
【解析】∵△ABC的中线BE与CD交于点G,
∴点G是△ABC的重心,
∴DE∥BC且DE= BC,所以选项A、B正确;
∵点G是△ABC的重心,根据重心性质或利用三角形相似可得BG=2GE,
∴选项D正确;
即△ABC的周长是△DBE的周长的2倍,
∵△DBE的周长是6,
∴△ABC的周长是:6×2=12。
故选:C。
2.【答案】A
【解析】∵CD平分∠ACB,
∴∠ACD=∠FCD,
在△ACD和△FCD中,
∠ACD=∠FCD;CD=CD;∠ADC=∠FDC,
∴△ACD≌△FCD,
∴FC=AC=8,AD=DF,
∴BF=BC-CF=4,
《三角形的中位线定理》练习
一、选择——基础知识运用
1.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是( )
A.8B.10C.12D.14
2.如图,在△ABC中,AC=8,BC=12,AF交BC于F,E为AB的中点,CD平分∠ACB,且CD⊥AF,垂足为D,连接DE,则DE的长为( )
A.线段EF的长逐渐增长
B.线段EF的长逐渐减小
C.线段EF的长始终不变
D.线段EF的长与点P的位置有关
5.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是( )
(2)若S△ABC=1,则第2014个三角形的面积是多少?第n个三角形的面积呢?

三角形中位线定理专练

三角形中位线定理专练

三角形中位线定理专练1.如图,在△ ABC中,D是AB上一点,且AD=AC,AE⊥ CD,垂足是E,F 是CB的中点.求证:BD=2EF.2.如图所示,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.求证:△ EFG是等腰三角形.3.在△ ABC中,中线BE、CF交于点O,M、N分别是BO、CO中点,则四边形MNEF是什么特殊四边形?并说明理由.4.如图,BE,CF是△ ABC的角平分线,AN⊥ BE于N,AM⊥ CF于M,求证:MN∥ BC.5.如图,BM、CN分别平分△ABC的外角∠ ABD、∠ ACE,过A分别作BM、CN的垂线,垂足分别为M、N,交CB、BC的延长线于D、E,连结MN.求证:MN=(AB+BC+AC)6.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠ DHF=∠ DEF.7.如图,在四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD 的中点,且AC=BD.求证:OM=ON.8.如图,M是△ ABC的边BC的中点,AN平分∠ BAC,BN⊥ AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ ABC的周长.三角形中位线定理专练参考答案与试题解析一.解答题(共8小题)1.(2014?山东模拟)如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.【考点】三角形中位线定理.菁优网版权所有【专题】常规题型.【分析】根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD 的中点,再求证EF为△BCD的中位线.【解答】证明:在△ACD中,因为AD=AC 且AE⊥CD,所以根据等腰三角形中底边的垂线与底边的交点即中点,可以证明:E为CD的中点,又因为F是CB的中点,所以,EF∥BD,且EF为△BCD的中位线,因此EF=BD,即BD=2EF.【点评】此题主要是中位线定理在三角形中的应用,考查在三角形中位线为对应边长的的定理.2.(2015春?天津校级期中)如图所示,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点.求证:△EFG是等腰三角形.【考点】三角形中位线定理;等腰三角形的判定.菁优网版权所有【专题】证明题.【分析】由于E,F,G分别是AB,CD,AC的中点,利用中位线定理,GF=AD,GE=BC,又因为AD=BC,所以GF=GE.【解答】证明:∵E,F,G分别是AB,CD,AC的中点.∴GF=AD,GE=BC.又∵AD=BC,∴GF=GE,即△EFG是等腰三角形.【点评】本题通过给出的中点,利用中位线定理,证得边相等,从而证明等腰三角形,是一道基础题.3.(2015秋?青岛校级月考)在△ABC中,中线BE、CF交于点O,M、N分别是BO、CO中点,则四边形MNEF是什么特殊四边形?并说明理由.【考点】三角形中位线定理;平行四边形的判定.菁优网版权所有【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,MN∥BC且MN=BC,从而得到EF∥MN且EF=MN,再根据一组对边平行且相等的四边形是平行四边形判断.【解答】解:四边形MNEF是平行四边形.理由如下:∵BE、CF是中线,∴E、F分别是AC、AB的中点,∴EF是△ABC的中位线,∴EF∥BC且EF=BC,∵M、N分别是BO、CO中点,∴MN是△OBC的中位线,∴MN∥BC且MN=BC,∴EF∥MN且EF=MN,∴四边形MNEF是平行四边形.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,熟记定理并准确识图是解题的关键.4.(2015春?泗洪县校级期中)如图,BE,CF是△ABC的角平分线,AN⊥BE 于N,AM⊥CF于M,求证:MN∥BC.【考点】三角形中位线定理;等腰三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】延长AN、AM分别交BC于点D、G,根据BE为∠ABC的角平分线,BE⊥AG可知∠BAN=∠BGN故△ABG为等腰三角形,所以BN也为等腰三角形的中线,即AM=GN.同理AM=DM,根据三角形中位线定理即可得出结论.【解答】证明:延长AN、AM分别交BC于点D、G.∵BE为∠ABC的角平分线,BE⊥AG,∴∠BAG=∠BGA,∴△ABG为等腰三角形,∴BN也为等腰三角形的中线,即AN=GN.同理AM=DM,∴MN为△ADG的中位线,∴MN∥BC.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.5.(2015春?富顺县校级月考)如图,BM、CN分别平分△ABC的外角∠ABD、∠ACE,过A分别作BM、CN的垂线,垂足分别为M、N,交CB、BC的延长线于D、E,连结MN.求证:MN=(AB+BC+AC)【考点】三角形中位线定理;等腰三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】首先通过△ABM≌△DBM,得到AB=DB,AM=DM,同理:AN=EN,AC=CE,再根据三角形的中位线定理即可得到结果.【解答】证明:∵AM⊥BM,∴∠AMB=∠DMB=90°,∵BM平分∠ABD,∴∠ABM=∠DBM,在△ABM与△DBM中,,∴△ABM≌△DBM(asa),∴AB=DB,AM=DM,同理:AN=EN,AC=CE,∴MN=DE=(DB+BC+CE)=(AB+BC+AC).【点评】本题考查了三角形的中位线定理,全等三角形的判定与性质,证明三角形全等是解题的关键.6.(2014?宿迁)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.菁优网版权所有【专题】证明题;几何综合题.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BA C,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.7.(2014?丹阳市校级模拟)如图,在四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD的中点,且AC=BD.求证:OM=ON.【考点】三角形中位线定理;平行线的性质;等腰三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】取AD的中点G,连接EG,FG,构造三角形的中位线,根据三角形的中位线定理进行证明即可.【解答】证明:取AD的中点G,连接EG,FG,∵G、F分别为AD、CD的中点,∴GF是△ACD的中位线,∴GF=AC,同理可得,GE=BD,∵AC=BD,∴GF=GE=AC=BD.∴∠GFN=∠GEM,又∵EG∥OM,FG∥ON,∴∠OMN=∠GEM=∠GFN=∠ONM,∴OM=ON.【点评】本题考查了三角形的中位线性质定理,解题的关键是构造三角形的中位线.运用三角形的中位线的数量关系和位置关系进行分析证明.8.(2013?永州)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN 于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【考点】三角形中位线定理;等腰三角形的判定与性质.菁优网版权所有【分析】(1)证明△ABN≌△ADN,即可得出结论;(2)先判断MN是△BDC的中位线,从而得出CD,由(1)可得AD=AB=10,从而计算周长即可.【解答】(1)证明:在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.【点评】本题考查了三角形的中位线定理及等腰三角形的判定,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.。

三角形中位线定理

三角形中位线定理

三角形中位线定理一、知识准备:三角形中位线定理: 。

二、对应练习(一)选择题1、(2011•烟台)如图,梯形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点.已知两底差是6,两腰和是12,则△EFG 的周长是( )A 、8B 、9C 、10D 、122、(2011•襄阳)若顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( )A 、 菱形B 、对角线互相垂直的四边形C 、矩形D 、对角线相等的四边形3、(2011•黔南州)如图,△ABC 中,AB=AC=6,BC=8,AE 平分∠BAC 交BC 于点E ,点D 为AB 的中点,连接DE ,则△BDE 的周长是( )A 、7B 、10C 、4D 、124、(2011•莱芜)如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB=CD .下列结论:①EG ⊥FH ,②四边形EFGH 是矩形,③HF 平分∠EHG ,④EG=12(BC-AD ),⑤四边形EFGH 是菱形.其中正确的个数是( )A 、1B 、2C 、3D 、4第1题 第3题 第4题5、(2011•安徽)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )A 、7B 、9C 、10D 、116、(2010•锦州)如图所示,在△ABC 中,AB=AC ,M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的点,连接DN 、EM ,若AB=5cm ,BC=8cm ,DE=4cm ,则图中阴影部分的面积为( )A 、1cm 2B 、1.5 cm 2C 、2 cm 2D 、3 cm 27、(2009•泰安)如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC=6,则DF 的长是( )A 、2B 、3C 、5D 、48、(2009•衢州)在△ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为( )A 、9.5B 、10.5C 、11D 、15.5第5题 第6题 第7题 第8题9、(2009•抚顺)如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=2,则CF的长为()A、4B、4.5C、5D、610、(2008•铜仁地区)如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是()A、28B、32C、18D、2511、(2008•随州)如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是()A、四边形AEDF一定是平行四边形B、若∠A=90°,则四边形AEDF是矩形C、若AD平分∠A,则四边形AEDF是正方形D、若AD⊥BC,则四边形AEDF是菱形12、(2006•杭州)如图,△ABC、△ADE及△EFG都是等边三角形,D和G分别为AC和AE的中点.若AB=4时,则图形ABCDEFG外围的周长是()A、12B、15C、18D、21第9题图第10题图第11题图第12题图13、(2008•扬州)如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A、线段EF的长逐渐增大B、线段EF的长逐渐减少C、线段EF的长不变D、线段EF的长与点P的位置有关14、(2008•岳阳)如图,∠CDA=∠BAD=90°,AB=2CD,M,N分别为AD,BC的中点,连MN交AC、BD于点E、F,若ME=4,则EF的长度是()A、6B、4C、5D、315、(2006•青海)如图DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,则AG:GD 等于()A、2:1B、3:1C、3:2D、4:316、(2006•长春)如图,任意四边形ABCD各边中点分别是E,F,G,H,若对角线AC,BD的长都为20cm,则四边形EFGH的周长是()A、80cmB、40cmC、20cmD、10cm17、(2006•滨州)如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则S△DMN:S四边形ANME等于()A、1:5B、1:4C、2:5D、2:7第13题第14题第15题第16题第17题18、(2005•烟台)如图,梯形ABCD中,AB∥CD,E是AD中点,EF∥CB交AB于F,BC=4cm,则EF 的长等于()A、1.5cmB、2cmC、2.5cmD、3cm19、(2002•海南)如图,已知梯形ABCD中,AD∥BC,对角线AC、BD分别交中位线EF于点H、G,且EG:GH:HF=1:2:1,那么AD:BC等于()A、2:3B、3:5C、1:3D、1:2第19题第21题第22题20、(2001•苏州)已知四边形ABCD和对角线AC、BD,顺次连接各边中点得四边形MNPQ,给出以下6个命题:①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形;②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形;③若所得四边形MNPQ为矩形,则AC⊥BD;④若所得四边形MNPQ为菱形,则AC=BD;⑤若所得四边形MNPQ为矩形,则∠BAD=90°;⑥若所得四边形MNPQ为菱形,则AB=AD.以上命题中,正确的是()A、①②B、③④C、③④⑤⑥D、①②③④21、如图,D、E、F分别是△ABC各边的中点,AH是高,如果ED=5cm,那么HF的长为()A、5cmB、6cmC、4cmD、不能确定22、如图,D,E,F分别为AB,BC,CA的中点,G,H分别为DE,EF的中点,则△GEH面积与△ABC 的面积比为()A、1:4B、1:16C、1:32D、1:64(二)填空题23、(2011•无锡)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF= cm.24、(2009•潍坊)如图,正方形ABCD的边长为10,点E在CB的延长线上,EB=10,点P在边CD上运动(C,D两点除外),EP与AB相交于点F,若CP=x,四边形FBCP的面积为y,则y关于x的函数关系式是.25、(2009•随州)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,中位线EF分别交BD,AC于点G,H,∠ACB=30°,则下列结论中正确的有.(填序号)(1)EG+HF=AD;(2)AO•OB=CO•OD;(3)BC-AD=2GH;(4)△ABH是等边三角形.26、(2008•厦门)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是度.第23题第24题第25题第26题27、(1998•内江)如图,已知D,E,F分别是△ABC的边BC,CA,AB上的中点,AH是BC边上的高,则图中与△EFH面积相等的三角形有(至少写出三个).28、如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于N,那么S△DMN:S四边形ANME= .29、(2006•北京)如图,在△ABC中,AB=AC.M、N分别是AB、AC的中点,D、E为BC上的点,连接DN、EM.若AB=13cm,BC=10cm,DE=5cm,则图中阴影部分的面积为cm2.(三)解答题30、(2007•江苏)如图,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求证:CD∥AB;(2)求证:△BDE≌△ACE;(3)若O为AB中点,求证:OF= 12BE.31、(2010•青海)观察探究,完成证明和填空.四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?。

备战中考数学专项练习(2022苏版)-三角形的中位线-卷一(含解析)

备战中考数学专项练习(2022苏版)-三角形的中位线-卷一(含解析)

备战中考数学专项练习(2022苏版)-三角形的中位线-卷一(含解析)一、单选题1.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB 于点G,若△CEF的面积为12cm2 ,则S△DGF的值为()A.4cm2B.6cm2C.8cm2D.9cm22.某地需要开创一条隧道,隧道AB长度无法直截了当测量。

如图所示,在地面上取一点C,使点C均可直截了当到达A、B两点,测量找到AC和BC的中点D、E,测得DE的长为1100m,则隧道AB的长度为()A.3300mB.2200mC.1100mD.550m3.如图,DE是△ABC的中位线,若BC的长为3cm,则DE的长是()A.2cmB. 1.5cmC. 1.2cmD.1cm4.如图,在梯形中,,中位线与对角线交于两点,若cm, cm,则的长等于()A.10 cmB.13 cmC.20 cmD.26 cm5.如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE= 6cm,则BC的长是()A.3cmB.12cmC.18cmD.9cm6.如图所示,A ,B两点分别位于一个池塘的两端,小聪想用绳子测量A ,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个能够直截了当到达A ,B的点C ,找到AC ,BC的中点D ,E ,同时测出DE的长为10m,则A ,B间的距离为()A.15mB.25mC.30mD.20m7.如图所示,已知四边形ABCD,R,P分别是DC,BC上的点,E,F 分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐步增大B.线段EF的长逐步减少 C.线段EF的长不变 D.线段EF的长不能确定8.如图,已知长方形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动,而点R不动时,那么下列结论成立的是()A.线段EF的长逐步增大B.线段EF的长逐步减少C.线段EF的长不变D.线段EF的长先增大后变小二、填空题9.如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则D E=________.10.如图,现需测量池塘边上A、B两点间的距离,小强在池塘外选取一个点C,连接AC与BC并找到它们中点E、F,测得EF长为45米,则池塘的宽AB为________米.11.如图,在△ABC中,AB=8,点D,E分别是BC,CA的中点,连接DE,则D E=________.12.已知:如图,在△ABC中,点D为BC上一点,CA=CD,CF平分∠ACB,交AD于点F,点E为AB的中点.若EF=2,则BD=________13.如图,CD是△ABC的中线,点E,F分别是AC、DC的中点,EF =2,则BD=________14.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若B D=10,BO=8,则AO的长为________15.在△ABC中,已知D、E分别为边AB、AC的中点,若△ADE的周长为3cm,则△ABC的周长为________cm.16.如图,A,B,C三点在⊙O上,且AB是⊙O的直径,半径OD⊥A C,垂足为F,若∠A=30°,OF=3,则BC=________三、解答题17.如图,点O是△ABC内任意一点,G、D、E分别为AC、OA、OB 的中点,F为BC上一动点,问四边形GDEF能否为平行四边形?若能够,指出F点位置,并给予证明.18.如图,D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC平面上的一动点,连接OB、OC,G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC内时,求证:四边形DGFE是平行四边形;(2)若连接AO,且满足AO=BC,AO⊥BC.问现在四边形DGFE又是什么形状?并请说明理由.19.已知:如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,EF分别交BD、AC于点G、H.求证:OG=OH.四、综合题20.在学习三角形中位线的性质时,小亮对课本给出的解决方法进行了认真摸索:课本研究三角形中位线性质的方法已知:如图①,已知△ABC中,D,E分别是AB,AC两边中点.求证:DE△BC,DE= BC.证明:延长DE至点F,使EF=DE,连接FC.…则△ADE△△CFE.△…请你利用小亮的发觉解决下列问题:(1)如图③,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF.请你关心小亮写出辅助线作法并完成论证过程:(2)解决问题:如图⑤,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位线.过点D,E作DF∥EG,分别交BC于点F,G,过点A作MN∥BC,分别与FD,GE的延长线交于点M,N,则四边形M FGN周长的最小值是________.21.如图,已知∠1+∠2=180°,∠3=∠B.(1)试判定∠AED与∠ACB的大小关系,并说明你的理由.(2)若D、E、F分别是AB、AC、CD边上的中点,S四边形ADFE =4(平方单位),求S△ABC .22.如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形(2)若AB=,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.答案解析部分一、单选题1.【答案】A【考点】三角形中位线定理【解析】【解答】解:如图,取CG的中点H,连接EH,∵E是AC的中点,∴EH是△ACG的中位线,∴EH∥AD,∴∠GDF=∠HEF,∵F是DE的中点,∴DF=EF,在△DFG和△EFH中,∴△DFG≌△EFH(ASA),∴FG=FH,S△EFH=S△DGF ,又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,∴S△CEF=3S△EFH ,∴S△CEF=3S△DGF ,∴S△DGF=×12=4(cm2).故选:A.【分析】取CG的中点H,连接EH,依照三角形的中位线定理可得EH∥A D,再依照两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,依照全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF ,再求出FC=3FH,再依照等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.2.【答案】B【考点】三角形中位线定理【解析】【解答】解:∵D,E分别是AC,BC的中点,∴DE是△ABC的中位线,则DE=AB,则AB=2DE=2200m,故选B。

2020-2021学年北师大版八年级数学下三角形中位线定理习题含答案

2020-2021学年北师大版八年级数学下三角形中位线定理习题含答案

三角形的中位线定理同步练习一.选择题(共7小题)1.如图,在四边形ABCD中,∠A=90°,AB=,AD=1,点M,N分别是边BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别是线段DM,MN的中点,则线段EF长度的最大值为()A.2B.C.1D.【解答】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB===2,∴EF的最大值为1.故选:C.2.如图,在△ABC中,AB=3,AC=5,AD平分∠BAC,AD⊥BF于点D,点E为BC的中点,连接DE,则DE 的长是()A.0.5B.0.75C.1D.2【解答】解:∵在△ABC中,AD平分∠BAC,AD⊥BF,AB=3,∴点D是BF的中点,且AB=AF=3.∵AC=5,∴FC=AC﹣AF=5﹣3=2.又∵点E为BC的中点,∴DE是△BFC的中位线,∴DE=FC==1.故选:C.3.在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为()A.2B.2C.4D.4【解答】解:在Rt△ABC中,∠C=90°,∠A=30°,BC=4,∴AB=2BC=8,∠ABC=60°,∵E为AB边上的中点,∴AE=EB=4,∵D、E分别为AC、AB边上的中点,∴DE∥BC,∴∠AED=∠AED=60°,∴∠BEF=∠ABC=60°,在Rt△AED中,∠A=30°,∴AE=2DE,∵EF=2DE,∴AE=EF,∴△BEF为等边三角形,∴BF=BE=4,故选:C.4.如图,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=23°,则∠PFE的度数为()A.23°B.25°C.30°D.46°【解答】解:在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=23°,∴∠PEF=∠PFE=23°.故选:A.5.如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED∥AB交AC于点G,下列结论:①AD⊥BC;②AE∥BC;③AE=AG;④AD2+AE2=4AG2.其中正确结论的个数是()A.1B.2C.3D.4【解答】解:连接EC,∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,故①正确;∵AB=AC,∴∠B=∠ACB,∵AE平分∠F AC,∴∠F AC=2∠F AE,∵∠F AC=∠B+∠ACB,∴∠F AE=∠B,∴AE∥BC,故②正确;∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AB=AC,AD⊥BC,∴CD=BD,∴AE=CD,∵AE∥BC,∠ADC=90°,∴四边形ADCE是矩形,∴AC=DE,AG=CG,DG=EG,∴DG=AG=CG=EG,在Rt△AED中,AD2+AE2=DE2=AC2=(2AG)2=4AG2,故④正确;∵AE=BD=BC,AG=AC,∴AG=AE错误(已知没有条件AC=BC),故③错误;即正确的个数是3个,故选:C.6.如图,BD为△ABC的中线,E为BD的中点,连接AE并延长交BC于点F,若BC的长为7,则BF的长为()A.B.C.D.【解答】解:取FC的中点H,连接DH,∵CD=DA,∴DH是△ACF的中位线,∴DH∥AF,∵BE=ED,∴BF=FH,∴BF=FH=HC=BC=,故选:A.7.如图,在△ABC中,D、E、F分别是BC、AC、AD的中点,若△ABC的面积是40,则四边形BDEF的面积是()A.10B.12.5C.15D.20【解答】解:∵D、E、F分别是BC、AC、AD的中点,∴S△ADE=S△ADC,S△ADC=S△ABC,S△DEF=S△ADE,∴S△DEF=S△ABC=×40=5,∵D、E、F分别是BC、AC、AD的中点,∴S△ABD=S△ABC=40=20,∴S△BDF=S△ADB=20=10,∴四边形BDEF的面积=S△BDF+S△DEF=15,故选:C.二.填空题(共7小题)8.已知△ABC中,AB=5,BC=6,AC=7,点D、E、F分别为三边中点,则△DEF的周长为9.【解答】解:∵点D,E分别AB、BC的中点,∴DE=AC=3.5,同理,DF=BC=3,EF=AB=2.5,∴△DEF的周长=DE+EF+DF=9,故答案为:9.9.如图,点A(0,4),点B(3,0),连接AB,点M,N分别是OA,AB的中点,在射线MN上有一动点P,若△ABP是直角三角形,则点P的坐标是(4,2)或(,2).【解答】解:∵点M、N分别是OA、AB的中点,点A(0,4),∴MN∥OB,MN=OB=1.5,OM=2,①当∠APB=90°时,在Rt△AOB中,AB===5,∵∠APB=90°,点N是AB的中点,∴PN=AB=2.5,则PM=PN+MN=4,∴点P的坐标是(4,2);②当∠ABP=90°时,过P作PE⊥x轴于E,连接AP,设BE=x,则PM=OE=x+3,由勾股定理得,PB=,AP=,在Rt△ABP中,AP==,则=,解得,x=,∴OE=+3=,∴P(,2),故答案为:(4,2)或(,2).10.在Rt△ABC中,∠C=90°,AC=3,BC=4,点N是BC边上一点,点M为AB边上的动点,点D、E分别为CN,MN的中点,则DE的最小值是.【解答】解:连接CM,∵点D、E分别为CN,MN的中点,∴DE=CM,当CM⊥AB时,CM的值最小,此时DE的值也最小,由勾股定理得:AB===5,∵S△ABC==,∴CM=,∴DE==,故答案为:.11.如图,在▱ABCD中,AC,BD交于点O,点E是AB的中点,OE=3cm,则AD的长是6cm.【解答】解:∵四边形ABCD是平行四边形,∴BO=DO,∵点E是AB的中点,∴EO=AD,∵OE=3,∴AD=6cm,故答案为:6.12.如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=50°.先将△ADE沿DE折叠,点A落在三角形所在平面内的点为A1,则∠BDA1的度数为80°.【解答】解:∵D、E分别是边AB、AC的中点,∴DE∥BC,∴∠ADE=∠B=50°(两直线平行,同位角相等);又∵∠ADE=∠A1DE,∴∠A1DA=2∠B,∴∠BDA1=180°﹣2∠B=80°;故答案是:80°.13.如图,△ABC,点D,E在边BC上,∠ABC的平分线垂直AE,垂足为N,∠ACB的平分线垂直AD,垂足为M,若BC=16,MN=3,则△ABC的周长为38.【解答】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA),∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∵AM=MD,AN=NE,MN=3,∴DE=2MN=6,∵BE+CD﹣BC=DE,∴AB+AC=BC+DE=22,∴△ABC的周长=AB+AC+BC=22+16=38,故答案为:38.14.如图,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.当BC=4,DE=5,∠FMN=45°时,则BE的长为.【解答】解:∵点M,N,F分别为AB,AE,BE的中点,∴MF,MN都是△ABE的中位线,∴MF∥AE,MN∥BE,∴四边形EFMN是平行四边形,∴∠AEB=∠NMF=45°,又∵AB⊥AE,∴∠ABE=45°,∴△ABE是等腰直角三角形,∴AB=AE,∵BC⊥CD,DE⊥CD,又∵∠ABC+∠BAC=90°,∠EAD+∠BAC=90°,∴∠ABC=∠EAD,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴Rt△ABC中,AB==,∴等腰Rt△ABE中,BE==,故答案为:.三.解答题(共10小题)15.如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO的中点,连接AO.若AO=6cm,BC=8cm.求四边形DEFG的周长.【解答】解:∵BD,CE是△ABC的中线,∴ED∥BC且ED=BC,∵F是BO的中点,G是CO的中点,∴FG∥BC且FG=BC,∴ED=FG=BC═4cm,同理GD=EF=AO=3cm,∴四边形DEFG的周长为3+4+3+4=14(cm).16.如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,求△ABC的周长.【解答】解:延长线段BN交AC于E.∵AN平分∠BAC,在△ABN和△AEN中,∴△ABN≌△AEN(ASA),∴AE=AB=6,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×1.5=3,∴△ABC的周长是AB+BC+AC=6+10+6+3=25.17.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠F AH=∠FHA,∵∠DAH+∠F AH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.18.如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=6,CD=8,∠ABD=30°,∠BDC=120°,求EF的长;(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.【解答】(1)解:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,AB=6,CD=8,∴PE∥AB,且PE=AB=3,PF∥CD且PF=CD=4.又∵∠ABD=30°,∠BDC=120°,∴∠EPD=∠ABD=30°,∠DPF=180°﹣∠BDC=60°,∴∠EPF=∠EPD+∠DPF=90°,在直角△EPF中,由勾股定理得到:EF===5,即EF=5;(2)证明:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,∴PE∥AB,且PE=AB,PF∥CD且PF=CD.∴∠EPD=∠ABD,∠BPF=∠BDC,∴∠DPF=180°﹣∠BPF=180°﹣∠BDC,∵∠BDC﹣∠ABD=90°,∴∠BDC=90°+∠ABD,∴∠EPF=∠EPD+∠DPF=∠ABD+180°﹣∠BDC=∠ABD+180°﹣(90°+∠ABD)=90°,∴PE2+PF2=(AB)2+(CD)2=EF2,∴AB2+CD2=4EF2.19.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.【解答】证明:连接BD,取BD的中点H,连接HE,HF,∵E、F分别是BC、AD的中点,∴FH∥BM,FH=AB,EH∥CN,EH=CD,∴∠BME=∠HFE,∠CNE=∠HEF,∵AB=CD,∴FH=EH,∴∠HFE=∠HEF,∴∠BME=∠CNE.20.如图,已知四边形ABCD的对角线AC与BD相交于点O,且AC=BD,M、N分别是AB、CD的中点,MN分别交BD、AC于点E、F.你能说出OE与OF的大小关系并加以证明吗?【解答】解:相等.理由如下:取AD的中点G,连接MG,NG,∵G、N分别为AD、CD的中点,∴GN是△ACD的中位线,∴GN=AC,同理可得,GM=BD,∵AC=BD,∴GN=GM=AC=BD.∴∠GMN=∠GNM,又∵MG∥OE,NG∥OF,∴∠OEF=∠GMN=∠GNM=∠OFE,∴OE=OF.21.已知:△ABC中,D是BC上的一点,E、F、G、H分别是BD、BC、AC、AD的中点,求证:EG、HF互相平分.【解答】证明:连接EH,GH,GF,∵E、F、G、H分别是BD、BC、AC、AD的中点,∴AB∥EH∥GF,GH∥BC,∴GH∥BF.∴四边形EHGF为平行四边形.∵GE,HF分别为其对角线,∴EG、HF互相平分.22.如图,在△ABC中,AB=AC,点D是边AB的中点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.【解答】(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=BD,FH=CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.23.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,△ABC中,AB=9,AC=5,求线段EF的长.【解答】(1)证明:在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵BE=ED,BF=FC,∴EF=CD=(AC﹣AD)=(AC﹣AB);(2)解:分别延长BE、AC交于点H,在△AEB和△AEH中,,∴△AEB≌△AEH(ASA)∴BE=EH,AH=AB=9,∵BE=EH,BF=FC,∴EF=CH=(AH﹣AC)=2.24.如图,AD为△ABC的中线,BE为△ABD的中线.(1)在△BED中作BD边上的高,垂足为F;(2)若△ABC的面积为20,BD=5.①△ABD的面积为10,②求△BDE中BD边上的高EF的长;(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)【解答】解:(1)作EF⊥BD垂足为F,(2)①∵AD为△ABC的中线,∴S△ABD=S△ABC,∵△ABC的面积为20,∴△ABD的面积为10;②∵BE为△ABD的中线,∴S△BDE=S△ABD=5,∵BD=5,∴EF的长=2;③∵EG∥BC,BE为△ABD的中线,∴EG是△ACD的中位线,∴DG是△ACD的中线,∴S△BDE=S△CDG,S△BDE=S△CDG=S△ABD=S△ABC=,∴S△GDC=,又∵S△COD=n,∴S△GOC=S△GDC﹣S△COD=.。

2022年北师大版八下《 三角形的中位线》配套练习(附答案)

2022年北师大版八下《 三角形的中位线》配套练习(附答案)

6.3 三角形的中位线1.如图,为测量池塘边A,B两点间的距离,小明在池塘的一侧选取一点O,测得OA,OB的中点分别是点D,E,且DE=14米,那么A,B间的距离是() A.18米B.24米C.28米D.30米2.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE =60°,那么∠C的度数为()A.50°B.60°C.70°D.80°3.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,那么DE的长为()A.1 B.2 C. 3 D.1+ 34.如图,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.假设△ABC 的周长为10,那么△DEF的周长为____.5.如图,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD 的周长为16 cm,那么△DOE的周长是____cm.6.如图,在△ABC中,D,E,F分别是BC,AC,AB的中点.(1)假设DE=10 cm,那么AB=____cm;(2)中线AD与中位线EF有什么特殊关系?证明你的猜测.7.我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,依次连接各边中点得到中点四边形EFGH.(1)这个中点四边形EFGH的形状是___________;(2)请证明你的结论.8.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,那么∠PFE的度数是()A.15°B.20°C.25°D.30°9.如图,在四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么以下结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关10.如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,假设DE=2,那么EB=____.11.如图,△ABC的周长是1,连接△ABC三边的中点构成第2个三角形,再连接第2个三角形三边中点构成第3个三角形,依此类推,第2021个三角形的周长为________.12.如图,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH 是平行四边形.13.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长.14.如图,在▱ABCD中,AE=BF,AF,BE相交于点G,CE,DF相交于点证:GH∥BC且GH=12BC.15.如图,在▱ABCD中,E是CD的中点,F是AE的中点,FC与BE相交于点证:GF=GC.方法技能:1.三角形有三条中位线,每条中位线都与第三边有相应的位置关系和数量关系,位置关系可证明两直线平行,数量关系可证明线段相等或倍分关系.2.三角形的三条中位线将原三角形分为四个全等的小三角形,每个小三角形的周长都等于原三角形周长的一半.3.当题目中有中点时,特别是有两个中点且都在一个三角形中,可直接利用三角形中位线定理.易错提示:对三角形中位线的意义理解不透彻而出错答案:1. C2. C3. A4. 55. 86. (1) 20(2) 解:AD与EF互相平分.证明:∵D,E,F分别为BC,AC,AB的中点,∴DE∥AB,DE=12AB,AF=12AB,∴DE=AF,∴四边形AFDE是平行四边形,∴AD与EF互相平分7. (1) 平行四边形(2) 解:连接AC,由三角形中位线性质得,EF∥AC且EF=12AC,GH∥AC且GH=12AC,∴EF綊GH,∴四边形EFGH是平行四边形8. D9. C10. 211.1 2202112. 解:连接BD,∵E,H分别是AB,AD的中点,∴EH是△ABD的中位线,∴EH=12BD,EH∥BD,同理可证FG=12BD,FG∥BD,∴EH綊FG,∴四边形EFGH是平行四边形13. 解:(1)∵AN平分∠BAD,∴∠1=∠2,∵BN⊥AN,∴∠ANB=∠AND =90°,又∵AN=AN,∴△ABN≌△ADN(ASA),∴BN=DN(2)∵△ABN≌△ADN,∴AD=AB=10,∵DN=BN,点M是BC的中点,∴MN是△BDC的中位线,∴CD=2MN=6,∴△ABC的周长=AB+BC+CD+AD=10+15+6+10=4114. 解:连接EF,证四边形ABEF,EFCD分别为平行四边形,从而得G是BE的中点,H是EC的中点,∴GH是△EBC的中位线,∴GH∥BC且GH=12BC15. 解:取BE的中点H,连接FH,CH,∵F是AE的中点,H是BE的中点,∴FH是△ABE的中位线,∴FH∥AB且FH=12▱ABCD中,AB∥DC,AB=DC,∴FH∥EC,又∵点E是DC的中点,∴EC=12DC=12AB,∴FH=EC,∴四边形EFHC是平行四边形,∴GF=GC.第1课时三角形的全等和等腰三角形的性质一.选择题〔共8小题〕1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为〔〕A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,那么它顶角的度数是〔〕A.80°B.80°或20°C.80°或50°D.20°3.实数x,y满足,那么以x,y的值为两边长的等腰三角形的周长是〔 〕A. 20或16 B. 20 C. 16 D. 以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,那么∠BDC的度数是〔 〕A. 60° B. 70° C. 75° D. 80°5.等腰三角形的两边长分别是3和5,那么该三角形的周长是〔 〕A. 8 B. 9 C. 10或12 D. 11或136.如图,给出以下四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有〔 〕A .1组B .2组C .3组D .4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个局部, 那么这个等腰三角形的底边长为〔 〕A. 7 B. 11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,那么顶角的度数为〔 〕A. 60° B. 120° C. 60°或150° D. 60°或120°二.填空题〔共10小题〕9.等腰三角形的一个内角为80°,那么另两个角的度数是 _________ .10.如图,AB∥CD,AB=AC,∠ABC=68°,那么∠ACD= _________ .第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,那么∠B= _________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,那么∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,那么BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,那么∠BAC=_________ °.第14题 第15题 第16题 第17题 第18题15.如图,AB与CD交于点O,OA=OC,OD=OB ,∠A=50°,∠B=30°,那么∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,那么∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,那么∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP ,CP=CF,那么∠EPF=_________ 度.三.解答题〔共5小题〕19.:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:〔1〕△ABD≌△ACD;〔2〕BE=CE.21.如下图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB 的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出以下四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.〔1〕上述四个条件中,由哪两个条件可以判定AB=AC?〔用序号写出所有的情形〕〔2〕选择〔1〕小题中的一种情形,说明AB=AC.23.〔1〕如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、A C于点D、E.判断DE=DB+EC是否成立?为什么?〔2〕如图,假设点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜测线段DE、DB、EC之间有何数量关系?证明你的猜测.参考答案一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、30°;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE〔AAS〕.∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:〔1〕∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD〔SSS〕;…〔4分〕〔2〕由〔1〕知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE 〔SAS〕,∴BE=CE〔全等三角形的对应边相等〕.〔其他正确证法同样给分〕…〔4分〕21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD〔SAS〕.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、〔1〕答:有①③、①④、②③、②④共4种情形.〔2〕解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:〔1〕成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.〔2〕∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.。

初二数学三角形中位线练习题(含答案)

初二数学三角形中位线练习题(含答案)

初二数学三角形中位线练习题一.选择题(共5小题)1.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若18DE m=,则线段AB的长度是()A.9m B.12m C.8m D.10m2.已知三角形的周长是16,它的三条中位线围成的三角形的周长是()A.16B.12C.8D.43.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度() A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大4.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD BC=,∠的度数是()∠=︒,则EFPEPF136A.68︒B.34︒C.22︒D.44︒5.如图,D是ABC⊥,E、F、G、H分别是边AB、BD、CD、AC的中点.若∆内一点,BD CDCD=,则四边形EFGH的周长是()BD=,6AD=,810A.24B.20C.12D.10第3题图第4题图第5题图二.填空题(共5小题)6.某直角三角形的两条边长分别是10和24,则连接两条直角边中点的线段的长是.7.如图,在Rt ABCABC∠=︒,点D、E、F分别是AB、AC,∆中,90BE=,则DF=.BC边上的中点,连结BE,DF,已知58.如图,在四边形ABCD中,220∠+∠=︒,E、F分别是AC、ADC BCDBD 的中点,P 是AB 边上的中点,则EPF ∠= ︒.9.如图,在四边形ABCD 中,//AB CD ,E ,F 分别是AC ,BD 的中点,已知12AB =,6CD =,则EF = .10.如图,在ABC ∆中,8AB =,6AC =,AM 平分BAC ∠,CM AM ⊥于点M ,N 为BC 的中点,连结MN ,则MN 的长为 .第8题图 第9题图 第10题图三.解答题(共3小题)11.如图所示,在ABC ∆中,点D 在BC 上且CD CA =,CF 平分ACB ∠,AE EB =,求证:12EF BD =.12.如图:D 、E 是ABC ∆边AB ,AC 的中点,O 是ABC ∆内一动点,F 、G 是OB ,OC 的中点.判断四边形DEGF 的形状,并证明.13.已知:如图,在四边形ABCD 中,对角线AC 、BD 相交于O ,且AC BD =,E 、F 分别是AB 、CD 的中点,E 、F 分别交BD 、AC 于点G 、H .求证:OG OH =.答案与解析一.选择题(共5小题)1.如图,为了测量池塘边A 、B 两地之间的距离,在线段AB 的同侧取一点C ,连结CA 并延长至点D ,连结CB 并延长至点E ,使得A 、B 分别是CD 、CE 的中点,若18DE m =,则线段AB 的长度是( )A .9mB .12mC .8mD .10m【分析】根据三角形的中位线定理解答即可. 【解答】解:A 、B 分别是CD 、CE 的中点, ∴AB 是△CDE 的中位线,192AB DE m ∴==, 故选:A .2.已知三角形的周长是16,它的三条中位线围成的三角形的周长是( ) A .16 B .12 C .8 D .4【分析】由中位线定义可得新三角形的各边长为原三角形各边长的一半,即可得出其周长等于原三角形周长的一半.【解答】解:三角形的周长是16,∴它的三条中位线围成的三角形的周长是11682⨯=. 故选:C .3.如图,在四边形ABCD 中,点P 是边CD 上的动点,点Q 是边BC 上的定点,连接AP ,PQ ,E ,F 分别是AP ,PQ 的中点,连接EF .点P 在由C 到D 运动过程中,线段EF 的长度( )A .保持不变B .逐渐变小C .先变大,再变小D .逐渐变大 【分析】连接AQ ,根据三角形中位线定理解答即可. 【解答】解:如图所示,连接AQ , 点Q 是边BC 上的定点, AQ ∴的大小不变,E ,F 分别是AP ,PQ 的中点, ∴EF 是△APQ 的中位线, 12EF AQ ∴=, ∴线段EF 的长度保持不变,故选:A .4.如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD BC =,136EPF ∠=︒,则EFP ∠的度数是( )A .68︒B .34︒C .22︒D .44︒【分析】根据三角形中位线定理得到12PE AD =,12PF BC =,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:P 是BD 的中点,E 是AB 的中点, ∴EP 是△BCD 的中位线, 12PE AD ∴=, 同理,12PF BC =, AD BC =, PE PF ∴=,1(180)222EFP EPF ∴∠=⨯︒-∠=︒,故选:C . 5.如图,D 是ABC ∆内一点,BD CD ⊥,E 、F 、G 、H 分别是边AB 、BD 、CD 、AC 的中点.若10AD =,8BD =,6CD =,则四边形EFGH 的周长是( )A .24B .20C .12D .10【分析】利用勾股定理列式求出BC 的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出12EH FG BC ==,12EF GH AD ==,然后代入数据进行计算即可得解. 【解答】解:BD CD ⊥,8BD =,6CD =,22228610BC BD CD ∴=+=+,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,12EH FG BC ∴==,12EF GH AD ==,∴四边形EFGH 的周长EH GH FG EF AD BC =+++=+, 又10AD =,∴四边形EFGH 的周长101020=+=, 故选:B .二.填空题(共5小题)6.某直角三角形的两条边长分别是10和24,则连接两条直角边中点的线段的长是 13或12 . 【分析】根据勾股定理求出AB ,根据三角形中位线定理计算,得到答案. 【解答】解:分两种情况讨论:①当24是直角边时,由勾股定理得,斜边2222241026AB AC BC =+=+=,M 、N 分别为CA 、CB 的中点, ∴MN 是△ABC 的中位线,1132MN AB ∴==,②当24是斜边时,1122MN AB ==,故答案为:13或12.7.如图,在Rt ABC ∆中,90ABC ∠=︒,点D 、E 、F 分别是AB 、AC ,BC 边上的中点,连结BE ,DF ,已知5BE =,则DF = 5 .【分析】已知BE 是Rt ABC ∆斜边AC 的中线,那么12BE AC =;DF 是ABC ∆的中位线,则12DF AC =,则5DF BE ==. 【解答】解:ABC ∆是直角三角形,BE 是斜边的中线, 12BE AC ∴=, 又DF 是ABC ∆的中位线,12DF AC ∴=, 5DF BE ∴==. 故答案为5.8.如图,在四边形ABCD 中,220ADC BCD ∠+∠=︒,E 、F 分别是AC 、BD 的中点,P 是AB 边上的中点,则EPF ∠= 40 ︒.【分析】依据四边形内角和即可得到140BAD ABC ∠+∠=︒,再根据三角形中位线定理即可得到BPF BAD ∠=∠,APE ABC ∠=∠,进而得出140APE BPF ∠+∠=︒,即可得到EPF ∠的度数. 【解答】解:四边形ABCD 中,220ADC BCD ∠+∠=︒, 360220140BAD ABC ∴∠+∠=︒-︒=︒,E 、F 分别是AC 、BD 的中点,P 是AB 边上的中点, PE ∴是ABC ∆的中位线,PF 是ABD ∆的中位线, //PE BC ∴,//PF AD ,BPF BAD ∴∠=∠,APE ABC ∠=∠,140APE BPF BAD ABC ∴∠+∠=∠+∠=︒, 18014040EPF ∴∠=︒-︒=︒,故答案为:40.9.如图,在四边形ABCD 中,//AB CD ,E ,F 分别是AC ,BD 的中点,已知12AB =,6CD =,则EF = 3 .【分析】连接CF 并延长交AB 于G ,证明FDC FBG ∆≅∆,根据全等三角形的性质得到6BG DC ==,CF FG =,求出AG ,根据三角形中位线定理计算,得到答案. 【解答】解:连接CF 并延长交AB 于G , //AB CD ,FDC FBG ∴∠=∠, 在FDC ∆和FBG ∆中, FDC FBG FD FBDFC BFG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FDC FBG ASA ∴∆≅∆ 6BG DC ∴==,CF FG =, 1266AG AB BG ∴=-=-=, CE EA =,CF FG =, ∴EF 是△ACG 的中位线, 132EF AG ∴==, 故答案为:3. 10.如图,在ABC ∆中,8AB =,6AC =,AM 平分BAC ∠,CM AM ⊥于点M ,N 为BC 的中点,连结MN ,则MN 的长为 1 .【分析】延长CM 交AB 于H ,证明AMH AMC ∆≅∆,根据全等三角形的性质得到6AH AC ==,CM MH =,根据三角形中位线定理解答. 【解答】解:延长CM 交AB 于H , 在AMH ∆和AMC ∆中, 90MAH MAC AM AMAMH AMC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()AMH AMC ASA ∴∆≅∆6AH AC ∴==,CM MH =, 2BH AB AH ∴=-=, CM MH =,CN BN =, ∴MN 是△BCH 的中位线, 112MN BH ∴==, 故答案为:1. 三.解答题(共3小题)11.如图所示,在ABC ∆中,点D 在BC 上且CD CA =,CF 平分ACB ∠,AE EB =,求证:12EF BD =.【分析】首先根据等腰三角形的性质可得F 是AD 中点,再根据三角形的中位线定理可得12EF BD =.【解答】证明:CD CA =,CF 平分ACB ∠, F ∴是AD 中点, AE EB =, E ∴是AB 中点,EF ∴是ABD ∆的中位线, 12EF BD ∴=. 12.如图:D 、E 是ABC ∆边AB ,AC 的中点,O 是ABC ∆内一动点,F 、G 是OB ,OC 的中点.判断四边形DEGF 的形状,并证明.【分析】根据三角形中位线定理得到12DE BC =,//DE BC ,12FGT BC =,//FG BC ,得到DE FG =,//DE FG ,根据平行四边形的判定定理证明结论. 【解答】解:四边形DEGF 是平行四边形, 理由:D 、E 是ABC ∆边AB ,AC 的中点, ∴DE 是△ABC 的中位线,12DE BC ∴=,//DE BC , F 、G 是OB ,OC 的中点, ∴FG 是△BCO 的中位线,12FG BC ∴=,//FG BC ,DE FG ∴=,//DE FG∴四边形DEGF 是平行四边形.13.已知:如图,在四边形ABCD中,对角线AC、BD相交于O,且AC BD=,E、F分别是AB、CD的中点,E、F分别交BD、AC于点G、H.求证:OG OH=.【分析】取BC边的中点M,连接EM,FM,则根据三角形的中位线定理,即可证得EMF∆是等腰三角形,根据等边对等角,即可证得MEF MFE∠=∠,然后根据平行线的性质证得OGH OHG∠=∠,根据等角对等边即可证得.【解答】解:取BC边的中点M,连接EM,FM,M、F分别是BC、CD的中点,∴MF是△BCD的中位线,//MF BD ∴,12MF BD=,同理://ME AC,12ME AC=,AC BD=ME MF∴=MEF MFE∴∠=∠,//MF BD,MFE OGH∴∠=∠,同理,MEF OHG∠=∠,OGH OHG∴∠=∠OG OH∴=.。

中考数学每日一练:三角形中位线定理练习题及答案_2020年压轴题版

中考数学每日一练:三角形中位线定理练习题及答案_2020年压轴题版

中考数学每日一练:三角形中位线定理练习题及答案_2020年压轴题版答案答案2020年中考数学:图形的性质_三角形_三角形中位线定理练习题~~第1题~~(2020遵化.中考模拟) 如图,直线OA 与反比例函数的图像交于点A (3,3),向下平移直线OA ,与反比例函数的图像交于点B (6,m )与y 轴交于点C ,(1) 求直线BC 的解析式;(2) 求经过A 、B 、C 三点的二次函数的解析式;(3) 设经过A 、B 、C 三点的二次函数图像的顶点为D ,对称轴与x 轴的交点为E.问:在二次函数的对称轴上是否存在一点P ,使以O 、E 、P 为顶点的三角形与△BCD 相似?若存在,请求出点P 的坐标;若不存在,请说明理由.考点: 一次函数的定义;反比例函数的图象;反比例函数的性质;线段的长短比较与计算;勾股定理;三角形中位线定理;相似三角形的性质;~~第2题~~(2019哈尔滨.中考模拟) 如图,已知一次函数y = x+4与x 轴交于点A ,与y 轴交于点C ,一次函数y =﹣x+b 经过点C 与x 轴交于点B .(1) 求直线BC 的解析式;(2) 点P 为x 轴上方直线BC 上一点,点G 为线段BP 的中点,点F 为线段AB 的中点,连接GF ,取GF 的中点M ,射线PM 交x 轴于点H ,点D 为线段PH 的中点,点E 为线段AH 的中点,连接DE ,求证:DE =GF ;(3) 在(2)的条件下,延长PH 至Q ,使PM =MQ ,连接AQ 、BM ,若∠BAQ+∠BMQ =∠DEB ,求点P 的坐标.考点: 待定系数法求一次函数解析式;全等三角形的判定与性质;三角形中位线定理;~~第3题~~(2019永康.中考模拟) 如图,正方形OABC 的顶点O 与原点重合,点A ,C 分别在x 轴与y 轴的正半轴上,点A 的坐标为(4,0),点D 在边AB 上,且tan ∠AOD =,点E 是射线OB 上一动点,EF ⊥x 轴于点F ,交射线OD 于点G ,过点G 作GH ∥x 轴交AE 于点H.答案答案答案(1) 求B ,D 两点的坐标;(2) 当点E 在线段OB 上运动时,求∠HDA 的大小;(3) 以点G 为圆心,GH 的长为半径画⊙G.是否存在点E 使⊙G 与正方形OABC 的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E 的坐标.考点: 坐标与图形性质;三角形中位线定理;正方形的性质;切线的判定;锐角三角函数的定义;~~第4题~~(2019亳州.中考模拟) 已知如图1,在△ABC 中,∠ABC=90°,BC=AB ,点D 在AC 上,DF ⊥AC 交BC 于F ,点E 是AF的中点。

9.5《三角形的中位线》综合练习

9.5《三角形的中位线》综合练习

9.5 三角形的中位线一.选择题1.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE2.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.103.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.34.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2D.45.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1 B.2 C.D.1+6.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.11二.填空题7.如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE= .8.如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.9.如图,在△ABC中,∠AC B=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= .10.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE 的面积为cm2.11.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC 的面积的比是.12.如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.13.如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC的周长为cm.14.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME 相交于点O.若△OMN是直角三角形,则DO的长是.。

北师大版数学八年级下册:6.3 三角形的中位线 同步练习(附答案)

北师大版数学八年级下册:6.3 三角形的中位线  同步练习(附答案)

3 三角形的中位线知识点1 三角形中位线定理1.如图,点D ,E 分别是△ABC 边BA ,BC 的中点,AC =3,则DE 的长为( ) A .2B.43C .3D.32第1题图 第2题图2.如图,M ,N 分别是△ABC 的边AB ,AC 的中点.若∠A =65°,∠ANM =45°,则∠B =( )A .20°B .45°C .65°D .70°3.已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2 2C .16D .44.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF第4题图 第5题图5.如图,在▱ABCD 中,点M 为边AD 上一点,AM =2MD ,点E ,F 分别是BM ,CM 的中点.若EF =6,则AM 的长为 .6.如图,在△ABC 中,点D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.7.如图,在等腰△ABC中,AB=AC=8,AD是∠BAC的平分线,交BC于点D,点E是AB的中点,连接DE.求线段DE的长.知识点2三角形中位线定理的应用8.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是m.第8题图第9题图9.如图,吴伯伯家有一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需用篱笆的长是()A.15米B.20米C.25米D.30米10.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7B.8C.9D .1011.如图,D 是△ABC 内一点,BD ⊥CD ,AD =7,BD =4,CD =3,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点,则四边形EFGH 的周长为( )A .12B .14C .24D .21第11题图 第12题图12.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =35°,则∠PFE 的度数是 .13.如图,在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =12AB ,E ,F 分别是边BC ,AC 的中点.求证:DF =BE.14.如图,在△ABC 中,AB =4,AC =3,AD ,AE 分别是△ABC 的角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.15.如图,在四边形ABCD中,已知AB=CD,点E,F分别为AD,BC的中点,延长BA,CD,分别交射线FE于P,Q两点.求证:∠P=∠CQF.参考答案:3 三角形的中位线知识点1 三角形中位线定理1.如图,点D ,E 分别是△ABC 边BA ,BC 的中点,AC =3,则DE 的长为(D ) A .2B.43C .3D.32第1题图 第2题图2.如图,M ,N 分别是△ABC 的边AB ,AC 的中点.若∠A =65°,∠ANM =45°,则∠B =(D )A .20°B .45°C .65°D .70°3.已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为(A )A .8B .2 2C .16D .44.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是(B )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF第4题图 第5题图5.如图,在▱ABCD 中,点M 为边AD 上一点,AM =2MD ,点E ,F 分别是BM ,CM 的中点.若EF =6,则AM 的长为8.6.如图,在△ABC 中,点D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.证明:∵D ,F 分别是边AB ,AC 的中点, ∴DF ∥BC.同理:DE ∥AC.∴四边形DECF 是平行四边形.7.如图,在等腰△ABC 中,AB =AC =8,AD 是∠BAC 的平分线,交BC 于点D ,点E 是AB 的中点,连接DE.求线段DE 的长.解:∵AB =AC ,AD 平分∠BAC , ∴AD 是等腰△ABC 底边BC 上的中线. ∴点D 是BC 的中点. 又∵点E 是AB 的中点, ∴DE 是△ABC 的中位线. ∴DE =12AC =4.知识点2 三角形中位线定理的应用8.如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50 m ,则AB 的长是100m.第8题图 第9题图9.如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是(C )A .15米B .20米C .25米D .30米10.如图,在△ABC 中,∠ABC =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为(B )A .7B .8C .9D .1011.如图,D 是△ABC 内一点,BD ⊥CD ,AD =7,BD =4,CD =3,E ,F ,G ,H 分别是AB ,BD ,CD ,AC 的中点,则四边形EFGH 的周长为(A )A .12B .14C .24D .21第11题图 第12题图12.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =35°,则∠PFE 的度数是35°.13.如图,在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =12AB ,E ,F 分别是边BC ,AC 的中点.求证:DF =BE.证明:∵E ,F 分别是边BC ,AC 的中点, ∴EF =12AB ,EF ∥AB ,AF =FC ,BE =EC.∵AD =12AB ,∴EF =AD.∵∠BAC =90°,EF ∥AB , ∴∠DAF =∠EFC =90°. 又∵AF =FC ,AD =FE , ∴△DAF ≌△EFC (SAS ). ∴DF =EC.又∵BE =EC ,∴DF =BE.14.如图,在△ABC 中,AB =4,AC =3,AD ,AE 分别是△ABC 的角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.解:∵AF 是△ABC 的角平分线,∴∠GAF =∠CAF. 又∵CG ⊥AD ,∴∠AFC =∠AFG =90°. 在△AGF 和△ACF 中,⎩⎨⎧∠GAF =∠CAF ,AF =AF ,∠AFG =∠AFC ,∴△AGF ≌△ACF (ASA ). ∴AG =AC =3,GF =CF. ∴BG =AB -AG =4-3=1.又∵BE =CE ,∴EF 是△BCG 的中位线. ∴EF =12BG =12.15.如图,在四边形ABCD 中,已知AB =CD ,点E ,F 分别为AD ,BC 的中点,延长BA ,CD ,分别交射线FE 于P ,Q 两点.求证:∠P =∠CQF.证明:连接BD ,取BD 的中点M ,连接EM ,FM. ∵点E 是AD 的中点, ∴EM ∥AB ,EM =12AB.∴∠MEF =∠P.同理可证:FM ∥CD ,FM =12CD.∴∠MFE =∠CQF. 又∵AB =CD ,∴EM =FM. ∴∠MEF =∠MFE.∴∠P =∠CQF.。

三角形的中位线练习题(含答案)

三角形的中位线练习题(含答案)

三角形的中位线练习题三角形中位线定义: .符号语言:在△ABC 中,D 、E 分别是AB 、AC 的中点, 则:线段DE 是△ABC 的__ __,三不同点:①三角形中位线的两个端点都是三角形边的中点。

②三角形中线只有一个端点是边的中点,另一端点是三角形一个顶点。

相同点:都是一条线段,都有三条。

三角形中位线定理: .符号语言表述:∵DE 是△ABC 的中位线(或AD=BD,AE=CE) ∴DE //21BC练习1.连结三角形___________的线段叫做三角形的中位线. 2.三角形的中位线______于第三边,并且等于_______. 3.一个三角形的中位线有_________条. 4.如图△ABC 中,D 、E 分别是AB 、AC 的中点,则线段CD 是△ABC 的___, 线段DE 是△ABC _______5、如图,D 、E 、F 分别是△ABC 各边的中点 (1)假如EF =4cm ,那么BC =__cm 假如AB =10cm ,那么DF =___cm (2)中线AD 与中位线EF 的关系是___6.如图1所示,EF 是△ABC 的中位线,若BC=8cm ,则EF=_______cm .(1) (2) (3) (4)7.三角形的三边长分别是3cm ,5cm ,6cm ,则连结三边中点所围成的三角形的周长是_________cm .8.在Rt △ABC 中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______. 9.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( )E DBEDAA .4.5cmB .18cmC .9cmD .36cm10.如图2所示,A ,B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个方法:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( ) A .15m B .25m C .30m D .20m11.已知△ABC 的周长为1,连结△ABC 的三边中点构成其次个三角形,•再连结其次个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、20081 B 、20091 C 、220081 D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长渐渐增大 B .线段EF 的长渐渐削减 C .线段EF 的长不变 D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF•的周长是( )A .10B .20C .30D .4014.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .15.已知矩形ABCD 中,AB =4cm ,AD =10cm ,点P 在边BC 上移动,点E 、F 、G 、H 分别是AB 、AP 、DP 、DC 的中点.求证:EF +GH =5cm ;16.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .BG A E FH D C 图5 17.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC .18.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.19.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点。

中考数学每日一练:三角形中位线定理练习题及答案_2020年解答题版

中考数学每日一练:三角形中位线定理练习题及答案_2020年解答题版

中考数学每日一练:三角形中位线定理练习题及答案_2020年解答题版答案答案答案2020年中考数学:图形的性质_三角形_三角形中位线定理练习题~~第1题~~(2020长春.中考模拟) 如图,在⊙O 中,点C 为OB 的中点,点D 为弦AB 的中点,连结CD 并延长,交过点A 的切线于点E.求证:AE ⊥CE.考点: 平行线的性质;三角形中位线定理;切线的性质;~~第2题~~(2019丹阳.中考模拟) 在△ABC 中,点D 、E 、F 分别是BC 、AB 、AC 边的中点.求证:△BED ≌△DFC.考点: 三角形全等的判定;三角形中位线定理;~~第3题~~(2019乐陵.中考模拟) 如图,在⊙O 中,C , D 分别为半径OB , 弦AB 的中点,连接CD 并延长,交过点A 的切线于点E .(1) 求证:AE ⊥CE .(2) 若AE = ,sin ∠ADE = ,求⊙O 半径的长.考点: 勾股定理;三角形中位线定理;~~第4题~~(2019中山.中考模拟) 如图,在直角坐标系中,点A 的坐标为(0,8),点 B (b ,t )在直线x=b 上运动,点D 、E 、F 分别为OB 、OA 、AB 的中点,其中b 是大于零的常数.答案答案(1) 判断四边形DEFB 的形状.并证明你的结论;(2) 试求四边形DEFB 的面积S 与b 的关系式;(3) 设直线x=b 与x 轴交于点C ,问:四边形DEFB 能不能是矩形?若能.求出t 的值;若不能,说明理由.考点: 三角形中位线定理;矩形的判定与性质;相似三角形的判定与性质;~~第5题~~(2018夷陵.中考模拟) 如图所示,PA 、PB 为⊙O 的切线,M 、N 是PA 、AB 的中点,连接MN 交⊙O 点C ,连接PC 交⊙O 于D,连接ND 交PB 于Q ,求证:MNQP 为菱形.考点: 三角形中位线定理;菱形的判定;切线的性质;相似三角形的判定与性质;2020年中考数学:图形的性质_三角形_三角形中位线定理练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。

八年级数学三角形的中位线定理(人教版)(基础)(含答案)

八年级数学三角形的中位线定理(人教版)(基础)(含答案)

三角形的中位线定理(人教版)(基础)一、单选题(共8道,每道10分)1.已知,在长方形ABCD中,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点.当P在BC的中点,点R从点D向点C移动时,那么下列结论成立的是( )A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定答案:A解题思路:如图,连接AR,∵E,F分别是AP,RP的中点∴EF是△APR的中位线∴在点R从点D向点C移动的过程中,AR逐渐增大∴在点R从点D向点C移动的过程中,EF的长逐渐增大故选A试题难度:三颗星知识点:略2.如图,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是( )A.30°B.100°C.120°D.140°答案:C解题思路:∵P,E,F分别是BD,AB,CD的中点∴PE是△ABD的中位线,PF是△BCD的中位线∴PE∥AD,,PF∥BC,∵AD=BC∴PE=PF∴∠PFE=∠PEF=30°∴∠EPF=120°故选C试题难度:三颗星知识点:略3.如图,△ABC的周长是32,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成第3个三角形,…,以此类推,则第5个三角形的周长为( )A. B.1C.2D.4答案:C解题思路:如图,记第2个三角形的周长为C2,第3个三角形的周长为C3,…以此类推,第5个三角形的周长为C5.记AB,AC,BC的中点分别为D,E,F∴DE,EF,DF分别是△ABC的中位线∴AB=2EF,AC=2DF,BC=2DE∵AB+AC+BC=32∴EF+DF+DE=16,即C2=16同理,,,.故选C试题难度:三颗星知识点:略4.如图,在△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F.若BC=6,则DF的长是( )A.2B.C.3D.4答案:C解题思路:∵D,E分别是BC,AC的中点∴DE是△ABC的中位线∴DE∥AB∴∠DFB=∠ABF又∵BF平分∠ABC∴∠DBF=∠ABF∴∠DFB=∠DBF∴DB=DF∵BC=6∴DF=DB=3故选C试题难度:三颗星知识点:略5.如图,在△ABC中,D,E分别是边AC,AB的中点.若BD平分∠ABC,则下列结论错误的是( )A.BC=2BEB.∠A=∠EDAC.BC=2ADD.BD⊥AC答案:C解题思路:∵D,E分别是边AC,AB的中点∴DE∥BC,且BC=2DE∴∠BDE=∠CBD∵BD平分∠ABC∴∠CBD=∠DBE=∠BDE∴BE=DE=AE∴AB=2BE,BC=2DE=2BE,故A正确;∴AB=BC∴∠A=∠C=∠EDA,故B正确;∵AE=DE,与AD不一定相等,故C错误;∵AB=BC,点D是AC的中点∴BD⊥AC,故D正确.故选C试题难度:三颗星知识点:略6.如图,在四边形ABCD中,对角线AC,BD交于点O,已知AC=BD,M,N分别是AD,BC 的中点,MN与AC,BD分别交于点E,F,则△OEF是( )A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形答案:B解题思路:如图,取CD的中点G,连接MG,NG.∵M,G分别是AD,CD的中点,∴MG是△ACD的中位线,∴MG∥AC,,同理可证:NG∥BD,,∵AC=BD,∴MG=NG,∴∠GMN=∠GNM,∵MG∥AC,NG∥BD,∴∠GMN=∠OEF,∠GNM=∠OFE,∴∠OEF=∠OFE,∴△OEF是等腰三角形,∵题干中没有涉及到有特殊的角度存在,∴不能证明△OEF三边相等或者∠EOF为直角,故选B.试题难度:三颗星知识点:略7.如图,在△ABC中,,在BC上取点D,使DC=AC,作CE⊥AD于E,点F是AB 的中点,连接EF,则为( )A.1:2B.1:3C.1:4D.3:4答案:B解题思路:如图,连接DF,∵AC=CD,CE⊥AD∴E为AD中点∵F为AB中点∴EF是△ABD的中位线∴EF∥BD且设△AEF边EF上的高为h,则∴故选B试题难度:三颗星知识点:略8.如图,在△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为( )A.3B.2C. D.1答案:C解题思路:如图,延长CF,交AB于点G,连接DF,∵AE是角平分线,CF⊥AE,易证△ACG为等腰三角形,AC=AG,∴点F为CG的中点,又∵点D是BC中点,∴DF是△CBG的中位线,∴故选C.试题难度:三颗星知识点:略二、填空题(共2道,每道10分)9.如图,在Rt△ABC中,∠C=90°,∠B=30°,点D,E分别是AC,BC的中点,连接DE.若AD=1,则DE的长为____.答案:2解题思路:∵点D是AC的中点,AD=1∴AC=2AD=2,在Rt△ABC中,∠C=90°,∠B=30°∴AB=2AC=4∵点D,E分别是AC,BC的中点∴DE是△ABC的中位线∴试题难度:知识点:略10.如图,CD是△ABC的中线,点E,F分别是AC,DC的中点,,则BD=____.答案:3解题思路:∵点E,F分别是AC,DC的中点∴EF是△ACD的中位线∴∵∴AD=3∵CD是△ABC的中线∴BD=AD=3试题难度:知识点:略。

中考数学总复习《三角形中位线定理》练习题(含答案)

中考数学总复习《三角形中位线定理》练习题(含答案)

三角形中位线定理一 、选择题1.如图,四边形ABCD 中,E F ,分别是边AB CD ,的中点,则AD BC ,和EF 的关系是( )A .2AD BC EF +>B .2AD BC EF +≥C .2AD BC EF +< D .2AD BC EF +≤二 、填空题2.如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点,A ′、B ′、C ′分别为EF 、EG 、GF 的中点,△A ′B ′C ′的周长为_________.如果△ABC 、△EFG 、△A ′B ′C ′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n 个三角形的周长是__________________.3.已知如图,四边形ABCD 中,90ABC ADC ∠=∠=︒,E F 、分别是AC BD 、的中点,如果2612AC BF ==,,则EF = .4.如图,ABC ∆中,AD 是BAC ∠的平分线,CE AD ⊥于E ,M 为BC 的中点,14cm AB =,10cm AC =,则ME 的长为 .A BD F ECFEDCB A5.已知:如图,△ABC 中,D 是BC 边的中点,AE 平分∠BAC ,BE ⊥AE 于E 点,若AB =5,AC =7,则ED= .三 、解答题6.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.求证:四边形DEFG 是平行四边形.7.已知:如图,AD BC ⊥于D 点,2B C ∠=∠,CE EB =,求证:2AB DE =.8.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF .M ED CBAE D C BA9.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.10.已知:如图,在四边形ABCD 中,AD =BC ,E 、F 分别是DC 、AB 边的中点,FE的延长线分别与AD 、BC 的延长线交于H 、G 点.求证:∠AHF =∠BGF .11.已知:如图,在□ABCD 中,E 是CD 的中点,F 是AE 的中点,FC 与BE 交于G .求证:GF =GC .12.如图在△ABC 中,D 、E 分别为AB 、AC 上的点,且BD =CE ,M 、N 分别是BE 、CD 的中点.过MN 的直线交AB 于P ,交AC 于Q ,线段AP 、AQ 相等吗?为什么?HGF EDC BA三角形中位线定理答案解析一 、选择题1.B ;连结BD ,取BD 的中点P ,连结FP EP ,,由三角形的中位线可知选B二 、填空题2.16;11642n -⎛⎫⨯ ⎪⎝⎭3.54.2;延长CE 交AB 于点N .利用中位线的性质和直角三角形斜边中线可得()14102cm 2-=.5.1;延长BE 交AC 于点G ,故2GC ED =,1ED =三 、解答题6.∵12ED BC ED BC =∥,,12FG BC FG BC =∥,,∴ED FG ED FG =,∥ 7.取AB 边中点F ,连接EF ,DF ,∵DF BF B FDB =∠=∠,, ∴2FDB C ∠=∠,∴AC EF ∥,∴ACE FEB ∠=∠,∴2FDB FEB ∠=∠,故2DE DF AB DE ==, 【解析】利用斜边中线与三角形中位线8.∵ABF CEF ≌△△,BF CF =,12OF AB =9.连接BD ,通过中位线就能证明四边形EFGH 是平行四边形10.∵取AC 中点P ,连接EP FP 、,故1122EP AD PF BC AD BC EP FP ====,,,,EP AH ∥,∴∠AHF =PEF ∠,PF BH ∥,PFH BGF ∠=∠∴∠AHF =∠BGFC E FPD B AE NM D C B A11.∵取BE 中点P ,连接FP ,12PF AB PF AB =∥,,故四边形EFPC 为平行四边形,故GF =GC12.取BC 中点F ,连接MF NF 、,得到NF AB MF AC ∥,∥又12MF EC =、12NF BD =,∴APN FNP FMQ AQP ∠=∠∠=∠,,AP AQ = PHGF ED CB A。

中考数学每日一练:三角形中位线定理练习题及答案_2020年单选题版

中考数学每日一练:三角形中位线定理练习题及答案_2020年单选题版

A . AE=EF B . AB=2DE C . △ADF和△ADE的面积相等 D . △ADE和△FDE的面积相等
考点: 等腰三角形的判定与性质;三角形中位线定理;翻折变换(折叠问题);
答案
~~第2题~~ (2020宿州.中考模拟) 若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( )
答案
~~第6题~~ (2019宝鸡.中考模拟) 如图,已知矩形ABCD中,R,P分别是DC、BC上的点,E,F分别是AP,RP的中点,当P在B C上从B向C移动而R不动时,那么下列结论成立的是( )
A . 线段EF的长逐渐增大 B . 线段EF的长逐渐减小 C . 线段EF的长不改变 D . 线段EF的长不能确定
答案
~~第5题~~ (2020长兴.中考模拟) 如图,在正方形ABCD中,G为CD的中点,连结AG并延长,交BC边的延长线于点E,对角线BD 交AG于点F,已知AF=2,则线段AE的长是( )
A . 4 B . 6 C . 8 D . 10
考点: 三角形中位线定理;正方形的性质;相似三角形的性质;
答案
2020年 中 考 数 学 : 图 形 的 性 质 _三 角 形 _三 角 形 中 位 线 定 理 练 习 题 答 案
1.答 案 : C 2.答 案 : C 3.答 案 : B 4.答 案 : D 5.答 案 : B 6.答 案 : C 7.答 案 : C 8.答 案 : A 9.答 案 : A 10.答 案 : D
答案
~~第8题~~ (2019葫芦岛.中考真卷) 如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E不与点 B重合),连接AE,将线段AE绕点A逆时针旋转90得到线段AF,连接BF交AO于点G.设BE的长为x,OG的长为y,下列图 象中大致反映y与x之间的函数关系的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【巩固练习】一.选择题1. 某花木场有一块等腰梯形ABCD的空地,其各边的中点分别是E、F、G、H测量得对角线AC=10米,现想用篱笆围成四边形EFGH场地,则需篱笆总长度是()A. 40米B. 30米C.20米D.10米2. 如图,点D、E、F分别为△ABC三边的中点,若△DEF的周长为10,则△ABC的周长为()A.5 B.10 C.20 D.403. 如图所示,在ABCD中,AC与BD相交于点O,E是边BC的中点,AB=4,则OE的长是( ).A.2 B.2C.1 D.124.如图,D是△ABC一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.115. 如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为()A.12cmcm D.32 cm B.1.52cm C.226.(2015•)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤C.①③④D.④⑤二.填空题7. 顺次连接等腰梯形各边中点得到的四边形是_________________.8. 如图, E、F分别是ABCD 的两边AB、CD的中点, AF交DE于P, BF交CE于Q,则PQ与AB的关系是.9. 如图,E、F、G、H分别是四边形ABCD各边的中点,对角线AC、BD的长分别为7和9,则四边形EFGH的周长是______.10.如图,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是________.11. (2015•市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为.12.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF∥BC 交AB于E ,交AC 于F ,过点O 作OD⊥AC 于D .下列三个结论:①∠BOC=90°+12∠A; ②设OD =m ,AE +AF =n ,则AEF S mn △;③EF 不能成为△ABC 的中位线.其中正确的结论是_______.三.解答题13.(2015•巴东县模拟)如图,在四边形ABCD 中,AB=DC ,E 、F 分别是AD 、BC 的中点,G 、H 分别是对角线BD 、AC 的中点.(1)求证:四边形EGFH 是菱形;(2)若AB=,则当∠ABC+∠DCB=90°时,求四边形EGFH 的面积.14.已知:在△ABC 中,BC >AC ,动点D 绕△ABC 的顶点A 逆时针旋转,且AD =BC ,连接DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .(1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连接HE 、HF ,根据三角形中位线定理和平行线的性质,可得结论∠AMF=∠BNE(不需证明);(2)当点D 旋转到图2或图3中的位置时,∠AMF 与∠BNE 有何数量关系?请分别写出猜想,并任选一种情况证明.15. 在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.【答案与解析】一.选择题1.【答案】C;【解析】四边形EFGH是边长为5米的菱形.2.【答案】C;【解析】根据中位线定理可得BC=2DF,AC=2DE,AB=2EF,继而结合△DEF的周长为10,可得出△ABC的周长.3.【答案】A;【解析】∵四边形ABCD是平行四边形,∴AO=OC.又∵BE=EC,∴OE是△ABC 的中位线,∴OE=12AB=2.4.【答案】D;【解析】EF=HG=12BC,EH=FG=12AD,所以四边形EFGH是平行四边形,由勾股定理BC=5,所以周长等于3+3+5=11.5.【答案】B;【解析】连接MN,作AF⊥BC于F.∵AB=AC,∴BF=CF=12BC=12×8=4,在Rt△ABF中,AF=22AB BF-=2254-=3,∵M、N分别是AB,AC的中点,∴MN是中位线,即平分三角形的高且MN=8÷2=4,∴NM=12BC=DE,∴△MNO≌△EDO,O也是ME,ND的中点,∴阴影三角形的高是12AF÷2=1.5÷2=0.75,∴S阴影=4×0.75÷2=1.5.6.【答案】B;【解析】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.二.填空题7.【答案】菱形;8.【答案】PQ∥AB,PQ=12AB;【解析】P,Q分别是AF,BF的中点.9.【答案】16;【解析】根据三角形中位线的性质得出HG12AC,EF12AC,HE12DB,GF12BD,进而得出HE=GF=12BD,HG=FE=12AC,即可得出答案.10.【答案】10;【解析】∵在△ABC中,AB=AC=6,AE平分∠BAC,∴BE=CE=12BC=4,又∵D是AB中点,∴BD=12AB=3,∴DE是△ABC的中位线,∴DE=12AC=3,∴△BDE的周长为BD+DE+BE=3+3+4=10.11.【答案】8;【解析】∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=CD,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.12.【答案】①,③;【解析】①根据三角形角和定理求解;②根据△AEF的面积=△AOE的面积+△AOF 的面积求解;③若此三角形为等边三角形,则EF即为中位线.三.解答题13.【解析】(1)证明:∵在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点,∴EG∥AB,EG=AB,HF∥AB,HF=AB,∴EG∥HE,EG=HE,∴四边形EGFH是平行四边形.又EH=CD,AB=CD,∴EG=EH,∴平行四边形EGFH是菱形;(2)解:∵四边形ABCD中,G、F、H分别是BD、BC、AC的中点,∴GF∥DC,HF∥AB.∴∠GFB=∠DCB,∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=,∴EG=AB=.∴正方形EGFH的面积=()2=.14.【解析】解:图1:∠AMF=∠ENB;图2:∠AMF=∠ENB;图3:∠AMF+∠ENB=180°.证明:如图2,取AC的中点H,连接HE、HF.∵F是DC的中点,H是AC的中点,AD,∴HF∥AD,HF=12∴∠AMF=∠HFE,CB,同理,HE∥CB,HE=12∴∠ENB=∠HEF.∵AD=BC,∴HF=HE,∴∠HEF=∠HFE,∴∠ENB=∠AMF.如图3:取AC的中点H,连接HE、HF.∵F是DC的中点,H是AC的中点,AD,∴HF∥AD,HF=12∴∠AMF+∠HFE=180°,CB,同理,HE∥CB,HE=12∴∠ENB=∠HEF.∵AD=BC,∴HF=HE,∴∠HEF=∠HFE,∴∠AMF+∠ENB=180°.15.【解析】解:(1)FH与FC的数量关系是:FH=FC.证明如下:延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且DC=1AC,2∴DG为△ABC的中位线,∴DG=1BC.2∵AC=BC,∴DC=DG,∴DC-DE=DG-DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.。

相关文档
最新文档