材料力学答案 第八章
《材料力学》第八章课后习题参考答案
解题方法与技巧归纳
受力分析
在解题前首先要对物体进行受力分析, 明确各力的大小和方向,以便后续进 行应力和应变的计算。
图形结合
对于一些复杂的力学问题,可以画出 相应的示意图或变形图,帮助理解和 分析问题。
公式应用
熟练掌握材料力学的相关公式,能够 准确应用公式进行计算和分析。
检查结果
在解题完成后,要对结果进行检查和 验证,确保答案的正确性和合理性。
压杆稳定
探讨细长压杆在压缩载荷作用下的稳定性问题。
解题方法与技巧
准确理解题意
仔细审题,明确题目要求和考查的知识点。
选择合适的公式
根据题目类型和所给条件,选用相应的公式 进行计算。
注意单位换算
在计算过程中,要注意各物理量的单位换算, 确保计算结果的准确性。
检查答案合理性
得出答案后,要检查其是否符合实际情况和 物理规律,避免出现错误。
相关题型拓展与延伸
组合变形问题
超静定问题
涉及多种基本变形的组合,如弯曲与扭转 的组合、拉伸与压缩的组合等,需要综合 运用所学知识进行分析和计算。
超静定结构是指未知力数目多于静力平衡 方程数目的结构,需要通过变形协调条件 或力法、位移法等方法进行求解。
稳定性问题
疲劳强度问题
研究细长压杆在压力作用下的稳定性问题 ,需要考虑压杆的临界力和失稳形式等因 素。
研究材料在交变应力作用下的疲劳破坏行为 ,需要了解疲劳极限、疲劳寿命等概念和计 算方法。
THANKS FOR WATCHING
感谢您的观看
重点知识点回顾
材料的力学性质
包括弹性、塑性、强度、硬度等基本概念和 性质。
杆件的拉伸与压缩
涉及杆件在拉伸和压缩状态下的应力、应变及 变形分析。
周建方版材料力学习题解答2-8章
2-1求图中所示各杆指定截面上的轴力,并绘制轴力图。
解:a) b)FFc) d)题2-1图2-2 求下图所示各个轴指定截面上的扭矩,并绘制扭矩图 解:a) b)2kN·m20kN·m题2-2图2-3图中传动轴的转速n=400rpm,主动轮2输入功率P 2=60kW,从动轮1,3,4和5的输出功率分别是P 1=18kW, P 3=12kW, P 4=22kW, P 5=8kW,试绘制该轴的扭矩图. 解:mN T mN T mN T mN T m N T ⋅=⨯=⋅=⨯=⋅=⨯=⋅=⨯=⋅=⨯=191400895492.5254002295495.2864001295494.14324006095497.42940018954922321 题2-3图429.7N·m2-4 求图中所示各梁指定截面上的剪力和弯矩,设q 和F 均为已知.a )b)A qlql 2/2Bc)d)qlF QAM图F Q 图题2-4图2-5试绘制下图所示各梁的剪力图和弯矩图,并求出剪力和弯矩的最大值.设F q l 均为已知.a)b)A F Q2M图F Q 图c)d)F QF Q 图M图e) f)F QM图qlql 2/2ql 2/8F Q M图g)h)F Q M图9ql 2/128F Q M图题2-5图2-6不列方程,绘制下面各梁的剪力图和弯矩图,并求出剪力和弯矩绝对值的最大值.设F 、q 、l 均为已知。
a)b)F Q M图ql 2/2qlF Qc) d)F Q 图M图2FlF Q 图M图e) f)F Q 图M图F Q M图题2-6图2-7绘制下图所示各梁的剪力图和弯矩图,求出|F Q |max 和|M|max ,并且用微分关系对图形进行校核.a) b)F Q 图M图F Q 图M图Flc)d)F Q 图M图2F Q题2-7图2-8试判断图中所示各题的F Q ,M 图是否有错,如有错误清指出错误原因并加以改正。
周建方版材料力学习题解答[第八章9]分析
8-49现用某种黄铜材料制成的标准圆柱形试件做拉伸试验。
已知临近破坏时,颈缩中心部位的主应力比值为113321::::=σσσ;并已知这种材料当最大拉应力达到770MPa 时发生脆性断裂,最大切应力达到313MPa 时发生塑性破坏。
若对塑性破坏采用第三强度理论,试问现在试件将发生何种形式的破坏?并给出破坏时各主应力之值。
解: 令主应力分别为:σσ31=,σσσ==32脆性断裂时,由第一强度理论=1r σσσ31==770MPa所以,塑性破坏时,由第三强度理论 所以故,试件将发生脆性断裂。
破坏时MPa 7701=σ,MPa 25732==σσ8-50 钢制圆柱形薄壁压力容器(参见图8-13),其平均直径mm d 800=,壁厚mm 4=δ,材料的M P a ][120=σ,试根据强度理论确定容器的许可内压p 。
解:在压力容器壁上取一单元体,其应力状态为二向应力状态。
p pd 504'==δσ ,p pd1002"==δσ 其三个主应力为p 100"1==σσ, p 50'2==σσ,03=σ据第三强度理论所以 ,MPa p 2.13≤,许可内压MPa p 2.13= 据第四强度理论所以,MPa p 39.14≤,许可内压MPa p 39.14=8-51 空心薄壁钢球,其平均内径mm d 200=,承受内压MPa p 15=,钢的MPa ][160=σ。
试根据第三强度理论确定钢球的壁厚δ。
解:钢球上任一点应力状态如图示 其三个主应力为:σσσ==21,03=σ而 MPa MPa d p R R p δδδδππσ4342.0152222=⨯=⋅=⋅⋅=据第三强度理论 所以 mm m 69.41069.41601433=⨯=⨯≥-δ 8-52 图8-77所示两端封闭的铸铁圆筒,其直径mm d 100=,壁厚mm 10=δ,承受内压MPa p 5=,且在两端受压力kN F 100=和外扭矩m kN T ⋅=3作用,材料的许用拉应力MPa ][40=+σ,许用压应力MPa ][160=-σ,泊松比250.=ν,试用莫尔强度理论校核其强度。
材料力学课后答案
- 1 -第8章 杆件的拉伸与压缩8-1 填空题:8-1(1) 如图拉杆的左半段是边长为b 的正方形,右半段是直径为b 的圆杆。
两段许用应力均为 ][σ,则杆的许用荷载 =][F ][4π2σb 。
8-1(2) 图示拉杆由同种材料制成,左部分是内径为D 、外径为D 2的空心圆杆,右部分为实心圆杆,要使两部分具有相同的强度,右部分的直径应取 D3 。
8-1(3) 杆件轴向拉伸或压缩时,其斜截面上切应力随截面方位的不同而不同,而切应力的最大值发生在与轴线间的夹角为 45° 的斜截面上。
8-1(4) 图中两斜杆的抗拉刚度为EA ,A 点的竖向位移为EAFa 2 。
8-1(5) 图中结构中两个构件的厚度b 相同,则它们的挤压面积 =A αcos ab。
8-1(6) 图中结构中,若 h d D 32==,则螺栓中挤压应力、拉伸应力和剪切应力三者的比例关系是 9:24:8 。
题 8-1(5) 图题 8-1(1) 图题 8-1(2) 图题 8-1(6)图F题 8-1(4) 图- 2 -分析:222bs 3π4)(π4d F d D F =−=σ, 2tπ4d F =σ, 22π3πd F hd F ==τ,故有 9:24:883:1:31::tbs ==τσσ。
8-2 单选题:8-2(1) 图示的等截面杆左端承受集中力,右端承受均布力,杆件处于平衡状态。
1、3两个截面分别靠近两端,2截面则离端部较远。
关于1、2、3这三个截面上的正应力的下列描述中,正确的是 C 。
A .三个截面上的正应力都是均布的 B .1、2两个截面上的正应力才是均布的 C .2、3两个截面上的正应力才是均布的 D .1、3两个截面上的正应力才是均布的8-2(2) 若图示两杆的材料可以在铸铁和钢中选择,那么,综合强度和经济性两方面的因素, C 更为合理。
A .两杆均选钢 B .两杆均选铸铁C .① 号杆选钢,② 号杆选铸铁D .① 号杆选铸铁,② 号杆选钢8-2(3) 图示承受轴向荷载的悬臂梁中,在加载前的一条斜直线KK 在加载过程中所发生的变化是 D 。
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第8章 弯曲刚度
课
后 答
案
网
解:由挠度表查得:
FP al 180° × 3 EI π Wal 180° = ⋅ 3 EI π 20000 × 1 × 2 × 64 180° = ⋅ 3 × 200 × 109 × π d 4 π ≤ 0 .5 ° d ≥ 0.1117 m,取 d = 112mm。
θB =
ww w
6 ( 246 + 48) ×10 × 200 ×10 × π × 32 × 10−12
2
co
m
8—3 具有中间铰的梁受力如图所示。试画出挠度曲线的大致形状,并说明需要分几段 建立微分方程,积分常数有几个,确定积分常数的条件是什么?(不要求详细解答)
习题 8-3 图
后 答
案
网
习题 8-4 图
课
习题 8-4a 解图
解: (a)题 1.
wA = wA1 + wA 2
wA1 =
⎛l⎞ q⎜ ⎟ ⎝2⎠
87图示承受集中力的细长简支梁在弯矩最大截面上沿加载方向开一小孔若不考虑应力集中影响时关于小孔对梁强度和刚度的影响有如下论述试判断哪一种是正确的
eBook
工程力学
(静力学与材料力学)
习题详细解答
(第 8 章) 范钦珊 唐静静
课
后 答
案
网
2006-12-18
ww w
1
.k hd
aw .
co
m
(教师用书)
−3 9 4
(
.k hd
解:由挠度表查得 F ba 2 wC = P l − a 2 − b2 6lEI
(
)
习题 8-9 图
8
aw .
)
材料力学-单祖辉-第三版课后答案-(第一章—第八章)
230
MP
a
4 230103 N 5 π(0.020m)2
146.4
MPa
2-21 图示两根矩形截面木杆,用两块钢板连接在一起,承受轴向载荷 F = 45kN 作
用。已知木杆的截面宽度 b =250mm,沿木纹方向的许用拉应力[ ]=6MPa,许用挤压应力 [ bs ] =10MPa,许用切应力[ ]=1MPa。试确定钢板的尺寸 与 l 以及木杆的高度 h。
8
解:1. 求轴销处的支反力
题 2-18 图
由平衡方程 Fx 0 与 Fy 0 ,分别得
FBx F1 F2cos45 25kN
由此得轴销处的总支反力为
FBy F2sin45 25kN
FB 252 252 kN 35.4kN
2.确定轴销的直径 由轴销的剪切强度条件(这里是双面剪)
于是得
D 1 [ ] d [ ]bs
D : h : d 1 [ ] : [ ] :1 [ ]bs 4[ ]
由此得
D: h : d 1.225: 0.333:1
2-18 图示摇臂,承受载荷 F1 与 F2 作用。已知载荷 F1=50kN,F2=35.4kN,许用切
应力[ ]=100MPa,许用挤压应力[ bs ] =240MPa。试确定轴销 B 的直径 d。
2-19 图示木榫接头,承受轴向载荷 F = 50 kN 作用,试求接头的剪切与挤压应力。
解:剪应力与挤压应力分别为
题 2-19 图
50103 N 5 MPa (0.100m)(0.100m)
b
s
50103 N (0.040m)(0.100m)
12.5
MP
a
9
2-20 图示铆接接头,铆钉与板件的材料相同,许用应力[] =160MPa,许用切应力
《工程力学(工程静力学与材料力学)(第3版)》习题解答:第8章 剪应力分析
2.确定梁内横截面上的最大拉应力和最大压应力;
3.确定梁内横截面上的最大切应力;
4.画出横截面上的切应力流。
知识点:弯曲切应力公式的应用、切应力流
难度:难
解答:
1.图(a):
kN
, kN
剪力与弯矩图如图(b)、(c);
2.形心C位置
MPa
MPa
3. m3
MPa
4.切应力流如图(e)。
(A)下移且绕点O转动;
(B)下移且绕点C转动;
(C)下移且绕z轴转动;
(D)下移且绕 轴转动。
知识点:弯曲中心、薄壁截面梁产生平面弯曲的加载条件
难度:一般
解答:
正确答案是D。
8-19试判断下列图示的切应力流方向哪一个是正确的。
知识点:横向弯曲时梁横截面上的切应力流、弯曲切应力分析方法
难度:难
解答:
(A)细长梁、横截面保持平面;
(B)弯曲正应力公式成立,切应力沿截面宽度均匀分布;
(C)切应力沿截面宽度均匀分布,横截面保持平面;
(D)弹性范围加载,横截面保持平面。
知识点:弯曲时梁横截面上切应力分析
难度:易
解答:
正确答案是B。
公式 推导时应用了局部截面的正应力合成的轴力,该正应力 则要求弯曲正应力公式成立;另外推导时在 时,应用了 沿截面宽度均匀分布假设。
难度:难
解答:
正确答案是D。
8-21简支梁受力与截面尺寸如图所示。试求N-N截面上a、b两点的铅垂方向的切应力以及腹板与翼缘交界处点c的水平切应力。
知识点:弯曲切应力公式的应用、切应力流
难度:难
解答:
FQ = 120kN,形心C位置。
材料力学习题及答案
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
材料力学作业及练习题参考答案(8、9章)
八章2题: 解:查槽钢表,每根槽钢,A=25.669 cm2,W=141 cm3, 则两根槽钢制成的梁:A=2A=51.538 cm2, W=2W=282 cm3 在B截面左侧的上边缘处: =-FN/A+M/W=-50×103/(51.538×10-4)+37.5×103/(282×10-6) =123.24×106 Pa, 即在该处为拉应力123.24 MPa ; 在B截面左侧的下边缘处: =-FN/A-M/W=-50×103/(51.538×10-4)-37.5×103/(282×10-6) =-142.72×106 Pa, 即在该处为压应力142.72 MPa ; 在B截面右侧的上边缘处: =M/W=37.5×103/(282×10-6)=132.98×106 Pa, 即在该处为拉应力132.98 MPa ; 在B截面右侧的下边缘处: =-M/W=-37.5×103/(282×10-6)=-132.98×106 Pa, 即在该处为压应力132.98 MPa。
材料力学习题及答案
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
材料力学习题及答案
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
材料力学课后习题答案8章
由于式中 α 为任意值,故原命题得证。
8-7
已知某点 A 处截面 AB 与 AC 的应力如图所示(应力单位为 MPa) ,试用图解法
求主应力的大小及所在截面的方位。
题 8-7 图 解:根据题图所给的已知应力,可画出应力圆来,如图 8-7 所示。
图 8-7 从所画的应力圆上可以量得两个主应力,它们是:
由
tanα 0 = −
得 σ 1 的方位角为
τx 2.25 =− = −0.07458 σ x − σ min 30.0 + 0.1678
α 0 = −4.27 o
对于应力图 c,其切应力为
τC =
3FS 3 × 20 × 103 N = = 3.00 × 106 Pa = 3.00MPa 2 2 A 2 × 0.050 × 0.200m
σα = (
30 + 10 + 20sin 90 o )MPa = 40.0MPa 2 30 − 10 sin 90 o )MPa = 10.0MPa τα = ( 2
(b)解:由题图所示应力状态可知,
1
σ x = −30MPa,σ y = 10MPa,τ x = 20MPa,α = 22.5 o
(a) (b) (c)
= 350 × 10 −6
将式(a)和(b)代入式(c),得
γ xy = (550 − 700) × 10 −6 = −150 × 10 −6
(d)
将以上所得结果(a),(b)和(d)代入平面应变状态任意方位的正应变公式,计算 ε135o 应有 的测量值为
ε135o =
1 1 (450 + 100) × 10 −6 + (450 − 100) × 10 −6 cos270 o 2 2 1 − × (−150 × 10 −6 )sin270 o = 200 × 10 −6 2
材料力学单祖辉第三版课后答案(第一章—第八章)
第一章 绪 论1-2如图所示,在杆件的斜截面m-m 上,任一点A 处的总应力p =120MPa ,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
题1-2图解:总应力p 与截面m-m 的法线间的夹角为 10203030=-=-=θα所以, MPa 2.11810cos == p σMPa 8.2010sin == p τ1-3 已知杆内横截面上的内力主矢F R与主矩M 如图所示,且均位于x-y 平面内。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中,C 为截面形心。
题1-3图解:2,R N S F F F M M y y ===1-4 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为max σ=100MPa ,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中,C 为截面形心。
题1-4图解:由题图所示正应力分布可以看出,该杆横截面上存在轴力N F 和弯矩z M ,其大小分别为200kN N 10002m)0400m 100.0(Pa)10100(212156max N =⨯=⨯⨯⨯⨯==..A σFm kN 333m N 10333m)1000(N)10200(6161)32(33N N ⋅=⋅⨯=⨯⨯⨯==-=...h F h h F M z1-5 图a 与b 所示两个矩形微体,虚线表示其变形或位移后的情况,该二微体在A点处的切应变分别记为(γA )a 与(γA )b ,试确定其大小。
题1-5图(a)解: (γA )a =0(b)解:αααγ2)()(-=+-=b A1-6 板件变形如图中虚线所示。
试求棱边AB 与AD 的平均正应变以及A 点处直角BAD 的切应变。
题1-6图解:平均正应变为33av,1000.1m 100.0m 100.1--⨯=⨯=AB ε33av,1000.2m100.0m 102.0--⨯=⨯=ADε由转角 rad 1000.20.100m m 102.033--⨯=⨯=AD αrad 1000.10.100mm 101.033--⨯=⨯=ABα得A 点处直角BAD 的切应变为rad 1000.13-⨯=-==AB AD BAD A ααγγ第二章轴向拉压应力与材料的力学性能2-1试画图示各杆的轴力图。
工程力学材料力学第四版习题答案解析
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:QNllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
材料力学第五版课后习题答案修订版
材料力学第五版课后习题答案Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】二、轴向拉伸和压缩2-1试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:;;(b)解:;;(c)解:;。
(d)解:。
2-2 试求图示等直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:2-3试求图示阶梯状直杆横截面1-1,2-2和3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:2-4 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EG横截面上的应力。
解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当,30,45,60,90时各斜截面上的正应力和切应力,并用图表示其方向。
解:2-6(2-8) 一木桩柱受力如图所示。
柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10 GPa。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。
解:(压)(压)2-7(2-9)一根直径、长的圆截面杆,承受轴向拉力,其伸长为。
试求杆横截面上的应力与材料的弹性模量E。
解:2-8(2-11)受轴向拉力F作用的箱形薄壁杆如图所示。
已知该杆材料的弹性常数为E,,试求C与D两点间的距离改变量。
解:横截面上的线应变相同因此2-9(2-12) 图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E=210GPa,已知,,,。
材料力学 习题解答[第八章01-30]
解:如图所示弯矩图,分别校核C、B截面的弯曲正应力,
8-12图8-45所示槽形截面梁有三块矩形板条粘结而成。已知 , , 。试校核该梁的强度。
题8-12图
解:确定形心
8-13 一设计起重量为50 的吊车梁(图8-4a),跨度 ,由Ⅰ字钢I45a制成, , 。现需起吊一70kN的重物,问其强度是否足够?如不够,则在上、下翼缘各加焊一块 的钢板(图8-46b),试决定钢板的最小长度。已知电葫芦重 (梁的自重不考虑)。
先按正应力设计,再校核剪应力
令 则
若选工字钢可选25号工字钢,并查表知
MPa<[τ]
若选两槽钢,可选20号槽钢,无法校核其剪切强度
8.17当 力直接作用在梁AB中点时,梁内的最大正应力超用许用应力30%。为了消除过载现象,配置了如图8-50所示的辅助梁CD,试求此辅助梁的跨度。
图8-50
解:先由静力平衡求出支座反力:
联立①②两式可得梁长l=2m,许可载荷F=14800N=14.8kN。
8.23测定材料剪切强度的剪切器的示意图如图8-56所示。设圆试件的直径 ,当压力 时,试件被剪断,试求材料的名义剪切极限应力。若剪切许用应力为 ,试问安全系数等于多大?
图8-56
解:由公式(8-9)可求名义剪切极限应力
MPa=89.13MPa
1矩形截面:
②工字钢截面:查表得I10的
③圆形:
④圆环:
8-15 一工厂为了起吊一重量 的大型设备,采用了一台150 吊车、一台200 吊车及一根辅助梁(图8-48),已知梁的 , 。试求:(1)重物在梁的什么位置,才能保证两台吊车都不超载;(2)若用Ⅰ字钢作辅助梁,应选择多大型号。
题8-15图
解:
《材料力学》第8章 组合变形及连接部分的计算 习题解
第八章 组合变形及连接部分的计算 习题解[习题8-1] 14号工字钢悬臂梁受力情况如图所示。
已知m l 8.0=,kN F 5.21=,kN F 0.12=,试求危险截面上的最大正应力。
解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压性能相同,故只计算最大拉应力:式中,z W ,y W 由14号工字钢,查型钢表得到3102cm W z =,31.16cm W y =。
故MPa Pa mm N m m N 1.79101.79101.168.0100.11010228.0105.236363363max=⨯=⨯⨯⨯+⨯⨯⨯⨯⨯=--σ [习题8-2] 受集度为 q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为 030=α,如图所示。
已知该梁材料的弹性模量 GPa E 10=;梁的尺寸为m l 4=,mm h 160=,mm b 120=;许用应力MPa 12][=σ;许用挠度150/][l w =。
试校核梁的强度和刚度。
解:(1)强度校核)/(732.1866.0230cos 0m kN q q y =⨯== (正y 方向↓))/(15.0230sin 0m kN q q z =⨯== (负z 方向←))(464.34732.1818122m kN l q M y zmaz ⋅=⨯⨯== 出现在跨中截面)(241818122m kN l q M z ymaz ⋅=⨯⨯== 出现在跨中截面)(5120001601206161322mm bh W z =⨯⨯==)(3840001201606161322mm hb W y =⨯⨯==最大拉应力出现在左下角点上:yy z z W M W M maxmax max +=σ MPa mmmm N mm mm N 974.1138400010251200010464.33636max=⋅⨯+⋅⨯=σ因为 MPa 974.11max =σ,MPa 12][=σ,即:][max σσ<所以 满足正应力强度条件,即不会拉断或压断,亦即强度上是安全的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题9-38图
1-6 CABBBC
9-38 加固后的吊车主梁如图所示。
梁的跨度l = 8m ,许用应力][σ= 100MPa 。
试分析当小车行走到什么位置时,梁内弯矩最大,并计算许可载荷(小车对梁的作用可视为集中力)。
解:1.小车行至梁中间时,梁内弯矩最大。
P P 1242F F
M =⨯=
823
8
1103467.1)16367512
675(
21010755.1⨯=⨯⨯+⨯+⨯=z I mm 4 4351110113.8mm 10113.8166-⨯=⨯==z z I
W m 3
][11σ≤z W M ,即64P
1010010
113.82⨯≤⨯-F 56.40P ≤F kN
(1)
2.小车行至离两端1.4 m 处 P P
2155.14.18)
4.18(F F M =⨯-= 4110922.6-⨯=z W m 3
][22σ≤z W M ,即64
P
1010010
922.6155.1+-⨯≤⨯F 9.59P ≤F kN (2)
比较(1)、(2),得
[F P ] = 40.56 kN
9-42 简支梁受力如图所示。
采用普通热轧工字型钢,且已知][σ= 160MPa 。
试确定工字型钢型号,并按最大切应力准则对梁的强度作全面校核。
解:1.F R A = F R B = 180kN (↑)
75.885.0102
1
5.01802=⨯⨯-⨯==D C M M kN ·m
1002102
1
5.116021802max =⨯⨯-⨯-⨯==M M E kN ·m
175105.0180Q =⨯-=C F kN ][max
max σσ≤=
W
M 46
3
max 1025.610
16010100][-⨯=⨯⨯=≥σM W m 3 查型钢表,选工字钢No.32a :
W = 692.2 cm 2,I z = 11075.5 cm 4
46.27=z z S I
cm
E 截面:
180
175)
k N (Q F A
C
15
15B
D
175
E A
C
E D B
88.75
88.75
100
M
m
-kN
习题9-43图
5.144max
max ==W
M σMPa 5.144313
r =-=σσσMPa ][σ<
2. A +
、B -
截面:
691026.27105.9101802
33
Q max =⨯⨯⨯⨯==--z z dI S F τMPa
13824max 2
max 3r ===ττσMPa ][σ<
3.C -、D +
截面: 2.1161010755.1101451075.888
3
3=⨯⨯⨯⨯=
--x σMPa
MPa
46.491010755.1105.9105.1521513010175839
3*
=⨯⨯⨯⨯⨯⨯⨯⨯=
⋅=
τ---z
z
C xy dI S F Q
6.15242
23r =+=xy x τσσMPa ][σ<
∴ 选No.32a 工字钢安全。
9-70 传动轴受力如图示。
若已知材料的][σ= 120MPa ,试设计该轴的直径。
解:T = F P r
5000P ==r
T
F N
受力图(a )
25002
1
P ===F F F Cy Ay N
危险面B :
M x = 500N ·m
37515.0=⨯=Cy z F M N ·m 不计剪力影响 ][223r σσ≤+=W
M M x
z
63
2
210120π50037532⨯≤+d
037575.0≥d m 取 d = 37.6mm
习题9-70图
A
B
C
y
T
T
D
P
F Cy F Ay
F z
(a)
A
A
B
B
C
A
x
M M
D m
375N ⋅m 500N ⋅
(a)
F R A
F R B
习题9-74图
9-73 直杆AB 与直径d = 40mm 的圆柱焊成一体,结构受力如图所示。
试确定点a 和点b 的应力状态,并计算4r σ。
解:1.5N -=x F kN ,400-=ay F N 60150.0)6001000(=⨯-=x M N ·m 110275.0)6001000(-=⨯--=z M N ·m
2. 53.131032
40π110
10440π1059
3623N =⨯⨯+⨯⨯⨯-=+=--z z x a W M A F σMPa
7746.4P
==W M
x a τMPa
86.157746.4353.133222
24r =⨯+=+=a a τσσMPa
a 点应力状态如图(a )。
3. 979.3104
40π10562
3
N -=⨯⨯⨯-==-A F x b σMPa
252.5104
40
π400
23101640π60236
2
93P =⨯⨯⋅+⨯⨯=+=--A F W M ay x b τMPa 93.932
24r =+=b b τσσMPa
b 点应力状态如图(b )。
习题9-73图
a σa
τb
σb
τ
(a) (b)。