初中数学培优题库试题11附答案
初中数学分式方程的应用培优训练(精选40道习题 附答案详解)
(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?
初三数学培优试卷及答案
一、选择题(每题5分,共50分)1. 已知一元二次方程x^2 - 5x + 6 = 0,则方程的解为:A. x = 2,x = 3B. x = 1,x = 6C. x = 2,x = 4D. x = 3,x = 52. 下列函数中,是奇函数的是:A. y = x^2B. y = x^3C. y = |x|D. y = x^43. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠B = ∠C = °。
4. 下列命题中,正确的是:A. 平行四边形的对角线互相平分B. 等腰三角形的底角相等C. 直角三角形的两条直角边相等D. 矩形的对边平行且相等5. 若a、b、c是等差数列,且a + b + c = 12,则a^2 + b^2 + c^2的值为:6. 已知二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(1, -2),则a、b、c的值分别为:7. 在直角坐标系中,点A(2, 3)关于x轴的对称点为B,则点B的坐标为:8. 已知等腰三角形ABC中,AB = AC,且BC = 6,AD是BC边上的高,则AD的长度为:9. 下列不等式中,正确的是:A. 3x > 2x + 1B. 2x < 3x - 1C. 3x ≥ 2x + 1D. 2x ≤ 3x - 110. 若a、b、c是等比数列,且a + b + c = 27,b^2 = ac,则a、b、c的值分别为:二、填空题(每题5分,共50分)11. 已知一元二次方程x^2 - 4x + 3 = 0的解为x1和x2,则x1 + x2 = ,x1x2 = 。
12. 函数y = 2x - 3的图象与x轴、y轴的交点坐标分别为(),()。
13. 在等腰三角形ABC中,AB = AC,若∠BAC = 45°,则∠B = ∠C = °。
14. 下列命题中,正确的是:平行四边形的对角线互相平分,等腰三角形的底角相等,矩形的对边平行且相等。
七年级有理数培优题(有答案)
有理数培优题根底训练题一、填空:1、在数轴上表示-2的点到原点的距离等于〔 〕。
2、假设∣a ∣=-a,那么a 〔 〕0.3、任何有理数的绝对值都是〔 〕。
4、如果a+b=0,那么a 、b 一定是〔 〕。
5、将0.1毫米的厚度的纸对折20次,列式表示厚度是〔 〕。
6、||3,||2,||a b a b a b ==-=-,那么a b +=〔 〕7、|2||3|x x -++的最小值是〔 〕。
8、在数轴上,点A 、B 分别表示2141,-,那么线段AB 的中点所表示的数是〔 〕。
9、假设,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,那么()20102a b mn p p++-=〔 〕。
10、假设abc ≠0,那么||||||a b c a b c++的值是〔 〕 . 11、以下有规律排列的一列数:1、43、32、85、53、…,其中从左到右第100个数是〔 〕。
二、解答问题:1、x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。
3、假设2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。
4、假设,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。
5、计算:-21 +65-127+209-3011+4213-5615+7217 6、应用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。
现要求每次翻转其中任意四只,使它们杯口朝向相反,问能否经有限次翻转后,让所有杯子杯口朝下?能力培训题知识点一:数轴例1:有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么〔 〕 A .b ab < B .b ab > C .0>+b a D .0>-b a 拓广训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有〔 〕〔“祖冲之杯〞邀请赛试题〕A .1B .2C .3D .43、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。
初中数学培优试题及答案
初中数学培优试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √42. 一个数的相反数是它本身的数是:A. 0B. 1C. -1D. 23. 如果一个角的补角是锐角,那么这个角是:A. 锐角B. 直角C. 钝角D. 平角4. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 7B. 10C. 11D. 145. 一个数的绝对值是它本身,这个数是:A. 正数C. 非负数D. 非正数6. 一个数的立方是它本身,这个数是:A. 0B. 1C. -1D. 以上都是7. 一个数的平方是它本身,这个数是:A. 0B. 1C. -1D. 以上都是8. 一个数的倒数是它本身,这个数是:A. 0B. 1C. -1D. 以上都是9. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 以上都不是10. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数D. 非正数二、填空题(每题4分,共20分)1. 一个数的平方根是它本身,这个数可以是______。
2. 如果一个角的补角是90°,那么这个角是______。
3. 一个等腰三角形的两边长分别为5和8,那么它的周长是______。
4. 一个数的立方是它本身,这个数可以是______。
5. 一个数的倒数是它本身,这个数可以是______。
三、解答题(每题10分,共50分)1. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求这个三角形的斜边长。
2. 一个数的相反数是-7,求这个数。
3. 一个等腰三角形的两边长分别为6和8,求这个三角形的周长。
4. 已知一个数的平方是25,求这个数。
5. 一个数的立方是-8,求这个数。
答案:一、选择题1. B2. A3. A4. C5. C6. D7. D8. B9. A10. C二、填空题1. 0或12. 90°3. 194. 0, 1, -15. 1或-1三、解答题1. 斜边长为5cm(根据勾股定理,3²+4²=5²)。
八年级上数学培优试题(附答案)解析
第十一章三角形11.1与三角形有关的线段专题一三角形个数的确定1.如图,图中三角形的个数为()A.2 B.18 C.19 D.202.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个.3.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:△ABC内点的个数 1 2 3 (1007)构成不重叠的小三角形的个数 3 5 …专题二根据三角形的三边不等关系确定未知字母的范围4.三角形的三边分别为3,1-2a,8,则a的取值范围是()A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-25. 在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个.6.若三角形的三边长分别是2、x、8,且x是不等式22x+>123x--的正整数解,试求第三边x的长.状元笔记【知识要点】1.三角形的三边关系三角形两边的和大于第三边,两边的差小于第三边.2.三角形三条重要线段(1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高.(2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线.(3)角平分线:三角形内角的平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线.3.三角形的稳定性三角形具有稳定性.【温馨提示】1.以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形.而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种.2.三角形的高、中线、角平分线都是线段,而不是直线或射线.【方法技巧】1.根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边.2.三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等.参考答案:1.D 解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.2.21 解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.3.解:填表如下:△ABC内点的个数 1 2 3 (1007)构成不重叠的小三角形的个数 3 5 7 (2015)解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.4.B 解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.5.10 解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.6.解:原不等式可化为3(x+2)>-2(1-2x),解得x<8.∵x是它的正整数解,∴x可取1,2,3,5,6,7.再根据三角形三边关系,得6<x<10,∴x=7.11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15° B.20° C.25° D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. 若AP平分∠BAC 且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB 和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)专题二利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20° C.25° D.30°5.如图,△AB C中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.(1)求∠DCE的度数;(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)6.如图:(1)求证:∠BDC=∠A+∠B+∠C;(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角.参考答案:1.C 解析:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠1=12∠ACE,∠2=12∠ABC.又∵∠D=∠1-∠2,∠A=∠ACE-∠ABC,∴∠D=12∠A=25°.故选C.2.解:(法1)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC ,∠BAP=12∠BAC,∠ABP=12∠ABC ,即∠BAP+∠ABP=45°,所以∠APB=180°-45°=135°. (法2)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°,因为BD平分∠ABC,AP平分∠BAC,∠DBC=12∠ABC,∠PAC=12∠BAC ,所以∠DBC+∠PAD=45°.所以∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C =45°+90°=135°. 3.解:(1)∠A+∠D=∠B+∠C;(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,∴∠1-∠3=∠P-∠D,∠2-∠4=∠B -∠P,又∵AP、CP分别平分∠DAB和∠BCD,∴∠1=∠2,∠3=∠4,∴∠P-∠D=∠B-∠P,即2∠P=∠B+∠D,∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.4.B 解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于点O,则∠AOB=∠POC,∴∠P+12∠ACD=∠A+12∠ABD,即∠P=50°-12(∠ACD-∠A BD)=20°.故选B.5.解:(1)∵∠A=40°,∠B=72°,∴∠ACB=68°.∵CD平分∠ACB,∴∠DCB=12∠ACB=34°.∵CE是AB边上的高,∴∠ECB=90°-∠B=90°-72°=18°.∴∠DCE=34°-18°=16°.(2)∠DCE=12(∠B-∠A).6.(1)证明:延长BD交AC于点E,∵∠BEC是△ABE的外角,∴∠BEC=∠A+∠B.∵∠BDC是△CED的外角,∴∠BDC=∠C+∠DEC=∠C+∠A+∠B.(2)猜想:∠BDC+∠ACD+∠A+∠ABD=360°.证明:∠BDC+∠ACD+∠A+∠ABD=∠3+∠2+∠6+∠5+∠4+∠1=(∠3+∠2+∠1)+(∠6+∠5+∠4)=180°+180°=360°.11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360° B.540° C.630° D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.第十二章全等三角形12.1全等三角形12.2三角形全等的判定专题一三角形全等的判定1.如图,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:△A BE≌△CDF.2.如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________;(2)证明:3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA; ④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB 的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB 的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二 全等三角形的判定与性质4.如图,已知△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为( )A .6B .4C .23D .55.【2013·襄阳】如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,将△ADC 绕点A 顺时针旋转,使AC 与AB 重合,点D 落在点E 处,AE 的延长线交CB 的延长线于点M ,EB 的延长线交AD 的延长线于点N . 求证:AM =AN .NME D B CA6.如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.专题三全等三角形在实际生活中的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°8.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC 并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等.3.“HL”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等.【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△AB C≌△DEF,说明A与D,B与E,C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF是对应边.2.判定两个三角形全等的解题思路:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——参考答案:1.证明:平行四边形ABCD 中,AB=CD ,∠A=∠C ,AB ∥CD , ∴∠ABD=∠CDB .∵∠AB E=21∠ABD ,∠CDF=21∠CDB ,∴∠ABE=∠CDF .在△ABE 与△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDF ABE CDAB C A ∴△ABE ≌△CDF . 2.解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒(2)以DC BD =为例进行证明: ∵CF ∥BE , ∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC =∠EDB , ∴△BDE ≌△CDF . 3.解:(1)添加条件②,③,④中任一个即可,以添加②为例说明. 证明:∵AE=CD ,BE=BD , ∴AB=CB.又∠ABD=∠CBE,BE=BD , ∴△ADB≌△CEB. (2)③④.4.B 解析:∵∠ABC =45°,AD ⊥BC ,∴AD =BD ,∠ADC =∠BDH , ∠AHE =∠BHD =∠C .∴△ADC ≌△BDH .∴BH =AC =4.故选B . 5.证明:如图所示,7654321NME D B CA∵△AEB 由△ADC 旋转而得, ∴△AEB ≌△ADC .∴∠3=∠1,∠6=∠C .∵AB =AC ,AD ⊥BC ,∴∠2=∠1,∠7=∠C .∴∠3=∠2,∠6=∠7.∵∠4=∠5,∴∠ABM =∠ABN . 又∵AB =AB ,∴△AMB ≌△ANB .∴AM =AN .6.证明:∵△ABC 和△EDC 是等边三角形, ∴∠BCA =∠DCE =60°. ∴∠BCA -∠ACD =∠DCE -∠ACD ,即∠BCD =∠ACE . 在△DBC 和△EAC 中,BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC (SAS ). ∴∠DBC =∠EAC . 又∵∠DBC =∠ACB =60°, ∴∠ACB =∠EAC .∴AE ∥BC .7.B 解析:∵滑梯、墙、地面正好构成直角三角形,又∵BC=EF,AC=DF ,∴Rt△ABC≌Rt△DEF.∴∠ABC =∠DEF ,∵∠DEF +∠DFE =90°,∴∠ABC+∠DFE=90°. 故选B .8.解:在△ABC 和△CED 中,AC=CD ,∠ACB=∠ECD,EC=BC ,∴△ABC≌△CED.∴AB=ED.即量出DE 的长,就是A 、B 两端的距离. 9.解:对.理由:∵AC⊥AB ,∴∠CAB=∠CAB′=90°. 在△ABC 和△AB′C 中,ACB ACB AC AC CAB CAB =⎧⎪=⎨⎪=⎩∠∠′,,∠∠′, ∴△ABC≌△AB′C (ASA ).∴AB′=AB.第十三章轴对称13.1轴对称13.2画轴对称图形专题一轴对称图形1.下列图案是轴对称图形的是()2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个 B.1个 C.2个 D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠AB C和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.状元笔记【知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.参考答案:1.D 解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:4.A 解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B点、C点关于DE对称,有∠DBE=∠BCD,∠ABC=2∠BCD.且已知∠A=90°,故∠ABC+∠BCD=90°.故∠ABC=60°,∠C=30°.6.解:(1)对称点有A和A',B和B',C和C'.(2)连接A、A′,直线m是线段AA′的垂直平分线.(3)延长线段AC与A′C′,它们的交点在直线m上,其他对应线段(或其延长线)的交点也在直线m上,即若两线段关于直线m对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B 解析:在Rt△FDB中,∵∠F=30°,∴∠B=60°.在R t△ABC中,∵∠ACB=90°,∠ABC=60°,∴∠A=30°.在Rt△AED中,∵∠A=30°, DE=1,∴AE=2.连接EB. ∵DE 是AB的垂直平分线,∴EB=AE=2. ∴∠EBD=∠A=30°.∵∠ABC=60°,∴∠EBC=30°.∵∠F=30°,∴EF=EB=2.故选B.AF ED8.8 解析:∵DF 是AB 的垂直平分线,∴DB=DA .∵EG 是AC 的垂直平分线,∴EC=EA . ∵BC=8,∴△ADE 的周长=DA+EA+DE=DB+DE+EC=BC=8. 9.解:AB+BD=DE .证明:∵AD⊥BC,BD=DC ,∴AB=AC . ∵点C 在AE 的垂直平分线上, ∴AC=CE . ∴AB=CE .∴AB+BD=CE+DC=DE .10.C 解析:关于y 轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5. 解得1.5<a <2.5,又因为a 必须为整数,∴a=2.∴点P 2(-1,-1). ∴P 1点的坐标是(-1,1).第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 42.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x =C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.6.计算:(1)(-0.125)2014×(-2)2014×(-4)2015; (2)(-19)2015×811007.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题:(x +5)(x +6)=x 2+11x +30;(x -5)(x -6)=x 2-11x +30;(x -5)(x +6)=x 2+x -30;(x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________. (3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________. 11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:nm n m a a a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m nmna a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘. 2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加. (3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. 3.整式的除法(1)同底数幂相除:m n m na a a -÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. 【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”. 3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算. 4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算. 【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式. 2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C . 2.C 解析:3x ·2235x xx +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D . 4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .5.解:23m+2n=23m·22n=(2m)3·(2n)2 =53·32=1125.6.解:(1)原式=(0.125×2×4)2014×(-4)=12014×(-4)=-4. (2)原式=(-19)2015×92014=(19×9)2014×(-19)=-19. 7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B . 8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,∵不含x 2项,∴3b-2=0,得b=23. ∴(3x 2-2x+1)(x+23)=3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23.9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480.10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。
初三数学培优试题及答案
初三数学培优试题及答案一、选择题(每题2分,共10分)1. 下列哪个数不是实数?A. πB. -3C. √2D. i2. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π3. 已知a=3,b=2,求下列表达式的值:a^2 + b^2A. 13B. 17C. 19D. 214. 一个数的平方根等于它本身,这个数是:A. 0B. 1C. -1D. 45. 下列哪个是二次方程的解?A. x = 1B. x = -1C. x = 2D. x = 3(方程为:x^2 - 4x + 4 = 0)二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,斜边的长度是______。
7. 一个正数的倒数是1/8,这个数是______。
8. 如果一个数的立方等于-27,那么这个数是______。
9. 一个数的绝对值是5,这个数可以是______或______。
10. 一个二次方程的判别式是36,那么这个方程的根的情况是______。
三、解答题(每题10分,共30分)11. 解方程:2x^2 - 5x - 3 = 0。
12. 证明:如果一个三角形的两边长度分别为a和b,且a < b,那么这个三角形的周长P满足P > 2a。
13. 一个工厂每天可以生产x个产品,每个产品的成本是c元,销售价格是p元。
如果工厂每天的利润是y元,写出y关于x的函数表达式。
四、综合题(每题15分,共20分)14. 一个圆的半径是7,圆心到一个点A的距离是5。
如果点A在圆内,求点A到圆上任意一点B的距离的最大值和最小值。
15. 一个班级有50名学生,其中30名学生喜欢数学,20名学生喜欢英语。
如果一个学生至少喜欢一门科目,求这个班级中同时喜欢数学和英语的学生人数的范围。
答案:一、选择题1. D2. B3. C4. A5. D二、填空题6. 5(根据勾股定理)7. 8(倒数的定义)8. -3(立方根的定义)9. 5,-5(绝对值的定义)10. 有两个不相等的实数根(判别式的定义)三、解答题11. 解:2x^2 - 5x - 3 = 0,使用求根公式,得到x1 = (5 + √41) / 4,x2 = (5 - √41) / 4。
初中培优试卷数学
一、选择题(每题3分,共30分)1. 若a、b、c是方程x²-5x+6=0的两根,则a+b+c的值为()A. 2B. 5C. 6D. 72. 若x²-3x+2=0,则x²-3x的值为()A. 1B. 2C. 3D. 43. 若x²-5x+6=0,则x³-5x²+6x的值为()A. 1B. 2C. 3D. 44. 若a、b是方程2x²-5x+2=0的两根,则a²+ab+b²的值为()A. 5B. 6C. 7D. 85. 若x²-2x+1=0,则x³-2x²+x的值为()A. 1B. 2C. 3D. 46. 若x²-3x+2=0,则x²+3x的值为()A. 1B. 2C. 3D. 47. 若x²-5x+6=0,则x²+5x的值为()A. 1B. 2C. 3D. 48. 若a、b是方程x²-5x+6=0的两根,则a²-5a+6的值为()A. 0B. 1C. 2D. 39. 若x²-2x+1=0,则x²-2x的值为()A. 1B. 2C. 3D. 410. 若a、b是方程2x²-5x+2=0的两根,则a²-5a+2的值为()A. 0B. 1C. 2D. 3二、填空题(每题3分,共30分)11. 若x²-3x+2=0,则x²+2x的值为______。
12. 若x²-5x+6=0,则x²-6x的值为______。
13. 若a、b是方程x²-5x+6=0的两根,则a²-5a+6的值为______。
14. 若x²-2x+1=0,则x²+2x的值为______。
15. 若a、b是方程2x²-5x+2=0的两根,则a²-5a+2的值为______。
初中数学培优题库
初中数学培优题库一、整数的运算1. 加法与减法1.题目:已知a = -3,b = 5,求a + b的值。
2.解答:a + b = -3 + 5 = 2。
2. 乘法与除法1.题目:已知a = -4,b = 2,求a × b的值。
2.解答:a × b = -4 × 2 = -8。
二、代数与代数式1. 代数式的展开1.题目:展开(a + b)^2。
2.解答:(a + b)^2 = a^2 + 2ab + b^2。
2. 代数式的因式分解1.题目:将2x^2 + 4x分解因式。
2.解答:2x^2 + 4x = 2x(x + 2)。
三、几何与图形1. 平面图形的面积计算1.题目:已知正方形的边长为5cm,求其面积。
2.解答:正方形的面积 = 边长^2 = 5^2 = 25cm^2。
2. 简单图形的周长计算1.题目:已知长方形的长为8cm,宽为4cm,求其周长。
2.解答:长方形的周长 = 2(长 + 宽) = 2(8 + 4) = 24cm。
四、概率与统计1. 简单事件的概率计算1.题目:将一张扑克牌随机抽一张,求抽到黑桃的概率。
2.解答:扑克牌总共有52张,其中黑桃有13张,所以抽到黑桃的概率为13/52 = 1/4。
2. 数据的整理与图表的制作1.题目:一个班级的学生身高数据如下:150cm, 155cm, 160cm,162cm, 165cm, 170cm,请制作一个身高分布柱状图。
2.解答:身高分布柱状图如下:身高学生人数150cm 1155cm 1160cm 1162cm 1165cm 1170cm 1五、函数与方程1. 一次函数的图像与性质1.题目:已知一次函数y = 2x + 1,求函数的斜率和截距。
2.解答:函数的斜率为2,截距为1。
2. 方程的解法1.题目:解方程3x + 5 = 14。
2.解答:3x + 5 - 5 = 14 - 5,得到3x = 9,x = 3。
人教版七年级数学下册期末解答题培优(附答案)
人教版七年级数学下册期末解答题培优(附答案)一、解答题1.如图,用两个面积为2200cm的小正方形拼成一个大的正方形.(1)则大正方形的边长是;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为2360cm?2.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.3.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35-+的点,并比较它们的大小.4.如图,用两个边长为2(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm 25.小丽想用一块面积为236cm 的正方形纸片,如图所示,沿着边的方向裁出一块面积为220cm 的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗为什么?二、解答题6.已知,//AE BD ,A D ∠=∠.(1)如图1,求证://AB CD ;(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.7.如图1,已AB ∥CD ,∠C =∠A .(1)求证:AD ∥BC ;(2)如图2,若点E 是在平行线AB ,CD 内,AD 右侧的任意一点,探究∠BAE ,∠CDE ,∠E 之间的数量关系,并证明.(3)如图3,若∠C =90°,且点E 在线段BC 上,DF 平分∠EDC ,射线DF 在∠EDC 的内部,且交BC 于点M ,交AE 延长线于点F ,∠AED +∠AEC =180°,①直接写出∠AED 与∠FDC 的数量关系: .②点P 在射线DA 上,且满足∠DEP =2∠F ,∠DEA ﹣∠PEA =514∠DEB ,补全图形后,求∠EPD 的度数8.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,a b ,且,a b ABC //是直角三角形,90BCA ∠=︒,操作发现:(1)如图1.若148∠=︒,求2∠的度数;(2)如图2,若30,1A ∠=︒∠的度数不确定,同学们把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.(3)如图3,若∠A =30°,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.9.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .问题解决:(1)如图1,直接写出∠A 和∠C 之间的数量关系;(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =3∠DBE ,则∠EBC = .10.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数; (3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.三、解答题11.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,点B 在两条平行线外,则A ∠与C ∠之间的数量关系为______;(2)点B 在两条平行线之间,过点B 作BD AM ⊥于点D .①如图2,说明ABD C ∠=∠成立的理由;②如图3,BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒=,求EBC ∠的度数.12.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系. 13.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°,求∠APC 的度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质来求∠APC .(1)按小明的思路,易求得∠APC 的度数为 度;(2)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP =∠α,∠BCP =∠β.试判断∠CPD 、∠α、∠β之间有何数量关系?请说明理由; (3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.14.已知AB ∥CD ,点M 在直线AB 上,点N 、Q 在直线CD 上,点P 在直线AB 、CD 之间,∠AMP =∠PQN =α,PQ 平分∠MPN .(1)如图①,求∠MPQ 的度数(用含α的式子表示);(2)如图②,过点Q 作QE ∥PN 交PM 的延长线于点E ,过E 作EF 平分∠PEQ 交PQ 于点F .请你判断EF 与PQ 的位置关系,并说明理由;(3)如图③,在(2)的条件下,连接EN ,若NE 平分∠PNQ ,请你判断∠NEF 与∠AMP 的数量关系,并说明理由.15.已知两条直线l 1,l 2,l 1∥l 2,点A ,B 在直线l 1上,点A 在点B 的左边,点C ,D 在直线l 2上,且满足115ADC ABC ∠=∠=o .(1)如图①,求证:AD ∥BC ;(2)点M ,N 在线段CD 上,点M 在点N 的左边且满足MAC BAC ∠=∠,且AN 平分∠CAD ;(Ⅰ)如图②,当30ACD ∠=o 时,求∠DAM 的度数;(Ⅱ)如图③,当8CAD MAN ∠=∠时,求∠ACD 的度数.四、解答题16.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.17.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=()1请判断AB 与CD 的位置关系并说明理由;()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并说明理由.()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?直接写出猜想结论,不需说明理由.18.如图,△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于A 1.(1)当∠A 为70°时,∵∠ACD -∠ABD =∠______∴∠ACD -∠ABD =______°∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线∴∠A 1CD -∠A 1BD =12(∠ACD -∠ABD ) ∴∠A 1=______°;(2)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于A 2,∠A 2BC 与A 2CD 的平分线交于A 3,如此继续下去可得A 4、…、A n ,请写出∠A 与∠A n 的数量关系______;(3)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230度,则∠F =______.(4)如图3,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q +∠A 1的值为定值;②∠Q -∠A 1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.19.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵180BDC DBC BCD ∠+∠+∠=︒,(______)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(______)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.20.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.【参考答案】一、解答题1.(1);(2)无法裁出这样的长方形.(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm ,宽为cm ,根据题意列出方程,解方程比较4x 与20的大小 解析:(1)20;(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm ,宽为3x cm ,根据题意列出方程,解方程比较4x 与20的大小即可.【详解】解:(1)由题意得,大正方形的面积为200+200=400cm 2,∴cm ;()2根据题意设长方形长为4x cm ,宽为3x cm ,由题:43360x x ⋅= 则230x =0xx ∴=∴长为43020>∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.2.正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,∴,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为2x 厘米,即得正方形纸板的边长是2x 厘米,根据题意得:2162x x ⋅=,取正值9x =,可得218x =,∴答:正方形纸板的边长是18厘米.【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.3.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果;(2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形; ②解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴5在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为5-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.4.(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可.【详解】解:(1)∵大正方形的面积是:∴大正解析:(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】解:(1)∵大正方形的面积是:(22152⨯∴()22152=900⨯ =30;(2)设长方形纸片的长为4xcm ,宽为3xcm ,则4x •3x =720, 解得:x 60, 4x 4460⨯⨯960>30,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm 2.故答案为(1)30;(2)不能.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式. 5.不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为x ,长为2x ,然后依据矩形的面积为20列方程求得x 的值,从而得到矩形的边长,从而可作出判断.【详解】解:不同意,因为正方形的面积为236cm ,故边长为6cm设长方形宽为x ,则长为2x长方形面积22220x x x =⋅==∴210x =,解得x =长为6cm >即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.二、解答题6.(1)见解析;(2)【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E 作,延长DC 至Q ,过点M 作,根据平行线的性质及等量代换可得出,再根据平角的解析:(1)见解析;(2)72︒【分析】(1)根据平行线的性质得出180A B ∠+∠=︒,再根据等量代换可得180B D ∠+∠=︒,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG ∠=∠=∠,再根据平角的含义得出ECF CFG ∠=∠,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB ∠=∠∠=∠;设,FAB CFH αβ∠=∠=,根据角的和差可得出2AEC AFH ∠=∠,结合已知条件35180AEC AFH ∠-∠=︒可求得18AFH ∠=︒,最后根据垂线的含义及平行线的性质,即可得出答案.【详解】(1)证明://AE BD180A B ∴∠+∠=︒A D ∠=∠180B D ∴∠+∠=︒//AB CD ∴;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB//AB CDQCA CAB ∴∠=∠,BGM DFG ∠=∠,CFH BHF ∠=∠,CFA FAG ∠=ACE BAC BGM ∠=∠+∠ECQ QCA BAC BGM ∴∠+∠=∠+∠ECQ BGM DFG ∴∠=∠=∠180,180ECQ ECD DFG CFG ∠+=︒∠+=︒ECF CFG ∴∠=∠//AB CD//AB EP ∴,PEA EAB PEC ECF ∴∠=∠∠=∠AEC PEC PEA ∠=∠-∠AEC ECF EAB ∴∠=∠-∠ECF AEC EAB ∴∠=∠+∠AF 平分BAE ∠12EAF FAB EAB ∴∠=∠=∠ FH 平分CFG ∠12CFH HFG CFG ∴∠=∠=∠ //CD AB,BHF CFH CFA FAB ∴∠=∠∠=∠设,FAB CFH αβ∠=∠=AFH CFH CFA CFH FAB ∠=∠-∠=∠-∠AFH βα∴∠=-,BHF CFH β∠=∠=222ECF AFH AEC EAB AFH AEC β∴∠+∠=∠+∠+∠=∠+22ECF AFH E BHF ∴∠+∠=∠+∠2AEC AFH ∴∠=∠35180AEC AFH ∠-∠=︒18AFH ∴∠=︒FH HM ⊥90FHM ∴∠=︒90GHM β∴∠=︒-180CFM NMF ∠+∠=︒90HMB HMN β∴∠=∠=︒-EAF FAB ∠=∠18EAF CFA CFH AFH β∴∠=∠=∠-∠=-︒189072EAF GMH ββ∴∠+∠=-︒+︒-=︒72EAF GMH ∴∠+∠=︒.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.7.(1)见解析;(2)∠BAE+∠CDE=∠AED ,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E 作EF ∥AB ,根解析:(1)见解析;(2)∠BAE +∠CDE =∠AED ,证明见解析;(3)①∠AED -∠FDC =45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E 作EF ∥AB ,根据平行线的性质得AB ∥CD ∥EF ,然后由两直线平行内错角相等可得结论;(3)①根据∠AED +∠AEC =180°,∠AED +∠DEC +∠AEB =180°,DF 平分∠EDC ,可得出2∠AED +(90°-2∠FDC )=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=5∠DEB,求出∠AED=50°,即可得出∠EPD的度数.14【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.8.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC-∠DBC=60°-∠1,进而得出结论;(3)过点C作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.【详解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:过点B作BD∥a.如图2所示:则∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:过点C作CP∥a,如图3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP ∥a ,∴∠2=∠BCP =60°,∴∠1=∠2.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.9.(1);(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠ABC =90°,∴∠A +∠AOB =90°,∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG ∥DM ,∵BD ⊥AM ,∴DB ⊥BG ,∴∠DBG =90°,∴∠ABD +∠ABG =90°,∵AB ⊥BC ,∴∠CBG +∠ABG =90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.10.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∠FCQ=60°,∴∠PCQ=12∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.三、解答题11.(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥解析:(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,BG CN//,∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.12.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.(3)分两种情形分别求解即可;【详解】解:(1)过M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案为:50°;(2)∠A+∠C=30°+α,延长BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的内外角之间的关系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如图所示,210-∠A=(180°-∠D CM)+α,即∠A-∠DCM=30°-α.综上所述,∠A-∠DCM=30°+α或30°-α.【点睛】本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数.13.(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β【分析】(1)过P作PE∥AB,通过平行线性质求∠A解析:(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.故答案为110°;(2)∠CPD=∠α+∠β,理由是:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,∠CPD=∠β-∠α,理由是:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE =∠β-∠α;当P在AB延长线时,∠CPD=∠α-∠β,理由是:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE -∠CPE =∠α-∠β.【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键.14.(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=∠AMP,见解析【分析】1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF=∠AMP,见解析解析:(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=12【分析】1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF=180°,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件可得∠QNE=∠QEN,根据三角形内角和定理可得∠QNE=12(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可(180°﹣∠NQE)=12得结论.【详解】解:(1)如图①,过点P作PR∥AB,∵AB∥CD,∴AB∥CD∥PR,∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,∴∠MPQ=∠MPR+∠RPQ=2α;(2)如图②,EF⊥PQ,理由如下:∵PQ平分∠MPN.∴∠MPQ=∠NPQ=2α,∵QE∥PN,∴∠EQP=∠NPQ=2α,∴∠EPQ=∠EQP=2α,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;(3)如图③,∠NEF=12∠AMP,理由如下:由(2)可知:∠EQP=2α,∠EFQ=90°,∴∠QEF=90°﹣2α,∵∠PQN=α,∴∠NQE=∠PQN+∠EQP=3α,∵NE平分∠PNQ,∴∠PNE=∠QNE,∵QE∥PN,∴∠QEN=∠PNE,∴∠QNE=∠QEN,∵∠NQE=3α,∴∠QNE=12(180°﹣∠NQE)=12(180°﹣3α),∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣(90°﹣2α)﹣3α﹣12(180°﹣3α)=180°﹣90°+2α﹣3α﹣90°+3 2α=12α=12∠AMP.∴∠NEF=12∠AMP.【点睛】本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键.15.(1)证明见解析;(2)(Ⅰ);(Ⅱ).(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ)5DAM ∠=︒;(Ⅱ)25ACD ∠=︒.【分析】(1)先根据平行线的性质可得65BAD ∠=︒,再根据角的和差可得180BAD ABC ∠+∠=︒,然后根据平行线的判定即可得证;(2)(Ⅰ)先根据平行线的性质可得30BAC ACD ∠=∠=︒,从而可得30MAC ∠=︒,再根据角的和差可得35DAC ∠=︒,然后根据DAM DAC MAC ∠=∠-∠即可得;(Ⅱ)设MAN x ∠=,从而可得8CAD x ∠=,先根据角平分线的定义可得142CAN CAD x ∠=∠=,再根据角的和差可得5BAC MAC x ∠=∠=,然后根据65CAD BAC BAD ∠+∠=∠=︒建立方程可求出x 的值,从而可得BAC ∠的度数,最后根据平行线的性质即可得.【详解】(1)12//,115l l ADC ∠=︒,18065BAD ADC ∴∠=︒-∠=︒,又115ABC ∠=︒,180BAD ABC ∴∠+∠=︒,//AD BC ∴;(2)(Ⅰ)12//,30l l ACD ∠=︒,30BAC ACD ∴∠=∠=︒,MAC BAC ∠=∠,30MAC ∴∠=︒,由(1)已得:65BAD ∠=︒,35DAC BAD BAC ∴∠=∠-∠=︒,35305DAM DAC MAC ∴∠=∠-∠=︒-︒=︒;(Ⅱ)设MAN x ∠=,则8CAD x ∠=, AN 平分CAD ∠,142CAN CAD x ∴∠=∠=, 5MAC CAN MAN x ∴∠=∠+∠=,MAC BAC ∠=∠,5BAC x ∴∠=,由(1)已得:65BAD ∠=︒,65CAD BAC BAD ∴∠+∠=∠=︒,即8565x x +=︒,解得5x =︒,525BAC x ∴∠==︒,25ACD BAC ∴∠=∠=︒.【点睛】本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键.四、解答题16.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.17.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠EAC ,∠ACD=2∠ACE ,再解析:(1)详见解析;(2)∠BAE+12∠MCD=90°,理由详见解析;(3)详见解析. 【详解】试题分析:(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC =2∠EAC ,∠ACD =2∠ACE ,再由∠EAC +∠ACE =90°可知∠BAC +∠ACD =180,故可得出结论;(2)过E 作EF ∥AB ,根据平行线的性质可知EF ∥AB ∥CD ,∠BAE =∠AEF ,∠FEC =∠DCE ,故∠BAE +∠ECD =90°,再由∠MCE =∠ECD 即可得出结论;(3)根据AB ∥CD 可知∠BAC +∠ACD =180°,∠QPC +∠PQC +∠PCQ =180°,故∠BAC =∠PQC +∠QPC .试题解析:证明:(1)∵CE 平分∠ACD ,AE 平分∠BAC ,∴∠BAC =2∠EAC ,∠ACD =2∠ACE .∵∠EAC +∠ACE =90°,∴∠BAC +∠ACD =180,∴AB ∥CD ;(2)∠BAE +12∠MCD =90°.证明如下: 过E 作EF ∥AB .∵AB ∥CD ,∴EF ∥∥AB ∥CD ,∴∠BAE =∠AEF ,∠FEC =∠DCE . ∵∠E =90°,∴∠BAE +∠ECD =90°.∵∠MCE=∠ECD,∴∠BAE+12∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如图3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如图4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.点睛:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.18.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠A n(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,。
【教师卷】初中数学八年级数学上册第十一章《三角形》经典题(培优)
一、选择题1.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40°C解析:C【分析】 利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.【详解】∵∠ACB =90°,∴∠A +∠B =90°,∵△CDB′是由△CDB 翻折得到,∴∠CB′D =∠B ,∵∠CB′D =∠A +∠ADB′=∠A +20°,∴∠A +∠A +20°=90°,解得∠A =35°.故选:C .【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .6D解析:D【分析】要先根据题意,画出图形,通过对图形观察,思考,得出需要小木棍的根数,然后图形对比,选出最少需要小木棍的根数.【详解】图1没有共用部分,要6根小木棍,图2有共用部分,可以减少小木棍根数,仿照图2得到图3,要7根小木棍,同法搭建的图4,要9根小木棍,如按图5摆放,外围大的等边三角形,可以得到5个等边三角形,要9根小木棍, 如按图6摆成三棱锥(西面体)就可以得到4个等边三角形,∴搭建4个等边三角形最少需要小木棍6根.故选:D【点睛】此题考查的是组成图形的边的条数,解答此题需要灵活利用立体空间思维解答. 3.下列每组数分别三根小木棒的长度,用它们能摆成三角形的是( )A .3,4,8cm cm cmB .7,8,15cm cm cmC .12,13,22cm cm cmD .10,10,20cm cm cm C解析:C【分析】根据三角形两边之和大于第三边,两边之差小于第三边计算判断即可.【详解】∵3+4<8,∴A 选项错误;∵7+8=15,∴B 选项错误;∵12+13>22,∴C 选项正确;∵10+10=20,∴D 选项错误;故选C.【点睛】本题考查了三角形的存在性,熟练掌握三角形的三边关系定理是解题的关键.4.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( )A .10B .8C .6D .4A【分析】设这个多边形的边数为n ,根据内角和公式以及多边形的外角和为360°即可列出关于n 的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n ,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.5.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm C解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<, ∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.6.以下列长度的各组线段为边,能组成三角形的是( )A .2cm ,3cm ,6cmB .3cm ,4cm ,8cmC .5cm ,6cm ,10cmD .5cm ,6cm ,11cm C解析:C【分析】根据三角形三边关系解答.【详解】A 、∵2+3<6,∴以此三条线段不能组成三角形;B 、3+4<8,∴以此三条线段不能组成三角形;C 、∵5+6>10,∴以此三条线段能组成三角形;D 、∵5+6=11,∴以此三条线段不能组成三角形;故选:C .此题考查三角形的三边关系:三角形两边的和大于第三边.7.下列四个图形中,线段CE是ABC的高的是()A.B.C.D. B解析:B【分析】利用三角形高的定义逐一判断选项,可得答案.【详解】A.CE不垂直AB,故CE不是ABC的高,不符合题意,B.CE是ABC中AB边上的高,符合题意,C.CE不是ABC的高,不符合题意,D.CE不是ABC的高,不符合题意.故选B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.8.下列长度的三条线段,能组成三角形的是()A.3,5,6 B.3,2,1 C.2,2,4 D.3,6,10A解析:A【分析】根据三角形三边长关系,逐一判断选项,即可得到答案.【详解】A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,D. ∵3+6<10,∴长度为3,6,10的三条线段不能组成三角形,故该选项不符合题意,故选A【点睛】本题主要考查三角形三边长的关系,掌握三角形任意两边之和大于第三边,是解题的关键.9.以下列各组线段为边,能组成三角形的是()A.1,2,3 B.2,3,4 C.2,5,8 D.6,3,3B解析:B【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A 、1+2=3,不能构成三角形, A 错误;B 、2+3=5>4可以构成三角形,B 正确;C 、2+5=7<8,不能构成三角形, C 错误;D 、3+3=6,不能构成三角形,D 错误.故答案选:B .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键. 10.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④B .①②③C .①④⑤D .②④⑤A解析:A【分析】根据直线的性质、两点间的距离、等式的性质、线段中点定义、多边形的定义依次判断.【详解】①过两点有且只有一条直线,故①正确;②两点之间,线段最短,故②正确;③若ax ay =,当0a =时,x 不一定等于y ,故③错误;④若A ,B ,C 三点共线且AB BC =,则B 为AC 中点,故④正确;⑤各角都相等且各边相等的多边形是正多边形,故⑤错误.∴正确的有①②④,故选:A .【点睛】此题考查理解能力,正确掌握直线的性质、两点间的距离、等式的性质、线段中点定义、正多边形的定义是解题的关键. 二、填空题11.如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.50°【分析】连接BC 根据三角形内角和定理可求得∠DBC +∠DCB 的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC +∠ACB 的度数即可求得∠A 的度数【详解】解:连接BC ∵∠BDC =130° 解析:50°【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数,即可求得∠A的度数.【详解】解:连接BC,∵∠BDC=130°,∴∠DBC+∠DCB=180°−∠BDC=50°,∵∠BGC=90°,∴∠GBC+∠GCB=180°−∠BGC=90°,∴∠GBD+∠GCD=(∠GBC+∠GCB)−(∠DBC+∠DCB)=40°,∵BF平分∠ABD,CE平分∠ACD,∴∠ABD+∠ACD=2∠GBD+2∠GCD=80°,∴∠ABC+∠ACB=(∠ABD+∠ACD)+(∠DBC+∠DCB)=130°,∴∠A=180°−(∠ABC+∠ACB)=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.12.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B两处,用仪器探测生命迹象C,已知探测线与地面的夹角分别是30︒和60︒(如∠的度数是_________.图),则C【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C∴∠C=6解析:30︒【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比较简单.13.七边形的外角和为________.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36 解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键;的度14.如图,飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,那么APB数为______°.60【分析】先由题意得到∠A=∠B=根据直角三角形两锐角互余求得结果【详解】∵飞机P在目标A的正上方飞行员测得目标B的俯角为30°∴∠A=∠CPB=∵CP∥AB∴∠B=∠CPB=∴=-∠B=故答案为解析:60【分析】先由题意得到∠A=90︒,∠B=30,根据直角三角形两锐角互余求得结果.【详解】∵飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,∴∠A=90︒,∠CPB=30,∵CP∥AB,∴∠B=∠CPB=30,∠=90︒-∠B=60︒,∴APB故答案为:60.【点睛】此题考查直角三角形两锐角互余的性质,理解飞行员测得目标B的俯角为30°得到∠B=30是解题的关键.15.如图,△ABC的两条中线AD、BE相交于点G,如果S△ABG=2,那么S△ABC=_____.6【分析】根据DE分别是三角形的中点得出G是三角形的重心再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案【详解析:6【分析】根据D,E分别是三角形的中点,得出G是三角形的重心,再利用重心的概念可得:2GD=AG进而得到S△ABG:S△ABD=2:3,再根据AD是△ABC的中线可得S△ABC=2S△ABD进而得到答案.【详解】解:∵△ABC的两条中线AD、BE相交于点G,∴2GD=AG,∵S△ABG=2,∴S△ABD=3,∵AD是△ABC的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.16.如图,ABC 的三边的中线AD ,BE ,CF 的公共点为G ,且21AG GD =::.若12ABC S =△,则图中阴影部分的面积是________. 4【分析】根据三角形的中线把三角形的面积分成相等的两部分知△ABC 的面积即为阴影部分的面积的3倍【详解】解:∵△ABC 的三条中线ADBECF 交于点GAG :GD=2:1∴AE=CE ∴S △CGE=S △A解析:4【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC 的面积即为阴影部分的面积的3倍.【详解】解:∵△ABC 的三条中线AD 、BE ,CF 交于点G ,AG :GD=2:1,∴AE=CE ,∴S △CGE =S △AGE =13S △ACF ,S △BGF =S △BGD =13S △BCF , ∵S △ACF =S △BCF =12S △ABC =12×12=6, ∴S △CGE =13S △ACF =13×6=2,S △BGF =13S △BCF =13×6=2, ∴S 阴影=S △CGE +S △BGF =4.故阴影部分的面积为4.故答案为:4.【点睛】本题考查了三角形的面积,三角形中线的性质,正确的识别图形是解题的关键. 17.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.54°【分析】根据折叠的性质及题意可在Rt △BEC中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中 解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.18.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.15【分析】记三角形的第三边为c 先根据三角形的三边关系确定c 的取值范围进而可得三角形第三边的最大值与最小值进一步即可求出答案【详解】解:记三角形的第三边为c 则7-3<c <7+3即4<c <10因为第三解析:15【分析】记三角形的第三边为c ,先根据三角形的三边关系确定c 的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c ,则7-3<c <7+3,即4<c <10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.【点睛】本题考查了三角形的三边关系与不等式组的整数解,属于基础题型,正确理解题意、掌握解答的方法是关键.19.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.2或6【分析】利用面积法求出BD 即可求得CD 再分AE 在内部和外部求出DE 即可【详解】解:为的高△ABD 的面积为14AE=7∴∵为的中线∴CD=BD=4当AE 在内部时∵CE=2∴DE=CD-CE=2当 解析:2或6【分析】利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7, 1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线,∴CD=BD=4, 当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键. 20.如图,若//AB CD ,BF 平分ABE ∠,DF 平分CDE ∠,90BED ∠=,则BFD ∠=______.45°【分析】如图作射线BF 与射线BE 根据平行线的性质和三角形的外角性质可得∠ABE+∠EDC =90°然后根据角平分线的定义和三角形的外角性质即可求出答案【详解】解:如图作射线BF 与射线BE ∵AB ∥ 解析:45°【分析】如图,作射线BF 与射线BE ,根据平行线的性质和三角形的外角性质可得∠ABE +∠EDC =90°,然后根据角平分线的定义和三角形的外角性质即可求出答案.【详解】解:如图,作射线BF 与射线BE ,∵AB ∥CD ,∴∠ABE =∠4,∠1=∠2,∵∠BED =90°,∠BED =∠4+∠EDC ,∴∠ABE +∠EDC =90°,∵BF 平分∠ABE ,DF 平分∠CDE ,∴∠1+∠3=12∠ABE +12∠EDC =45°, ∵∠5=∠2+∠3,∴∠5=∠1+∠3=45°,即∠BFD =45°,故答案为:45°.【点睛】本题考查了平行线的性质、角平分线的定义和三角形的外角性质,属于常考题型,熟练掌握上述知识是解题的关键.三、解答题21.如图,在平面内有三个点、、A B C(1)根据下列语句画图:①连接AB ;②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ;(2)比较,,AB BD AB BC CD AD +++的大小关系.解析:(1)见解析;(2)AB BC CD AB BD AD ++>+>【分析】(1)①按要求作图;②按要求作图;③按要求作出射线AC ,然后以点C 为圆心,BC 为半径画弧,交射线AC 于点D ,连接BD ;(2)结合图形,根据三角形两边之和大于第三边进行分析比较.【详解】解:(1)①如图,线段AB 即为所求;②如图,直线BC 即为所求;③如图,射线AC ,点D ,线段BD 即为所求(2)如图,在△BCD 中,BC+CD >BD∴AB BC CD AB BD ++>+在△ABD 中,AB+BD >AD∴AB BC CD AB BD AD ++>+>【点睛】本题考查基本作图及三角形三边关系,正确理解几何语言并掌握三角形三边关系是解题关键.22.已知:在RT △ABC 中,∠ACB ═90°,CD ⊥AB ,AE 是∠CAB 的角平分线,AE 与CD 交于点F .(1)如图1,求证:∠CEF =∠CFE .(2)如图2,过点E 作EG ⊥AB 于点G ,请直接写出图中与∠CAE 互余的所有角.解析:(1)见解析;(2)图中与∠CAE 互余的角有∠CEA ,∠GEA ,∠CFE ,∠DFA .【分析】(1)根据角平分线的定义可得∠DAF =∠CAE ,再根据等角的余角相等、对顶角相等,可得∠CEF =∠CFE ;(2)根据互余的两个角的和为90°求解即可.【详解】(1)证明:∵∠ACB ═90°,CD ⊥AB ,∴∠DAF +∠AFD =90°,∠CAE +∠CEF =90°,又∵AE 是∠CAB 的角平分线,∴∠DAF =∠CAE ,∴∠AFD =∠CEF ,又∵∠AFD =∠CFE ,∴∠CEF =∠CFE ;(2)∵EG ⊥AB 于点G ,∴∠DAF +∠GEA =90°,由(1)可知∠DAF =∠CAE ,∠CAE +∠CEF =90°,∠CEF =∠CFE =∠DFA ,∴图中与∠CAE 互余的角有∠CEA ,∠GEA ,∠CFE ,∠DFA .【点评】本题考查了角平分线的定义和余角的定义,解决本题的关键是熟记余角的定义. 23.如图,在ABC 中,AD 为高,AE 为BAC ∠的平分线,若28B ∠=︒,52ACD ∠=°,求EAD ∠的度数.解析:50°【分析】由AD 为高,28B ∠=︒,求出52ACD ∠=°,利用外角性质求出24BAC ACD B ∠∠∠=-=︒,根据AE 是角平分线,求出1122BAE BAC ∠∠==︒,即可求出EAD ∠的度数.【详解】解:∵AD 为高,28B ∠=︒,∴62BAD ∠=︒.∵52ACD ∠=°,∴24BAC ACD B ∠∠∠=-=︒.∵AE 是角平分线,∴1122BAE BAC ∠∠==︒, ∴50EAD BAD BAE ∠=∠-∠=︒.【点睛】此题考查三角形的角平分线的性质,直角三角形两锐角互余的性质,三角形的外角等于与它不相邻的两个内角的和.24.如图,已知1,23180BDE ︒∠=∠∠+∠=.(1)证明://AD EF .(2)若DA 平分BDE ∠,FE AF ⊥于点F ,140∠=︒,求BAC ∠的度数. 解析:(1)见解析;(2)70°【分析】(1)根据平行线的判定得出AC//DE ,根据平行线的性质得出∠2=∠ADE ,求出∠3+∠ADE=180°,根据平行线的判定得出即可;(2)求出∠BDE 的度数,求出∠2的度数,求出∠3的度数,根据四边形的内角和定理求出∠B ,再根据三角形内角和定理求出即可.【详解】(1)证明:∵∠1=∠BDE ,∴AC//DE ,∴∠2=∠ADE ,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD//EF ;(2)∵∠1=∠BDE ,∠1=40°,∴∠BDE=40°,∵DA 平分∠BDE ,∴∠ADE=12∠BDE=20°, ∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE ⊥AF ,∴∠F=90°,∴∠B=360°-90°-160°-40°=70°,在△ABC 中,∠BAC=180°-∠1-∠B=180°-40°-70°=70°.【点睛】本题考查了平行线的性质和判定,多边形的内角和定理,角平分线的定义,能灵活运用知识点进行推理和计算是解此题的关键.25.如图,已知在ABC 中,90C ∠=︒,BE 平分ABC ∠,且//BE AD ,20BAD ∠=︒,求AEB ∠的度数.解析:110°【分析】根据平行线的性质和三角形外角的性质即可得到结论.【详解】∵BE ∥AD ,∴∠ABE=∠BAD=20°,∵BE 平分∠ABC ,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.【点睛】考查了三角形的外角的性质、平行线的性质和角平分线的定义,解题关键是正确识别图形得出图中角之间的关系.26.如图所示,AD 、AE 分别是△ABC 的高和角平分线,∠B=20°,∠C=80°,求∠EAD 的度数.解析:30°【分析】由三角形的内角和可求得∠BAC ,则由角平分线定义可求得∠EAC ,三角形的内角和可求得∠DAC 即可.【详解】解:在△ABC 中∵∠B=20°,∠C=80°∴∠BAC=180°-∠B -∠C=180°-20°-80°=80°;∵AE 是△ABC 的角平分线,∴∠EAC=12∠BAC=12×80°=40°; ∵AD 是△ABC 的高∴∠ADC=90°;又∵在△ADC 中,∠C=80°∴∠DAC=180°-∠C -∠ADC=180°-80°-90°=10°;∴∠EAD=∠EAC -∠DAC=40°-10°=30°;【点睛】本题考查了角平分线定义,三角形内角和定理的应用,题目比较好,难度适中. 27.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.解析:10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】 解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC =12∠BAC =12×60°=30°, ∵AD 是高,∴∠ADC =90°,∴∠CAD =90°−∠C =90°−70°=20°,∴∠DAE =∠EAC −∠CAD =30°−20°=10°;∵AE ,BF 是角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC , ∴∠BOE =∠OAB +∠OBA =12(∠BAC +∠ABC )=12(180°−∠C )=12×(180°−70°) =55°. 【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.28.如图,CAD ∠与CBD ∠的角平分线交于点P .(1)若35C ∠=︒,29D ∠=︒,求P ∠的度数;(2)猜想D ∠,C ∠,P ∠的等量关系.解析:(1)32°;(2)()12P C D ∠=∠+∠. 【分析】(1)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而求出∠P ;(2)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而证出结论.【详解】解:(1)∵∠AFC=∠BFP ,∠BED =∠AEP∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠=()135292︒+︒=32°; (2)()12P C D ∠=∠+∠,理由如下 ∵∠AFC=∠BFP ,∠BED =∠AEP ∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠. 【点睛】 此题考查的是三角形的内角和定理和角的和与差,掌握三角形的内角和定理和角平分线的定义是解题关键.。
九年级数学培优题含详细答案
九年级培优竞赛1.在如图的直角坐标系中,已知点A(2,0)、B(0,-4),将线段AB 绕点A 按逆时针方向旋转90°至AC .(1)求点C 的坐标;(2)若抛物线y =-14x 2+ax +4经过点C . ①求抛物线的解析式;②在抛物线上是否存在点P(点C 除外)使△ABP 是以AB 为直角边的等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.【答案】C 的坐标为(3,﹣1);(2)①抛物线的解析式为y=﹣12x 2+12x+2; ②存在点P ,△ABP 是以AB 为直角边的等腰直角三角形,符合条件的点有P 1(﹣1,1),P 2(﹣2,﹣1)两点.【解析】试题分析:(1)过点C 作CD 垂直于x 轴,由线段AB 绕点A 按逆时针方向旋转90°至AC ,根据旋转的旋转得到AB=AC ,且∠BAC 为直角,可得∠OAB 与∠CAD 互余,由∠AOB 为直角,可得∠OAB 与∠ABO 互余,根据同角的余角相等可得一对角相等,再加上一对直角相等,利用ASA 可证明三角形ACD 与三角形AOB 全等,根据全等三角形的对应边相等可得AD=OB ,CD=OA ,由A 和B 的坐标及位置特点求出OA 及OB 的长,可得出OD 及CD 的长,根据C 在第四象限得出C 的坐标;(2)①由已知的抛物线经过点C ,把第一问求出C 的坐标代入抛物线解析式,列出关于a 的方程,求出方程的解得到a 的值,确定出抛物线的解析式;②假设存在点P 使△ABP 是以AB 为直角边的等腰直角三角形,分三种情况考虑:(i )A 为直角顶点,过A 作AP 1垂直于AB ,且AP 1=AB ,过P 1作P 1M 垂直于x 轴,如图所示,根据一对对顶角相等,一对直角相等,AB=AP 1,利用AAS 可证明三角形AP 1M 与三角形ACD 全等,得出AP 1与P 1M 的长,再由P 1为第二象限的点,得出此时P 1的坐标,代入抛物线解析式中检验满足;(ii )当B 为直角顶点,过B 作BP 2垂直于BA ,且BP 2=BA ,过P 2作P 2N 垂直于y 轴,如图所示,同理证明三角形BP 2N 与三角形AOB 全等,得出P 2N 与BN 的长,由P 2为第三象限的点,写出P 2的坐标,代入抛物线解析式中检验满足;(iii )当B 为直角顶点,过B 作BP 3垂直于BA ,且BP 3=BA ,如图所示,过P 3作P 3H 垂直于y 轴,同理可证明三角形P 3BH 全等于三角形AOB ,可得出P 3H 与BH 的长,由P 3为第四象限的点,写出P 3的坐标,代入抛物线解析式检验,不满足,综上,得到所有满足题意的P 的坐标. 试题解析:(1)过C 作CD ⊥x 轴,垂足为D ,∵BA⊥AC,∴∠OAB+∠CAD=90°,又∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,∴△AOB≌△CDA,又A(1,0),B(0,﹣2),∴OA=CD=1,OB=AD=2,∴OD=OA+AD=3,又C为第四象限的点,∴C的坐标为(3,﹣1);(2)①∵抛物线y=﹣12x2+ax+2经过点C,且C(3,﹣1),∴把C的坐标代入得:﹣1=﹣92+3a+2,解得:a=12,则抛物线的解析式为y=﹣12x2+12x+2;②存在点P,△ABP是以AB为直角边的等腰直角三角形,(i)若以AB为直角边,点A为直角顶点,则延长CA至点P1使得P1A=CA,得到等腰直角三角形ABP1,过点P1作P1M⊥x轴,如图所示,∵AP1=CA,∠MAP1=∠CAD,∠P1MA=∠CDA=90°,∴△AMP1≌△ADC,∴AM=AD=2,P1M=CD=1,∴P1(﹣1,1),经检验点P1在抛物线y=﹣12x2+12x+2上;(ii)若以AB为直角边,点B为直角顶点,则过点B作BP2⊥BA,且使得BP2=AB,得到等腰直角三角形ABP2,过点P2作P2N⊥y轴,如图,同理可证△BP2N≌△ABO,∴NP2=OB=2,BN=OA=1,∴P2(﹣2,﹣1),经检验P2(﹣2,﹣1)也在抛物线y=﹣12x2+12x+2上;(iii)若以AB为直角边,点B为直角顶点,则过点B作BP3⊥BA,且使得BP3=AB,得到等腰直角三角形ABP3,过点P3作P3H⊥y轴,如图,同理可证△BP3H≌△BAO,∴HP3=OB=2,BH=OA=1,∴P3(2,﹣3),经检验P3(2,﹣3)不在抛物线y=﹣12x2+12x+2上;则符合条件的点有P1(﹣1,1),P2(﹣2,﹣1)两点.考点:1.二次函数综合题2.点的坐标3.等腰直角三角形.2.在Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,点P为BC边上一点,把△PBD 沿PD翻拆,点B落在点E处,设PE交AC于F,连接CD(1)求证:△PCF的周长=2CD;(2)设DE交AC于G,若53PEEF=,CD=6,求FG的长【答案】(1)证明见解析;(2)FG的长为152 14.【解析】试题分析:.(1)连接CE,根据三角形的角边关系可以得到∠FCE=∠FEC,从而FC=FE,△PCF的周长=2CD;(2) 由.(1)结论CP+PF+CF=2CD,和PF5EF3=,CD=6,求出CF=EF=322,作GK⊥EF于点K,易得FG的长为152 14.试题解析:.(1)连接CE,∵CA=CB,D 为AB 中点,∴∠BCD=∠ACD=45°,由翻折可知∠B=∠DEP=45°,∴∠DCF=∠DEF=45°,CD=BD=DE ,∴∠DCE=∠DEC ,∴∠DCE-∠DCA=∠DEC-∠DEF ,即∠FCE=∠FEC ,∴FC=FE ,∴CF+PF=PE=BP ,∴,∴△PCF;(2)∴设PF=5x,EF=CF=3x ,在Rt △FCP 中,PF 2=CP 2+CF 2,∴CP=4x ,∵,∴作GK ⊥EF 于点K ,∵tan ∠GFE=tan ∠ 设GK=4a,FK=3a,EK=4a , G F D AB PC KFDAB PC∴EF=7a=322, a=3214, FG=5a=15214, ∴FG 的长为15214. 考点:三角形综合.3.如图,抛物线y=-x 2+4x+5交x 轴于A 、B (以A 左B 右)两点,交y 轴于点C.(1)求直线BC 的解析式;(2)点P 为抛物线第一象限函数图象上一点,设P 点的横坐标为m ,△PBC 的面积为S ,求S 与m 的函数关系式;(3)在(2)的条件下,连接AP ,抛物线上是否存在这样的点P ,使得线段PA 被BC 平分,如果不存在,请说明理由;如果存在,求点P 的坐标.【答案】(1) y=5x -+ (2) S=252522m m -+ (3)存在,P(2,9)或P(3,8) 【解析】试题分析:(1)令y=0,解关于x 的一元二次方程即可得到点A 、B 的坐标,再令x=0求出点C 的坐标,设直线BC 解析式为y=kx+b (k≠0),利用待定系数法求一次函数解析式解答;(2)过点P 作PH ⊥x 轴于H ,交BC 于F ,根据抛物线和直线BC 的解析式表示出PF ,再根据S △PBC =S △PCF +S △PBF 整理即可得解;(3)设AP 、BC 的交点为E ,过点E 作EG ⊥x 轴于G ,根据垂直于同一直线的两直线平行可得EG ∥PH ,然后判断出△AGE 和△AHP 相似,根据相似三角形对应边成比例可表示出EG 、HG ,然后表示出BG ,根据OB=OC 可得∠OCB=∠OBC=45°,再根据等角对等边可得EG=BG ,然后列出方程求出m 的值,再根据抛物线解析式求出点P 的纵坐标,即可得解.试题解析:(1)当y=0时,x 1=5,x 2=-1,∵A 左B 右,∴A(-1,0),B(5,O)当x=0时,y=5,∴C (0,5),设直线BC 解析式为y=kx+b,∴5005k b k b +=⎧⎨⨯+=⎩ ∴15k b =-⎧⎨=⎩∴直线BC 解析式为:y=5x -+;(2)作PH ⊥x 轴于H ,交BC 于点F ,P(m ,-m 2+4m+5),F(m,-m+5)PF=-m 2+5m ,S △PBC =S △PCF +S △PBF(3)存在点P ,作EG ⊥AB 于G,PH ⊥AB 于H ,∴EG ∥PH ,∴△AGE ∽△AHP ,∵P(m ,-m +4m+5),AH=m-(-1)=m+1,HB=5-m ,GB=152mm ++-,∵OC=OB=5,∴∠OCB=∠OBC=45°,∴EG=BG,∴2452m m-++=152mm++-,∴m1=2m2=3,当m=2时,P(2,9),当m=3时,P(3,8),∴存在这样的点P, 使得线段PA被BC平分,P(2,9)或P(3,8).考点:二次函数综合题.4.如图:在等腰△ABC中,AB=AC,AD上BC,垂足为D,以AD为直径作⊙0,⊙0分别交AB、AC于E、F.(1)求证:BE=CF;(2)设AD、EF相交于G,若EF=8,BC=10,求⊙0的半径.【答案】(1)证明见解析;(2)⊙O的半径为5.【解析】试题分析:(1)连接DE,DF,由AB=AC,且AD为BC边上的高,利用三线合一得到D为BC的中点,AD为顶角平分线,再由AD为圆O的直径,利用直角所对的角为直角得到一对直角相等,利用AAS得到三角形EBD与三角形FCD全等,由全等三角形的对应边相等得到BE=CF,得证;(2)由EB=CF,AB=AC,得出AE=AF,确定出AE:AB=AF:AC,且夹角相等,得到三角形AEF与三角形ABC相似,由相似三角形的对应边成比例得到AG:AD=8:10,设AG=8x,AD=10x,连接OE,在直角三角形OEG中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出圆O的半径.试题解析:(1)连接DE、DF,∵AB=AC,AD⊥BC,∴∠B=∠C,BD=CD,∵AD为⊙O的直径,∴∠DEA=∠DFA=90°,∴△DBE≌△DCF,∴BE=CF;(2)∵BE=CF,∴AE=AF,AE AFAB AC=且∠BAC=∠BAC,∴△AEF∽△ABC,∴设AG=8x,AD=10x,连接EO,在Rt△OEG中,∴OE2=OG2+EG2,∴(5x)2=(3x)2+42,x=1,∴5x=5,∴⊙O的半径为5.考点:1.相似三角形的判定与性质,2.全等三角形的判定与性质,3.勾股定理,4.圆周角定理.5.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.【答案】(1)见解析(2)见解析【解析】思路分析:(1)过点B作BG⊥OE于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;(2)选择图2,过点B作BG⊥OE交OE的延长线于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;选择图3同理可证.解:(1)证明:如图,过点B作BG⊥OE于G,则四边形BGEF是矩形,∴EF=BG,BF=GE,在正方形ABCD中,OA=OB,∠AOB=90°,∵BG⊥OE,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE-GE=OE-BF ,∴AF-OE=OE-BF ,∴AF+BF=2OE ;(2)图2结论:AF-BF=2OE ,图3结论:AF-BF=2OE .对图2证明:过点B 作BG ⊥OE 交OE 的延长线于G ,则四边形BGEF 是矩形,∴EF=BG ,BF=GE ,在正方形ABCD 中,OA=OB ,∠AOB=90°,∵BG ⊥OE ,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG ,∵在△AOE 和△OBG 中,,∴△AOE ≌△OBG (AAS ),∴OG=AE ,OE=BG ,∵AF-EF=AE ,EF=BG=OE ,AE=OG=OE+GE=OE+BF ,∴AF-OE=OE+BF ,∴AF-BF=2OE ;若选图3,其证明方法同上.点评:本题考查了正方形的性质,矩形的判定与性质,全等三角形的判定与性质,同角的余角相等的性质,作辅助线构造出全等三角形与矩形是解题的关键,也是本题的难点.6.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(0,4),点B 的坐标为(4,0),点C 的坐标为(-4,0),点P 在射线AB 上运动,连结CP 与y 轴交于点D ,连结BD .过P ,D ,B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF .90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩90AOE OBG AEO OGB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y.请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.【答案】(1)y=-x+4 (2)①见解析x (3)存在,点P的坐标为(2,2)或(8,-4)【解析】解:(1)设直线AB的函数解析式为y=kx+4,代入(4,0)得:4k+4=0,解得:k=-1,则直线AB的函数解析式为y=-x+4;(2)①由已知得:OB=OC,∠BOD=∠COD=90°,又∵OD=OD,∴△BDO≌△COD,∴∠BDO=∠CDO,∵∠CDO=∠ADP,∴∠BDE=∠ADP,②如图,连结PE,∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,第11页,总68页∵DF 是⊙Q 的直径, ∴∠DEF=90°,∴△DEF 是等腰直角三角形, ∴DE ,即x ; (3)当BD :BF=2:1时,如图,过点F 作FH ⊥OB 于点H ,∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°, ∴∠DBO=∠BFH ,又∵∠DOB=∠BHF=90°, ∴△BOD ∽△FHB , ∴=2, ∴FH=2,OD=2BH ,∵∠FHO=∠EOH=∠OEF=90°, ∴四边形OEFH 是矩形, ∴OE=FH=2, ∴EF=OH=4-OD , ∵DE=EF , ∴2+OD=4-OD , 解得:OD=,∴点D 的坐标为(0,), ∴直线CD 的解析式为y=x+, 由,得:, 则点P 的坐标为(2,2); 当时, 连结EB ,同(2)①可得:∠ADB=∠EDP ,OB OD BDHF HB FB==12124343134314334y x y x ⎧=+⎪⎨⎪=-+⎩22x y =⎧⎨=⎩12BD BF =试卷第12页,总68页而∠ADB=∠DEB+∠DBE ,∠EDP=∠DAP+∠DPA , ∵∠DEP=∠DPA ,∴∠DBE=∠DAP=45°,∴△DEF 是等腰直角三角形, 如图,过点F 作FG ⊥OB 于点G ,同理可得:△BOD ∽△FGB , ∴, ∴FG=8,OD=BG , ∵∠FGO=∠GOE=∠OEF=90°, ∴四边形OEFG 是矩形, ∴OE=FG=8, ∴EF=OG=4+2OD , ∵DE=EF ,∴8-OD=4+2OD , OD=, ∴点D 的坐标为(0,-), 直线CD 的解析式为:, 由,得:, ∴点P 的坐标为(8,-4),综上所述,点P 的坐标为(2,2)或(8,-4).7.如图,在Rt △ABC 中,∠ACB=90°,AC=6cm ,BC=8cm .点D 、E 、F 分别是边AB ,BC ,AC 的中点,连接DE ,DF ,动点P ,Q 分别从点A 、B 同时出发,运动速度均为1cm/s ,点P 沿AFD 的方向运动到点D 停止;点Q 沿BC 的方向运动,当点P 停止运动时,点Q 也停止运动.在运动过程中,过点Q 作BC 的垂线交AB 于点M ,以点P ,M ,Q 为顶点作12OB OD BD GF GB FB ===1243431433y x =--14334y x y x ⎧=--⎪⎨⎪=-+⎩84x y =⎧⎨=-⎩第13页,总68页平行四边形PMQN .设平行四边形边形PMQN 与矩形FDEC 重叠部分的面积为y (cm 2)(这里规定线段是面积为0有几何图形),点P 运动的时间为x (s )(1)当点P 运动到点F 时,CQ= cm ;(2)在点P 从点F 运动到点D 的过程中,某一时刻,点P 落在MQ 上,求此时BQ 的长度;(3)当点P 在线段FD 上运动时,求y 与x 之间的函数关系式. 【答案】(1)5 (2)(cm ) (3)当3≤x<4时,y=-x 2+x 当4≤x<时,y=-6x+33 当≤x≤7时,y=6x-33 【解析】 解:(1)当点P 运动到点F 时, ∵F 为AC 的中点,AC=6cm , ∴AF=FC=3cm ,∵P 和Q 的运动速度都是1cm/s , ∴BQ=AF=3cm ,∴CQ=8cm-3cm=5cm , 故答案为:5.(2)设在点P 从点F 运动到点D 的过程中,点P 落在MQ 上,如图1,则t+t-3=8, t=, 11234214112112112试卷第14页,总68页BQ 的长度为×1=(cm ); (3)∵D 、E 、F 分别是AB 、BC 、AC 的中点, ∴DE=AC=×6=3, DF=BC=×8=4, ∵MQ ⊥BC ,∴∠BQM=∠C=90°, ∵∠QBM=∠CBA , ∴△MBQ ∽△ABC , ∴, ∴, MQ=x , 分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,如图2,y=PN•PD =x (7-x ) 即y=-x 2+x ; ②当4≤x<时,重叠部分为矩形,如图3, 11211212121212BQ MQBC AC =86x MQ =343434214112第15页,总68页y=3[(8-X )-(X-3))] 即y=-6x+33; ③当≤x≤7时,重叠部分图形为矩形,如图4,y=3[(x-3)-(8-x )] 即y=6x-33.8.已知:如图①,在平行四边形ABCD 中,AB=12,BC=6,AD ⊥BD .以AD 为斜边在平行四边形ABCD 的内部作Rt △AED ,∠EAD=30°,∠AED=90°.(1)求△AED 的周长;(2)若△AED 以每秒2个单位长度的速度沿DC 向右平行移动,得到△A 0E 0D 0,当A 0D 0与BC 重合时停止移动,设运动时间为t 秒,△A 0E 0D 0与△BDC 重叠的面积为S ,请直接写出S 与t 之间的函数关系式,并写出t 的取值范围;(3)如图②,在(2)中,当△AED 停止移动后得到△BEC ,将△BEC 绕点C 按顺时针方向旋转α(0°<α<180°),在旋转过程中,B 的对应点为B 1,E 的对应点为E 1,设直线B 1E 1与直线BE 交于点P 、与直线CB 交于点Q .是否存在这样的α,使△BPQ 为等腰三角形?若存在,求出α的度数;若不存在,请说明理由. 【答案】(1)(2)S 与t 之间的函数关系式为:112试卷第16页,总68页S= (3)存在,α=75°【解析】 解:(1)∵四边形ABCD 是平行四边形, ∴AD=BC=6.在Rt △ADE 中,AD=6,∠EAD=30°,∴AE=AD•cos30°=3,DE=AD•sin30°=3, ∴△AED 的周长为:6+3+3=9+3.(2)在△AED 向右平移的过程中:(I )当0≤t≤1.5时,如答图1所示,此时重叠部分为△D 0NK .∵DD 0=2t ,∴ND 0=DD 0•sin30°=t,NK=ND 0•tan30°=t ,∴S=S △D0NK =ND 0•NK=t•t=t 2;(II )当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D 0E 0KN .∵AA 0=2t ,∴A 0B=AB-AA 0=12-2t , ∴A 0N=A 0B=6-t ,NK=A 06-t ).∴S=S 四边形D0E0KN =S △ADE -S △A0NK =×(6-t )×(6-t )=-t 2;(III )当4.5<t≤6时,如答图3所示,此时重叠部分为五边形D 0IJKN .222(0 1.5) 4.5)--6)6t S t t ≤≤⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩333312123321231231233363332第17页,总68页∵AA 0=2t ,∴A 0B=AB-AA 0=12-2t=D 0C , ∴A 0N=A 0B=6-t ,D 0N=6-(6-t )=t ,BN=A 0B•cos30°=(6-t ); 易知CI=BJ=A 0B=D 0C=12-2t ,∴BI=BC-CI=2t-6, S=S 梯形BND0I -S △BKJ =[t+(2t-6)]• (6-t )-•(12-2t )•(12-2t )=-t 2+20t-42.综上所述,S 与t 之间的函数关系式为:S=. (3)存在α,使△BPQ 为等腰三角形.理由如下:经探究,得△BPQ ∽△B 1QC ,故当△BPQ 为等腰三角形时,△B 1QC 也为等腰三角形. (I )当QB=QP 时(如答图4),则QB 1=QC ,∴∠B 1CQ=∠B 1=30°, 即∠BCB 1=30°, ∴α=30°;(II )当BQ=BP 时,则B 1Q=B 1C ,若点Q 在线段B 1E 1的延长线上时(如答图5),∵∠B 1=30°,∴∠B 1CQ=∠B 1QC=75°,12312312331336332223(0 1.5)2333-23-(1.5 4.5)62133-203-423(4.56)6t t S t t t t t t ⎧≤≤⎪⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩试卷第18页,总68页即∠BCB 1=75°, ∴α=75°.9.如图1,已知直线y=x+3与x 轴交于点A ,与y 轴交于点B ,抛物线y=-x 2+bx+c 经过A 、B 两点,与x 轴交于另一个点C ,对称轴与直线AB 交于点E ,抛物线顶点为D .(1)求抛物线的解析式;(2)在第三象限内,F 为抛物线上一点,以A 、E 、F 为顶点的三角形面积为3,求点F 的坐标;(3)点P 从点D 出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t 秒,当t 为何值时,以P 、B 、C 为顶点的三角形是直角三角形?直接写出所有符合条件的t 值.【答案】(1)y=-x 2-2x+3;(2)(3212--,3212--) (3)当t 为43秒或2秒或3秒或143秒时,以P 、B 、C 为顶点的三角形是直角三角形 【解析】 试题分析:(1)先由直线AB 的解析式为y=x+3,求出它与x 轴的交点A 、与y 轴的交点B 的坐标,再将A 、B 两点的坐标代入y=-x 2+bx+c ,运用待定系数法即可求出抛物线的解析式;(2)设第三象限内的点F 的坐标为(m ,-m 2-2m+3),运用配方法求出抛物线的对称轴及顶点D 的坐标,再设抛物线的对称轴与x 轴交于点G ,连接FG ,根据S △AEF =S △AEG +S △AFG -S △EFG =3,列出关于m 的方程,解方程求出m 的值,进而得出点F 的坐标;(3)设P 点坐标为(-1,n ).先由B 、C 两点坐标,运用勾股定理求出BC 2=10,再分三种情况进行讨论:①∠PBC=90°,先由勾股定理得出PB 2+BC 2=PC 2,据此列出关于n 的方程,求出n 的值,再计算出PD 的长度,然后根据时间=路程÷速度,即可求出此时对应的t 值;②∠BPC=90°,同①可求出对应的t 值;③∠BCP=90°,同①可求出对应的t 值.试题解析:(1)∵y=x+3与x 轴交于点A ,与y 轴交于点B , ∴当y=0时,x=-3,即A 点坐标为(-3,0), 当x=0时,y=3,即B 点坐标为(0,3),将A (-3,0),B (0,3)代入y=-x 2+bx+c ,得930c 3b c --+==⎧⎨⎩, 解得23b c =-⎧⎨=⎩, ∴抛物线的解析式为y=-x 2-2x+3; (2)如图1,设第三象限内的点F的坐标为(m,-m2-2m+3),则m<0,-m2-2m+3<0.∵y=-x2-2x+3=-(x+1)2+4,∴对称轴为直线x=-1,顶点D的坐标为(-1,4),设抛物线的对称轴与x轴交于点G,连接FG,则G(-1,0),AG=2.∵直线AB的解析式为y=x+3,∴当x=-1时,y=-1+3=2,∴E点坐标为(-1,2).∵S△AEF=S △AEG+S△AFG-S△EFG=12×2×2+12×2×(m2+2m-3)-12×2×(-1-m)=m2+3m,∴以A、E、F为顶点的三角形面积为3时,m2+3m=3,解得:1321 2m--=,23212m-+=(舍去),当3212m--=时,-m2-2m+3=-m2-3m+m+3=-3+m+3=m=3212--,∴点F的坐标为(3212--,3212--);(3)设P点坐标为(-1,n).∵B(0,3),C(1,0),∴BC2=12+32=10.分三种情况:①如图2,如果∠PBC=90°,那么PB2+BC2=PC2,即(0+1)2+(n-3)2+10=(1+1)2+(n-0)2,第19页,总68页化简整理得6n=16,解得n=83,∴P点坐标为(-1,83),∵顶点D的坐标为(-1,4),∴PD=4-83=43,∵点P的速度为每秒1个单位长度,∴t1=43;②如图3,如果∠BPC=90°,那么PB2+PC2=BC2,即(0+1)2+(n-3)2+(1+1)2+(n-0)2=10,化简整理得n2-3n+2=0,解得n=2或1,∴P点坐标为(-1,2)或(-1,1),∵顶点D的坐标为(-1,4),∴PD=4-2=2或PD=4-1=3,∵点P的速度为每秒1个单位长度,∴t2=2,t3=3;③如图4,如果∠BCP=90°,那么BC2+PC2=PB2,即10+(1+1)2+(n-0)2=(0+1)2+(n-3)2,化简整理得6n=-4,解得n=-23,∴P点坐标为(-1,-23),试卷第20页,总68页第21页,总68页 ∵顶点D 的坐标为(-1,4), ∴PD=4+23=143, ∵点P 的速度为每秒1个单位长度,∴t 4=143; 综上可知,当t 为43秒或2秒或3秒或143秒时,以P 、B 、C 为顶点的三角形是直角三角形.考点: 二次函数综合题.10.如图,在正方形ABCD 中,2AB =,点P 是边BC 上的任意一点,E 是BC 延长线上一点,联结AP ,作PF AP ⊥交DCE ∠的平分线CF 上一点F ,联结AF 交边CD 于点G .(1)求证:AP PF =;(2)设点P 到点B 的距离为x ,线段DG 的长为y ,试求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当点P 是线段BC 延长线上一动点,那么(2)式中y 与x 的函数关系式保持不变吗?如改变,试直接写出函数关系式.【答案】(1)证明见解析;(2)()42022x y x x -=≤≤+;(3)改变,()24>22x y x x -=+. 【解析】试题分析:(1)欲证AP PF =利用原图无法证明,需构建三角形且使之全等,因此在边AB 上截取线段AH ,使AH PC =,连接PH ,证明AHP ∆与PCF ∆全等即可.(2)由APM ∆∽GAN ∆列式化简即可得.(3)在AD 延长线上取点N ,令ND DG =,∴NDG ∆是等腰直角三角形.∴22,2NG DG y AN y ===+ .同理,2,2PM x AM x ==- ,∵45,45APM PAM NAG PMA ANG ∠=︒+∠=∠∠=∠=︒ ,∴APM ∆∽GAN ∆.∴AM NG PM AN =,即2222x y yx -=+. 整理,得()24>22x y x x -=+.试卷第22页,总68页 试题解析:(1)在边AB 上截取线段AH ,使AH PC =,连接PH ,由正方形ABCD ,得90B BCD D AB BC AD ∠=∠=∠=︒==,,∵90APF ∠=︒,∴APF B ∠=∠.∵APC B BAP APF FPC ∠=∠+∠=∠+∠,∴PAH FPC ∠=∠.又∵90BCD DCE ∠=∠=︒,CF 平分DCE ∠,∴45FCE ∠=︒.∴135PCF ∠=︒. 又∵AB BC AH PC ==,,∴BH BP =,即得45BPH BHP ∠=∠=︒.∴135AHP ∠=︒,即得AHP PCF ∠=∠.在AHP ∆和PCF ∆中,PAH FPC AH PC AHP PCF ∠=∠=∠=∠,,,∴AHP ∆≌PCF ∆,∴AP PF =.(2)在AD 上取点N ,令ND DG =,∴NDG ∆是等腰直角三角形.∴22,2NG DG y AN y ===- .同理,2,2PM x AM x ==- ,∵45,135APM PAM NAG PMA ANG ∠=︒-∠=∠∠=∠=︒ ,∴APM ∆∽GAN ∆.∴AM NG PM AN =,即2222x y y x-=-. 整理,得()42022x y x x -=≤≤+. (3)改变,()24>22x y x x -=+. 考点:1.正方形的性质;2. 等腰直角三角形的判定和性质;3.全等三角形的判定与性质;4.由实际问题列函数关系式.11.如图,已知直线y =-2x +4与x 轴、y 轴分别相交于A 、C 两点,抛物线y=-2x 2+bx+c(a ≠0)经过点A 、C.(1)求抛物线的解析式;(2)设抛物线的顶点为P,在抛物线上存在点Q,使△ABQ的面积等于△APC面积的4倍.求出点Q的坐标;(3)点M是直线y=-2x+4上的动点,过点M作ME垂直x轴于点E,在y轴(原点除外)上是否存在点F,使△MEF为等腰直角三角形? 若存在,求出点F的坐标及对应的点M的坐标;若不存在,请说明理由.【答案】(1)y=-2x2+2x+4;(2)Q(0,4)或(1,4)-4)或-4);(3)存在,点F坐标为(0M,点F坐标为(0,-4)时,点M的坐标为(4,-4);点F坐标为(0,1),点M的坐标为(1,2).【解析】试题分析:1)根据直线y=-2x+4求出点A、C的坐标,再利用待定系数法求二次函数解析式解答即可;(2)根据抛物线解析式求出点P的坐标,过点P作PD⊥y轴于D,根据点P、C的坐标求出PD、CD,然后根据S△APC=S梯形APDO-S△AOC-S△PCD,列式求出△APC的面积,再根据抛物线解析式求出点B的坐标,从而得到AB的长度,然后利用三角形的面积公式求出△ABQ 的点Q的纵坐标的值,然后代入抛物线求解即可得到点Q的坐标;(3)根据点E在x轴上,根据点M在直线y=-2x+4上,设点M的坐标为(a,-2a+4),然后分①∠EMF=90°时,利用点M到坐标轴的距离相等列式求解即可;②∠MFE=90°时,根据等腰直角三角形的性质,点M的横坐标的长度等于纵坐标长度的一半,然后列式进行计算即可得解.试题解析:(1)令x=0,则y=4,令y=0,则-2x+4=0,解得x=2,所以,点A(2,0),C(0,4),∵抛物线y=-2x2+bx+c经过点A、C,∴24204b cc-⨯++=⎧⎨⎩=,解得24bc=⎧⎨=⎩,∴抛物线的解析式为:y=-2x2+2x+4;(2)∵y=-2x2+2x+4=-2(2第23页,总68页∴点P的坐标为(12,92),如图,过点P作PD⊥y轴于D,又∵C(0,4),∴PD=12,CD=91422-=,∴S△APC=S梯形APDO-S△AOC-S△PCD,=12×(12+2)×92-12×2×4-12×12×12=4514 88--=32,令y=0,则-2x2+2x+4=0,解得x1=-1,x2=2,∴点B的坐标为(-1,0),∴AB=2-(-1)=3,设△ABQ的边AB上的高为h,∵△ABQ的面积等于△APC面积的4倍,∴12×3h=4×32,解得h=4,∵4<92,∴点Q可以在x轴的上方也可以在x轴的下方,即点Q的纵坐标为4或-4,当点Q的纵坐标为4时,-2x2+2x+4=4,解得x1=0,x2=1,此时,点Q的坐标为(0,4)或(1,4),当点Q的纵坐标为-4时,-2x2+2x+4=-4,解得x1=1172+,x2=1172-,试卷第24页,总68页此时点Q的坐标为(1172+,-4)或(1172-,-4)综上所述,存在点Q(0,4)或(1,4)或(1172+,-4)或(1172-,-4);(3)存在.理由如下:如图,∵点M在直线y=-2x+4上,∴设点M的坐标为(a,-2a+4),①∠EMF=90°时,∵△MEF是等腰直角三角形,∴|a|=|-2a+4|,即a=-2a+4或a=-(-2a+4),解得a=43或a=4,∴点F坐标为(0,43)时,点M的坐标为(43,43),点F坐标为(0,-4)时,点M的坐标为(4,-4);②∠MFE=90°时,∵△MEF是等腰直角三角形,∴|a|=12|-2a+4|,即a=12(-2a+4),解得a=1,-2a+4=2×1=2,此时,点F坐标为(0,1),点M的坐标为(1,2),或a=12-(-2a+4),此时无解,综上所述,点F坐标为(0,43)时,点M的坐标为(43,43),点F坐标为(0,-4)时,点M的坐标为(4,-4);点F坐标为(0,1),点M的坐标为(1,2).考点: 二次函数综合题.12.已知:在梯形ABCD中,CD∥AB,AD=DC=BC=2,AB=4.点M从A开始,以每秒1个第25页,总68页试卷第26页,总68页单位的速度向点B 运动;点N 从点C 出发,沿C →D →A 方向,以每秒1个单位的速度向点A 运动,若M 、N 同时出发,其中一点到达终点时,另一个点也停止运动.运动时间为t 秒,过点N 作NQ ⊥CD 交AC 于点Q . (1)设△AMQ 的面积为S ,求S 与t 的函数关系式,并写出t 的取值范围.(2)在梯形ABCD 的对称轴上是否存在点P ,使△PAD 为直角三角形?若存在,求点P 到AB 的距离;若不存在,说明理由.(3)在点M 、N 运动过程中,是否存在t 值,使△AMQ 为等腰三角形?若存在,求出t 值;若不存在,说明理由.【答案】(1)233=-62S t t +(0<t ≤2),233=-123S t t +(2≤t <4);(2)233;(3)t=65,12-63,2. 【解析】试题分析:(1)求出t 的临界点t=2,分别求出当0<t ≤2时和2≤t <4时,S 与t 的函数关系式即可,(2)作梯形对称轴交CD 于K ,交AB 于L ,分3种情况进行讨论,①取AD 的中点G ,②以D 为直角顶点,③以A 为直角顶点,(3)当0<t ≤2时,若△AMQ 为等腰三角形,则MA=MQ 或者AQ=AM ,分别求出t 的值,然后判断t 是否符合题意.试题解析:(1)当0<t ≤2时,如图:过点Q 作QF ⊥AB 于F ,过点C 作CE ⊥AB 于E ,∵AB ∥CD ,∴QF ⊥CD ,∵NQ ⊥CD ,∴N ,Q ,F 共线,∴△CQN ∽△AFQ ,∴ CN NQ AF QF=, ∵CN=t ,AF=AE-CN=3-t ,∵NF=3,∴QF=33t 3-,第27页,总68页 13(323t - 23362t + 当2≤t <4时,如图:△FQC ∽△PQA ,∵DN=t-2,∴FD=DN •cos ∠FDN=DN •t-2), ∴t-2) ∴FQ=FC •tan ∠FCQ=FC •tan30°=t+2), ∴ 13[326t -23=-123t + (2)作梯形对称轴交CD 于K ,交AB 于L ,情况一:取AD 的中点G ,GD=1,过G 作GH ⊥对称轴于H ,GH=1.5,∵1.5>1,∴以P 为直角顶点的Rt △PAD 不存在,情况二:以D 为直角顶点:KP1 ∴P 1情况三:以A 为直角顶点,LP 2综上:P 到AB PAD 为Rt △, (3)0<t ≤2时, 若MA=MQ ,∴试卷第28页,总68页若AQ=AM ,则t=23233t -, 解得t=12-63, 若QA=QM ,则∠QMA=30°而0<t ≤2时,∠QMA >90°,∴QA=QM 不存在;2≤t <4(图中)若QA=QM ,AP :AD=3:2,∴t=2,若AQ=AM ,23-33(t+2)=t , ∴t=23-2,∵23-2<2,∴此情况不存在若MA=MQ ,则∠AQM=30°,而∠AQM >60°不存在.综上:t=65,12-63,2时,△AMQ 是等腰三角形. 考点: 1.等腰梯形的性质;2.等腰三角形的判定;3.直角三角形的性质. 13.如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,3-)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP’C,那么是否存在点P ,使四边形POP’C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.【答案】(1)y=x 2﹣2x ﹣3;(2)存在,(2102+,32-);(3)(32,-154),758. 【解析】试题分析:(1)将B 、C 的坐标代入抛物线的解析式中即可求得待定系数的值;第29页,总68页(2)由于菱形的对角线互相垂直平分,若四边形POP′C 为菱形,那么P 点必在OC 的垂直平分线上,据此可求出P 点的纵坐标,代入抛物线的解析式中即可求出P 点的坐标;(3) 由于△ABC 的面积为定值,当四边形ABPC 的面积最大时,△BPC 的面积最大;过P 作y 轴的平行线,交直线BC 于Q ,交x 轴于F ,易求得直线BC 的解析 式,可设出P 点的横坐标,然后根据抛物线和直线BC 的解析式求出Q 、P 的纵坐标,即可得到PQ 的长,以PQ 为底,B 点横坐标的绝对值为高即可求得△BPC 的面积,由此可得到关于四边形ACPB 的面积与P 点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC 的最大面积及对应的P 点坐标.试题解析:(1)将B 、C 两点的坐标代入得 9303b c c ++=-⎧⎨⎩=解得:23b c =-⎧⎨=-⎩; 所以二次函数的表达式为:y=x 2﹣2x ﹣3.(2)存在点P ,使四边形POPC 为菱形;设P 点坐标为(x ,x 2﹣2x ﹣3),PP′交CO 于E若四边形POP′C 是菱形,则有PC=PO ;连接PP′,则PE ⊥CO 于E ,∴OE=EC=32∴y=32-; ∴x 2﹣2x ﹣3=32- 解得:12102x +=,22102x -=(不合题意,舍去) ∴P 点的坐标为(2102+,32-) (3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,x 2﹣2x ﹣3),易得,直线BC 的解析式为y=x ﹣3则Q 点的坐标为(x ,x ﹣3);S 四边形ABPC=S △ABC+S △BPQ+S △CPQ=12AB•OC+12QP•OF+12QP•BF 21143(3)322x x =⨯⨯+-+⨯试卷第30页,总68页 23375()228x =--+ 当32x =时,四边形ABPC 的面积最大 此时P 点坐标为(32,-154)四边形ABPC 的面积的最大值为758. 考点: 二次函数综合题.14.如图,直角坐标系中Rt △ABO ,其顶点为A(0, 1)、B(2, 0)、O(0, 0),将此三角板绕原点O 逆时针旋转90°,得到Rt △A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.【答案】(1)y=-x 2+x+2;(2)P (1,2);(4)四边形PB′A′B 为等腰梯形,答案不唯一,①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等.【解析】试题分析:(1)利用旋转的性质得出A ′(-1,0),B ′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB ,再假设四边形PB′A′B 的面积是△A′B′O 面积的4倍,得出一元二次方程,得出P 点坐标即可;(3)利用P 点坐标以及B 点坐标即可得出四边形PB′A′B 为等腰梯形,利用等腰梯形性质得出答案即可.试题解析:(1)(1)△A′B′O 是由△ABO 绕原点O 逆时针旋转90°得到的, 又A (0,1),B (2,0),O (0,0),∴A′(-1,0),B′(0,2)设抛物线的解析式为:y=ax 2+bx+c (a≠0),∵抛物线经过点A′、B′、B ,∴0=2=c 042a b c a b c ⎧-+=++⎪⎨⎪⎩,解得:112a b c =-⎧⎪=⎨⎪=⎩,∴满足条件的抛物线的解析式为y=-x 2+x+2.(2)∵P 为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=-x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,12×1×2+1212-x2+x+2)+1=-x2+2x+3.∵A′O=1,B′O=2,∴△A′B′O面积为:12×1×2=1,假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=-x2+2x+3,即x2-2x+1=0,解得:x1=x2=1,此时y=-12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一,①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.考点: 二次函数综合题.15.已知在平面直角坐标系xoy中,二次函数y=-2x²+bx+c的图像经过点A(-3,0)和点B(0,6)。
初中数学整式的乘法与因式分解培优训练题(附答案详解)
初中数学整式的乘法与因式分解培优训练题(附答案详解)1.计算-2015×2017的值。
答案:C。
2014解析:将2015×2017先计算出来,再用减去结果即可得到答案2014.2.若a、b、c为△ABC的三边长,且满足a2+ab-ac-bc=0,b2+bc-ba-ca=0,则△ABC的形状是什么?答案:B。
等腰三角形解析:将两个式子分别移项,得到a2=ac+bc-b2,b2=ab+ac-c2.将第一个式子代入第二个式子中,得到b2=ab+bc-a2.将这个式子变形,得到a2+b2=ab+bc,即△ABC为等腰三角形。
3.下列计算正确的是什么?A。
x+x=x2B。
x3·x3=2x3C。
(x3)2=x6D。
x3÷x=x3答案:A。
x+x=x2解析:这个式子可以化简为x=0或x=1,因此等式成立。
4.若m为整数,则m2+m一定能被哪个数整除?A。
2B。
3C。
4D。
5答案:A。
2解析:m2+m可以因式分解为m(m+1),其中m和m+1中必有一个是偶数,因此m2+m一定能被2整除。
5.若m为大于0的整数,则(m+1)2-(m-1)2一定是什么?A。
3的倍数B。
4的倍数C。
6的倍数D。
16的倍数答案:B。
4的倍数解析:将式子展开,得到4m。
因此,(m+1)2-(m-1)2一定是4的倍数。
6.若,则等于什么?A。
B。
C。
D。
答案:D。
解析:将式子展开,得到16m2.因此,等于16的倍数。
7.计算:7ab2的值是多少?(28a2b2-21ab2)÷(4a2-3b)答案:A。
4a2-3b解析:将分子分母都因式分解,得到7ab2=(7a)(b2),(28a2b2-21ab2)÷(4a2-3b)=7ab2÷(4a2-3b)=(7a)(b2)÷(4a2-3b)=7ab2÷(4a2-3b)×a÷a=7b2÷(4a2-3b)×7a=49a÷(4a2-3b)×b2.由于分母为(4a2-3b),因此可将分子中的a和分母中的4a2合并,得到49a÷(4a2-3b)×b2=49a×b2÷(4a2-3b)=4a2b2-3ab2÷(4a2-3b)=4a2-3b。
数学培优网初中试卷答案
一、选择题1. 下列各数中,是负数的是()A. -3B. 0C. 3D. -3.5答案:A2. 下列各数中,是偶数的是()A. 2B. 3C. 5D. 7答案:A3. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a - 2 > b - 2D. a + 2 < b + 2答案:C4. 已知x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 4答案:C5. 在直角坐标系中,点P(-2, 3)关于y轴的对称点为()A. (2, 3)B. (-2, -3)C. (2, -3)D. (-2, 3)答案:A二、填空题6. 若a > b,且a - b = 5,则a + b的值为______。
答案:107. 下列等式中,正确的是______。
A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^2答案:A8. 在梯形ABCD中,AD // BC,且AD = 4cm,BC = 6cm,AB = 3cm,CD = 5cm,则梯形的高为______cm。
答案:29. 已知等腰三角形ABC中,AB = AC,且BC = 8cm,底边BC上的高为______cm。
答案:4√310. 在平行四边形ABCD中,AB = 5cm,BC = 4cm,则对角线AC的长度为______cm。
答案:9三、解答题11. 解方程:2x - 3 = 7。
解:2x - 3 = 72x = 7 + 32x = 10x = 10 / 2x = 5答案:x = 512. 计算下列表达式的值:3(2x - 4) - 5(x + 2)。
解:3(2x - 4) - 5(x + 2)= 6x - 12 - 5x - 10= 6x - 5x - 12 - 10= x - 22答案:x - 2213. 已知三角形ABC中,AB = 6cm,BC = 8cm,AC = 10cm,求三角形ABC的面积。
初中数学培优班试卷及答案
1. 下列各数中,有理数是()。
A. $\sqrt{2}$B. $\pi$C. $-3.14$D. $i$2. 已知 $a=5$,$b=-2$,则 $a^2 + b^2$ 的值为()。
A. 17B. 23C. 29D. 333. 下列函数中,一次函数是()。
A. $y=2x^2+3$B. $y=x+1$C. $y=\sqrt{x}$D. $y=3x^3+2$4. 若 $\angle A$ 是等腰三角形 $ABC$ 的顶角,则 $\angle BAC$ 的度数可能是()。
A. $40^\circ$B. $50^\circ$C. $60^\circ$D. $70^\circ$5. 在平面直角坐标系中,点 $P(2,3)$ 关于 $y$ 轴的对称点坐标是()。
A. $(-2,3)$B. $(2,-3)$C. $(-2,-3)$D. $(2,3)$6. 已知 $x^2 - 5x + 6 = 0$,则 $x$ 的值为()。
A. $2$ 或 $3$B. $1$ 或 $4$C. $2$ 或 $1$D. $3$ 或 $2$7. 下列各组数中,成等差数列的是()。
A. $1, 3, 5, 7$B. $1, 4, 9, 16$C. $2, 4, 8, 16$D. $1, 5, 10, 20$8. 若 $a$、$b$、$c$ 成等比数列,且 $a+b+c=12$,$abc=27$,则 $b$ 的值为()。
A. $3$B. $6$C. $9$D. $12$9. 下列图形中,不是轴对称图形的是()。
A. 正方形B. 等腰三角形C. 圆D. 长方形10. 若 $\sin \theta = \frac{1}{2}$,则 $\cos \theta$ 的值为()。
A. $\frac{\sqrt{3}}{2}$B. $-\frac{\sqrt{3}}{2}$C. $\frac{1}{2}$D. $-\frac{1}{2}$11. 若 $x^2 - 4x + 3 = 0$,则 $x^2 - 6x + 9$ 的值为______。
初中数学几何培优第十一讲:勾股定理的应用
初中数学几何培优第十一讲:勾股定理的应用知识解读无论是解决实际问题,还是解决一些数学问题,勾股定理都有着广泛的应用。
典列示范一、在数轴上作出表示的点例1如图3-11-1,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是________【提示】这个点到原点的距离等于线段OB的长,OB是Rt△AOB 的斜边,根据勾股定理可得OB的长,就是这个点表示的实数。
【技巧点评】实数与数轴上的点是一一对应的,有理数在数轴上较易找到它对应的点,若要在数轴上直接标出无理数对应的点较难.由此我们借助勾股定理,将在数轴上表示无理数的问题转化为化长为无理数的线段长问题。
第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点。
二、在网格中作长度为无理数的线段例2如图3-11-3,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形。
(1)使三角形的三边长分别为3,(在图①中画一个即可)(2)使三角形为钝角三角形且面积为4.(在图②中画一个即可)【提示】(1)长度为3的线段很好作,主要考虑如何作出长度为,的线段和把三条线段组合成一个三角形。
由于=8=22+22,因此可以构造一个两直角边分别为2和2的直角三角形,这个直角三角形的斜边长就是.同理要构造一个长度为的线段,可构造一个直角边分别为2和1的直角三角形。
(2)确定三角形的底和高分别为1和8或2和4,然后设法使三角形称为钝角三角形。
【解答】【技巧点评】在网格中作出长的线段的步骤,第一步设法将n表示成两个整数的平方和;第二步构造直角三角形,使得两条直角边等于第一步得出的两个整数的值.三、梯子下滑问题例3如图3-11-5,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时,梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足也将向外移0.4米吗?【提示】本题中出现两个直角三角形,考虑应用勾股定理,在Rt△ABC中,由AB和BC可求出AC,则A1C=AC-AA1,而A1B1与AB均为梯子之长,在Rt△A1B1C中,再次运用勾股定理求出B1C,由此便可求出梯子向外移动的距离BB1.【解答】【技巧点评】梯子下滑问题,实际上是两个直角三角形问题,比如在本题中,两个直角三角形之间的联系是,AC=A1C+0.4,分别在两个直角三角形中应用勾股定理求出AC,A1C,即可解决问题.四、长方体的对角线例4有一根长170cm的木棒,放在长、宽、高分别是40cm,30cm,120cm的木箱中,露在木箱外边的长度至少为cm.【提示】如图3-11-7,和△是直角三角形,先在中应用勾股定理求出A′C′的长,然后在△AA′C′中应用勾股定理求出AC′的长.【技巧点评】长宽高分别为a,b,c的长方体的对角线长.五、立体图形表明的最短路径例5如图3-11-8,正四棱柱的底面边长为1.5cm,侧棱长为4cm,求一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处的最短路程的长.【提示】要求最短路程,需要将正四棱柱展开成平面图形,再利用勾股定理求解,由于从A点到点C1的面上有两种情况,故需分类讨论。
【中考冲刺】初三数学培优专题 11 是偶然还是必然—概率初步(含答案)(难)
是偶然还是必然—概率初步阅读与思考统计学是一门研究如何收集、整理、分析数据,并在此基础上作出推断的学科.在自然界和人类社会中,严格确定性的现象十分有限,不确定性现象却是大量存在的,而概率正是对随机现象的一种数学描述.数学中用概率来表示事件发生的机会大小,概率是一个比值,用字母P 表示,计算公式是:事件发生的概率P =所有可能结果结果该事件发生的所有可能在具体的计算中,常用到树形图、列表、穷举等方法.统计与概率互为基础,概率这一概念是建立在概率这一统计量稳定性的基础上的,而推断、估计等统计方法的科学性有赖于概率理论的严密性. 例题与求解【例1】一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8.同时掷这两枚骰子,则其朝上的面两数之和为7的概率是 .(“《数学周报》杯”全国初中数学竞赛试题)解题思路:用列表法列出所有情形.【例2】一项“过关游戏”规定:在第n 关要掷一颗骰子n 次,如果这n 次抛掷所出现的点数之和大于43n ,则算过关;否则不算过关.现有下列说法:①过第一关是必然事件;②过第二关的概率是3635; ③可以过第四关;④过第五关的概率大于0.其中,正确说法的个数为( ) A .4个B .3个C .2个D .1个解题思路:对于(2),在理解“过关”意义的基础上,逐步计算相关概率.【例3】如图,用红、蓝、黄三色将图中区域A ,B ,C ,D 染色,要求有公共边界的相邻区域不能染相 同的颜色,则满足区域A 恰好染蓝色的概率为 . 解题思路:用树形图列出所有可能情形,或从整体考虑.【例4】小明准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x ,y 表示这两个看不清的数字,那么小陈的手机号码为139x 370y 580(手机号码由11个数字组成),小明记得这11个数字之和是20的整数倍.求小明一次拨对小陈手机号码的概率. 解题思路:建立关于x ,y 的不定方程,由此可得x ,y 可能的对应值的所有情况.【例5】杨华与李红用五张相同规格的硬币纸片做拼图游戏.硬纸片正面如下图1所示,背面完全一致.将它们背面朝上洗匀后,同时抽出两张.图2图1小山房子小人点灯规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分; 当两张硬纸片上的图形可拼成房子或小山时,李红得1分;问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?解题思路:游戏对双方公平是指双方积分相同.解题的关键是分别求出杨华、李红的得分.【例6】一个正三角形ABC 的每一个角各有一只蚂蚁,每只蚂蚁开始朝另一只蚂蚁做直线运动,目标角是随机选择.求蚂蚁不相撞的概率.(微软公司招聘面试试题)解题思路:三只蚂蚁在每个角上都有两种选择的方向(顺时针或逆时针),因每只蚂蚁选择的不确定性,故组成的各种情形似乎繁杂.出题用意就在于考查应试者摒除习惯因素的干扰、切中要害、化繁为简的能力.能力训练A 级1.如图1,图中有一个黑球,图2有3个同样大小的球叠成的图形,最下一层的2个球为黑色,其余为白色;图3为6个同样大小的球叠成德图形,最下一层的3个球为黑色,其余为白色;…则从第n 个图中随机取一个球,是黑球的概率为 .(株洲市中考试题)2.有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将他们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程xx ax -=+--21221有正整数解的概率为 .(重庆市中考试题)3.小丁、小明、小倩在一起做游戏时,需要确定做游戏的先后顺序.他们约定用“剪刀、布、锤子”的方式确定.那么,在一个回合中三个人都出“布”的概率是 .(海南省中考试题)4.对于平面内任意一个凸四边形ABCD ,现从以下四个关系式①AB=CD ;②AD=BC ;③AB//CD ;④ ∠A=∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率是 .(广州市中考试题)5.在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为( ) A .41 B .61 C .21 D .43(泰安市中考试题)6.从分别写有数字1,2,3,4,5的五张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率为( ) A .51 B .103 C .52 D .21(全国初中数学联赛试题)7.经过某十字路口的汽车,可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两汽车经过该十字路口全部继续直行的概率为( ) A .31 B .32 C .91 D .21(呼和浩特市中考试题)8.盒子里有十个球,每个球上写有1~10中的一个数字,不同的球上数字不同,其中两个球上的数字之和可能是3,4,…,19.现从盒中随意取两个球,这两个球上的数之和最有可能出现的是( ) A .2B .10C .11D .209.一个口袋中有三个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,……不断重复上诉过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( ) A .18个B .15个C .12个D .10个(青岛市中考试题)10.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮同学随机地在大正方形及其内部区域投针.若直角三角形的两条直角边长分别是2和1,则针扎到小正方形(阴影)区域的概率是( ) A .31B .41 C .51 D .55(临沂市中考试题)11.有四张卡片(背面完全相同),分别写有数字1,2,-1,-2.把它们背面朝上洗匀后,甲同学抽取一张,记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字.用字母b ,c 分别表示甲、乙两同学抽出的数字.(1)用列表法求关于x 的方程02=++c bx x 有实数解的概率; (2)求(1)中方程有两个相同实数解的概率.12.将背面完全相同,正面分别写有数字1,2,3,4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字作为被减数;将形状、大小完全相同,分别标有数字1,2,3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字作为减数,然后计算出这两个数的差. (1)请你用画树形图或列表的方法,求这两个数差为0的概率;(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平.(重庆市中考试题)B 级1.一只盒子中有红球m 个,白球10个,黑球n 个,每个球除颜色外都相同.从中任取一个球,取得是白球的概率与不是白球的概率相同.那么,m 与n 的关系是 .(山东省竞赛试题)2.某广场地面铺满了边长为36cm 的正六边形地砖.现在向上抛掷半径为36cm 的圆碟,圆碟落地后与地砖间的间隙不相交的概率大约是 .(太原市竞赛试题)3.甲、乙、丙、丁四位同学参加校田径运动会4×100m 接力跑比赛.如果任意安排四位同学的跑步顺序,那么,恰好由甲将接力棒交给乙的概率是( ) A .41B .61 C .81 D .121(浙江省竞赛试题)4.一条绳子被任意割成两段,较长的一段至少是较短的一段的x 倍的概率为( ) A .21 B .x 2 C .11+x D .x 1 E .12+x (美国高中数学考试题)5.把一颗六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,若两个正面朝上的编号分别为m ,n ,则二次函数n mx x y ++=2的图象与x 轴有两个不同交点的概率是( ) A .125B .94 C .3617 D .21(全国初中数学竞赛试题)6.长为1,2,3,4,5的线段各一条,从这五条线段中任取三条,能构成钝角三角形的概率为( ) A .101B .107 C . 51 D .527.一张数学游戏在两个同学甲、乙之间进行.裁判在黑板上先写出正整数2,3,…,2006,然后随意擦去一个数,接下来由乙、甲两人轮流擦去其中一个数(即乙先擦去其中的一个数,然后甲再擦去另一个数,如此下去).若最后剩下的两个数互质,则判甲胜;否则,判乙胜.按照这种游戏规则,求甲获胜的概率.(四川省竞赛试题)8.任意选择一对有序整数(b ,c ),其中每一个整数的绝对值小于或等于5,每一对这样的有序整数被选择的可能性是相等的.求方程02=++c bx x 没有相异正实根的概率.(美国高中数学考试题)9.袋中有数字卡片九张,其数字分别为1~9.若随机一次抽出三张,求被抽出的卡的数字全是奇数的概率.(香港中学数学竞赛试题)10.将20个球放入两个袋中,每袋10个球,各袋中的球分别标上自然数1~10,其中一袋中的球全是白色,另一袋中的球全为黑色.若从两个袋中任意各取一个球,求白球上的数比黑球上的数大的概率.(香港中学生数学竞赛试题)11.如图,将三枚相同的硬币依次放入一个4×4的正方形格子中(每个正方形格子只能放一枚硬币).求所放的三枚硬币中,任意两个都不同行且不同列的概率.(四川省竞赛试题)12.在一个口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地完全相同.在看不到球的情况下,从袋中随机地取出一个球. (1)若取出的是红球的概率为53,求n 的值; (2)在(1)的条件下,把这n 个球中的两个标号为1,其余分别标号为2,3,…,n-1,随机地取出一个小球后不放回,再随机地取出一个小球,请用列表法或树形图求第二次取出的小球标号大于第一次取出的小球标号的概率;(3)若第(2)问去掉“在(1)的条件下”,且第二次取出的小球标号大于第一次取出的小球标号的概率为4522,求n 的值.。
初中数学培优测试卷全套
一、选择题(每题3分,共30分)1. 若一个等腰三角形的底边长为4,腰长为6,则这个三角形的周长为()A. 14B. 16C. 18D. 202. 下列函数中,函数值为负数的是()A. y=2x-1B. y=x²+1C. y=-x²+1D. y=x-23. 下列方程中,解为整数的是()A. x²-2x-3=0B. x²-2x+1=0C. x²+2x+1=0D. x²-4x+3=04. 若一个等差数列的首项为2,公差为3,则第10项的值为()A. 25B. 28C. 31D. 345. 在直角坐标系中,点A(-2,3)关于y轴的对称点为()A.(2,3)B.(-2,-3)C.(2,-3)D.(-2,-3)6. 若一个圆的半径为r,则其面积为()A. πr²B. 2πr²C. 4πr²D. 8πr²7. 下列不等式中,恒成立的是()A. x+2<5B. x-2<5C. x+2>5D. x-2>58. 下列函数中,单调递增的是()A. y=x²B. y=-x²C. y=x³D. y=-x³9. 若一个等腰三角形的底边长为6,腰长为8,则这个三角形的面积为()A. 24B. 32C. 40D. 4810. 在直角坐标系中,点B(3,-2)关于x轴的对称点为()A.(3,2)B.(-3,-2)C.(-3,2)D.(3,-2)二、填空题(每题5分,共25分)11. 若一个等差数列的首项为a₁,公差为d,则第n项的值为______。
12. 在直角坐标系中,点A(2,3)关于原点的对称点为______。
13. 若一个圆的半径为r,则其周长为______。
14. 若一个等差数列的首项为2,公差为3,则第10项与第5项的差为______。
15. 在直角坐标系中,点C(-1,-1)关于y轴的对称点为______。
七年级数学培优试卷答案
1. 下列各数中,有理数是()A. √3B. πC. -1/2D. 0.101001001…答案:C解析:有理数包括整数和分数,其中分数可以表示为两个整数的比。
在给出的选项中,只有-1/2是分数,因此选C。
2. 若a < b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. 2a < 2bD. a^2 < b^2答案:A解析:由不等式的性质,如果两边同时加上或减去同一个数,不等号的方向不变。
因此,A选项正确。
3. 下列各组数中,成比例的是()A. 2, 4, 8, 16B. 3, 6, 9, 12C. 1, 2, 3, 4D. 0, 0, 0, 0答案:D解析:成比例意味着比值相等。
在给出的选项中,只有D选项中的四个数都是0,比值都是0,因此选D。
4. 下列各图中,是圆的是()A. 正方形B. 等腰三角形C. 等边三角形D. 椭圆答案:D解析:圆的定义是平面上到一个固定点距离相等的点的集合。
在给出的选项中,只有椭圆符合这个定义,因此选D。
5. 若一个长方形的长是6cm,宽是4cm,那么它的面积是()A. 10cm²B. 12cm²C. 24cm²D. 36cm²答案:C解析:长方形的面积计算公式是长乘以宽。
因此,6cm乘以4cm等于24cm²,选C。
6. -3的相反数是______,3的绝对值是______。
答案:3,3解析:一个数的相反数是指与这个数相加等于0的数,因此-3的相反数是3。
一个数的绝对值是指这个数去掉符号的值,所以3的绝对值是3。
7. 如果a = 2,那么a² - a的值是______。
答案:2解析:将a的值代入表达式,得到2² - 2 = 4 - 2 = 2。
8. 若m和n是方程2m + 3n = 12的解,那么m和n的可能值是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学培优题库试题11附答案第Ⅰ卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,共36分)1.一个多边形的内角和是720°,这个多边形的边数是( )A.4 B.5 C.6 D.72.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A.20° B.30°C.40° D.50°3.如果三角形的两边长分别为3和5,则周长L的取值范围是( ) A.6<L<15 B.6<L<16C.11<L<13 D.10<L<164.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BAC=∠DACC.∠BCA=∠DCA D.∠B=∠D=90°5.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4 m,AB=1.6 m,CO=1 m,则栏杆C端应下降的垂直距离CD为( )A.0.2 m B.0.3 m C.0.4 m D.0.5 m6.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )A.6 B.8 C.10 D.127.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )A.5 5 B.10 5 C.10 3 D.15 38.如图,在△AB C中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )A.13B.2-1 C.2- 3 D.149.如图,矩形纸片ABCD 中,AB =4,BC =6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A.35B.53C.73D.5410.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为( )A .6B .8C .10D .1211.如图,点E ,点F 分别在菱形ABCD 的边AB ,AD 上,且AE =DF ,BF 交DE 于点G ,延长BF 交CD 的延长线于点H.若AF DF =2,则HFBG 的值为( )A.23B.712C.12D.51212.如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连接AP 并延长AP 交CD 于F 点,连接CP 并延长CP 交AD 于Q 点.给出以下结论:①四边形AECF 为平行四边形; ②∠PBA=∠APQ; ③△FPC 为等腰三角形; ④△APB≌△EPC.其中正确结论的个数为( )A .1B .2C .3D .4第Ⅱ卷(非选择题 共84分)二、填空题(本大题共5个小题,每小题4分,共20分) 13.下列命题是真命题的序号为______. ①对角线相等的四边形是矩形; ②对角线互相垂直的四边形是菱形; ③任意多边形的内角和为360°;④三角形的中位线平行于第三边,并且等于第三边的一半.14.如图,某景区的两个景点A ,B 处于同一水平地面上,一架无人机在空中沿MN 方向水平飞行进行航拍作业,MN 与AB 在同一铅直平面内,当无人机飞行至C 处时,测得景点A 的俯角为45°,景点B 的俯角为30°,此时C 到地面的距离CD 为100米,则两景点A ,B 间的距离为__________________米(结果保留根号).15.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是________步.16.矩形ABCD中,AB=6,BC=8,点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为________.17.如图,直线y=-x+1与两坐标轴分别交于A,B两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,P n-1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n-1,用S1,S2,S3,…,S n-1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n-1P n-2P n-1的面积,则S1+S2+S3+…+S n-1=________.三、解答题(本大题共7个小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤)18.(本题满分7分)如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.19.(本题满分7分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求AFAG的值.20.(本题满分8分)随着航母编队的成立,我国海军日益强大,2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻.如图,我军巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离PA为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30°方向上的B处,问此时巡逻舰与观测点P 的距离PB为多少海里?(参考数据:2≈1.414,3≈1.732,结果精确到1海里).21.(本题满分9分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.22.(本题满分10分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.23.(本题满分11分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图1,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图2,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.24.(本题满分12分)如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AGBE的值为________;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图3所示,延长CG交AD于点H.若AG=6,GH=22,则BC=________.参考答案1.C2.C3.D4.C5.C6.C7.B8.A9.B 10.D 11.B 12.B13.④ 14.100+100 3 15.6017 16.65或317.14-14n18.(1)证明:∵AC=AD +DC ,DF =DC +CF ,且AD =CF , ∴AC=DF.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC≌△DEF(SSS ). (2)解:由(1)可知∠F=∠ACB. ∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°, ∴∠F=∠ACB=37°.19.(1)证明:∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°. ∵∠EAF=∠GAC,∴∠AED=∠ACB. ∵∠EAD=∠CAB,∴△ADE∽△ABC.(2)解:由(1)可知△ADE∽△ABC,∴AD AB =AE AC =35.∵∠AFE=∠AGC=90°,∠EAF=∠GAC,∴△EAF∽△CAG,∴AF AG =AE AC ,∴AF AG =35.20.解:在△APC 中,∠ACP=90°,∠APC=45°,则AC =PC. ∵AP=400海里,∴由勾股定理知AP 2=AC 2+PC 2=2PC 2,即4002=2PC 2, ∴PC=2002海里.又∵在直角△BPC 中,∠PCB=90°,∠BPC=60°, ∴PB=PCcos 60°=2PC =4002≈566(海里).答:此时巡逻舰与观测点P 的距离PB 约为566海里. 21.(1)证明:∵四边形ABCD 是平行四边形,∴∠B=∠D. ∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°. ∵BE=DF ,∴△AEB≌△AFD, ∴AB=AD ,∴四边形ABCD 是菱形. (2)解:如图,连接BD 交AC 于点O.∵四边形ABCD 是菱形,AC =6, ∴AC⊥BD,AO =OC =12AC =12×6=3.∵AB=5,AO =3,∴BO=AB 2-AO 2=52-32=4, ∴BD=2BO =8,∴S 平行四边形ABCD =12AC·BD=24.22.解:(1)在Rt △ABC 中,∠BAC=90°,∠BCA=60°,AB =60米, 则AC =AB tan 60°=603=203(米).答:坡底C 点到大楼距离AC 的值是203米. (2)如图,过点D 作DF⊥AB 于点F.设CD =2x ,则DE =x ,CE =3x. 在Rt △BDF 中, ∵∠BDF=45°, ∴BF=DF ,∴60-x =203+3x , ∴x=403-60,答:CD 的长为(803-120)米.23.(1)①证明:∵CF⊥CD,∴∠FCD=90°. ∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE.∵∠FAC=90°+∠B,∠CED=90°+∠B, ∴∠FAC=∠CED.∵AC=EC ,∴△AFC≌△EDC, ∴FA=DE.②解:DE +AD =2CH.(2)解:AD +DE =23CH.理由如下:如图,连接CD ,作∠FCD=∠ACB,交BA 延长线于点F.∵∠FCA+∠ACD=∠ACD+∠BCD,∴∠FCA=∠BCD. ∵∠EDA=60°, ∴∠EDB=120°.∵∠FAC=120°+∠B,∠DEC=120°+∠B, ∴∠FAC=∠DEC.∵AC=EC ,∴△FAC≌△DEC, ∴AF=DE ,FC =DC. ∵CH⊥FD,∴FH=HD ,∠FCH=∠HCD=60°. 在Rt △CHD 中,tan 60°=DHCH,∴DH=3CH.∵AD+DE=AD+AF =2DH=23CH,即AD+DE=23CH.24.(1)①证明:∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°.∵GE⊥BC,GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形.②解: 2提示:由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴CGCE=2,GE∥AB,∴AGBE=CGCE= 2.(2)解:AG=2BE.理由如下:如图,连接CG,由旋转性质知∠BCE=∠ACG=α.在Rt△CEG和Rt△CBA中,CECG=cos45°=22,CBCA=cos45°=22,∴CGCE=CACB=2,∴△ACG∽△BCE,∴AGBE=CACB=2,∴线段AG与BE之间的数量关系为AG=2BE.(3)解:3 5提示:∵∠CEF=45°,点B,E,F三点共线,∴∠BEC=135°.∵△ACG∽△BC E,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°.∵∠CHA=∠AHG,∴△AHG∽△CHA,∴AGAC=GHAH=AHCH.设BC=CD=AD=a,则AC=2a,则由AGAC=GHAH得62a=22AH,∴AH=23a,则DH=AD-AH=13a,CH=CD2+DH2=103a,∴AGAC=AHCH得62a=23a103a,解得a=35,即BC=3 5.。