全等三角形、轴对称能力提高练习(可打印修改)

合集下载

全等三角形和轴对称提高练习

全等三角形和轴对称提高练习

1全等三角形和轴对称提高练习1、如图:O 是△ABC 中∠ABC 和∠ACB 的平分线的交点, OD ∥AB 交BC 于D ,OE ∥AC 交BC 于E ,若BC=10㎝, 则△ODE 的周长等于 ㎝。

2、如图:△ABC 和△CDE 是等边三角形。

求证:BE=AD 。

3.如图,BD 平分∠MBN ,A ,C 分别为BM ,BN 上的点,且BC >BA ,E 为BD 上的一点,AE =CE ,求证 ∠BAE +∠BCE =180°4. 如图1,△ABC 的边BC 的中垂线DF 交△BAC 的外角平分线AD 于D,F 为垂足, DE ⊥AB 于E ,且AB>AC ,求证:BE -AC=AE .5、如图,点D 、E 在△ABC 的边上,AD=AE ,BD=EC ,试说明AB=AC.6.如图2,过线段AB 的两个端点作射线AM 、BN ,使AM ∥BN,按下列要求画图并回答:画∠MAB 、∠NBA 的平分线交于E 。

(12分) (1)∠AEB 是什么角?(2)过点E 作一直线交AM 于D ,交BN 于C ,观察线段DE 、CE ,你有何发现?(3)无论DC 的两端点在AM 、BN 如何移动,只要DC 经过点E ,①AD+BC=AB ;②AD+BC=CD 谁成立?并说明理由。

B C N D E M AE DC BA ECBAO DABCDEABF CDE图1图22EDC BAFED A7、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1)若BD 平分∠ABC ,求证CE=12BD ;(2)若D 为线段AC 上一动点(不与A 、C 重合),∠ACE 是否变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。

8.如图:E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF=EF ,BD=CE 。

八年级全等三角形(提升篇)(Word版 含解析)

八年级全等三角形(提升篇)(Word版 含解析)

八年级全等三角形(提升篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.【答案】2.【解析】【分析】【详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B′DE≌△BDE,∴B′F=1B′E=BE=2,DF=23,2∴GD=B′F=2,∴B′G=DF=23,∵AB=10,∴AG=10﹣6=4,∴AB′=27.考点:1轴对称;2等边三角形.2.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角),两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.3.如图,△ABC中,AB=AC,∠A=30°,点D在边AB上,∠ACD=15°,则ADBC=____.2.【解析】【分析】根据题意作CE⊥AB于E,作DF⊥AC于F,在CF上截取一点H,使得CH=DH,连接DH,并设AD =2x ,解直角三角形求出BC (用x 表示)即可解决问题.【详解】解:作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH=DH ,连接DH .设AD=2x ,∵AB=AC ,∠A=30°,∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=, ∵∠ACD=15°,HD=HC , ∴∠HDC=∠HCD=15°,∴∠FHD=∠HDC+∠HCD=30°,∴DH=HC=2x ,FH 3=, ∴3x ,在Rt △ACE 中,EC 12=AC=x 3+,AE 3=3=, ∴BE=AB ﹣AE 3=﹣x ,在Rt △BCE 中,BC 22BE EC =+=2x , ∴222AD BC x ==. 故答案为:22. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4.如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2,B 3…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记a 1,第2个等边三角形的边长记为a 2,以此类推,若OA 1=3,则a 2=_______,a 2019=_______.【答案】6; 3×22018.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.【详解】解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=3,∴A2B1=3,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=6,a3=4a1,a4=8a1,a 5=16a 1,以此类推:a 2019=22018a 1=3×22018故答案是:6;3×22018.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1…进而发现规律是解题关键.5.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.6.如图,BD 是ABC 的角平分线,AE BD ⊥,垂足为F ,且交线段BC 于点E ,连结DE ,若50C ∠=︒,设 ABC x CDE y ∠=︒∠=︒,,则y 关于x 的函数表达式为_____________.【答案】80y x =-【解析】【分析】根据题意,由等腰三角形的性质可得BD 是AE 的垂直平分线,进而得到AD =ED ,求出BED ∠的度数即可得到y 关于x 的函数表达式.【详解】∵BD 是ABC ∆的角平分线,AE BD ⊥∴1122ABD EBD ABC x ∠=∠=∠=︒,90AFB EFB ∠=∠=︒ ∴1902BAF BEF x ∠=∠=︒-︒ ∴AB BE =∴AF EF =∴AD ED =∴DAF DEF ∠=∠∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒∴130BAC x ∠=︒-︒∴130BED BAD x ∠=∠=︒-︒∵CDE BED C ∠=∠-∠∴1305080y x x ︒=-︒-︒=︒-︒∴80y x =-,故答案为:80y x =-.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.7.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.8.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出_____个格点三角形与△ABC成轴对称.【答案】6【解析】【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.9.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,按此做法继续下去,第2019个等腰三角形的底角度数是______________.【答案】2018180 2⎛⎫⨯ ⎪⎝⎭【解析】【分析】根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第2019个三角形中以A2019为顶点的内角度数.【详解】解:∵在△CBA1中,∠B=20°,A1B=CB,∴∠BA1C=°180-2B∠=80°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=12∠BA1C=12×80°;同理可得∠EA3A2=(12)2×80°,∠FA4A3=(12)3×80°,∴第n个三角形中以A n为顶点的底角度数是(12)n-1×80°.∴第2017个三角形中以A2019为顶点的底角度数是(12)2018×80°,故答案为:(12) 2018×80°. 【点睛】 本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律是解答此题的关键.10.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm ,△ABD 的周长为 15cm , 则△ABC 的周长为______【答案】23cm .【解析】【分析】根据线段垂直平分线的性质得到AC=2AE=8,DA=DC ,根据三角形的周长公式计算即可.【详解】解:∵DE 是AC 的垂直平分线,∴AC=2AE=8,DA=DC ,∵△ABD 的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,∴△ABC 的周长=AB+BC+AC=15+8=23cm ,故答案是:23cm .【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,120AOB ∠=︒,OP 平分AOB ∠,且2OP =,若点M N 、分别在OA OB 、上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )A .1个B .2个C .3个D .无数个【答案】D【解析】【分析】根据题意在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON即可反推出△PMN是等边三角形满足条件,以此进行分析即可得出结论.【详解】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,120AOB∠=︒,∴∠EOP=∠POF=60°,∵OE=OF=OP,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,PEM PONPE POEPM OPN∠⎪∠⎧⎩∠⎪∠⎨===∴△PEM≌△PON(ASA ).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线并构造全等三角形.12.如图,60AOB∠=,OC平分AOB∠,如果射线OA上的点E满足OCE∆是等腰三角形,那么OEC∠的度数不可能为()A .120°B .75°C .60°D .30°【答案】C【解析】【分析】 分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.【详解】∵60AOB ∠=,OC 平分AOB ∠,∠AOC=30︒,当OC=CE 时,∠OEC=∠AOC=30︒,当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,当OC=OE 时,∠OEC=12(180COE ∠︒- )=75︒, ∴∠OEC 的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.13.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是( )A .AD =BEB .BE ⊥AC C .△CFG 为等边三角形D .FG ∥BC【答案】B【解析】试题解析:A.ABC 和CDE △均为等边三角形,60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,在ACD 与BCE 中,{AC BCACD BCE CD CF =∠=∠=,ACD BCE ∴≌,AD BE ∴=,正确.B .据已知不能推出F 是AC 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意.C.CFG 是等边三角形,理由如下:180606060ACG BCA ∠=︒-︒-︒=︒=∠,ACD BCE ≌,CBE CAD ∴∠=∠,在ACG 和BCF 中,{CAG CBFAC BCBCF ACG ∠=∠=∠=∠,ACG BCF ∴≌,CG CH ∴=,又∵∠ACG=60° CFG ∴是等边三角形,正确.D.CFG 是等边三角形,60CFG ACB ∴∠︒=∠﹦,.FG BC ∴ 正确.故选B.14.如图钢架中,∠A=a ,焊上等长的钢条P 1P 2, P 2P 3, P 3P 4, P 4P 5……来加固钢架.著P 1A= P 1P 2,且恰好用了4根钢条,则α的取值范圈是( )A .15°≤ a <18°B .15°< a ≤18°C .18°≤ a <22.5°D .18° < a ≤ 22.5°【答案】C【解析】【分析】由每根钢管长度相等,可知图中都是等腰三角形,利用等腰三角形底角一定是锐角,可推出取值范围.【详解】∵AB=BC=CD=DE=EF∴∠P 1P 2A=∠A=a由三角形外角性质,可得∠P 2P 1P 3=2∠A=2a同理可得,∠P 1P 3P 2=∠P 2P 1P 3=2a ,∠P 3P 2P 4=∠P 3P 4P 2=∠A+∠P 1P 3P 2=3a ,∠P 4P 3P 5=∠P 4P 5P 3=∠A+∠P 3P 4P 2=4a ,在△P 4P 3P 5中,∠P 3P 4P 5=180°-2∠P 4P 3P 5=180°-8a当∠P 5P 4B ≥90°即∠P 5P 4A ≤90°时,不能再放钢管,∴3180890+-≤a a ,解得a ≥18°又∵等腰三角形底角只能是锐角,∴4a <90°,解得a <22.5∴1822.5οο≤<a故选C.【点睛】本题考查等腰三角形的性质,掌握等腰三角形的底角只能是锐角是关键.15.如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(-2012,2)B .(-2012,-2)C .(-2013,-2)D .(-2013,2)【答案】A【解析】 试题分析:首先由正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M 的对应点的坐标,即可得规律:第n 次变换后的点M 的对应点的为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.试题解析:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选A.考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.16.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.17.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.18.如图所示,在四边ABCD中,∠BAD=120°,∠B=∠D=90°,若在BC和CD上分别找一点M,使得△AMN的周长最小,则此时∠AMN+∠ANM的度数为()A.110°B.120°C.140°D.150°【答案】B【解析】【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=180°-120°=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选B .【点睛】此题主要考查了平面内最短路线问题求法,以及三角形的外角的性质和垂直平分线的性质等知识的综合应用,根据轴对称的性质,得出M ,N 的位置是解题的关键.19.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠, ∵在BDF 和CDG △中,90BFD CGD DF DGBDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选:D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.20.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=108°,则∠C的度数为()A.40°B.41°C.32°D.36°【答案】D【解析】分析:如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=108°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.详解:如图,连接AO、BO.由题意得:EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°.∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO.∵∠CDO+∠CFO=108°,∴2∠DAO+2∠FBO=108°,∴∠DAO+∠FBO=54°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=144°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣144°=36°.故选D.点睛:本题考查了三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.。

初二数学《全等三角形、轴对称图形》练习

初二数学《全等三角形、轴对称图形》练习

问中 EF 与 BE、CF 间的关系是否存在?答:
(填“是”或“否”)
(3)如图③,若△ABC 中,∠B 的平分线 BO 与三角形外角平分线 CO 交于 O,过 O 点作 OE∥BC
交 AB 于 E,交 AC 于 F,这时图中还有等腰三角形吗?如果有,分别指出它们:这时 EF 与
BE、CF 关系又如何?并证明.
A.AE=EC
B.AE=BE
C.∠EBC=∠BAC D.∠EBC=∠ABE
5.如图,在△ABC 中,AB=AC,D 为 BC 上一点,且 DA=DC,BD=BA,则∠B 的大小为( )
A.40°
B.36°
C.30°
D.25°
6.如图,△ABP 与△CDP 是两个全等的等边三角形,且 PA⊥PD.有下列四个结论:
初二数学《全等三角形、轴对称图形》练习
一、选择题(共 10 题) 1.下列“数字”图形中,是轴对称图形有且仅有一条对称轴的是( )
A.
B.
C.
D.
2.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑
的图案构成一个轴对称图形,那么涂法共有( )种.
A.6
B.5
C.4
25. 如图,在△ABC 中,AC=BC,∠C=90°,D 是 AB 的中点,AE=CF, 求证:△DEF 是等腰直角三角形.
26.如图,在△ABC 中,∠ABC=45°,点 P 为边 BC 上的一点,BC=3BP, 且∠PAB=15°点 E 关于直线 PA 的对称点为 D,连接 BD,又△APC 的 PC 边上的高为 AH. (1)求∠BPD 的大小; (2)判断直线 BD,AH 是否平行?并说明理由; (3)证明:∠BAP=∠CAH.

数学八年级上册 全等三角形(提升篇)(Word版 含解析)

数学八年级上册 全等三角形(提升篇)(Word版 含解析)

数学八年级上册 全等三角形(提升篇)(Word 版 含解析)一、八年级数学轴对称三角形填空题(难)1.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.【答案】①③④【解析】【分析】①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则∠C=12∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.【详解】∵∠BAC=90°,AD ⊥BC ,∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,∴∠ABC=∠DAC ,∠BAD=∠C ,故①正确;若∠EBC=∠C ,则∠C=12∠ABC , ∵∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,∴∠ABF=∠EBD ,∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,又∵∠BAD=∠C ,∴∠AFE=∠AEF ,∴AF=AE ,故③正确;∵AG是∠DAC的平分线,AF=AE,∴AN⊥BE,FN=EN,在△ABN与△GBN中,∵90ABN GBNBN BNANB GNB∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABN≌△GBN(ASA),∴AN=GN,又∵FN=EN,∠ANE=∠GNF,∴△ANE≌△GNF(SAS),∴∠NAE=∠NGF,∴GF∥AE,即GF∥AC,故④正确;∵AE=AF,AE=FG,而△AEF不一定是等边三角形,∴EF不一定等于AE,∴EF不一定等于FG,故⑤错误.故答案为:①③④.【点睛】本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC∆中,25,105A ABC∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC∆分割成两个等腰三角形,则BDA∠的度数是______.(2)已知在ABC∆中,AB AC=,过顶点和顶点对边上一点的直线,把ABC∆分割成两个等腰三角形,则A∠的最小度数为________.【答案】130︒1807︒⎛⎫⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB ,结合25A ∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD ,CD=AD ,②当AD=BD ,AC=CD ,③AB=AC ,当AD=BD=BC ,④当AD=BD ,CD=BC ,分别求出A ∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA ,BD=BA 时,不符合题意,当DA=DB 时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC ,当BD=AD ,CD=AD ,∴∠B=∠C=∠BAD=∠CAD ,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC ,当AD=BD ,AC=CD ,∴∠B=∠C=∠BAD ,∠CAD=∠CDA ,∵∠CDA=∠B+∠BAD=2∠B ,∴∠BAC=3∠B ,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC ,当AD=BD=BC ,∴∠ABC=∠C ,∠BAC=∠ABD ,∠BDC=∠C ,∵∠BDC=∠A+∠ABD=2∠BAC ,∴∠ABC=∠C=2∠BAC ,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC ,当AD=BD ,CD=BC ,∴∠ABC=∠C ,∠BAC=∠ABD ,∠CDB=∠CBD ,∵∠BDC=∠BAC+∠ABD=2∠BAC ,∴∠ABC=∠C=3∠BAC ,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180()7︒ .综上所述,∠A的最小度数为:180 ()7︒.故答案是:180 ()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.3.在平面直角坐标系中,点A在x轴的正半轴上,点B在y轴的正半轴上,36ABO∠=︒,在x轴或y轴上取点C,使得ABC∆为等腰三角形,符合条件的C点有__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A为圆心,以AB为半径画弧,与x轴和y轴各有两个交点,但其中一个会与点B重合,故此时符合条件的点有3个;若以点B为圆心,以AB为半径画弧,同样与x轴和y轴各有两个交点,但其中一个与点A重合,故此时符合条件的点有3个;线段AB的垂直平分线与x轴和y轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.4.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据32ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,∵32ABC=45°,BD平分∠ABC,∴△BCE是等腰直角三角形,∴322.∴CM+MN的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.5.如图,△ABC 中,AB =AC ,∠A =30°,点D 在边AB 上,∠ACD =15°,则AD BC=____.【答案】2. 【解析】【分析】根据题意作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH =DH ,连接DH ,并设AD =2x ,解直角三角形求出BC (用x 表示)即可解决问题.【详解】解:作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH=DH ,连接DH .设AD=2x ,∵AB=AC ,∠A=30°,∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=, ∵∠ACD=15°,HD=HC ,∴∠HDC=∠HCD=15°,∴∠FHD=∠HDC+∠HCD=30°, ∴DH=HC=2x ,FH 3=x ,∴AB=AC=2x+23x ,在Rt △ACE 中,EC 12=AC=x 3+x ,AE 3=EC 3=x+3x , ∴BE=AB ﹣AE 3=x ﹣x ,在Rt △BCE 中,BC 22BE EC =+=22x , ∴2222AD BC x ==. 故答案为:22. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.如图,点A,B,C 在同一直线上,△ABD 和△BCE 都是等边三角形,AE,CD 分别与BD,BE 交于点F,G ,连接FG ,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG ;④AD ⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】【分析】易证△ABE ≌△DBC ,则有∠BAE =∠BDC ,AE =CD ,从而可证到△ABF ≌△DBG ,则有AF =DG ,BF =BG ,由∠FBG =60°可得△BFG 是等边三角形,证得∠BFG =∠DBA =60°,则有FG ∥AC ,由∠CDB ≠30°,可判断AD 与CD 的位置关系.【详解】∵△ABD 和△BCE 都是等边三角形,∴BD =BA =AD ,BE =BC =EC ,∠ABD =∠CBE =60°. ∵点A 、B 、C 在同一直线上,∴∠DBE =180°﹣60°﹣60°=60°,∴∠ABE =∠DBC =120°. 在△ABE 和△DBC 中,∵BD BA ABE DBC BE BC ∠∠=⎧⎪=⎨⎪=⎩,∴△ABE ≌△DBC ,∴∠BAE =∠BDC ,∴AE =CD ,∴①正确; 在△ABF 和△DBG中,60BAF BDGAB DBABF DBG∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF≌△DBG,∴AF=DG,BF=BG.∵∠FBG=180°﹣60°﹣60°=60°,∴△BFG是等边三角形,∴∠BFG=60°,∴②正确;∵AE=CD,AF=DG,∴EF =CG;∴③正确;∵∠ADB=60°,而∠CDB=∠EAB≠30°,∴AD与CD不一定垂直,∴④错误.∵△BFG是等边三角形,∴∠BFG=60°,∴∠GFB=∠DBA=60°,∴FG∥AB,∴⑤正确.故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE≌△DBC是解题的关键.7.如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是_____度.【答案】1752n-【解析】【分析】先根据∠B=30°,AB=A1B求出∠BA1C的度数,在由A1A2=A1D根据内角和外角的关系求出∠DA2A1的度数,同理求出∠EA3A2=754,∠FA4A3=758,即可得到第n个等腰三角形的底角的度数=1752n.【详解】∵在△ABA1中,∠B=30°,AB=A1B,∴∠BA1C=1802B︒-∠=75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=12∠BA1C=12×75°=37.5°;同理可得, ∠EA 3A 2=754,∠FA 4A 3=758, ∴第n 个等腰三角形的底角的度数=1752n . 故答案为1752n . 【点睛】 此题考查等腰三角形的性质,利用等边对等角求出等腰三角形底角的度数.8.如图,∠AOB =45°,点M 、点C 在射线OA 上,点P 、点D 在射线OB 上,且OD =32,则CP +PM +DM 的最小值是_____.34【解析】【分析】如图,作点C 关于OB 的对称点C ′,作点D 关于OA 的对称点D ′,连接OC ′,PC ′,D ′M ,OD ′,C ′D ′,根据轴对称的性质得到OC ′=OC =2,OD ′=OD =2,CP =C ′P ,DM =D ′M ,∠C ′OD =′COD =∠COD ′=45°,于是得到CP +PM +MD =C ′+PM +D ′M ≥C ′D ′,当仅当C ′,P ,M ,D ′三点共线时,CP +PM +MD 最小为C ′D ′,作C ′T ⊥D ′O 于点T ,于是得到结论.【详解】解:如图,作点C 关于OB 的对称点C ′,作点D 关于OA 的对称点D ′,连接OC ′,PC ′,D ′M ,OD ′,C ′D ′,则OC ′=OC =2,OD ′=OD =2,CP =C ′P ,DM =D ′M ,∠C ′OD =′COD =∠COD ′=45°, ∴CP +PM +MD =C ′+PM +D ′M ≥C ′D ′,当仅当C ′,P ,M ,D ′三点共线时,CP +PM +MD 最小为C ′D ′,作C ′T ⊥D ′O 于点T ,则C ′T =OT 2,∴D ′T =2,∴C ′D 34∴CP +PM +DM 34故答案为:34.【点睛】本题考查了最短路径问题,掌握作轴对称点是解题的关键.9.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .10.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.二、八年级数学轴对称三角形选择题(难)11.点A的坐标是(2,2),若点P在x轴或y轴上且△APO是等腰三角形,这样的点P 共有()个A.6 B.7 C.8 D.9【答案】C【解析】【分析】根据等腰三角形的性质,要使△AOP是等腰三角形,可以分两种情况考虑:当OA是底边时,作OA的垂直平分线,和坐标轴出现2个交点;当OA是腰时,则分别以点O、点A为圆心,OA为半径画弧,和坐标轴出现6个交点,这样的点P共8个.【详解】如图,分两种情况进行讨论:当OA是底边时,作OA的垂直平分线,和坐标轴的交点有2个;当OA是腰时,以点O为圆心,OA为半径画弧,和坐标轴有4个交点;以点A为圆心,OA 为半径画弧,和坐标轴出现2个交点;∴满足条件的点P 共有8个,故选:C .【点睛】本题考查了等腰三角形的定义,坐标与图形的性质,解题的关键是根据OA 为腰或底两种情况分类讨论,运用数形结合的思想进行解决.12.如图,等腰 Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠ABC 的平分线分别交 AC ,AD 于E ,F ,点M 为 EF 的中点,AM 的延长线交 BC 于N ,连接 DM ,NF ,EN .下列结论:①△AFE 为等腰三角形;②△BDF ≌△ADN ;③NF 所在的直线垂直平分AB ;④DM 平分∠BMN ;⑤AE =EN =NC ;⑥AE BN EC BC=.其中正确结论的个数是( )A .2个B .3个C .4个D .5个【答案】D【解析】【分析】 ①由等腰三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质得∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,则得到∠AEF=∠AFE ,可判断△AEF 为等腰三角形,于是可对①进行判断;求出BD=AD ,∠DBF=∠DAN ,∠BDF=∠ADN ,证△DFB ≌△DAN ,由题意可得BF>BD=AD,所以BF ≠AF,所以点F 不在线段AB 的垂直平分线上,所以③不正确,由∠ADB=∠AMB=90°, 可知A 、B 、D 、M 四点共圆, 可求出∠ABM=∠ADM=22.5°,继而可得∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°, 即可求出DM 平分∠BMN ,所以④正确;根据全等三角形的性质可得△AFB ≌△CAN , 继而可得AE=CN ,根据线段垂直平分线的性质和等腰三角形的判定可得△ENC 是等腰直角三角形,继而可得AE=CN=EN ,所以⑤正确;根据等腰三角形的判定可得△BAN 是等腰三角形,可得BD=AB ,继而可得22BD BC A BC B ==,由⑤可得22AE EN EC EC ==所以⑥正确. 【详解】解:∵等腰Rt △ABC 中,∠BAC=90°,AD ⊥BC ,∴∠BAD=∠CAD=∠C=45°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=12∠ABC=22.5°, ∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°∴△AEF为等腰三角形,所以①正确;∵∠BAC=90°,AC=AB,AD⊥BC,∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,∴∠BAD=45°=∠CAD,∵BE平分∠ABC,∴∠ABE=∠CBE= 12∠ABC=22.5°,∴∠BFD=∠AEB=90°-22.5°=67.5°,∴AFE=∠BFD=∠AEB=67.5°,∴AF=AE,AM⊥BE,∴∠AMF=∠AME=90°,∴∠DAN=90°-67.5°=22.5°=∠MBN,在△FBD和△NAD中,∠FBD=∠DAN ,BD=AD ,∠BDF=∠ADN ,∴△FBD≌△NAD,所以②正确;因为BF>BD=AD,所以BF AF,所以点F不在线段AB的垂直平分线上,所以③不正确∵∠ADB=∠AMB=90°,∴A、B、D、M四点共圆,∴∠ABM=∠ADM=22.5°,∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴DM平分∠BMN ,所以④正确;在△AFB和△CNA中,∠BAF=∠C=45°,AB=AC, ∠ABF=∠CAN=22.5°,∴△AFB≌△CAN(ASA),∴AF=CN,∵AF=AE,∴AE=CN,∵AE=AF,FM=EM,∴AM⊥EF,∴∠BMA=∠BMN=90°,∵BM=BM,∠MBA=∠MBN,∴△MBA≌△MBN,∴AM=MN,∴BE垂直平分线段AN,∴AB=BN,EA=EN,∵BE=BE,∴∠ENB=∠EAB=90°,∴EN ⊥NC .∴△ENC 是等腰直角三角形, ∴AE=CN=EN ,所以⑤正确;∵AF=FN,所以∠FAN =∠FNA,因为∠BAD =∠FND=45°, 所以∠FAN+ ∠BAD =∠FNA+∠FND,所以∠BAN =∠BNA,所以AB=BN,所以2BD BC A BC B ==, 由⑤可知,△ENC 是等腰直角三角形,AE=CN=EN ,∴22AE EN EC EC ==, 所以AE BN EC BC =,所以⑥正确, 故选D.【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜质的应用,能正确证明推出两个三角形全等是解此题的关键.13.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D【解析】【分析】过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°) 所以 x°=180°-2α 【点睛】求出M,N 在什么位子△PMN 周长最小是解此题的关键.14.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)l 表示小河,,P Q 两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是( ).A .B .C .D .【答案】C【解析】【分析】根据轴对称分析即可得到答案.【详解】根据题意,所需管道最短,应过点P 或点Q 作对称点,再连接另一点,与直线l 的交点即为水泵站M,故选项A、B、D均错误,选项C正确,故选:C.【点睛】此题考查最短路径问题,应作对称点,使三点的连线在同一直线上,这是此类问题的解题目标,把握此目标即可正确解题.15.如图,已知点B、C、D在同一条直线上,△ABC 和△CDE都是等边三角形.BE交AC 于F,AD交CE于G.则下列结论中错误的是( )A.AD=BE B .BE⊥ACC.△CFG为等边三角形D.FG∥BC【答案】B【解析】试题解析:A.ABC和CDE△均为等边三角形,60AC BC EC DC ACB ECD∴==∠=∠=︒,,,在ACD与BCE中,{AC BCACD BCECD CF=∠=∠=,ACD BCE∴≌,AD BE∴=,正确.B.据已知不能推出F 是AC中点,即AC 和BF不垂直,所以AC BE⊥错误,故本选项符合题意.C.CFG是等边三角形,理由如下:180606060ACG BCA∠=︒-︒-︒=︒=∠,ACD BCE≌,CBE CAD∴∠=∠,在ACG和BCF中,{CAG CBFAC BCBCF ACG∠=∠=∠=∠,ACG BCF∴≌,CG CH∴=,又∵∠ACG=60°∴是等边三角形,正确.CFGD.CFG是等边三角形,∴∠︒=∠﹦,CFG ACB60FG BC∴正确..故选B.16.如图所示,在等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值为()A.2 B.3 C.4 D.5【答案】B【解析】由等边三角形的性质得,点B,C关于AD对称,连接BE交AD于点P,则EP+CP=BE最小,又BE=AD,所以EP+CP的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.17.如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于()A.108°B.114°C.126°D.129°【答案】C【解析】【分析】按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC和∠DOC的度数,利用三角形的内角和定理可得∠OCD的度数.【详解】解:展开如图,五角星的每个角的度数是,1805=36°.∵∠COD=360°÷10=36°,∠ODC=36°÷2=18°,∴∠OCD=180°-36°-18°=126°,故选C.【点睛】本题主要考查轴对称性质,解决本题的关键是能够理解所求的角是五角星的哪个角,解题时可以结合正五边形的性质解决.18.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A【解析】试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+34×42=6+43,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=12×3×4+3×32=6+93,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A.19.等腰三角形中有一个角是40°,则另外两个角的度数是()A.70°,70°B.40°,100°C.70°,40°D.70°,70°或40°,100°【答案】D【解析】分析:由等腰三角形的一个角是40度,可以分为若40°的角是顶角与若40°的角是底角去分析求解,小心别漏解.详解:若40°的角是顶角,则底角为:(180°﹣40°)=70°,∴此时另外两个角的度数是70°,70°;若40°的角是底角,则另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,∴此时另外两个角的度数是100°,40°.∴另外两个角的度数是:70°、70°或40°、100°.故选:D.点睛:此题考查了等腰三角形的性质.解题的关键是注意分类讨论思想的应用,注意别漏解.20.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为()A.(3,4),(2,4)B.(3,4),(2,4),(8,4)C.(2,4),(8,4)D.(3,4),(2,4),(8,4),(2.5,4)【答案】B【解析】试题解析:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,由勾股定理得PC=3,则P的坐标是(3,4);②以D为圆心,以5为半径画弧交BC于P′和P″点,此时DP′=DP″=OD=5,过P′作P′N⊥OA于N,在Rt△OP′N中,设CP′=x,则DN=5-x,P′N=4,OP=5,由勾股定理得:42+(5-x)2=52,x=2,则P′的坐标是(2,4);过P″作P″M⊥OA于M,设BP″=a,则DM=5-a,P″M=4,DP″=5,在Rt△DP″M中,由勾股定理得:(5-a)2+42=52,解得:a=2,∴BP″=2,CP″=10-2=8,即P″的坐标是(8,4);假设0P=PD,则由P点向0D边作垂线,交点为Q则有PQ2十QD2=PD2,∵0P=PD=5=0D,∴此时的△0PD为正三角形,于是PQ=4,QD=120D=2.5,PD=5,代入①式,等式不成立.所以排除此种可能.故选B.。

全等三角形与轴对称习题

全等三角形与轴对称习题

第十二章全等三角形1、如图,四边形ABCD中,AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E、F.求证:BE=BF.2、如图,锐角△ABC中,∠BAC=60°,O是BC边上的一点,连接AO,以AO为边向两侧作等边△AOD和等边△AOE,分别与边AB,AC交于点F,G.求证:AF=AG.3、如图,已知AD∥BC,P为CD上一点,且AP,BP分别平分∠BAD和∠ABC.(1)判断△APB是什么三角形,证明你的结论;(2)比较DP与PC的大小,并说明理由.4、已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.(有十来种做法)5、如图,梯形ABCD中,AD∥BC,CE⊥AB于E,交梯形的对角线BD于F,连接AF.若△BDC为等腰直角三角形,且∠BDC=90°.求证:CF=AB+AF.连接法6、已知:如图,AD=BC,AC=BD.求证:∠C=∠DD COA B7、如图11-30,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点.求证:AF⊥CD.8、如图所示,BD=DC,DE⊥BC,交∠BAC的平分线于E,EM⊥AB,EN⊥AC,求证:BM=CN倍长中线9、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.10、如图,已知在△ABC外作等腰直角三角形ABD和等腰直角三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC 边上的中线,连接DE.求证:DE=2AM.11、正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,∠EAF=45,求证:BE+DF=EF.FE DCB A 12、如图,AC∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB=AC+BDC13、如图,四边形ABCD 中,点E 在边CD 上,连结AE、BE.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题(书写形式如:如果×××,那么××),并给出证明:(2)用序号再写出三个真命题(不要求证明);(3)加分题:真命题不止以上四个,想一想,就能够多写出几个真命题,每多写出一个真命题就给你加1分,最多加2分.14、在等边ABC ∆的两边AB、AC 所在直线上分别有两点M、N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC.探究:当M、N 分别在直线AB、AC 上移动时,BM、NC、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L的关系.(I)如图1,当点M、N 边AB、AC 上,且DM=DN 时,BM、NC、MN 之间的数量关系是;此时=L Q ;(II)如图2,点M、N 边AB、AC 上,且当DM ≠DN 时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明;(III)如图3,当M、N 分别在边AB、CA 的延长线上时,若AN=x ,则Q=(用x 、L 表示).利用角平分线15、如图,在四边形ABCD 中,BC>BA,AD=CD,BD 平分ABC ∠,求证:0180=∠+∠C A 。

全等三角形与轴对称复习测试卷(含答案)

全等三角形与轴对称复习测试卷(含答案)

全等三角形与轴对称复习测试卷一、选择题(共10小题,每小题4分,满分40分)1.下列各图中,为轴对称图形的是()A.B.C.D.2.观察下列银行标志,从图案看是中心对称图形的有()个.A.1个 B.2个 C.3个 D.4个3.如图,AB=AC,EB=EC,那么图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对(第3题)(第6题)4.已知一个三角形中有两个角度数如下,其中不能构成等腰三角形的是()A.40°,70° B.60°,90° C.50°,80° D.30°,120°5.下列说法错误的是()A.全等三角形的对应边上的高相等 B.全等三角形的对应边上的中线相等C.全等三角形的对应角平分线相等 D.所有等边三角形都全等6.如图,已知AB、CD相交于O点,△AOC≌△BOD,E、F分别在OA、OB上,要使△EOC≌△FOD,添加的一个条件不可以是()A.CE=DF B.∠CEA=∠DFB C.∠OCE=∠ODF D.OE=OF7.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,-3),N(-1,-3) B.M(-1,-3),N(-1,3)C.M(-1,-3),N(1,-3) D.M(-1,3),N(1,-3)(第7题)(第8题)8.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直 B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分 D.对应点连线互相平行9.如图,在△ABC中,AB=AC,D是BC边上一点,AD=AE,∠EDC=20°,则∠BAD的度数是()A.20° B.40° C.60° D.无法确定(第9题)(第10题)(第11题)10.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定二、填空题(共4小题,每小题5分,满分20分)11.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是.(只写一个即可,不添加辅助线)12.下列4个图形中,不是轴对称图形的是图形,对称轴最多的轴对称图形是图形.13.如图,D、E为AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF=度.(第13题)(第14题)14.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是度.三、解答题(共9小题,满分90分)15.如图,AC、BD交于点E,添加怎样的两个条件,直接用AAS证明△ADE≌△BCE?16.已知:M、N分别在∠AOB的边OA、OB上.求作:以MN为底边的等腰△MNP,使点P在∠AOB的平分线OC上.(要求:用尺规作图,保留作图痕迹,不必写作法和证明)17.如图,在△ABC与△ABD中,BC=BD.设点E是BC的中点,点F是BD的中点.(1)请你在图中作出点E和点F;(要求用尺规作图,保留作图痕迹,不写作法与证明)(2)连接AE,AF.若∠ABC=∠ABD,请你证明△ABE≌△ABF.18.如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.19.如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).(1)画出“基本图形”关于原点O对称的四边形A1B1C1D1,并求出A1,B1,C1,D1的坐标;(2)画出“基本图形”关于x轴的对称图形A2B2C2D2;(3)画出四边形A3B3C3D3,使之与前面三个图形组成的图形既是中心对称图形又是轴对称图形.20.如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B.求证:AB=AC+CD.21.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.22.如图,已知∠B+∠D=180°,AE、BD相交于点C,AC=CE,求证:AB=DE.23.如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.答案;一、选择题(共10小题,每小题4分,满分40分)1.故选C.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.故选C.考点:中心对称图形;生活中的旋转现象.分析:根据中心对称图形的概念求解.解答:解:根据中心对称图形的概念,观察可知,只有第四个不是中心对称图形,其它三个都是中心对称图形.故选C.点评:掌握好中心对称与轴对称的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.故选C.考点:全等三角形的判定.分析:三角形全等条件中必须是三个元素,至少有一组对应边相等,根据已知条件和等腰三角形的性质可以得到三组全等三角形.做题要从已知开始找,由易到难.解答:解:∵AB=AC,EB=EC,∴∠ABC=∠ACB,∠EBD=∠ECD,∴∠ABE=∠ACE,∴△ABE≌△ACE(SAS),∴∠BAD=∠CAD,又∠ABC=∠ACB,AD=AD,△ABD≌△ACD(AAS),∴BD=CD,又∠EBD=∠ECD,EB=EC,∴△BDE≌△CDE(SAS).故选C.点评:本题考查全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知入手,结合图形由易到难寻找.4.故选B.考点:三角形内角和定理.分析:等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解答:解:A、构成等腰三角形的三个角的度数分别是40°,70°,70°;B、不能同时满足等腰三角形和三角形的内角和是180°,所以不能构成等腰三角形;C、构成等腰三角形的三个角的度数分别是50°,80°,50°;D、构成等腰三角形的三个角的度数分别是30°,120°,30°.故选B.点评:解决此类问题一定要同时满足等腰三角形的两个底角相等和三角形的内角和是180°这两个条件.5.故选D.考点:全等三角形的判定;全等三角形的性质.分析:根据全等三角形的性质进行分析可得答案.解答:解:根据题意,由全等三角形的性质,两个三角形全等,其对应的边角相等,对应的中线、角平分线、高也相等,可得A、B、C正确,D、每个等边三角形的三边都相等,由于对应边不一定相等,所以不一定全等,D错误,故选D.点评:本题考查全等三角形的性质,两个三角形全等,其对应的边角相等,对应的中线、角平分线、高也相等.6.故选A.考点:全等三角形的判定.分析:因为△AOC≌△BOD,所以要使△EOC≌△FOD,隐含的已知条件是:∠COE=∠DOF,CO=OD;据三角形的判定方法ASA、AAS、SAS,添加条件去判断即可.解答:解:∵△AOC≌△BOD,∴CO=OD,又∵∠COE=∠DOF(对顶角相等),∴要使△EOC≌△FOD,则添加的一个条件是∠CEA=∠DFB,即说明其补角是相等的,符合AAS;或∠OCE=∠ODF,符合ASA;或OE=OF,符合SAS.A选项不符合判定定理,故选A.点评:本题考查了全等三角形的判定;解题的关键是牢记三角形的判定定理,并能熟练应用.从已知条件入手,结合全等的判定方法,通过分析推理,对选项一个个进行验证,做到由易到难,不重不漏7.故选C.考点:坐标与图形变化-旋转;坐标与图形变化-对称.分析:根据轴对称和中心对称图形的概念解答.解答:解:A,M关于原点对称,A的坐标是(1,3),∴M(-1,-3);∵A,N关于x轴对称,A的坐标是(1,3),∴N(1,-3).故选C.点评:两个点关于原点对称,横纵坐标均互为相反数,两个点关于x轴对称,横坐标不变,纵坐标互为相反数.8.故选B.考点:轴对称的性质;平移的性质.专题:压轴题.分析:由已知条件,根据轴对称的性质和平移的基本性质可得答案.解答:解:观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键.9.故选B .考点:三角形的外角性质.分析:根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD 的度数.解答:解:如图,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=20°,∴∠BAD=40°.故选B .点评:本题主要利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键. 10.故选A .考点:全等三角形的判定与性质;三角形三边关系.分析:在BA 的延长线上取点E ,使AE=AC ,连接ED ,EP ,证明△ACP 和△AEP 全等,推出PE=PC ,根据三角形任意两边之和大于第三边即可得到m+n >b+c .解答:解:在BA 的延长线上取点E ,使AE=AC ,连接ED ,EP ,∵AD 是∠A 的外角平分线,∴∠CAD=∠EAD,在△ACP 和△AEP 中,⎩⎪⎨⎪⎧AE =AC ∠CAD =∠EAD AP =AP , ∴△ACP≌△AEP(SAS ),∴PE=PC,在△P BE 中,PB+PE >AB+AE ,∵PB=m,PC=n ,AB=c ,AC=b ,∴m+n>b+c .故选A .点评:本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以m 、n 、b 、c 的长度为边的三角形是解题的关键,也是解本题的难点.二、填空题(共4小题,每小题5分,满分20分)11.故填OA=OB.考点:全等三角形的判定.专题:压轴题;开放型.分析:OA=OB结合已知条件可得△AOP=≌△BOP(ASA),当∠OAP=∠OBP或∠APO=∠BPO时,利用全等三角形的判定(AAS)可得△AOP≌△BOP.解答:解:已知点P在∠AOB的平分线上∴∠AOP=∠BOP∵OP=OP,OA=OB∴△AOP=≌△BOP.故填OA=OB.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.12.故填(1).考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.解答:解:图(1)是轴对称图形,它有3条对称轴;图(2)是轴对称图形,它有2条对称轴;图(3)不是轴对称图形;图(4)是轴对称图形,它有1条对称轴;故4个图形中,不是轴对称图形的是图形(3),对称轴最多的轴对称图形是图形(1).点评:掌握好轴对称图形的有关概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,一个轴对称图形的对称轴可以不只一条.13.故填80.考点:翻折变换(折叠问题);平行线的性质.专题:计算题;压轴题.分析:根据中位线的定义得出ED∥BC,再根据平行的性质和折叠的性质即可求.解答:解:∵D、E为AB、AC的中点,∴DE为△ABC的中位线,ED∥BC,∴∠ADE=∠ABC∵∠ABC=50°,∴∠ADE=50°,由于对折前后两图形全等,故∠EDF=50°,∠BDF=180°-50°×2=80°.点评:本题通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作,易得出答案.14.故填125.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.专题:压轴题.分析:根据等腰三角形的性质,依题意可得等腰三角形的顶角为110°,又根据三角形的一个外角等于和它不相邻的内角的和可求出最大角的度数.解答:解:根据等腰三角形的性质:等边对等角.以及三角形的内角和是180°,解得等腰三角形的顶角是180°-35°×2=110°.根据三角形的一个外角等于和它不相邻的内角的和求得四边形的第四个角是90°+35°=125°.比较四边形的四个内角,最大角的度数是125°.故填125.点评:本题考查了等腰三角形的性质、三角形的内角和定理和三角形的外角性质;利用三角形外角的性质求得四边形的内角后与其它三个角进行比较式正确解答本题的关键.三、解答题(共9小题,满分90分)15.考点:全等三角形的判定.专题:证明题;开放型.分析:在△ADE与△BCE中,∠BEC=∠AED,两三角形有一组角对应相等,添加一组角、一组边对应相等(不是两组对应角的夹边),才能用AAS证明△ADE≌△BCE.解答:解:可添加∠B=∠A,EC=ED;或∠C=∠D,BE=AE;∵∠B=∠A,EC=ED,又∠BEC=∠AED,∴△ADE≌△BCE.点评:本题考查了全等三角形的判定;是开放型题目,答案不唯一.注意应用对顶角相等这一条件.16.考点:作图—复杂作图.专题:作图题.分析:以MN为底边的等腰△MNP,则点P在MN的垂直平分线上,点P在∠AO B的平分线OC上.则又要做角的角平分线,两线的交点就是点P的位置.解答:解:点评:本题综合考查了角平分线和线段的垂直平分线的性质.17.考点:全等三角形的判定.专题:作图题.分析:(1)由作一条线段中垂线的方法作出点E和点F.(2)由题意BC=BD推出BE=BF,然后证明△ABE≌△ABF.解答:解:(1)能看到“分别以B,C为圆心,以大于12BC,长为半径画弧,两弧交于点M、N,连接MN,交BC于E”的痕迹,能看到用同样的方法“作出另一点F(或以B为圆心,BE 为半径画弧交BD于点F)”的痕迹(凡正确作出点E,F中的一个后,另一个只要在图上标注了大致位置.,(2)∵BC=BD,E,F分别是BC,BD的中点,∴BE=BF,在△ABE和△ABF中BE=BF,∠ABE=∠ABF,AB=AB,∴△ABE≌△ABF.点评:本题考查了全等三角形的判定;命题意图:掌握知识同时要培养学生的能力,尺规作图就是考查动手能力,三角形全等的证明是几何证明的基础,考查是必要的.中点作法用作垂直平分线的方法,三角形全等利用边角边定理.18.考点:等腰三角形的判定;全等三角形的判定与性质.专题:探究型.分析:要判断△AFC的形状,可通过判断角的关系来得出结论,那么就要看∠FAC和∠FCA 的关系.因为∠BAD=∠B CE,因此我们只比较∠BAC和∠BCA的关系即可.根据题中的条件:BD=BE,∠BAD=∠BCE,△BDA和△BEC又有一个公共角,因此两三角形全等,那么AB=AC,于是∠BAC=∠BCA,由此便可推导出∠FAC=∠FCA,那么三角形AFC应该是个等腰三角形.解答:解:△AFC是等腰三角形.理由如下:在△BAD与△BCE中,∵∠B=∠B(公共角),∠BAD=∠BCE,BD=BE,∴△BAD≌△BCE(AAS),∴BA=BC,∠BAC=∠BCA,∴∠BAC-∠BAD=∠BCA-∠BCE,即∠FAC=∠FCA.∴AF=CF,∴△AFC是等腰三角形.点评:本题考查了全等三角形的判定与性质及等腰三角形的判定等知识点,利用全等三角形来得出角相等是本题解题的关键.19.考点:利用旋转设计图案;利用轴对称设计图案.专题:作图题.分析:(1)关于原点对称的两个点的坐标特点是:横坐标,纵坐标都互为相反数;(2)关于x轴对称的;两个点的坐标特点是:横坐标相等,纵坐标互为相反数,根据坐标关系画图,写坐标.解答:解:(1)A1(-4,-4),B1(-1,-3),C1(-3,-3),D1(-3,-1).(正确写出每个点的坐标得4分;正确画出四边形A1B1C1D1给2分)(2)正确画出图形A2B2C2D2给(3分);(3)正确画出图形A3B3C3D3给(3分).点评:本题实际上就是坐标系里的轴对称,中心对称的问题,要明确关于原点对称,关于x 轴对称,y 轴对称的点的坐标特点;通过画图,图形由部分到整体,体现了对称的美感. 20.考点:全等三角形的判定与性质.专题:证明题.解答:证明:∵∠1=∠B(已知),∴∠AED=2∠B(三角形外角的性质),DE=BE (等角对等边),又∠C=2∠B,∴∠C=∠AED(等量代换),在△ACD 和△AED 中,⎩⎪⎨⎪⎧∠CAD=∠EAD∠C =∠AED AD =AD ∴△ACD≌△AED(AAS ),∴AC=AE,CD=DE (对应边相等),∴CD=BE(等量代换),∴AB=AE+EB=AC+CD.点评:此题考查了学生对角平分线的性质及全等三角形的判定方法的理解及运用能力,要熟练掌握并灵活运用这些知识. 21.考点:全等三角形的判定.专题:证明题;开放型.分析:要找出全部的全等三角形,就要从已知的条件求出未知的条件.△ABC 是等边三角形,所以AC=BC ,又CD=CE ,所以BD=AE=EF ,很容易就可以求得△CDE,△AEF 为等边三角形,所以∠BDE=∠CEF,所以△BDE≌△FEC,从而得BE=CF ,由SSS 可得△BCE≌△FDC,因AB=BC=CF ,AE=AF ,∠BAE=∠EAF=60°,由SAS 可求△ABE≌△ACF,然后任意选择一组加以证明即可.解答:答:△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF;证明:(以△BDE≌△FEC 为例)∵△ABC 是等边三角形,∴BC=AC,∠ACB=60°,∵CD=CE,∴△EDC 是等边三角形,∴∠EDC=∠DEC=60°,∴∠BDE=∠FEC=120°,∵CD=CE,∴BC -CD=AC-CE ,∴BD=AE,又∵EF=AE,∴BD=FE, 在△BDE 与△FEC 中,⎩⎪⎨⎪⎧DE =CE ∠EDB =∠CEF BD =EF , ∴△BDE≌△FEC(SAS ).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由已知条件快速的找出一组全等的三角形,然后求出未知的条件,作为下组全等三角形的判定条件,可出从中找出相似的三角形,试着找条件证明全等,数形结合是很重要的数学解题思路. 22.考点:全等三角形的判定与性质;平行线的性质.专题:证明题.分析:要求AB=DE ,而且两边分别在两个三角形中,所以只能通过全等,但由题意两三角形不全等,但根据AC=CE 知需要作辅助线AF∥DE 交BC 于F ,证得△ACF≌△EDC,再根据题中条件即可得到AB=DE .解答:证明:如图,过A 点作AF∥DE 交BC 于F ,∴∠CAF=∠CED,∠CFA=∠CDE,又∵AC=CE,∴△ACF≌△EDC,∴∠D=∠AFC,AF=DE ,∵∠B+∠D=180°,∠AFC+∠AFB=180°,∴∠B=∠AFB,∴AB=AF,∴AB=DE.点评:本题考查了两直线平行性质及全等三角形的判定和性质,要善于观察、利用题中的隐含条件,对此类题要求有一定转化思想的能力. 23.考点:等腰三角形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线.专题:压轴题;探究型.分析:分析:(1)由于△ABC 是直角三角形,点O 是BC 的中点,根据直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,故有OA=OB=OC=12 BC ; (2)由于OA 是等腰直角三角形的斜边上的中线,根据等腰直角三角形的性质知,∠CAO=∠B=45°,OA=OB ,又有AN=MB ,所以由SAS 证得△AON≌△BOM 可得:ON=OM ①∠NOA=∠MOB,于是有,∠NOM=∠AOB=90°,所以△OMN 是等腰直角三角形.解答:解:(1)∵在Rt△ABC 中,∠BAC=90°,O 为BC 的中点,∴OA=12BC=OB=OC , 即OA=OB=OC ;(2)△OMN 是等腰直角三角形.理由如下:连接AO∵AC=AB,OC=OB∴OA=OB,∠NAO=∠B=45°, 在△AON 与△BOM 中⎩⎪⎨⎪⎧AN =BM∠NAO =∠B OA =OB∴△AON≌△BOM(SAS )∴ON=OM,∠NOA=∠MOB∴∠NOA+∠AOM=∠MOB+∠AOM∴∠NOM=∠AOB=90°,∴△OMN 是等腰直角三角形.点评:本题利用了等腰直角三角形的性质,全等三角形的判定和性质求解.。

八年级全等三角形(提升篇)(Word版 含解析)

八年级全等三角形(提升篇)(Word版 含解析)

八年级全等三角形(提升篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.【答案】4【解析】【分析】由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.【详解】(1)当点P在x轴正半轴上,①如图,以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,当∠AOP为顶角时,OA=OP=22,当∠OAP为顶角时,AO=AP,∴OPA=∠AOP=45°,∴∠OAP=90°,∴OP=2OA=4,∴P的坐标是(4,0)或(22,0).②以OA为底边时,∵点A的坐标是(2,2),∴∠AOP=45°,∵AP=OP,∴∠OAP=∠AOP=45°,∴∠OPA=90°,∴P点坐标为(2,0).(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=22,∴OA=OP=22,∴P的坐标是(﹣22,0).综上所述:P的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).故答案为:4.【点睛】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.2.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】分若AE =AM 则∠AME=∠AEM =45°;若AE =EM ;若MA =ME 则∠MAE =∠AEM =45°三种情况讨论解答即可;【详解】解:①若AE =AM 则∠AME =∠AEM =45°∵∠C =45°∴∠AME =∠C又∵∠AME >∠C∴这种情况不成立;②若AE =EM∵∠B =∠AEM =45°∴∠BAE+∠AEB =135°,∠MEC+∠AEB =135°∴∠BAE =∠MEC在△ABE 和△ECM 中,B BAE CENAE EII C ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ECM (AAS ),∴CE =AB =6,∵AC =BC =2AB =23,∴BE =23﹣6;③若MA =ME 则∠MAE =∠AEM =45°∵∠BAC =90°,∴∠BAE =45°∴AE 平分∠BAC∵AB =AC ,∴BE =12BC =3. 故答案为23﹣6或3.本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.3.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).4.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.【答案】2019122-【解析】【分析】根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:012122h =-=-₁同理21122h =-3211122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-,据此求得2020h 的值. 【详解】 解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上又∵ D 是AB 中点,∴DA= DB ,∵DB= DA ₁ ,∴∠BA ₁D=∠B ,∴∠ADA ₁=∠B +∠BA ₁D=2∠B,又∵∠ADA ₁ =2∠ADE ,∴∠ADE=∠B∵DE//BC,∴AA ₁⊥BC ,∵h ₁=1∴AA ₁ =2,∴012122h =-=-₁ 同理:21122h =-; 3211122222h =-⨯=-; …∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-∴20202019122h =-【点睛】本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.5.如图,点A,B,C在同一直线上,△ABD和△BCE都是等边三角形,AE,CD分别与BD,BE交于点F,G,连接FG,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG;④AD⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】【分析】易证△ABE≌△DBC,则有∠BAE=∠BDC,AE=CD,从而可证到△ABF≌△DBG,则有AF=DG,BF=BG,由∠FBG=60°可得△BFG是等边三角形,证得∠BFG=∠DBA=60°,则有FG∥AC,由∠CDB≠30°,可判断AD与CD的位置关系.【详解】∵△ABD和△BCE都是等边三角形,∴BD=BA=AD,BE=BC=EC,∠ABD=∠CBE=60°.∵点A、B、C在同一直线上,∴∠DBE=180°﹣60°﹣60°=60°,∴∠ABE=∠DBC=120°.在△ABE和△DBC中,∵BD BAABE DBCBE BC∠∠=⎧⎪=⎨⎪=⎩,∴△ABE≌△DBC,∴∠BAE=∠BDC,∴AE=CD,∴①正确;在△ABF和△DBG中,60BAF BDGAB DBABF DBG∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF≌△DBG,∴AF=DG,BF=BG.∵∠FBG=180°﹣60°﹣60°=60°,∴△BFG是等边三角形,∴∠BFG=60°,∴②正确;∵AE=CD,AF=DG,∴EF=CG;∴③正确;∵∠ADB=60°,而∠CDB=∠EAB≠30°,∴AD与CD不一定垂直,∴④错误.∵△BFG是等边三角形,∴∠BFG=60°,∴∠GFB=∠DBA=60°,∴FG∥AB,∴⑤正确.故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE≌△DBC是解题的关键.6.如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第三个△A2A3E,…按此做法继续下去,第n个等腰三角形的底角的度数是_____度.【答案】1752n - 【解析】【分析】先根据∠B =30°,AB =A 1B 求出∠BA 1C 的度数,在由A 1A 2=A 1D 根据内角和外角的关系求出∠DA 2A 1的度数,同理求出∠EA 3A 2=754,∠FA 4A 3=758,即可得到第n 个等腰三角形的底角的度数=1752n . 【详解】∵在△ABA 1中,∠B =30°,AB =A 1B , ∴∠BA 1C =1802B ︒-∠=75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=12∠BA 1C =12×75°=37.5°; 同理可得,∠EA 3A 2=754,∠FA 4A 3=758, ∴第n 个等腰三角形的底角的度数=1752n . 故答案为1752n -. 【点睛】 此题考查等腰三角形的性质,利用等边对等角求出等腰三角形底角的度数.7.如图,△ABC 中,AB =AC =12厘米,BC =9厘米,点D 为AB 的中点,如果点P 在线段BC 上以v 厘米/秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动。

(完整word版)全等三角形提高32题(含答案)

(完整word版)全等三角形提高32题(含答案)

全等三角形提高32题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BEADBCA BC DEF 21 CDBABA CDF2E6. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

7. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C8.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .9.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA10.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .DCBAFEPEDC11.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.13.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):OEDCBAD CBA14.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .15、如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

精品 八年级数学上册 全等三角形与轴对称综合练习题

精品 八年级数学上册 全等三角形与轴对称综合练习题

全等三角形练习例1.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.例2.如图,点M为正三角形ABD的边AB所在直线上的任意一点(点B除外),作60DMN∠=︒,射线MN与∠外角的平分线交于点N,DM与MN有怎样的数量关系?DBA例3.如图,在△ABC中,60BAC∠=︒,AD是BAC∠的度数.∠的平分线,且AC=AB+BD,求ABC例4.正方形ABCD中,AC、BD交于O,∠EOF=90°,已知AE=3,CF=4,则S△BEF为多少?例5.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=510,求∠DFE 的度数。

例6.如图,已知∠ABC=∠DBE=90°,DB=BE ,AB=BC .(1)求证:AD=CE ,AD ⊥CE(2)若△DBE 绕点B 旋转到△ABC 外部,其他条件不变,则(1)中结论是否仍成立?请证明例7.直线CD 经过BCA ∠的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠. (1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面两个问题:①如图1,若90,90BCA α∠=∠=,则EF BE AF -(填“>”,“<”或“=”号);②如图2,若0180BCA <∠<,若使①中的结论仍然成立,则α∠与BCA ∠应满足的关系是 ; (2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.1.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )A.相等B.不相等C.互余或相等D.互补或相等2.如图等边△ABC 中,∠BFC=1200,那么 ( )A.AD >CEB.AD <CEC.AD=CED.不确定3.正三角形ABD和正三角形CBD的边长均为a,现把它们拼合起来如图,E是AD上异于A,D两点的一动点,F是CD上一动点,满足AE+CF=a,当E,F移动时,三角形BEF的形状为()A.不等边△B.等腰直角△C.等腰△非正△D.正△4.如图,AD∥BC,∠1=∠2,∠3=∠4,AD=4,BC=2,那么AB=5.在不等边△ABC中,AQ=PQ,PM⊥AB,PN⊥AC,PM=PN,①AN=AM;②QP∥AM;③△BMP≌△QNP,其中正确的代号是6.如图,AB∥CD,AB=CD,O为AC的中点,过点O作一条直线分别与AB、CD交于点M、N,E、F在直线MN上,且OE=OF。

全等三角形、轴对称综合练习

全等三角形、轴对称综合练习

E D B A O A B E CF D 全等三角形、轴对称综合练习1.已知线段AC 与BD 相交于点O ,联结AB 、DC ,E 为OB 的中点,F 为OC 的中点,联结EF (如图所示).(1)添加条件∠A=∠D ,∠OEF=∠OFE ,求证:AB=DC .(2)分别将“∠A=∠D ”记为①,“∠OEF=∠OFE ”记为②,“AB=DC ”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 命题,命题2是 命题(选择“真”或“假”填入空格).2.如图,△ABC 中,AB=5,AC=3,AD 为BC 边上的中线,求AD 的取值范围。

3.如图,在矩形ABCD 中,F 是BC 上的一点,AF 的延长线交DC 的延长线于G,DE AG 于E ,且DE=DC.根据以上条件,请你在图中找出一对全等三角形,并证明你的结论.4.如图,在△ABC 中,∠ACB=90˚,D 是AC 上一点,AE ⊥BD ,交BD 的延长线于点E ,又AE=21BD ,AC=BC 求证:BD 是∠ABC 的平分线。

5.如图,已知△ABC 中,AB =AC =10厘米,BC =8厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPDF与△CQP 全等.(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度同时从点B 出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的一条边上相遇?6已知:如图,在等边三角形ABC 中,D 、E 分别为BC 、AC 上的点,且AE =CD ,连结AD 、BE 交于点P ,作BQ ⊥AD ,垂足为Q .求证:BP =2PQ .提示:只需证 ∠PBQ =30°.由于 △BAE ≌△ACD ,所以 ∠CAD =∠ABE ,则有 ∠BPQ =∠PBA +∠BAP =∠P AE +∠BAD = 60°,可得 ∠PBQ =30°.7在Rt △ABC 中,∠A =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G ,求证:AE =BG .C D8.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.9.如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A、B两点分别作直线l的垂线,垂足分别为D、E,请你仔细观察后,在图中找出一对全等三角形,并写出证明它们全等的过程。

八年级数学上册全等三角形(提升篇)(Word版 含解析)

八年级数学上册全等三角形(提升篇)(Word版 含解析)

八年级数学上册全等三角形(提升篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.【答案】AD的中点【解析】【分析】【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AB的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.3.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.【答案】4【解析】【分析】延长AC 至E ,使CE=BM ,连接DE .证明△BDM ≌△CDE (SAS ),得出MD=ED ,∠MDB=∠EDC ,证明△MDN ≌△EDN (SAS ),得出MN=EN=CN+CE ,进而得出答案.【详解】延长AC 至E ,使CE=BM ,连接DE .∵BD=CD ,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM 和△CDE 中,BM CE MBD ECD BD CD ⎧⎪∠∠⎨⎪⎩==,=∴△BDM ≌△CDE (SAS ),∴MD=ED ,∠MDB=∠EDC ,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,MD EDMDN EDNDN DN⎧⎪∠∠⎨⎪⎩==,=∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.4.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P 1OP 2是等腰三角形是解题的关键.5.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.【答案】30【解析】【分析】根据轴对称得出OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,根据线段垂直平分线性质得出12COA AOP COP ,12POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,求出△COD 是等边三角形,即可得出答案.【详解】解:如图示:连接OC ,OD ,∵点P与点C关于射线OA对称,点P与点D关于射线OB对称,∴OA为PC的垂直平分线,OB是PD的垂直平分线,∵OP=5cm,∴12COA AOP COP,12POB DOB POD,PE=CE,OP=OC=5cm,PF=FD,OP=OD=5cm,∵△PEF的周长是5cm,∴PE+EF+PF=CE+EF+FD=CD=5cm,∴CD=OD=OD=5cm,∴△OCD是等边三角形,∴∠COD=60°,∴11122230 AOB AOP BOP COP DOP COD,故答案为:30.【点睛】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.6.如图,△ABC中,AB=AC,∠A=30°,点D在边AB上,∠ACD=15°,则ADBC____.【答案】22.【解析】【分析】根据题意作CE⊥AB于E,作DF⊥AC于F,在CF上截取一点H,使得CH=DH,连接DH,并设AD=2x,解直角三角形求出BC(用x表示)即可解决问题.【详解】解:作CE⊥AB于E,作DF⊥AC于F,在CF上截取一点H,使得CH=DH,连接DH.设AD=2x , ∵AB=AC ,∠A=30°, ∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=x , ∵∠ACD=15°,HD=HC ,∴∠HDC=∠HCD=15°,∴∠FHD=∠HDC+∠HCD=30°,∴DH=HC=2x ,FH 3=x ,∴AB=AC=2x+23x ,在Rt △ACE 中,EC 12=AC=x 3+x ,AE 3=EC 3=x+3x , ∴BE=AB ﹣AE 3=x ﹣x ,在Rt △BCE 中,BC 22BE EC =+=22x , ∴2222AD BC x ==. 故答案为:22. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.【答案】27【解析】【分析】由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.【详解】解:如图,连接AC 交BD 于点O∵AB AD =,BC DC =,60A ∠=︒,∴AC 垂直平分BD ,ABD △是等边三角形∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==∵CE AB ∥∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒∴30DAO ACE ∠=∠=︒∴6AE CE ==∴2DE AD AE =-=∵60CED ADB ∠=∠=︒∴EDF 是等边三角形∴2DE EF DF ===∴4CF CE EF =-=,2OF OD DF =-=∴2223OC CF OF =-=∴2227BC BO OC +=【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.8.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;②QP //AR ;③△BRP ≌△QSP ;④BRQS ,其中一定正确的是(填写编号)_____________.【答案】①,②【解析】【分析】连接AP ,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS ,根据等腰三角形性质推出∠QAP=∠QPA ,推出∠QPA=∠BAP ,根据平行线判定推出QP ∥AB 即可;在Rt △BRP 和Rt △QSP 中,只有PR=PS .无法判断△BRP ≌△QSP 也无法证明BRQS .【详解】解:连接AP①∵PR ⊥AB ,PS ⊥AC ,PR=PS ,∴点P 在∠BAC 的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP ,在Rt △ARP 和Rt △ASP 中,由勾股定理得:AR 2=AP 2-PR 2,AS 2=AP 2-PS 2,∵AP=AP ,PR=PS ,∴AR=AS ,∴①正确;②∵AQ=QP ,∴∠QAP=∠QPA ,∵∠QAP=∠BAP ,∴∠QPA=∠BAP ,∴QP ∥AR ,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③④错误;故答案为:①②.【点睛】本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.9.如图,△ABC 中, AB=11 , AC= 5 ,∠ BAC 的平分线 AD 与边 BC 的垂直平分线 CD 相交于点 D ,过点 D 分别作 DE⊥AB,DF⊥AC ,垂足分别为 E 、F ,则 BE 的长为_____.【答案】3【解析】【分析】连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF=AE,易证得Rt△CDF≌Rt△BDE,则可得BE=CF,继而求得答案.【详解】如图,连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,CD BDDF DE⎧⎨⎩==,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=11,AC=5,∴BE=12(11-5)=3.故答案为:3.【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.10.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OD=32,则CP+PM+DM的最小值是_____.34【解析】【分析】如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,根据轴对称的性质得到OC′=OC=2,OD′=OD=2,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,于是得到CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,于是得到结论.【详解】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,则OC′=OC=2,OD′=OD=2,CP=C′P,DM=D′M,∠C′OD=′COD=∠COD′=45°,∴CP+PM+MD=C′+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,则C′T=OT2,∴D′T=2,∴C′D34∴CP+PM+DM的最小值是34.故答案为:34.【点睛】本题考查了最短路径问题,掌握作轴对称点是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为32以及BC=12,可得DE=8,利用中位线定理可求出PQ.【详解】∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=12DE=4.故选:B.【点睛】本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.12.如图,∠AOB=60°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.362B.332C.6 D.3【答案】D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,3∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,3∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=1233OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.的正方形网格中,A,B是如图所示的两个格点,如果C也是格点,且13.在一个33ABC是等腰三角形,则符合条件的C点的个数是()A.6B.7C.8D.9【答案】C【解析】【分析】根据题意、结合图形,画出图形即可确定答案.【详解】解:根据题意,画出图形如图:共8个.故答案为C.【点睛】本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.14.如图,C 是线段 AB 上一点,且△ACD 和△BCE 都是等边三角形,连接 AE、BD 相交于点O,AE、BD 分别交 CD、CE 于 M、N,连接 MN、OC,则下列所给的结论中:①AE=BD;②CM=CN;③MN∥AB;④∠AOB=120º;⑤OC 平分∠AOB.其中结论正确的个数是()A.2 B.3 C.4 D.5【答案】D【解析】【分析】由题意易证:△ACE≅△DCB,进而可得AE=BD;由△ACE≅△DCB,可得∠CAE=∠CDB,从而△ACM ≅△DCN,可得:CM=CN;易证△MCN是等边三角形,可得∠MNC=∠BCE,即MN∥AB;由∠CAE=∠CDB,∠AMC=∠DMO,得∠ACM=∠DOM=60°,即∠AOB=120º;作CG⊥AE,CH⊥BD,易证CG=CH,即:OC 平分∠AOB.【详解】∵△ACD 和△BCE 都是等边三角形,∴AC=DC,CE=CB,∠ACE=∠DCB=120°,∴△ACE≅△DCB(SAS)∴AE=BD,∴①正确;∵△ACE≅△DCB,∴∠CAE=∠CDB,∵△ACD 和△BCE 都是等边三角形,∴∠ACD=∠BCE=∠DCE=60°,AC=DC,在△ACM 和△DCN中,∵60CAE CDBAC DCACD DCE∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACM ≅△DCN(ASA),∴CM=CN,∴②正确;∵CM=CN,∠DCE=60°,∴△MCN是等边三角形,∴∠MNC=60°,∴∠MNC=∠BCE,∴MN∥AB,∴③正确;∵△ACE≅△DCB,∴∠CAE=∠CDB,∵∠AMC=∠DMO,∴180°-∠CAE-∠AMC=180°-∠CDB-∠DMO,即:∠ACM=∠DOM=60°,∴∠AOB=120º,∴④正确;作CG⊥AE,CH⊥BD,垂足分别为点G,点H,如图,在△ACG和△DCH中,∵90?AMC DHCCAE CDBAC DC∠=∠=⎧⎪∠=∠⎨⎪=⎩∴△ACG≅△DCH(AAS),∴CG=CH,∴OC 平分∠AOB,∴⑤正确.故选D.【点睛】本题主要考查全等三角形的判定定理和性质定理,等边三角形的性质定理以及角平分线性质定理的逆定理,添加合适的辅助线,是解题的关键.15.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE,分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH=45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()A.①②③B.①②④C.②③④D.①②③④【答案】B【解析】【分析】首先证明△AEC≌△GEC(SAS),推出CA=CG,∠A=∠CGE=45°,推出DE=DG,故②正确;再证明△EDC≌△GDB,推出∠CED=∠BGD,ED=GD,由三角形外角的性质得出∠HDG=∠HDE,进而得出∠GDH=∠EDH=45°,即可判断①正确;通过证明△EDC和△EMD是等腰直角三角形,得到ED2MD,再通过证明△EFC≌△EDC,得到EF=ED,从而可判断③错误;由CG=CD+DG,CD=AD,ED=GD,变形即可判断④正确.【详解】∵AC=BC,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG.∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°.∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确;∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠CED=∠BGD,ED=GD.∵HD平分∠CHG,∴∠GHD=∠EHD.∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,∴∠HDG=∠HDE.∵∠EDG=∠ADC=90°,∴∠GDH=∠EDH=45°,故①正确;∵∠EDC=90°,ED=GD,∴△EDC是等腰直角三角形,∴∠DEG=45°.∵∠GDH=45°,∴∠EDH=45°,∴△EMD是等腰直角三角形,∴ED=2MD.∵∠AEF=∠DEG=∠A=45°,∴∠AFE=∠CFG=90°.∵∠EDC=90°,∴∠EFC=∠EDC=90°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠FEC=∠GEH,∠DEC=∠AEH,∴∠FEC=∠DEC.∵EC=EC,∴△EFC≌△EDC,∴EF=ED,∴EF=2MD.故③错误;∵CG=CD+DG=AD+ED=AE+ED+ED,∴CG=2DE+AE,故④正确.故选B.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.16.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】A【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.【详解】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=110°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理可得:∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M,∴∠P1OP2=180°-110°=70°,∴∠AOB=35°,故选A.【点睛】考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.17.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECDCE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.18.如图,ABC△,AB AC=,56BAC︒∠=,BAC∠的平分线与AB的垂直平分线交于O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与O点恰好重合,则∠OEC的度数为()A .132︒B .130︒C .112︒D .110︒【答案】C【解析】【分析】 连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB ,根据等边对等角可得∠ABO=∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB=OC ,再根据等边对等角求出∠OCB=∠OBC ,根据翻折的性质可得OE=CE ,然后根据等边对等角求出∠COE ,再利用三角形内角和定理列式计算即可得出答案.【详解】如图,连接OB 、OC ,∵56BAC ︒∠=,AO 为BAC ∠的平分线∴11562822BAO BAC ︒︒∠=∠=⨯= 又∵AB AC =,∴()()11180180566222ABC BAC ︒︒︒︒∠=-∠=-= ∵DO 是AB 的垂直平分线, ∴OA OB =.∴28ABO BAO ︒∠=∠=,∴622834OBC ABC ABO ︒︒︒∠=∠-∠=-=∵DO 是AB 的垂直平分线,AO 为BAC ∠的平分线∴点О是ABC △的外心,∴OB OC =,∴34OCB OBC ︒∠=∠=,∵将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合∴OE CE =,∴34COE OCB ︒∠=∠=,在OCE △中,1801803434112OEC COE OCB ︒︒︒︒︒∠=-∠-∠=--=【点睛】本题主要考查了线段垂直平分线上的点到线段两端点距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,做辅助线构造出等腰三角形是解决本题的关键.19.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】由点A、B的坐标可得到AB=22,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=22,如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.故选D.【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.20.等腰三角形中有一个角是40°,则另外两个角的度数是()A.70°,70°B.40°,100°C.70°,40°D.70°,70°或40°,100°【答案】D【解析】分析:由等腰三角形的一个角是40度,可以分为若40°的角是顶角与若40°的角是底角去分析求解,小心别漏解.详解:若40°的角是顶角,则底角为:(180°﹣40°)=70°,∴此时另外两个角的度数是70°,70°;若40°的角是底角,则另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,∴此时另外两个角的度数是100°,40°.∴另外两个角的度数是:70°、70°或40°、100°.故选:D.点睛:此题考查了等腰三角形的性质.解题的关键是注意分类讨论思想的应用,注意别漏解.。

精品 八年级数学上册 全等三角形与轴对称综合练习题

精品 八年级数学上册 全等三角形与轴对称综合练习题

7.已知如图:AB=DE,直线 AE、BD 相交于 C,∠B+∠D=180°,AF∥DE,交 BD 于 F,求证:CF=CD。
8.如图,已知∠BAC=∠DAE,∠ABD=∠ACE,BD=CE.求证:AB=AC,AD=AE.
9.如图,在△ABC 中,AD 平分∠BAC,过 B 作 BE⊥AD 于 E,过 E 作 EF∥AC 交 AB 于 F,求证:AF=BE.
16.已知在△ABC 中, AD 是 BC 边上的中线, E 是 AD 上的一点, 且 BE=AC, 延长 BE 交 AC 于 F, 求证: AF=EF.
17.△ABC 中,D 是 BC 中点,DE⊥DF,E 在 AB 边上,F 在 AC 边上,判断并证明 BE+CF 与 EF 的大小?
18.P 是△ABC 外角∠DAC 平分线上一点,比较 AB+AC 与 PB+PC 的大小。
②如图 2,若 0 BCA 180 ,若使①中的结论仍然成立,则 与3,若直线 CD 经过 BCA 的外部, BCA ,请探究 EF、与 BE、AF 三条线段的数量关系, 并给予证明.
1.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是 ( ) A.相等 B.不相等 C.互余或相等 D.互补或相等 0 2.如图等边△ABC 中,∠BFC=120 ,那么 ( ) A.AD>CE B.AD<CE C.AD=CE D.不确定
10.已知,如图,AD∥BC,AE、BE 分别平分∠A、∠B,点 E 在 CD 上, 求证:(1)E 为 CD 的中点;(2)BC+AD=AB。
11.如图所示,已知 AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证: (1)EC=BF; (2)EC⊥BF。

人教版八年级期中复习资料全等三角形轴对称证明题经典练习(含答案

人教版八年级期中复习资料全等三角形轴对称证明题经典练习(含答案

1如图,点D、E分别在等边三角形ABC的边BC、AC上,且BD=CE,连接AD、BE相交于点P,则∠APE的度数是多少?2如图,已知△ABC和△BDE都是等边三角形,求证:AE=CD。

3如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试说明AB=CB的理由4沿矩形ABCD的对角线BD翻折△A'BD,A'D交BC于F,如图所示,△BDF是否是等腰三角形?请说明理由5如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,求证:(1)BD平分∠ABC;(2)△BCD为等腰三角形。

6如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE于点G、H。

试猜测线段AE和BD的数量和位置关系,并说明理由。

7(1)如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小;(2)如图,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB 和ΔOCD不能重叠),求∠AEB的大小.8如图1,在△ABC中,AB=AC,AB的垂直平分线交A于N,交BC的延长线于M,∠A=40°,求∠NMB的大小。

(1)如图1,在△ABC中,AB=AC,AB的垂直平分线交A于N,交BC的延长线于M,∠A=40°,求∠NMB的大小。

(2)如果将(1)中的∠A的度数改为70°(如图2),其余条件不变,再求∠NMB的大小(3)你发现有什么样的规律性?试证明(4)将(1)中的∠A改为钝角,对这个问题规律性的认识,是否需要加以修改?9点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB.(2)求证:△CEF为等边三角形.10已知如图,在四边形ABCD中AB=BC=CD=DA.E、F分别是BC、CD上的点,且CE=CF.①求证△ABE全等于△ADF.②过点C作CG∥EA交AF于H,交AD于G.若∠BAE=25°,∠BCD=130°,求∠AHC的度数已知如图,在四边形ABCD中AB=BC=CD=DA.E、F分别是BC、CD上的点,且CE=CF.①求证△ABE全等于△ADF.②过点C作CG∥EA交AF于H,交AD于G.若∠BAE=25°,∠BCD=130°,求∠AHC的度数11已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.12如图,在等腰直角三角形AOB中,∠AOB=90°,在等腰直角三角形EOF中,∠EOF=90°,连接A,E,连接B,F,求:(1)AE=BF;(2)AE⊥BF.13如图,△ABC是等边三角形,点D,E,F分别是线段AB,BC,CA上的点,(1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论;(2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论。

全等三角形练习题(打印版)

全等三角形练习题(打印版)

全等三角形练习题(打印版)### 全等三角形练习题#### 一、选择题1. 下列选项中,哪两个三角形是全等的?- A. △ABC与△DEF,因为AB=DE,AC=DF,BC=EF- B. △ABC与△DEF,因为∠A=∠D,∠B=∠E,∠C=∠F- C. △ABC与△DEF,因为AB=DE,∠A=∠D,∠B=∠E- D. △ABC与△DEF,因为AB=DE,BC=EF,∠A=∠D2. 根据SSS(边边边)全等条件,下列哪些条件能够判断两个三角形全等?- A. 三边长度相等- B. 两边及夹角相等- C. 一边及其对角相等- D. 两角及一边相等#### 二、填空题1. 如果△ABC与△DEF全等,且AB=DE,AC=DF,那么BC=______。

2. 根据AAS(角角边)全等条件,如果两个三角形的两个角和其中一角的对边相等,那么这两个三角形是______的。

#### 三、判断题1. 如果两个三角形的对应边成比例,那么这两个三角形一定是全等的。

()2. SAS(边角边)全等条件是判定两个三角形全等的有效条件。

()#### 四、简答题1. 解释什么是HL(直角三角形的斜边和一条直角边相等)全等条件,并给出一个例子。

2. 描述如何使用SAS全等条件来判断两个三角形是否全等。

#### 五、应用题1. 在△ABC中,已知AB=5cm,AC=4cm,BC=6cm。

在△DEF中,DE=7cm,DF=6cm,EF=5cm。

判断这两个三角形是否全等,并说明理由。

2. 如果△ABC与△DEF全等,且∠A=∠D=90°,AB=DE,AC=DF,求证BC=EF。

#### 六、证明题1. 已知△ABC与△DE F全等,且∠A=∠D,∠B=∠E,AB=DE。

证明AC=DF。

2. 证明:如果两个三角形的三边对应成比例,那么这两个三角形的对应角也相等。

注意:请在解答题目时,确保使用正确的数学符号和清晰的逻辑表达。

练习题的答案应简洁明了,避免冗长和不必要的解释。

全等三角形和轴对称专练题(50题)

全等三角形和轴对称专练题(50题)

全等三角形和轴对称专练题(50题)一.解答题(共60小题)1.如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠DEC的度数.2.如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠F AG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.3.如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE;(2)若BD=3,CD=5,求AE的长.4.如图,AB平分∠CAD,AC=AD,求证:BC=BD.5.已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠E=∠D.6.如图,CE=DE,AE=BE,∠1=∠2,点D在AC边上,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠3的度数.7.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,AC=BD.求证:∠C=∠D.8.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.9.如图,四边形ABCD中,AD∥BC,E为CD的中点,连结BE并延长交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)连结AE,当AE⊥BF,BC=2,AD=1时,求AB的长.10.在△ABC中,D为AC的中点,DM⊥AB于M,DN⊥BC于N,且DM=DN.(Ⅰ)求证:△ADM≌△CDN.(Ⅱ)若AM=2,AB=AC,求四边形DMBN的周长.11.如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED,求证:DB=CD.12.如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点O.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.13.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB,交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=2,CF=1时,求AC的长.14.如图,点C、E、F、B在同一直线上,CE=BF,AB=CD,AB∥CD.(1)求证∠A=∠D;(2)若AB=BE,∠B=40°,求∠D的度数.15.如图,AC=AE,∠1=∠2,AB=AD.求证:△ABC≌△ADE.16.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.17.如图,在△ABC中,AB=AC=3,∠B=∠C=50°,点D在边BC上运动(点D不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC于点E.(1)当∠BDA=100°时,∠EDC=°,∠DEC=°.(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.18.如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD=∠CAE,连接DE交AC于点F.(1)若∠B=70°,求∠C的度数;(2)若AE=AC,AD平分∠BDE是否成立?请说明理由.19.如图所示,已知△ABC中AB=AC,E、D、F分别在AB,BC和AC边上,且BE=CD,BD=CF,过D作DG⊥EF于G.求证:EG=EF.20.如图,在△ABC中,∠B=∠C,点D、E、F分别在AB、BC、AC边上,且BE=CF,AD+EC=AB.(1)求证:DE=EF.(2)当∠A=36°时,求∠DEF的度数.21.如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中点,AE与BD相交于点F,连接DE.(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;22.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.23.如图,点A,B,C,D在一条直线上,且AB=CD,若∠1=∠2,EC=FB.求证:∠E=∠F.24.如图,点D在AB上,点E在AC上,AB=AC,BD=CE,求证:∠B=∠C.25.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.26.已知:如图,点D在△ABC的BC边上,AC∥BE,BC=BE,∠ABC=∠E,求证:AB=DE.27.如图,AC⊥CB,DB⊥CB,垂足分别为C、B,AB=DC,求证:∠A=∠D.28.如图,已知AD是△ABC的高,E为AC上的一点,BE交AD于点F,且有BF=AC,FD=CD,求证:BE⊥AC.29.已知:如图,AB=DE,AB∥DE,BE=CF,且点B、E、C、F都在一条直线上,求证:AC∥DF.30.如图,点B,E,C,F在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:∠B=∠F.31.如图,△ABC和△EFD的边BC、DF在同一直线上(D点在C点的左边),已知∠A=∠E,AB∥EF,BD=CF.(1)求证:△ABC≌△EFD;(2)求证:AC∥DE.32.如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BF=CE,求证:△ABC≌△DEF;33.如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.34.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.35.如图,∠1=∠2,∠C=∠D,求证:AC=AD.36.如图,在△ABC中,D是BC的中点,过D点的直线EG交AB于点E,交AB的平行线CG于点G,DF⊥EG,交AC于点F.(1)求证:BE=CG;(2)判断BE+CF与EF的大小关系,并证明你的结论.37.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ 的形状,并加以证明.38.如图,AC⊥CB,DB⊥CB,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.39.如图,已知AB=AD,∠B=∠D=90°.求证:△ABC≌△ADC.40.如图,已知点A、E、F、C在同一直线上,∠1=∠2,AE=CF,AD=CB.判断BE和DF的位置关系,并说明理由.41.如图,△ABC中,AB=AC,点D,E在边BC上,且BD=CE.(1)求证:△ABD≌△ACE;(2)若∠B=40°,AB=BE,求∠DAE的度数.42.已知:如图,B,A,E在同一直线上,AC∥BD且AC=BE,∠ABC=∠D.求证:AB=BD.43.已知:如图,∠B=∠C=90°,AF=DE,BE=CF.求证:AB=DC.44.已知:点A、E、D、C在同一条直线上,AE=CD,EF∥BD,EF=BD.求证:AB∥CF.45.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.46.如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,AE=CF,求证:AB∥CD.47.已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.48.如图,A、B两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN,且使MN ⊥AB于点B,在BN上截取BC=CD,过点D作DE⊥MN,使点A、C、E在同一直线上,则DE的长就是A、B两建筑物之间的距离,请说明理由.49.如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:(1)∠D=∠B;(2)AE∥CF.50.如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.求证:△ABF≌△CDE.51.已知:如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:BD=CE.52.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.53.已知:如图,AC与BD交于点O,AO=CO,BO=DO.求证:AB∥CD.54.已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.55.如图,已知∠ABC=∠ADC=90°,E是AC上一点,AB=AD,求证:EB=ED.56.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.57.已知:如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.58.如图,D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.59.如图,BE=BC,∠A=∠D,求证:AC=DE.60.如图,AD,BC相交于点O,OA=OB,∠C=∠D=90°.(1)求证:△ACB≌△BDA.(2)当AC=3,AB=5时,求OD的长.2022年11月03日遵义三十二钟的初中数学组卷一.解答题(共60小题)1.如图所示:(1)A,B两点关于轴对称;(2)A,D两点横坐标相等,线段AD y轴,线段ADx轴;若点P是直线AD上任意一点,则点P的横坐标为;(3)线段AB与CD的位置关系是;若点Q是直线AB上任意一点,则点Q的纵坐标为.2.如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1).(1)在图中作△A'B'C',使△A'B'C'和△ABC关于x轴对称;(2)写出点A',B',C'的坐标;(3)直接写出△ABC的面积.3.如图,在△ABC中,∠C=90°,∠A=30°,AB=6cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?4.已知:如图,E为△ABC的外角平分线上的一点,AE∥BC,BF=AE,求证:(1)△ABC是等腰三角形;(2)AF=CE.5.如图,在△ABC中,AB=AC,D为CA延长线上一点,且DE⊥BC交AB于点F.(1)求证:△ADF是等腰三角形;(2)若AC=10,BE=3,F为AB中点,求DF的长.6.如图,在△ABC中,DE垂直平分BC,垂足为E,交AC于点D,连接BD.若∠A=100°,∠ABD =22°,求∠C的度数.7.△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)作出△ABC关于x对称的△A2B2C2,并写出点A2的坐标;(3)求△AA1A2的面积.8.如图,在△ABC中,AD是BC边上的高线,AD的垂直平分线分别交AB,AC于点E,F.(1)若∠DAC=30°,求∠FDC的度数;(2)试判断∠B与∠AED的数量关系,并说明理由.9.如图所示,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1)B(4,2)C(2,3).(1)在图中画出△ABC关于x轴对称的图形△A1B1C1;(2)在图中,若B2(﹣4,2)与点B关于一条直线成轴对称,则这条对称轴是,此时C点关于这条直线的对称点C2的坐标为;(3)△A1B1C1的面积为;(4)在y轴上确定一点P,使△APB的周长最小.(注:不写作法,不求坐标,只保留作图痕迹)10.如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED.(1)求证:BD=CD.(2)若∠A=120°,∠BDC=2∠1,求∠DBC的度数.11.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)△ABC的面积;(2)在坐标系中作出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标.12.如图,在△ABC中,AB=BC,∠ABC=120°,AB的垂直平分线DE交AC于点D,连接BD,若AC=12.(1)求证:BD⊥BC.(2)求DB的长.13.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(2,0),C(4,4)均在正方形网格的格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1并写出顶点A1,B1,C1的坐标;(2)已知P为y轴上一点,若△ABP与△ABC的面积相等,请直接写出点P的坐标.14.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)作出△ABC关于y轴的对称图形△A'B'C';(2)写出点A',B',C'的坐标.(3)在y轴上找一点P,使P A+PC的长最短.15.如图,在△ABC中,∠B=30°,∠C=40°.(1)尺规作图:①作边AB的垂直平分线交BC于点D;②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠DAE的度数.16.如图,△ABC是等边三角形,P是△ABC的角平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.(1)若BQ=2,求PE的长(2)连接PF,EF,试判断△EFP的形状,并说明理由.17.如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.18.如图,在△ABC中,AB=AC,点D为AC上一点,且满足AD=BD=BC.点E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.(1)求∠BAC和∠ACB的度数;(2)求证:△ACF是等腰三角形.19.如图,在△ABC中,AB=AC,∠B=30°,D为BC边上一点,∠DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.20.如图:已知AB=AC=AD,且AD∥BC求证:∠C=2∠D.21.如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.22.在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.23.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.24.如图,在△ABC中,AB=AC,点D是BC上一点,点E是AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.25.如图,△ABC中,BC=10,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.26.如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=∠B.27.在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且AE=BD,(1)当点E为AB的中点时,如图1,求证:EC=ED;(2)当点E不是AB的中点时,如图2,过点E作EF∥BC,求证:△AEF是等边三角形;(3)在第(2)小题的条件下,EC与ED还相等吗,请说明理由.28.如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数.(2)当∠A=50°时,求∠DEF的度数.30.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:AE=BC.31.已知,如图,∠B=∠C,AB∥DE,EC=ED,求证:△DEC为等边三角形.32.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.34.如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.35.如图:△ABC和△ADE是等边三角形.证明:BD=CE.36.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD垂直平分EF.37.如图,在△ABC中,∠A=40°,点D,E分别在边AB,AC上,BD=BC=CE,连结CD,BE.(1)若∠ABC=80°,求∠BDC,∠ABE的度数;(2)写出∠BEC与∠BDC之间的关系,并说明理由.38.如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.(1)求证:△ACD为等腰三角形.(2)若∠BAD=140°,求∠BDC的度数.39.已知:如图,在△ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD交AD的延长线于E,连接BE.(1)求证:CE=CB;(2)若∠CAE=30°,CE=2,求BE的长度.40.如图,在△ABC中,AB=AC,∠ABC的平分线BE交AC于点D,AF⊥AB交BE于点F.(1)如图1,若∠BAC=40°,求∠AFE的度数.(2)如图2,若BD⊥AC,垂足为D,BF=8,求DF的长.41.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.(1)若∠ABC=30°,∠ACB=40°,求∠DAE的度数;(2)已知△ADE的周长7cm,分别连接OA、OB、OC,若△OBC的周长为15cm,求OA的长.42.在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE =∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.43.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.44.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.45.已知:如图,在等腰三角形ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD交AD的延长线于E.(1)求证:CE=CB;(2)如果连接BE,请写出BE与AC的关系并证明.46.已知:如图,在△ABC中,点D是BC上一点,∠1=80°,AB=AD=DC.求:∠C的度数.47.如图,△ABC中,AB,AC边的垂直平分线分别交BC于点D,E,垂足分别为点F,G,△ADE的周长为6cm.(1)求△ABC中BC边的长度;(2)若∠BAC=116°,求∠DAE的度数.48.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE分别交AB、AC于D、E.(1)若AC=12,BC=10,求△EBC的周长;(2)若∠A=40°,求∠EBC的度数.49.已知在△ABC中,AB=AC,且线段BD为△ABC的中线,线段BD将△ABC的周长分成12和6两部分,求△ABC三边的长.50.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE的中点,BE =AC.(1)求证:AD⊥BC.(2)若∠BAC=75°,求∠B的度数.51.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形.(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.52.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.53.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.54.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC.(1)求△PDE的周长;(2)若∠A=50°,求∠BPC的度数.55.如图,在△ABC中,AB=AC=6,BC=10,AB的垂直平分线分别交BC、AB于点D、E.(1)求△ACD的周长;(2)若∠C=25°,求∠CAD的度数.56.如图在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.57.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示).58.如图,△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D.①若△BCD的周长为8,求BC的长;②若BD平分∠ABC,求∠BDC的度数.59.如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.60.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.。

全等三角形与轴对称练习题

全等三角形与轴对称练习题

一、 选择题(每题3分,共30分) 1、下面4个汽车标志图案中,不是轴对称图形的是( )A B C D2、如图,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( ) A.带①去 B.带②去 C.带③去 D.带①和②去3、如图所示,点O 为AC 、BD 的中点,则图中全等三角形的对数为( ) A.2对 B.3对 C.4对 D.5对4、如图,DAC △和EBC △均是等边三角形,AE BD ,分别与CD CE ,交于点M N ,,有如下结论:①ACE DCB △≌△;②CM CN =;③AC DN =.其中,正确结论的个数是( ) A 、3个B .2个C .1个D .0个5、在ΔABC 和ΔDEF 中,AB=DE ,∠A=∠D ,若证ΔABC ≌ΔDEF 还要从下列条件中补选一个, 错误的选法是( )A 、∠B=∠EB 、∠C=∠FC 、BC=EFD 、 AC=DF6、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是120°,那么在△ABC 中与这个120° 的角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C7、如图,在△ABC 中,AB =AC =20cm ,DE 垂直平分AB ,垂足为E ,AC 于D ,若△DBC 的周长为35cm ,则BC 的长为( ) A 、5cm B 、10cm C 、15cm D 、17.5cm8、两条平行线a 、b 被第三条直线c 所截得的同旁内角的平分线的交点到直线c 的距离是2cm ,则a 、b 之间的距离是( )A.3cmB.4cmC.5cmD.6cmNMCBEDA图49、如图,△ABC 与△A / B / C / 关于直线MN对称,P 为MN 上任意一点,下列说法不正确的是( )A . AP=A /PB . MN 垂直平分A A / ,C C / C . 这两个三角形的面积相等D . 直线AB ,A / B /的交点不一定在MN 上10、如图,△ABC 是不等边三角形,DE=BC ,以D 、E 为两个顶点作位置不同的三角形,使新作的三角形与△ABC 全等,这样的三角形最多可画出( )A.2个B.4个C.6个D.8个二、填空题(每题3分,共24分)11、如图,已知∠1=∠2,请你添加一个条件:___________,使△ABD ≌△ACD .第11题图 第12题图 第13题图12、如图,∠BAC=110°,若MP 、NQ 分别垂直平分AB 、AC ,则∠PAQ=13、如图,将△ABC 绕点B 旋转到△111A B C 的位置时,1AA ∥BC,∠ABC=70°,则∠1CBC = . 14、如图,点A 在BE 上,AD=AE ,AB=AC ,∠1=∠2=30°,则∠3的度数为 .15、如图在Rt ΔABC 中,∠C=90°,BD 是∠ABC 的平分线,交于点D ,若CD=n ,AB=m ,则 ΔABD 的面积是_______。

人教版八年级 三角形、全等、轴对称强化训练

人教版八年级 三角形、全等、轴对称强化训练

20.如图,已知:OP平分∠MON,点A,B 分别在边OM,ON 上,且∠OAP+∠OBP=180°, PC⊥OM 于点C. (1)求证:PA=PB; (2)求证:OA-OB=2AC.
21.已知:如图,△ABC中,AD⊥BC,AB=AE,点E在AC的垂直平分线上。 (1)请问:AB、BD、DC有何数量关系,并说明理由; (2)如果∠B=60°,证明:CD=3BD。
22.如图,已知∠MON=30°,点A1、A2、A3……在射线ON上,点B1、B2、B3……在射线OM上, △A1B1A2、△A2B2A3、△A3B3A4……均为等边三角形,且OA1=1. (1)分别求出△A1B1A2、△A3B3A4的边长; (2)求△A7B7A8的周长(直接写出结果).
若AB+AC=BD,请你找出图中的倍角三角形,并进行证明。
16.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为点E、F,BE=CF。 (1)求证:△ABCБайду номын сангаас等腰三角形; (2)判断点D是否在∠BAC的角平分线上,并说明理由。
17.如图,在等边 △ABC 中,点 D、点 E 分别在AB、AC上,BD=AE ,连接 BE、CD 交于点P, 作EH⊥CD 于H。 (1)求证: 三角形CAD≌△BCE; (2)求证: PE=2PH; (3)若PB=PH,求∠ACD的度数。
并说明理由。
8.如图,已知在△ABC中,∠B与∠C的平分线交于点P. (1)当∠A=112°时,求∠BPC的度数; (2)当∠A=α时,求∠BPC的度数。
9.如图,△ABC的边BC上的高为AF,AC边上的高为BG,中线为AD,已知AF=6,BC=10,BG=5. (1)求△ABC的面积; (2)求AC的长; (3)试说明△ABD和△ACD的面积相等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则∠APB=360-∠BPM-∠CPM-∠APC=360-60-50-100=150°2. 过点C 作CF ⊥AD ,交AD 的延长线于点F ∵AC 平分∠BAD ,CE ⊥AB∴∠AEC=∠AFC=90º, ∠EAC=∠∴△AEC ≌△AFC ∴AE=AF ∵AE=(AB+AD) 21∴2AE=AB+AD ∴AB-AE =AE-AD∴AB-AE =AF-AD ,即EB =FD在△EBC 和△FDC中:CE=CF ,∠BEC=∠DFC=90º , EB =FD ∴△EBC ≌△FDC∴∠B=∠FDC ,即∠ABC=∠FDC∵∠FDC+∠ADC=180º ∴∠ABC+∠ADC=180º3. ∵M 、N 分别是点P 关于OA 、OB 的对称点∴EP=EM ,FP=FN∴△PEF 的周长=EP+EF+FP =EM+EF+FN ,即△PEF 的周长=线段MN ∵△PEF 的周长=20cm ∴MN=20cm (1)连接OM ,OP ,ON∵M 、N 分别是点P 关于OA ,OB 的对称点∴OM=OP ,ON=OP ,∠MOA=∠POA ,∠NOB=∠POB ∴OM=ON∠MON=∠MOA+∠POA +∠NOB+∠POB=2(∠POA +∠POB)=2∠AOB ∵∠AOB=45º, ∴∠MON=90º ,∴△MON 是等腰直角三角形(2)分别作点P 关于OA ,OB 的对称点M 、 N ,连接MN ,分别交OA ,OB 于点E 、F 连接PE 、PF ,△PEF 即为所求。

4.提示:连接AD ,证△ADF ≌△BDE5.提示:延长AB 与CD 的延长线交于点F ,证△ABE ≌△CBF6.提示:(1)EC=BD (2)∠BOP=∠BAE=60º,故∠BOP 的大小与△ABC 形状无关。

7.提示:过点E 作EM ∥AC ,交BC 于点M ,证△MEG ≌△CFG8.(1)当在底边BC 边上取点时,分两种情况:时,容易计算得∠B=∠C=45º ,∠BAC=90º;如图(2),在BC 上取点F ,使AB=FB ,AF=CF ,设∠B=∠C= x ,则∠FAC=x ,∠BFA=∠BAF=2x ,所以有x+x+x+2x=180º, x=36º ,2x=72º,3x=108º,∠B=∠C=36º ,∠BAC=108º ;(2)当在腰上取点时,也有两种情况:如图(3),在AC 上取点D ,使BD=AD=BC ,设∠A=x ,则∠ABD=x ,所以∠BDC=2x ,∠C=2x ,∠DBC=x ,所以有x+2x+2x=180º,x=36º,2x=72º.所以∠A=36º,∠ABC=∠ACB=72º.如图(4),在AC 上取点G ,使AG=BG ,CG=CB ,设∠A=x ,则∠ABG=x ,∠BGC=∠CBG=2x ,所以,∠ABC=∠ACB=3x ,所以x+3x+3x=180º,x=,3x=.7180o 7540o 所以∠A=,∠ABC=∠ACB=7180o 7540o综上所述,△ABC 各内角度数分别为45º,45º,90º或36º,36º,108º或36º,72º,72º或,,7180o 7540o7540o9.如图,延长BD 到点E ,使DE=DB ,连接AE. △ADE ≌△CDB ,所以AE=BC ,∠AED=90º,由∠ABC=120º,BD ⊥BC ,所以∠ABD=30º,所以AB=2AE=2BC 10.延长PC 到点D ,使CD=BP ,连接AD.∵∠ABP+∠ACP=180º,∠ACP+∠ACD=180º∴∠ABP=∠ACD.在△ABP 和△ACD 中:AB=AC ,∠ABP=∠ACD ,BP=CD ∴△ABP ≌△ACD .∴AP=AD ,∠BAP=∠CAD.∵∠BAP+∠PAC=60º,∴∠CAD+∠PAC=60º,即∠PAD=60º∴∠PAD=60º∴△PAD 是等边三角形∴AP=PD=PC+CD ∴AP=PB+PC11.过点A 作AH ⊥BC 于H ,连接PA 、PB 、PC.∵S △ABC =S △PAB +S △PBC +S △PACBC.AH=AB.PD+BC.PE+AC.PF 21212121又∵AB=BC=AC ,∴AH=PD+PE+PF∴PD+PE+PF 的值是等边△ABC 的高,是不变的值。

12.如图,延长AE 到点F ,使EF=AB ,连接DF. 证明△ABD ≌△FED13.延长AB 至点E ,使BE=BD ,连接DE ,则∠BED=∠BDE ∵∠ABD=∠E+∠BDE ,∴∠ABD=2∠E∵∠ABC=2∠C ,∴∠E=∠C 在△AED 和△ACD 中:P∠E=∠C ,∠1=∠2,AD=AD ,∴△AED ≌△ACD ∴AC=AE∵AE=AB+BE ,∴AC=AB+BD 即AB+BD=AC 14.提示:证明△BDE ≌△FEC15. (1)①CF ⊥BD ,CF=BD ②成立。

提示:证明△ABD ≌△ACF (2) 如右图,过点A 作AG ⊥AC 交∴∠AGD+∠ACG=90º ,∠GAD+∠∵CF ⊥BC∴∠ACF+∠ACG=90º,∴∠AGD=∠ACF ∵四边形ADFE 是正方形∴∠CAF+∠DAC=90º,AD=AF ∴∠GAD=∠CAF 在△AGD 和△ACF 中:∠AGD=∠ACF,∠GAD=∠CAF,AD=AF ∴△AGD ≌△ACF ∴AG=AC∴∠AGC=∠ACG=45º即∠BCA=45º∴当∠BCA=45º时CF ⊥BC 16. 过点A 作AQ ⊥BC 于点Q ,∴∠AQB=90º,∠BAQ+∠ABQ=90º∵CE ⊥AB∴∠PCN+∠ABQ=90º∴∠BAQ=∠PCN∵PN ⊥BC ∴∠CNP=90º∴∠AQB=∠CNP 又∵AB=CP∴△ABQ ≌△CPN ∴BQ=PN同理可证:△ACQ ≌△BFM, ∴CQ=FM ∴PN+FM=BQ+CQ, 即PN+FM=BC17.作PM ⊥BC ,PN ⊥AC ,垂足分别为M 、N ∴四边形PMCN 是矩形 ∴PN =CM ∵PB =PC∴CM =BM =BC =AC ∴PN=AC 212121∵AP=AC ∴PN =AP21∴在直角△PAN 中,∠PAN =30º∴∠PCA =∠CPA =75º∴∠BCP =90º-75º=15º18. 过点A 作AN ⊥BC 于点N ,过点E 作EM ⊥BC 于点M ∴∠DME=∠AND= 90º,∠DAN+∠ADN=90º∵DE ⊥AD∴∠EDM+∠ADN=90º∴∠EDM=∠DAN 在△EDM 和△DAN 中:∠DME=∠AND ,∠EDM=∠DAN ,DE=AD ∴△EDM ≌△DAN ∴DM=AN ,EM=DN ∵AB=AC ,∠BAC=90º∴BN=AN ∴BN=DM∴BN-MN=DM-MN,即BM=DN ∴EM=BM ∴∠DBE=45º19.提示:过点A作AM⊥BC于点M,过点E作EN⊥BC,交BC的延长线于点N 证明△AMD≌△DNE,其余如上题。

21.提示:证明△ACD≌△BCE,然后证明△AMC≌△BNC∴∠MCA=∠NCB,MC=NC∵∠MCA+∠MCB=60º,∴∠NCB+∠MCB=60º,即∠MCN=60º,∴△CNM为等边三角形。

22.提示:(1)如图(1),在AB上截取AH=EC,证明△AHE≌△ECF(2)如图(2),延长BA到点H,使AH=EC,证明△AHE≌△ECF 图(1)23.正确的有:①②③④⑤⑥①∠DCE=∠BAC=60°,则DC∥BA,即CN∥BA.②AC=BC,DC=EC,∠ACD=∠BCE=120°,则△ACD≌△BCE(SAS),得AD=BE.③△ACD≌△BCE,则∠ADC=∠BEC.故∠AOE=180°-(∠OAE+∠BEC)=180° -(∠OAE+∠ADC)=180° -∠DCE=120° .④CD=CE,∠BEC=∠ADC(已证),∠NCE=∠MCD=60° ,则△NCE≌△MCD(ASA),CM=CN.⑤过点CP⊥AD,CQ⊥BE∵△ACD≌△BCE(已证),∴CP=CQ.(全等三角形对应边上的高相等)故OC平分∠AOE.(到角两边距离相等的点在这个角的平分线上)⑥在OA上截取OF=OC,连接CF.∵OC平分∠AOE,∠AOE=120°. ∴∠AOC=∠COE=60°,则△COF为等边三角形.故CF=CO,∠CFO=∠COE=60°,∠AFC=∠BOC=120°又△ACD≌△BCE(已证),∠CAD=∠CBE.∴△ACF≌△BCO(AAS),AF=BO. 所以,OB+OC=AF+OF=OA.⑦错误.由△NCE≌△MCD(已证),易知DM=EN.∵∠CNE>∠NDE=∠DEC>∠NEC.∴EN>CN(大角对大边),故DM=EN,DM>CN.。

相关文档
最新文档