(同济7版高等数学)上海应用技术大学 17-18(二)高数(工)2期末复习
同济第七版上册高数考试要点(大一上)
1)已知 f (x) 表达式,求解 xf (x)d之x 类型--分部积分
2)已知 f ((x))表达式,求解f (x)--整体代换先求 f (t)
2021/11/14
6
第五章 定积分
• 1、掌握定积分的概念、几何意义;定积分的性质 及定积分中值定理
• 2、掌握牛顿—莱布尼茨公式; • 3、变上限定积分定义的函数,及其求导数定理
• 5、能够求出函数在某个区间的极值和最值;实际应 用问题中求最值;
• 6、会求函数的弧微分和曲率。
2021/11/14
5
第四章 不定积分
• 1、熟悉不定积分的性质及24个基本公式; • 2、换元积分法(第一、第二)与分部积分法(反
对幂三指); • 3、求有理函数(真分式化为部分分式之和)、 • 三角函数有理式(万能公式)和简单无理函数
2021/11/14
3
第二章 导数与微分
• 1、研究函数(分段函数)在一个点是否可导, 可导的依据:左导数和右导数同时存在且相等; • 2、复合函数(在某点)的导数; • 3、隐函数求导和参数方程确定的函数的导 数,
求导要求能够求到二阶导数; • 4.求函数的微分; • 几何题型:求过某点的切线和法线方程; • 特殊类型:幂指函数,积分上限函数。
(各种变形),变上限积分的求极限; • 4、定积分的换元积分法分部积分法;(注意绝对
值函数和分段函数的积分;注意积分区间为对称 区间时可利用奇偶性;) • 5、能够判断反常积分的敛散性。
2021/11/14
7
2021/11/14Fra bibliotek2极限其它题型:研究函数(分段函数)在一个 点的极限是否存在
存在的依据:左极限和右极限同时存在并且相等。
上海工程技术大学-2011-2012高数二期末考试B卷(工科类)
上海工程技术大学《高等数学(二)》B一、填空题(5×4=20分)1.过点)3,2,1(M 且与平面0132=-+-z y x 平行的平面方程是 .2.设二元函数x y z ln 3+=,则全微分=dz .3.设点)3,0,2(A ,142||=AB ,向量→AB 的方向余弦为143cos =α,141cos =β,142cos -=γ,则B 点坐标为 . 4.改变二次积分的积分次序:=⎰⎰xx dy y x f dx 2),(10 .5.幂级数∑∞=1!n nn x 的收敛半径是=R .二、单项选择题(5×3 = 15分)6.向量b a ⨯与向量a 的位置关系是( ).A .共面B .垂直C .平行D .斜交7.点)2,2(-是函数22)(4),(y x y x y x f ---= 的( ).A . 极小值点;B . 驻点;C . 极大值点;D . 非驻点.8. 下列级数中收敛的是( ).A .∑∞=12sin n n π; B .∑∞=+-11)1(n n n ; C . ∑∞=⎪⎭⎫ ⎝⎛+-11313n n n n ; D .∑∞=+123ln n n n .9.级数10!)1(+∞=∑-n n n x n 的和函数是( ). A .x x s i n; B .x x sin ; C .)1ln(x x +; D .x xe -. 10.设函数(,),(,)P x y Q x y 在单连通域D 上具有一阶连续偏导数,则曲线积分⎰+LQdy Pdx 在区域D 内与路径无关的充要条件是( ). A . y P x Q ∂∂-=∂∂ B . x P y Q ∂∂=∂∂ C . x P y Q ∂∂-=∂∂ D . yP x Q ∂∂=∂∂. 三、计算题(6×6=36分)1.求旋转抛物面222-+=y x z 在点)3,1,2(M 处的切平面和法线方程. 解:2. 计算二重积分⎰⎰=Dxydxdy I ,其中D 是由抛物线2x y =与直线2+=x y 所围成的闭区域.解:3. 设金属曲线L 是连接点)1,0( A 到点)0,2( B 的直线段,其线密度22),(y x y x +=ρ,求此金属曲线的质量M .解:4.计算第二类曲线积分⎰+++=L dy y x dx xy x I )()2(322,其中L 为曲线)2sin(x y π=由点)0,0(O 到点)1,1(A 的一段.5.判断无穷级数∑∞=--1313)1(n n n n 是否收敛? 若收敛,是绝对收敛还是条件收敛? 解:6.将函数2()ln(224)f x x x =--展开成x 的幂级数,并指出展开式中x 的取值区间.解:四、(7分)计算曲面积分⎰⎰∑-++=dS z y x I )1(,其中∑是平面y z -=3被圆柱面2522=+y x 所截得的部分.五、(8分)计算曲面积分⎰⎰∑+-+-=xydxdy dzdx z x dydz z y x I 2)()(其中∑是由柱面122=+y x 与平面0=z 及2=z 所围立体的全表面外侧.六、(8分)求一阶微分方程0)32()43(=++-dy x y dx x y 的通解.七、(6分)证明题 设函数),(y x F u =可微,而ϕϕsin ,cos r y r x ==,求证2222)()()1()(yu x u u r r u ∂∂+∂∂=∂∂+∂∂ϕ.。
同济大学《高等数学》第七版上、下册问题详解(详解)
练习1-1
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-2
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-3
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全。
多元函数微分法和应用期末复习试题高等数学(下册)(上海电机学院)
多元函数微分法和应⽤期末复习试题⾼等数学(下册)(上海电机学院)第⼋章偏导数与全微分⼀、选择题1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x xuxy =??=则=??=2x y y u [A ] A. 21-B. 21C. -1D. 12.函数62622++-+=y x y x z [ D ]A. 在点(-1, 3)处取极⼤值B. 在点(-1, 3)处取极⼩值C. 在点(3, -1)处取极⼤值D. 在点(3, -1)处取极⼩值3.⼆元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ]A. 充分⽽⾮必要条件B.必要⽽⾮充分条件C.充分必要条件D.既⾮充分也⾮必要条件4. 设u=2x +22y +32z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)⽅向的导数=??lu[ D ] A.635 B.635- C.335 D. 335- 5. 函数xy y x z 333-+= [ B ]A. 在点(0, 0)处取极⼤值B. 在点(1, 1)处取极⼩值C. 在点(0, 0), (1, 1)处都取极⼤值 D . 在点(0, 0), (1, 1)处都取极⼩值 6.⼆元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分⽽⾮必要条件 B.必要⽽⾮充分条件 C.充分必要条件D.既⾮充分也⾮必要条件 7. 已知)10(0sin <<=--εεx y y , 则dxdy= [ B ] A. y cos 1ε+ B.y cos 11ε- C. y cos 1ε- D. ycos 11ε+8. 函数yx xy z 2050++= (x>0,y>0)[ D ] A. 在点(2, 5)处取极⼤值 B. 在点(2, 5)处取极⼩值C.在点(5, 2)处取极⼤值D. 在点(5, 2)处取极⼩值9.⼆元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要⽽⾮充分条件 B. 充分⽽⾮必要条件 C.充分必要条件 D.既⾮充分也⾮必要条件10. 曲线x=t, y=2t -, z=3t 所有切线中与平⾯x+2y+z=4平⾏的切线有 [ B ] A. 1 条 B.2条 C. 3条 D.不存在 11.设22(,)xy f x y y x =-,则(,)x yf y x= B A. 42xyy x - B. 2244x y y x - C. 2244x y y x +- D. 2244y x y x --12.为使⼆元函数(,)x yf x y x y+=-沿某⼀特殊路径趋向(0,0)的极限为2,这条路线应选择为 B A.4x y = B. 3x y = C. 2x y = D. 23x y = 13.设函数(,)z f x y =满⾜222zy=,且(,1)2f x x =+,(,1)1y f x x '=+,则(,)f x y =BA.2(1)2y x y +++ B. 2(1)2y x y +-+ C. 2(1)2y x y +-- D. 2(1)2y x y ++- 14.设(,)32f x y x y =+,则(,(,))f xy f x y = CA.344xy x y ++B. 2xy x y ++C. 364xy x y ++D. 346xy x y ++15.为使⼆元函数222(,)xy f x y x y=+在全平⾯连续,则它在(0,0)处应被补充定义为 B A.-1 B.0 C.1 D. 16.已知函数2 2(,)f x y x y x y +-=-,则(,)(,)f x y f x y x y+= C A.22x y - B. 22x y + C. x y + D. x y -17.若()yf x=(0)x >,则()f x =BC.x18.若xz y =,则在点 D 处有z z y x= A.(0,1) B.(,1)e C.(1,)e D. (,)e e19.设2y z x =,则下列结论正确的是 AA.220z z x y y x ??-= B. 220z zx y y x ??-> C.220z zx y y x-0(,)11sin sin ,0xy f x y x y xy y x =??=?+≠??,则极限00lim (,)x y f x y →→( C ). (A) 等于1 (B) 等于2 (C) 等于0 (D) 不存在 21.函数z xy =在点(0,0) ( D ).(A) 有极⼤值 (B) 有极⼩值 (C) 不是驻点 (D) ⽆极值 22.⼆元函数z =在原点(0,0)处( A ).(A) 连续,但偏导不存在 (B) 可微(C) 偏导存在,但不连续 (D) 偏导存在,但不可微23.设()u f r =,⽽r =,()f r 具有⼆阶连续导数,则222222u u ux y z++=( B ).(A) 1''()'()f r f r r +(B) 2''()'()f r f r r+ (C) 211''()'()f r f r r r + (D) 212''()'()f r f r r r+24.函数(,)z f x y =在点00(,)x y 处连续是它在该点偏导存在的( D ). (A) 必要⽽⾮充分条件 (B) 充分⽽⾮必要条件(C) 充分必要条件 (D) 既⾮充分⼜⾮必要条件 25.函数221z x y =--的极⼤值点是( D ).(A) (1,1) (B) (1,0) (C) (0,1) (D) (0,0)26.设(,)f x y =(2,1)x f '=(B ).(A) 14 (B) 14- (C) 12 (D) 12-27.极限24200lim x y x y x y →→+( B ).(A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0及1228.(,)z f x y =若在点000(,)P x y 处的两个⼀阶偏导数存在,则(B ). (A) (,)f x y 在点0P 连续 (B) 0(,)z f x y =在点0x 连续 (C) 00||P P z zdz dx dy x y ??=+ (D) A,B,C 都不对 29. 设函数y x z =,则z d =( A ). (A).y x x x yxy y d ln d 1+- (B).y x x yx y y d d 1+-(C).y x x x x yy d ln d + (D).y y x x yxy y d ln d 1+-30. 已知=??===y zxy v y x u v u z 则 ,,,ln 2( C )(A )y x xy y x 3232ln 2+ (B )y xxy y x 3232ln 2-(C )y x xy y x 3232ln 2+- (D )y x xy y x 22ln 2+31.函数z=22y x 1--的定义域是( D )(A.) D={(x,y)|x 2+y 2=1}(B.)D={(x,y)|x 2+y 2≥1}(C.) D={(x,y)|x 2+y 2<1}(D.)D={(x,y)|x 2+y 2≤1}32.设22),(yx xyy x f +=,则下列式中正确的是( C );)A ( ),(,y x f x y x f =??; )B (),(),(y x f y x y x f =-+;)C ( ),(),(y x f x y f =; )D ( ),(),(y x f y x f =-33.设e cos xz y =,则=yx z2( D );)A ( e sin x y ; )B ( e e sin x x y +;)C ( e cos xy -; )D ( e sin xy -34.已知22),(y x y x y x f -=-+,则x f ??=??+yf ( C ); )A ( y x 22+; )B ( y x -; )C ( y x 22- )D ( y x +.35. 设y xy x z 2232-+=,则=y x z( B )(A )6 (B )3 (C )-2 (D )2.36.设()==?x zy x y x f z 00, ,,则( B )(A )()()x y x f y y x x f x ?-?+?+→?00000,,lim(B )()()x y x f y x x f x ?-?+→?0000,,lim(C )()()x y x f y x x f x ?-?+→?00000,,lim (D )()x y x x f x ??+→?000,lim37. 设由⽅程0=-xyz e z确定的隐函数()==x zy x f z 则,,( B )(A )z z+1 (B )()1-z x z (C )()z x y +1 (D )()z x y -138. ⼆次函数 11)4ln(2222-++--=y x y x z 的定义域是( D )A. 1 < 22y x + ≤ 4;B. –1 ≤ 22y x + < 4; C. –1 ≤ 22y x + ≤ 4; D. 1 < 22y x + < 4。
高等数学(数二)知识重点及复习计划
1.7
重点
无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法。习题1-7:1,2,3,4,5
1.8
重点
函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。
7.1
微分方程的基本概念(微分方程及其阶、解、通解、初始条件和特解)
习题7-1:1-4
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.
3.会用降阶法解可降阶的微分方程
4.理解二阶线性微分方程解的性质及解的结构定理.
5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
6.2
重点
定积分的几何应用(求平面曲线的弧长,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积,求旋转曲面的面积)
习题6-2:2-13,16,21,22,25,30
6.3பைடு நூலகம்
定积分在物理学上的应用(变力沿直线所做的功,水压力,引力)
总复习题六:1-10
第七章微分方程(时间1周,每天2-3小时)
习题2-1:6,7,8,11,14,15,16,17,18,19
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(3-4章)(圣才出品)
第3章微分中值定理与导数的应用3.1复习笔记一、微分中值定理1.罗尔定理(1)费马引理设函数f(x)在点x0的某邻域U(x0)内有定义,并且在x0处可导,如果对任意的x ∈U(x0),有f(x)≤f(x0)或f(x)≥(x0),则f′(x0)=0。
(2)罗尔定理如果函数f(x)满足:①在闭区间[a,b]上连续;②在开区间(a,b)内可导;③在区间端点处的函数值相等,即f(a)=f(b)。
则在(a,b)内至少有一点ξ(a<ξ<b),使得f′(ξ)=0。
2.拉格朗日中值定理(1)拉格朗日中值定理如果函数f(x)满足:①在闭区间[a,b]上连续;②在开区间(a,b)内可导,则在(a,b)内至少有一点ξ(a<ξ<b),有f(b)-f(a)=f′(ξ)(b-a)。
(2)拉格朗日中值定理的证明思路引进辅助函数φ(x)=f(x)-f(a)-(f(b)-f(a))(x-a)/(b-a),再利用罗尔定理,即可证得。
(3)有限增量公式f(x+Δx)-f(x)=f′(x+θΔx)·Δx(0<θ<1)或Δy=f′(x +θΔx)·Δx(0<θ<1)。
(4)定理如果函数f(x)在区间I上连续,I内可导且导数恒为零,则f(x)在区间I上是一个常数。
3.柯西中值定理如果函数f(x)及F(x)满足:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)对任一x∈(a,b),F′(x)≠0,则在(a,b)内至少有一点ξ,有[f(b)-f(a)]/[F(b)-F(a)]=f′(ξ)/F′(ξ)。
二、洛必达法则1.洛必达法则(1)x→a时,0/0的洛必达法则①当x→a时,函数f(x)及F(x)都趋于零;②在点a的某去心邻域内,f′(x)及F′(x)都存在且F′(x)≠0;③()()lim x a f x F x →''存在(或为无穷大),则()()()()lim lim x a x a f x f x F x F x →→'='(2)x→∞时,0/0的洛必达法则①当x→∞时,函数f(x)及F(x)都趋于零;②当|x|>N 时,f′(x)与F′(x)都存在,且F′(x)≠0;③()()limx f x F x →∞''存在(或为无穷大),则()()()()lim lim x x f x f x F x F x →∞→∞'='注:对于x→a 或x→∞时的未定式∞/∞,也有相应的洛必达法则。
同济七高数上总复习
x
x
1
9.
lim
x0
1 x
1 ex
1
=
___2___
.
型
1
10.lim
x0
ex
e2x 3
e3x
x
=
___e_2__
第22页/共35页
.
1 型
11.
ex lim
sin x 1 = ___1___ . 等价无穷小代换的条件
x0 1 1 x2
sin x 12. lim(
x x
0 0 型 • 用其中一个因子作分母,转化为 0 型或 型
0
1
1 型 • 重要极限II:lim(1 x) x e x0
1型、0型、00型 • 恒等变形u( x)v( x) e , v( x)lnu( x) 指数部分转化为0 型
第7页/共35页
例5. 计算下列极限
(1)
lim
x
x
x2
ln
例10.设y
1
x
x
x
,
求
dy dx
.
x 1 x
x
[ln
x x1
1] x1
第11页/共35页
4. 高阶导数的计算: • 直接计算 • 恒等变形为已知高阶导数公式的函数或其和、差 • 莱布尼兹公式(注意适用范围)
例11.设f ( x) x2e x ,求f (50)(0) __2_4_5_0_ . 例12.设f ( x) xe x ,求f (n)( x) _(__1_)n_(_x. n)e x
x0 sin x ln(1 x)
1
3. lim x0
1+x 1+sinx (e x 1)x sin x
同济 版高等数学 上海应用技术大学 二 高数 工 期末复习
上海应用技术学院2017—2018学年第二学期高等数学(工)2 A课程代码: B122012 学分: 5.5 考试时间: 100 分钟 课程序号:班级: 学号: 姓名:我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。
一.单项选择题(本大题共10小题,每小题2分,共20分),在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分. 1. 设00000(,)(,)lim1x f x x y f x x y x∆→+∆−−∆=∆,则以下三个论断(1)00(,)1x y f x∂=∂; (2)00(,)2x f x y '=; (3)00(,)1y f x y '=一定成立的个数是().A .0 个B .1 个C .2 个D .3 个 2.设(())u f g xyz =,其中f 、g 均可微,则ux∂=∂ ().A .(())()f g xyz g xyz ''B .(())f g yz ''C .(())()f g xyz g xyz yz ''D .(())f g xyz yz ''3.设(,)z z x y =是由方程(,,)0F x y z x y z x y z +−++−−=确定的函数且F 可微,则zx∂=∂ ().A .123123F F F F F F '''−+−'''++B .123123F F F F F F '''−+−'''−−−C .123123F F F F F F '''++'''−+−D . 123123F F F F F F '''−−−'''−+−4.设点00(,)x y 为(,)f x y 的驻点,其中f 连续且一阶、二阶连续可偏导,则下列结论正确的是().A .若00(,)0xx f x y ''<且00(,)0yy f x y ''>,则00(,)f x y 为极大值;B .若00(,)0xx f x y ''>且00(,)0yy f x y ''>,则00(,)f x y 为极小值;C .若00(,)0xx f x y ''>且00(,)0yy f x y ''<,则00(,)f x y 非极值;D .若00(,)0xx f x y ''<且00(,)0yy f x y ''<,则00(,)f x y 非极值;5.三元函数(,,)xy zf x y z e=在点(1,1,1)处的梯度为().A .ei e j ek +−B .ei e j ek ++C .eD6.设D 是由半圆21x y −=与x 轴所围区域,1D 是D 在第一象限的部分,则232(sin sin )Dy x x y dxdy +=⎰⎰ ().A .0B .122sin D y x dxdy ⎰⎰C .1322sin D x y dxdy ⎰⎰D .12322(sin sin )D y x x y dxdy +⎰⎰ 7.设Ω是由0x =,0y =,0z =以及231x y z ++=所围成的有界闭区域,且(,,)f x y z 在Ω上连续,则(,,)f x y z dv Ω=⎰⎰⎰().A .111230(,,)dy dx f x y z dz ⎰⎰⎰ B .11212300(,,)x ydy dx f x y z dz −−⎰⎰⎰C .1121230(,,)x x ydx dy f x y z dz −−−⎰⎰⎰D .1121230(,,)x x ydx ydy f x y z dz −−−⎰⎰⎰8.已知323xxdu e y dx e y dy =+且(0,0)u e =,则(1,1)u = ().A .0B .eC .2eD .3e9.设函数yz x =,则2zx y∂=∂∂().A .1(1ln )y xy x −+ B .1(ln )y x x y x −+ C .(1ln )y x y x + D .(ln )y x x y x +10.设arctan1yz x=+,则(0,1)dz = ().A .dx dy +B .dx dy −C .1122dx dy −+ D .1122dx dy +11.对于函数2222220(,)00xyx y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩,则下列结论正确的是().A .在(0,0)处偏导存在 且(0,0)(0,0)0x y f f ''==B .在(0,0)处连续C .在(0,0)处可微D .在(0,0)处偏导连续 12.二元函数2(,)1f x y x xy =++().A .有极大值B .有极小值C .无驻点D . 有驻点但无极值 13.1220()dx f x y dy +=⎰().A .1240()d f r rdr πθ⎰⎰B.2200()d f r rdr πθ⎰C .1220()d f r dr πθ⎰⎰ D .1220()d f r rdr πθ⎰⎰14.设Ω是由平面0x =,0y =,0z =以及平面1x y z ++=所围成的有界闭区域,且(,,)f x y z 在Ω上连续,则(,,)f x y z dv Ω=⎰⎰⎰().A .111(,,)dx dy f x y z dz ⎰⎰⎰B .111000(,,)x x ydx dy f x y z dz −−−⎰⎰⎰C .1110(,,)yx y dx dy f x y z dz −−−⎰⎰⎰ D .1110(,,)zx ydx ydy f x y z dz −−−⎰⎰⎰15.()LI x y ds =+⎰其中L 为连接(0,0)及(1,1)二点的直线段,则I = ().A .0B .1CD16. ),2(xyy x f z +=,则=∂∂x z (). A.),2(),2(21x y y x f x y x y y x f +'++' B .),2(),2(221x y y x f x y x y y x f +'−+'C .),2(),2(2221x y y x f x y x y y x f +'−+'D . ),2(),2(2221x y y x f xy x y y x f +'++'17.对于二元函数下列结论正确的是().A .偏导存在一定连续 B. 连续一定偏导存在C .可微一定连续 D. 偏导存在一定可微 18. 函数y y x z 222−+=的驻点为().A .(0,0)B .(0,1)C .(1,0)D . (1,1) 19.⎰⎰=+xdy y x f dx 0221)(().A .⎰⎰4012)(πθdr r f dB .⎰⎰4012)(πθrdr r f dC .⎰⎰40cos 102)(πθθdr r f dD .⎰⎰40cos 102)(πθθrdr r f d20.设Ω是由平面0x =,0y =,0z =以及平面12=++zy x 所围成的有界闭区域,且(,,)f x y z 在Ω上连续,则(,,)f x y z dv Ω=⎰⎰⎰().A .⎰⎰⎰10210),,(dz z y x f dy dxB .⎰⎰⎰−−−1)1(2010),,(y x x dz z y x f dy dx C .⎰⎰⎰−−1)1(2010),,(y x dz z y x f dy dx D . ⎰⎰⎰−−−10)1(2010),,(y x ydz z y x f dy dx21. 已知dy y ax dx y x )()2(+++为某个二元函数的全微分,则a 等于 ().A .0B .12C .1D .2二.填空题(本大题共6小题,每小题3分,共18分),请在每小题的空格中填上正确答案,错填、不填均无分.1.设y xz e =,则2zx y∂=∂∂.2.曲面2223240x y z −++=在点(1,2,1)处的切平面方程为.3.2xz e y =在点(1,1)处沿(1,1)到(2,3)的方向导数为.4.设D 为y x =,1y =和0x =所围区域,则二重积分2yDe dxdy =⎰⎰.5.设L 为从(0,0,0)到(3,4,5)的直线段,则Lxydx yzdy zxdz ++=⎰.6.曲面2210x y z +−−=在点(2,1,4)处的切平面方程为7.u xy =在点(1,2)处沿方向2(,l =的方向导数为.8.221()x y y x x y dxdy +≤+⎰⎰=.9.交换积分次序11(,)dy f x y dx =⎰.10.设L 为从(0,0,0)到(1,1,1)的直线段,则Lzdx xdy ydz ++=⎰.11.曲面9222=++z y x 在点)2,2,1(处的切平面方程为.12.2xy z =在点(1,2)处沿方向2(,l =的方向导数为 .13.dxdy y x y x ⎰⎰≤++122)( = .14.交换积分次序=⎰⎰101),(xdy y x f dx .15.设L 为从)0,0(到)1,1(的直线段,则⎰=Lxds .三.计算题(本大题共8小题,每小题6分,共48分).1.设2(,)yx z x f xy xe y =+,其中f 可微,求z x ∂∂,z y∂∂.2.求二元函数22(,)(2)xf x y e x y =−的极值.3.计算二重积分D,其中D 是由曲线224x y +=所围成的有界闭区域.4.(,)z z x y =是由方程22xze x z xy =+所确定的隐函数,求z x ∂∂与zy∂∂.5.计算三重积分22()x y zdv Ω+⎰⎰⎰,其中Ω是由曲面222()z x y =+及平面1z =所围成的有界闭区域.6.计算曲线积分(sin(3)cos )(3cos(3)2sin )22x xLx y e y y dx e y x dy −++++⎰,其中L 是由点(,0)A π到点(0,0)O 的曲线段sin y x =.7.设(,)sin z f x y xy x y =++,其中f 可微,求dz .8.(,)z z x y =是由方程2sin(23)23x y z x y z +−=+−所确定的隐函数,求z zx y∂∂+∂∂.9.计算二重积分2sin Dx dxdy ⎰⎰,其中D 是由直线,0y x x y ===所围成的有界闭区域.10.计算曲线积分2(22)(5)yy LI xey dx x e x dy =+++⎰,其中L 是由点(2,0)A 到点(0,0)O的曲线段y =.11.计算三重积分Ω,其中Ω是由圆柱面221x y +=及二平面0,1z z ==所围成的有界闭区域.12.设函数yx xy z +=,求x z∂∂,yx z ∂∂∂2.13.设(,)z z x y =是由方程02=−++xyz z y x 所确定的隐函数,求dz yzx z ,,∂∂∂∂.14.计算二重积分⎰⎰Dxydxdy 的值,其中D 是由直线1,,0===x x y y 所围成的有界闭区域.15.计算曲线积分⎰−++−Lxx dy y e dx y y e )2cos ()12sin (的值,其中L 是从点(2,0)A 到点(0,0)O 的曲线段y =四.应用与证明题(本大题共2小题,每小题7分,共14分). 1.求由曲面222z x y =−−与222()z x y =+所围成的立体的体积.2.设()g x 为一元连续函数,证明: (1)21112y xe dx e dy −=⎰⎰; (2)()2111001()()()2x dx g x g y dy g x dx =⎰⎰⎰.3.求由三个平面0,0,1x y x y ==+=所围的柱体被二平面0,646z x y z =++=截得的立体的体积.4.利用极坐标下计算二重积分的方法求出22x edx +∞−−∞⎰,并计算222x e dx +∞−−∞⎰.5.求由两曲面z z ==和.(7分)6.在a z y x =++条件下,求函数xyz u =的最大值,并证明 )(313z y x xyz ++≤. (7分)。
同济大学数学系《高等数学》(第7版)(上册)教材包含 笔记 课后习题 考研真题 函数与极限(圣才出品
(2)有界性
如果数列{xn}收敛,则数列{xn}一定有界。
①有界数列:存在正数 M,使得对于一切 xn 都满足不等式|xn|≤M。
②无界数列:不存在正数 M,使得对于一切 xn 都满足不等式|xn|≤M。
(3)保号性
如果
lim
n
xn
a
,且
a>0(或
a<0),则存在正整数
N>0,当
n>N
时,都有
xn>0
(4)初等函数
5 类基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。
二、数列的极限
1.数列极限的定义
数列{xn}收敛于
a⇔
lim
n
xn
a
⇔∀ε>0,∃正整数
N,当
n>N
时,有|xn-a|<ε。
数列{xn}是发散⇔
lim
n
xn
不存在。
2.收敛数列的性质
(1)唯一性
如果数列{xn}收敛,则它的极限唯一。
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 1 章 函数与极限
1.1 复习笔记
一、映射与函数 1.函数 (1)函数的性质(见表 1-1)
表 1-1 函数的性质
(2)反函数与复合函数 ①反函数的特点 a.函数 f 和反函数 f-1 的单调性一致。 b.f 的图像和 f-1 的图像关于直线 y=x 对称。 ②复合函数 g 与 f 能构成复合函数 f°g 的条件是:f 的定义域与 g 的值域的交集不能为空集。 (3)函数的运算 设函数 f(x),g(x)的定义域为 Df,Dg,且定义域有交集为 D,则可定义这两个函
②如果数列{xn}有两个子数列收敛于不同的极限,则数列{xn}是发散的。
高数(二)期末复习题
1 0
dρ
1 0
ρ3
sin
θ
cos
θ
dz
(C)
π
2
0
dθ
1 0
dρ
1 0
ρ2
sin
θ
cos
θ
dz
(B)
2π 0
1 0
dρ
1 0
ρ2
sin
θ
cos
θ
dz
(D)
π
2
0
dθ
1 0dρFra bibliotek1 0
ρ3
sin
θ
cos
θ
dz
6. 设 L 是 xoy 平面上的有向曲线, 下列曲线积分中, ( ) 是与路径无关的
(A) L 3yx2 dx + x3 dy (C) L 2x y dx − x2 dy
高数(二)期末复习题
只是把高数(二)期末复习题单独拿出来
作者: sikouhjw、xajzh 组织: 临时组织起来的重排小组 时间: May 29, 2019 版本: 1.00
“不论一个人的数学水平有多高, 只要对数学拥有一颗真诚的心, 他就在自己的心灵上得到了升华。”—SCIbird
目录
1 声明
7. 设 Σ 是上半圆锥面 z = x2 + y2(0
z
1)
,
则曲面积分
∬
Σ
x2 + y2
dS =
8. 级数
∞ n=1
1 n(n+1)
−
1 2n
的和为
三、综合题( 8 小题, 共 52 分)
1.
求方程
dy dx
=
xy 1+x2
同济第七版高等数学总复习ppt课件
定理 2
设 y * 是( 2 ) 的一个特解, Y 是与(2)对应
*
的齐次方程(1)的通解, 那么 y Y y 是二阶非
齐次线性微分方程(2)的通解.
7
定理 3
设非齐次方程(2)的右端 f ( x ) 是几个函
i
y C1 e r x C 2 e r x y (C1 C 2 x )e r x y ex (C1 cos x C2 sin x )
1 2
2
9
推广:n 阶常系数齐次线性方程解法
( n ) ( n 1 ) y P y P y P y 0 1 n 1 n
2 2 2 x y z 2 2 1 2 a b c
x2 y2 z 2p 2q
( p与 q 同号 )
x y z
2 2
2
29
4.空间曲线
[1] 空间曲线的一般方程
F(x, y,z) 0 G (x, y,z) 0
[2] 空间曲线的参数方程
x x(t) y y(t) z z(t)
z
旋 转 椭 球 面
o
x
y
22
(1)球面
(2)圆锥面
(3)旋转双曲面
x y z 1
2 2 2
x y z
2 2
2
x y z 2 2 1 2 a a c
2
2
2
2 2 2 2 ( x x ) ( y y ) ( z z ) R 0 0 0
23
2. 柱面
定义:平行于定直线并沿定曲线C移动的直线 L所形成的曲面称之.
同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(含考研真题)详解(第10章)【圣才出品】
3 / 143
圣才电子书 十万种考研考证电子书、题库视频学习平台
该体积为所求二重积分的值,有等式
这就是把二重积分化为先对 y,后对 x 的二次积分的公式.上面公式也可以写成
f (x, y)d
,作乘积
并作和
如果当各小闭区域的直径中的最大值 A→0 时,这和的极限总存在,且与闭区域 D 的分
法及点
的取法无关,则称此极限为函数 f(x,y)在闭区域 D 上的二重积分,记作
,即
其中f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,dσ称为面积元素,x 与 y 称为
积分变量,D 称为积分区域,
圣才电子书
十万种考研考证电子书、题库视频学习平台
图 10-1-2
注:积分区域 D 既不是 X 型区域,又不是 Y 型区域时,可以把 D 分成几部分,使每个
部分是 X 型区域或 Y 型区域.
2.利用极坐标计算二重积分
设积分区域 D 可以用不等式
来表示(图
10-1-3),其中函数φ1(θ)、φ2(θ)在区间[α,β]上连续,则极坐标系中的二重积分化为二
在 D 上至少存在一点 ,使得
.
2 / 143
圣才电子书 十万种考研考证电子书、题库视频学习平台
二、二重积分的计算法
1.利用直角坐标计算二重积分
(1)X 型区域
设积分区域 D 用不等式
其中函数
在区间[a,b]上连续.
来表示(图 10-1-1),
图 10-1-1 计算步骤: ①求截面面积 过区间[a,b]上任一点 x 且平行于 yOz 面的平面截曲顶柱体所得截面的面积为
高数Ⅱ(2)复习题
高数Ⅱ(2)历届试题汇编(2003——2008)一、填空题和单项选择题: 1、(2003)交换二次积分的次序⎰⎰+=10122),(x xdy y x f dx ⎰⎰⎰⎰-+2/1212/010),(),(y y y dx y x f dy dx y x f dy .2、(2003)幂级数n n n n x n n )32(1∑∞=+的收敛域为)31,31[-. 3、(2004)交换二次积分的次序⎰⎰---=10112),(y y dx y x f dy ⎰⎰⎰⎰---+x x dy y x f dx dy y x f dx 1010101),(),(2 .4、(2004)级数∑∞=-+1/1)1(12n nen n α收敛的充要条件是α满足不等式2/5>α. 5、(2004)设nn nx a)1(0∑∞=+在2-=x 处条件收敛,则其在2=x 处( A ) A.发散 B.条件收敛 C.绝对收敛 D.敛散性不确定6、(2005)由方程5222=+++xyz z y x 所确定的隐函数),(y x z z =在点),,(2010-P 处的全微分=P dz dy dx 521-. 7、(2005).交换二次积分的次序⎰⎰--=20422),(x x dy y x f dx ⎰⎰⎰⎰-+-+y y dx y x f dy dx y x f dy 40402002),(),(.8、(2005)将21)(+=x x f 展开成2-x 的幂级数,并指出其收敛域:=)(x f )62(,)2(4)1(01<<---∑∞=+x x n nn n .9、(2005).设+∞=∞→n n u lim ,则级数)11(11+∞=-∑n n nu u ( B )A.收敛于0B.收敛于11u C.发散 D.敛散性不确定10、(2006)设D :,122≤+y x 所围成,则⎰⎰+Ddxdy y x)]tan(1[2=π .11、(2006)交换二次积分的次序⎰⎰-=20),(y ydx y x f dy ⎰⎰⎰⎰+--2202022),(),(xxdy y x f dx dy y x f dx .12、(2006)级数∑∞=--+1211n nn n 的敛散性为 收敛 . 13、(2007)考虑二元函数),(y x f 的下面四条性质:①函数),(y x f 在点),(00y x 处连续 ②函数),(y x f 在点),(00y x 处两个偏导数连续③函数),(y x f 在点),(00y x 处可微 ④函数),(y x f 在点),(00y x 处两个偏导数存在则下面结论正确的是( A )A.②⇒③⇒①B.③⇒②⇒①C.③⇒④⇒①D.③⇒①⇒④ 14、(2007)二次积分⎰⎰2/0cos 0)sin ,cos (πθθθθrdr r r f d 可以写成( D )A.⎰⎰-102),(y y dx y x f dy B.⎰⎰-1102),(y dx y x f dyC.⎰⎰1010),(dy y x f dx D.⎰⎰-102),(x x dy y x f dx15、(2007)XOY 平面上的抛物线x z 52=绕X 轴旋转而成的旋转曲面的方程为x z y 522=+.16、(2007)二次积分⎰⎰-2121sin y dx x xdy =2cos 1cos -.17、(2007)设{}1|),(222≤+∈=y x R y x D ,则⎰⎰-Ddxdy y x)(2=4π.18.(2008)已知三角形ABC 的顶点分别为)2,0,1(),2,3,2(),1,1,1(-C B A ,则三角形ABC 的面积为233.19.(2008)设函数xye y x y x z )(),(-=,则全微分=)0,2(dz dy dx 3+. 20.(2008)交换二次积分的次序⎰⎰--=0121),(ydx y x f dy ⎰⎰-2101),(xdy y x f dx .21.(2008)函数xx f 2)(=展开成)1(-x 的幂级数为∑∞=-0)1(!)2(ln 2n n nx n .22.(2008)设b a b a b a b a 24,42-⊥+-⊥+,则a 与b的夹角为( B )A.0 B.2/πC.6/πD.3/π23.(2008)设)sin(22z x y z x -=+确定了隐函数),(y x z z =,则=∂∂+∂∂yzy x z z ( A )A.x B.y C.z D.)sin(22z x y - 24.(2008)设D :⎰⎰=+≤+Ddxdy y x y x )|(|,1||||则( C ) A.0 B.1/3 C.2/3D.4/3 25.(2008)设n n nx a)3(1∑∞=-在4=x 处发散,则其在0=x 处( C ) A.绝对收敛 B.条件收敛 C.发散 D.无法判断敛散性二、解答题:1、(2003)求幂级数∑∞=+1122n n nx 的和函数)(x s . 答案:)(x s =)1ln(212x x --, )1,1(-∈x2、(2003)将)32ln(2x x y +-=展开成x 的幂级数,并求展开区间.答案: ∑∞=+++++-=01112)1()21(2ln n n n n n x y ,)1,1[-∈x 3、(2004)求函数y x y x z 161222+-+=在区域22y x +25≤上的最大值和最小值。
高数A(下)总复习(同济七版)
《高等数学A》(第二学期)期末总复习一、微分方程(一)一阶微分方程:形如(,,)0F x y y ,(,)y f x y 或(.)(,)0M x y dx N x y dy初值问题:00(,),x x y f x y yy 注:一阶方程的通解必须且只能含有一个任意常数1. 可分离变量方程:()()f x dx g y dy ,两边同时积分可得通解 2.齐次方程:dy y dx x,令y u x ,y xu ,dy du u x dx dx ()du dx u u x ,可分离变量形式 3.一阶线性微分方程: 形如()()dyP x y Q x dx,()0Q x :齐次;()0Q x :非齐次. (1)齐次:()0()||()dy dy P x y P x dx ln y P x dx lnC dx y通解:()P x dxy Ce(2)非齐次①常数变易法:先求相应齐次形式的通解,令其任意常数为变量,再代入原方程以确定该变量②公式解:()()()P x dxP x dx y e Q x e dx C(二)可降阶的高阶微分方程(1)()()n y f x 型:连续积分;(2)(,)y f x y 型(不显含y 的方程):设y p ,则(,)y p p f x p (3)(,)y f y y 型(不显含x 的方程):设y p ,则dp y p dy (,)dyp f y p dy(三)二阶线性微分方程的解的结构 1.齐次:()()0y P x y Q x y ,通解:1122()()y C y x C y x ,其中12(),()y x y x 为该方程两个线性无关的特解. 2.非齐次:()()()y P x y Q x y f x通解:()*()y Y x y x ,其中()Y x 为对应的齐次方程的通解,*()y x 为原方程的一个特解.3.设**12(),()y x y x 分别为1()()()y P x y Q x y f x 与2()()()y P x y Q x y f x 的特解, 则***12()()y y x y x 为12()()()()y P x y Q x y f x f x +的特解.(四)二阶常系数线性微分方程1.齐次:0y py qy ,其中,p q 都为常数(1)特征方程20r pr q 特征根12,?r r(2)通解:12112121212121,2()(cos sin )r x r x r x x C e C e r r y C C x e r r e C x C x r i2.非齐次:()y py qy f x ,其中,p q 都为常数(1)先求出对应的齐次方程0y py qy 的通解:()Y Y x ; (2)后求原非齐次方程的特解:A、()()x m f x e P x 型:令*()k x m y x e Q x ,其中k 是特征方程的根 的重数B、()[()cos ()sin ]x l n f x e P x x P x x 型:令*[()cos ()sin ]k x m m y x e Q x x R x x ,其中max{,}m l n ,k 是特征根i 的重数.注意事项1) 积分法主要方程类型:可分离变量方程(分离变量后直接积分)、齐次方程(令u y x )、一阶线性方程(公式法)、伯努利方程1()n zy 、可降阶方程(不显含x :,p y p y 与不显含y :,p y y p dp dy ) 2) 碰到一个方程都是从可分离变量方程开始判断形式,认清形式最关键3) 二阶常系数非齐次线性微分方程的求解利用解的结构结论:非齐次通解(两线性无关特解的线性组合)=齐次通解+非齐次解;求解步骤为:齐次方程 特征方程 特征根 齐次通解;设非齐次特解形式 代入原方程 求得非齐次特解 非齐次通解二、向量代数与空间解析几何(一)向量代数1.点(,,)M x y z 向量(,,)OM x y z xi yj zk;2.点111222(,,),(,,)A x y z B x y z 向量212121(,,)AB x x y y z z; 3.向量运算及其坐标形式:设(,,),(,,)x y z x y z a a a a b b b b,则(,,)x x y y z z a b a b a b a b;(,,)x y z a a a a ( 为数);||||cos(,)x x y y z z a b a b a b a b a b a b ;x y z x y zi j ka b a a a b b b ,(||||||sin(,),,)a b a b a b a b b a b a ;以向量a 和b为邻边的平行四边形面积公式:||S a b//y x z x y z b b b a b a a a(对应坐标成比例,一向量某个坐标为零,另一向量相应坐标亦为零); 0a b a b ;//0a b a b ; cos(,)||||a b a b a b ; ||cos(,)a b b a b Prj . (二)曲面、空间曲线及其方程1.曲面及其方程:(,,)0F x y z ,旋转曲面【绕谁不换谁, 正负根号里没有谁;作图时先画母线然后绕其轴旋转之】,柱面【柱面三缺一,缺谁母线就平行于谁;作图时先画准线结合母线特点得柱面】;要熟悉常见的二次曲面及其方程并会作图(重点:球面,圆柱面,锥面,抛物面)2.空间曲线及其方程:一般方程(面交式)、参数方程(只有一个参数);3.曲线(曲面或空间立体)在坐标面上的投影:投xOy 便两两联立消去z ,其余类推. (三)平面方程与直线方程 1.平面方程(1)一般方程:0Ax By Cz D ,其中(,,)n A B C为其一法向量.(2)点法式方程:法向量(,,)n A B C,点000(,,)M x y z ,则000()()()0A x x B y y C z z .(3)截距式方程:1x y za b c,主要用于画图. (4)平面束方程:过直线111122220A xB yC zD A x B y C z D 的平面束方程为:11112222()()0A x B y C z D A x B y C z D :过该直线的除第2个平面外的所有平面.2.直线方程(1)点向式方程:方向向量(,,)s m n p,点0000(,,)M x y z L ,则000x x y y z z m n p; (2)参数式方程:000x x mty y nt z z pt(注:主要用于求交点坐标);(3)一般式方程:1111222200A x B y C z D A x B y C z D3.面面、线线、线面关系:确定了相应的方向向量或法向量之后,其夹角便转化为向量之间的夹角4.距离:点0000(,,)M x y z 到平面0Ax By Cz D 的距离:d主要题型(1)向量数量积的运算或求夹角;(2)计算三角形面积(3)求解直线方程和平面方程.注意事项1) 本章的向量是自由向量,与起点无关,可任意平移2) 空间直角坐标系利用右手准则建立,xyz 要满足这样的循环关系x y z x 3) 数量积是个数量,向量积是个向量,重点掌握它们的坐标形式4) 数量积可用于求向量夹角(介于0到 之间),向量积可用于确定方向及计算三角形或平行四边形面积 5) 一个方程(一个等号)是一个面,两个方程(两个等号)是条曲线 6) 平面主要抓住法向量,直线主要抓住方向向量三、多元函数的微分学及其应用(一)极限与连续二重极限常用求法:夹逼准则、等价无穷小、有理化,不可用洛必达法则;注:特殊方向法只能证极限不存在 连续性①一切多元初等函数在其定义区域内都是连续的;②有界闭区域上的连续函数必有最值. (二)偏导数1.显函数:(,)z f x y a.定义:0000000(,)(,)(,)limx x f x x y f x y f x y x,00(,)y f x y 定义类似;要掌握定义法求偏导b.求导法则:对x 求偏导,暂时视y 为常量;对y 求偏导,暂时视x 为常量c.高阶偏导数:22(,)xx z z f x y x x x ;2(,)xy z z f x y x y y x定理:二阶混合偏导在其连续时相同.d.复合函数的求导法则(链式法则):若(,)z f u v 具有连续偏导数,而(,)u g x y 与(,)v h x y 都具有偏导数,则复合函数[(,),(,)]z f g x y h x y 的偏导数为:12u x v x x x z z u z vf u f v fg fh x u x v x ,12u y v y y yz z u z v f u f v f g f h y u y v y注①解题时,要注意偏导数以及导数的写法,并按顺序遍历每一个中间变量;②111,,f f f 等都具有相同的中间变量.2.隐函数(要诀:方程两边同时对自变量求导;一个方程确定一个因变量,剩下的全为自变量)(1)一个方程的情形:二元方程可确定一个一元隐函数:(,)0F x y :x ydy F dx F 公式法 三元方程可确定一个二元隐函数:(,)(,)0,z z x y y x z zF z F zF x y z x F y F 公式法:,(2)方程组的情形:三元方程组确定两个一元隐函数:()()(,,)0,(,,)0y y x z z x x F x y z dy dz G x y z dx dx对求导四元方程组可确定两个二元隐函数:(,)(,)(,,,)0(,,,)0u u x y v v x y F x y u v G x y u v对x (或y )求偏导得,u vx x(或,u v y y ) (三)全微分:可微函数(,)z f x y 的全微分为:z zdz dx dy x y. 定义为:0000[(,)(,)]()z f x x y y f x y A x B y o,其中全微分存在之证明:计算 z A x B y ,证明是否趋近于0,其中,A B 为该点处的两个偏导数. (四)几何应用(重点把握切向量和法向量) 1. 曲线的切线与法平面a、 若曲线 的参数方程为:()()()x x t y y t z z t,点0000(,,)M x y z t t ,则切向量为000((),(),())T x t y t z t ,切线方程为000000()()()x x y y z z x t y t z t;法平面方程为000000()()()()()()0x t x x y t y y z t z z b、 若曲线 的方程为:()()y f x z g x ,点000(,,)M x y z ,则切向量为00(1,(),())T y x z xc、 若曲线 的方程为一般方程:(,,)0(,,)0F x y z G x y z,点000(,,)M x y z ,则切向量为00(1,(),())T y x z x (利用隐函数求导法,方程两边对x 求导,解方程组可得,dy dzdx dx).(注:该法若无解,需改换其它自变量求导) 【另解:利用三阶行列式计算 x y z x y zij k T F F F G G G】2. 曲面的切平面与法线a、 若曲面 的方程为(,,)0F x y z ,点000(,,)M x y z ,则法向量为:((),(),())x y z n F M F M F M,切平面方程为:000000000000(,,)()(,,)()(,,)()0x y z F x y z x x F x y z y y F x y z z z ; 法线方程为:000000000000(,,)(,,)(,,)x y z x x y y z z F x y z F x y z F x y zb、 若曲面 的方程为(,)z f x y ,点000(,,)M x y z ,则法向量为:0000((,),(,),1)x y n f x y f x y,切平面方程为:0000000(,)()(,)()()0x y f x y x x f x y y y z z ; 法线方程为:0000000(,)(,)1x y x x y y z z f x y f x y(五)方向导数与梯度 (以二元函数为例)(1)方向导数:设(,)z f x y 可微分,(cos ,cos )l e,则000000(,)(,)cos (,)cos x y x y f f x y f x y l(2)梯度:(,)((,),(,))x y f x y f x y f x y grad ,沿梯度方向,方向导数取得最大值,该值即为梯度的模.(六)极值 (1)无条件极值:设(,)z f x y ,由(,)0(,)0x y f x y f x y解得驻点00(,)x y ,令000000(,),(,),(,)xx xy yy A f x y B f x y C f x y ,然后利用,,A B C 判定驻点是否极值:20AC B 有极值,0A 极小,0A 极大;20AC B 无极值;20AC B 用此法无法判定.(2)条件极值:(,)z f x y 在条件(,)0x y 下的极值:构造拉格朗日函数,令(,)(,)(,)L x y f x y x y ,联立方程(,)0(,)0(,)0x y L x y L x y x y,其解00(,)x y 为可能的极值点.是否为真正的极值点,一般可由问题的本身性质来判定.(3)闭区域上最值问题:内部区域令一阶偏导为零得驻点;边界通过代入法或拉格朗日乘数法求可疑点.注意事项1) 二重极限与一元函数极限的本质区别在于前者趋近方向有无数多个,而后者只有左右两个 2) 特殊方向法只能用于证明二重极限不存在,绝对不能用于求二重极限3) 掌握右边的关系图4) 求切线和法平面主要抓住曲线切向量,求切平面和法线主要抓住曲面法向量 5) 沿梯度方向,方向导数取得最大值,最大值为梯度模长四、积分的计算与应用(一)二重积分1.直角坐标:(,)D I f x y dxdy 2121():()()()12():()()()12(,),(,),b y x a x b D a y x y x y y x dx y c y d D cx y x y x x y dx f x y dy dy f x y dx若若注(1)利用可任意平移的穿线来确定积分顺序及积分上下限;要先对x 求积分,则画平行于x 轴的穿线 (2)若积分区域不只一条穿线,则适当分割之;(3)常考题型:交换二次积分的积分顺序.2.极坐标: cos ,sin (cos ,sin )x y d d d DI f d d, 注(1)被积函数或积分区域中含有22xy 的都可以考虑极坐标法(2)积分顺序: ;(3)先确定 的范围,后固定 ,选取从极点出发的穿线来确定 .(注:此处的穿线为一条由极点出发的射线,可绕极点任意旋转) 3.对称性(1)奇偶对称性:若积分区域D 关于x 轴对称, 1(,),0D x y D y ,则①当(,)f x y 是关于y 的奇函数,有(,)0Df x y dxdy ;②当(,)f x y 是关于y 的偶函数,有1(,)2(,)DD f x y dxdy f x y dxdy .(2)轮换对称性:若积分区域D 关于直线y x 对称,则(,)(,)DDf x y dxdy f y x dxdy .4.应用: 平面面积DA dxdy ;曲顶柱体体积DV d 上顶下底; a注:求立体体积,不一定要画出立体的准确图形,但一定要会求出坐标面上的投影区域,并知道立体的底和顶的方程.曲面面积xyD A dS(yzD或zxD )(二)三重积分1.投影法(先一后二法) 1221(,,)|(,)(,),(,)(,)(,)(,,)xy xyx y z z x y z z x y x y Dz x y z x y D I dxdy f x y z dz确定区域:先将立体区域 投影到xOy 平面上,选取平行于z 轴的穿越线确定z 的上下限.2.截面法(先二后一法)(,,)|,(,)(,,)z zx y z c z d x y D dc D I dz f x y z dxdy主要适用于(1)被积函数(,,)f x y z 仅含一种或不含自变量,比如只含z (2)截面应易计算其面积3.柱面坐标 cos ,sin ,x y z zdv d d dzI (cos ,sin ,)f z d d dz; 积分顺序:z ;确定积分上下限同上述投影法,取平行于z 轴的穿线;, 同极坐标.4.球面坐标 2sin cos ,sin sin ,cos sin x r y r z r dv r drd d I2(sin cos ,sin sin ,cos )sin f r r r r drd d积分顺序:r ;(1)将闭区域 投影至xOy 平面,以确定 的范围(2)在半平面c 内确定 的范围(3)固定, ,画一条从原点出发的穿越线,以确定r 的范围.5.对称性(1)奇偶对称性:设积分区域 关于xOy 平面对称①若(,,)f x y z 关于z 为奇函数,则(,,)0f x y z dv;②若(,,)f x y z 关于z 为偶函数, 1(,,),0x y z z ,1(,,)2(,,)f x y z dv f x y z dv.(2)轮换对称性:区域轮换对称即可.(三)曲线积分1.第一类曲线积分(对弧长)a、平面曲线:(,)L f x y ds :(),()L x x t y y t t[(),()]()f x t y tb、空间曲线:(,,)f x y z ds :(),(),()x x t y y t z z t t[(),(),()]()f x t y t z t 2.第二类曲线积分(对坐标),主要考虑平面曲线:(,)(,)L I P x y dx Q x y dyi)参数法::(),()L x x t y y t ,:t (或t 由 变化到 ){[(),()]()[(),()]()}I P x t y t x t Q x t y t y t dtii)格林(Green)公式:(,)(,)()L D Q PP x y dx Q x y dy dxdy x y;不闭则补之(常取折线). 注意条件:偏导数处处连续,L 为D 的正向边界曲线.定理:设函数(,),(,)P x y Q x y 在单连通区域D 内处处具有连续的偏导数,则下列命题相互等价: (1)沿D 内任意闭曲线C ,(,)(,)C P x y dx Q x y dy 0 ;(2)(,)(,)L P x y dx Q x y dy 在D 内与路径无关;(3)(,)(,)P x y dx Q x y dy 在D 内为某函数(,)u x y 的全微分,即存在函数(,)u x y ,使得du Pdx Qdy ; (4)在D 内恒有:P Qy x. 这里(,)u x y 可由下列两种方法求得:①线积分法:00(,)(,)(,)(,)(,)x y x y u x y P x y dx Q x y dy C ;选取特殊路径,一般是折线路径. ②偏积分法:由du Pdx Qdy ,得(,)uP x y x; 两边对x 求偏积分可得(,)(,)(,)()u x y P x y dx f x y C y两边对y 求偏导可得(,)()y u f x y C y y ,再由(,)uQ x y y,可解得()C y ,从而得(,)u x y . (四)曲面积分1.第一类曲面积分(对面积)设:(,)z z x y ,(,)xy x y D,则(,,)[,,(,)]xyD I f x y z dS f x y z x y2.第二类曲面积分(对坐标):(,,)(,,)(,,)I P x y z dydz Q x y z dzdx R x y z dxdy(1)高斯(Gauss)公式:(P Q RPdydz Qdzdx Rdxdy dxdydz x y z若不闭则补之,一般补平面.注意条件:偏导数处处连续及方向性: 为 的整个边界曲面的外侧. (2)投影法:注意垂直性, 垂直于被投影面,则积分为零.若不垂直,则(,,):(,)[(,),,]yzD P x y z dydz x x y z P x y z y z dydz【前正后负】(,,):(,)[,(,),]zxD Q x y z dzdx y y z x Q x y z x z dzdx【右正左负】(,,):(,)[,,(,)]xyD R x y z dxdy z z x y R x y z x y dxdy【上正下负】(2)化为第一类曲面积分:(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS注意事项1) 线和面积分的第一类的与方向无关,第二类的与方向有关2) 曲线与曲面积分可以将曲线或曲面方程代入被积函数,重积分一定不能代入3) 非封闭曲线上的第二类曲线积分的计算常用格林公式:先补辅助线,注意曲线方向与已知曲线一致;一般补折线4) 非封闭曲面上的第二类曲面积分的计算常用高斯公式:先补辅助面,辅助面的设定要有三个元素,分别是方程、侧和范围(即投影区域);注意侧要保证一致对外或一致对内 5) 积分的实际意义1. 定积分:曲边梯形的面积、旋转体的体积、曲线长度、直线质量、恒力沿直线作功2. 二重积分:曲顶柱体的体积、平面质量3. 三重积分:立体质量4.第一类曲线积分:曲线质量5. 第二类曲线积分:变力沿曲线作功6. 第一类曲面积分:曲面质量7.第二类曲面积分:变速度流体流过曲面的流量五、级数(一)常数项级数及其收敛性1.定义:1n n u收敛(发散) lim n n s 存在(不存在)【部分和12n n s u u u 】2.基本性质:(1)1(0)n n ku k 与1n n u具有相同的敛散性;(2)1n n u 与1n n v 都收敛 1()n n n u v收敛;(3)改变有限项的值不影响级数的敛散性; (4)收敛的级数可以任意加括号; (5)若1n n u收敛,则lim 0n n u ;反之未必; (6)若lim 0n n u,则1n n u发散.3.特殊级数的收敛性【必须牢记之】:①调和级数11n n发散; 1111n n n 条件收敛;②p 级数11p n n :当1p 时收敛,当1p 时发散; 1111n pn n:1p 时绝对收敛,当1p 时条件收敛. ③等比级数(几何级数)0n n aq,当||1q 时发散,当||1q 时收敛,且0(||1)1n n aaq q q. 4.正项级数审敛法:1n n u,其中0(1,2,)n u nI、1n n u收敛 部分和n s 有界;II、比较审敛法:(1)()n n u v n N ,若1n n v 收敛,则1n n u收敛;(2)极限形式:lim(0)nn nu l l v ,1n n u 和1n n v 具有相同的敛散性; 若0l ,则1n n v收敛,1n n u也收敛;若l , 1n n v发散,1n n u也发散. 【可利用无穷小的比较记忆】III、比值(根值)审敛法:1lim)n n n nu u ,当1 时收敛;当1() 时发散;而当1时用此法不能判定其收敛性,转而用II 或I.5.交错级数 1(1)(0,1,2,)n n n n u u n:一般项绝对值{}n u 单调递减趋于零.6.任意项级数 1n n u(n u 为任意常数):综合以上各方法来判断发散或收敛(绝对收敛,条件收敛)(二)幂级数 0()nn n n n u x a x或00()n n n a x x1.收敛半径: (1)若0n a 【不缺项】:1lim (lim n n n n a a ,,01,00,R (2)若缺项:如200()n n n n n u x a x ,由1()lim1()n n n u x u x ,解得收敛区间. 2.收敛域:先求收敛半径R ,可得收敛区间(,)R R ,再讨论端点x R 处的收敛性可得所求的收敛域3.幂级数和函数的求法:先求收敛域,再利用幂级数的运算性质(加减乘除四则运算,逐项求导,逐项积分,和函数的连续性)以及换元法,然后代已知的展开式,可得所求的和函数. 注:主要参照等比级数4.函数展开成幂级数 00()()n n n f x a x x()x I1)直接展开法:【利用泰勒展开定理】求导数得系数,写出泰勒级数,求其收敛域,最后记得判定余项趋于零,便可得到所求的展开式.2)间接展开法:利用幂级数的运算性质(加减乘除四则运算,逐项求导,逐项积分)以及换元法,然后代已知的展开式,可得所求的展开式.注:了解以下6个常用的展开式(重点是前两个): ①01(||1)1n n x x x 、01(1)(||1)1n n n x x x ; ②0(||)!n x n x e x n ③210sin (1)(||)(21)!n n n x x x n ; ④20cos (1)(||)(2)!nn n x x x n⑤10ln(1)(1)(11)1n nn x x x n ⑥1222(1)(1)(1)(1)112!!m n n n m m m m m m m m n x C x C x C x mx x x n (三)傅里叶级数:只列举2T 情形,一般周期2T l 类似.1.傅里叶级数展开式:01()(cos sin )2n n n a f x a nx b nx 2.傅里叶系数: 1()cos (0,1,2,)n a f x nxdx n ,1()sin (1,2,)n b f x nxdx n(1)当()f x 为奇函数时,00(0,1,22()(1,2,3)n n a n b f x sinnxdx n) 此时级数变为1n n b sinnx ,称为正弦级数 (2)当()f x 为偶函数时,02()(0,1,20(1,2,3)n n a f x cosnxdx n b n ) 此时级数变为01cos 2n n a a nx ,称为余弦级数 3、收敛性条件:在一个周期内(1)处处连续或只有有限个第一类间断点;(2)只有有限个极值点.4、和(函数): 01(cos sin )2n n n a a nx b nx ()()()()()2f x x f x f x f x x f x 为的连续点为的间断点 5.函数展开成傅里叶级数的题型(1)若()f x 为2T 的周期函数,则对()f x 验证收敛定理的条件,求出()f x 的间断点,利用收敛定理,写出()f x 的傅里叶级数的收敛性,再求出傅里叶系数,最后写出所求的傅里叶级数展开式.注意:必须写出展开式成立的范围,在展开式不成立的点(必为间断点)必须指明傅里叶级数的收敛性.(2)若()f x 只在[,] 上有定义,则必须对()f x 进行周期延拓,然后对周期延拓后所得的函数()F x 的傅里叶级数展开式限制在[,] 上讨论.(3)若()f x 只在[0,] 上有定义,对()f x 进行奇(偶)周期延拓,可得正弦(余弦)级数.。
同济大学高数第七版教案
一、教学目标1. 知识目标:(1)掌握函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、微分方程等基本概念;(2)理解并掌握极限、导数、积分等基本运算方法;(3)了解数学在工程、科学等领域的应用。
2. 能力目标:(1)培养逻辑思维能力和分析问题的能力;(2)提高解决实际问题的能力;(3)提高自学能力和团队合作能力。
3. 情感目标:(1)激发学生对高等数学的兴趣和热情;(2)培养学生严谨、求实的科学态度;(3)培养学生的创新精神和团队协作精神。
二、教学内容1. 函数与极限2. 导数与微分3. 微分中值定理与导数的应用4. 不定积分5. 定积分及其应用6. 微分方程三、教学重点与难点1. 教学重点:(1)函数与极限的基本概念;(2)导数与微分的基本概念;(3)不定积分与定积分的基本概念;(4)微分方程的基本概念。
2. 教学难点:(1)极限的运算法则;(2)导数与微分的应用;(3)不定积分与定积分的应用;(4)微分方程的求解方法。
四、教学方法1. 讲授法:讲解基本概念、基本理论,引导学生理解、掌握;2. 例题法:通过例题讲解,帮助学生理解和应用所学知识;3. 习题法:布置课后习题,让学生巩固所学知识,提高解题能力;4. 讨论法:组织课堂讨论,激发学生思维,培养团队合作精神。
五、教学过程1. 导入新课:介绍本节课的学习内容,激发学生学习兴趣。
2. 讲解新知识:(1)函数与极限:讲解函数、极限、连续性等基本概念,并举例说明;(2)导数与微分:讲解导数、微分等基本概念,并举例说明;(3)微分中值定理与导数的应用:讲解微分中值定理,并举例说明导数在求解实际问题中的应用;(4)不定积分:讲解不定积分的概念、基本方法,并举例说明;(5)定积分及其应用:讲解定积分的概念、基本方法,并举例说明定积分在求解实际问题中的应用;(6)微分方程:讲解微分方程的基本概念、解法,并举例说明。
3. 课堂练习:布置课后习题,让学生巩固所学知识。
《高等数学》(同济七版)第二章:导数与微分
《高等数学》(同济七版)第二章:导数与微分江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则A BA C →→的最小值为()A .14- B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB,OC 表示其它向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(
B. D.
).
1− x 0 1− z
A. C.
dx dy
0 0
1
1
1
0
f ( x, y, z )dz
1− x − y 0
dx
0
1
dy
1− x − y
0
f ( x, y, z )dz f ( x, y, z )dz
1
0
dx
1− y
0
dy
f ( x, y, z )dz
(
B. D.
).
dy 2 dx
0 1 1− x − 2 y 3 0
A. C.
1
0 1
dy 2 dx 3 f ( x, y, z )dz
0 0
1
1
1
0 1
f ( x, y, z )dz f ( x, y, z )dz
0
dx
1− x 2 0
dy
x
1− x − 2 y 3 0
2
1
0
dy
2 (1− x − y )
0
f ( x, y, z )dz f ( x, y, z )dz
dx dy
0
f ( x, y, z )dz
dx
1− y
0
dy
2 (1− x − y )
0
已知 ( x + 2 y ) dx + ( ax + y ) dy 为某个二元函数的全微分,则 a 等于 B.
点 A( , 0) 到点 O (0, 0) 的曲线段 y = sin x .
u = x
(
).
D.f ( g ( xyz )) yz
C.f ( g ( xyz )) g ( xyz ) yz
3 .设 z = z ( x, y ) 是由方程 F ( x + y − z , x + y + z , x − y − z ) = 0 确定的函数且 F 可微,则
z = x
2 2 2
L
zdx + xdy + ydz =
.
.
11.曲面 x + y + z = 9 在点 (1,2,2) 处的切平面方程为
12. z = xy 在点 (1, 2) 处沿方向 l = (
2
2 2 , ) 的方向导数为 2 2
.
13.
x 2 + y 2 1
( x + y)dxdy
1 0
=
xy
(
).
D. 3e
6 . 设 D 是 由 半 圆 y = 1 − x 2 与 x 轴 所 围 区 域 , D1 是 D 在 第 一 象 限 的 部 分 , 则
( y sin x
D
2
+ x 3 sin y 2 )dxdy =
(
).
B. 2
A. 0 C. 2
y sin x dxdy
2 D1
2.求二元函数 f ( x, y ) = e (2 x − y ) 的极值.
x 2 2
第 5 页
3.计算二重积分
x2 + y 2 dxdy ,其中 D 是由曲线 x 2 + y 2 = 4 所围成的有界闭区域. 2 2 1 + x + y D
4. z = z ( x, y ) 是由方程 e
xz
(
).
A. 0
1 2
C.1
D. 2
二.填空题(本大题共 6 小题,每小题 3 分,共 18 分) ,请在每小题的空格中填上正确答案, 错填、不填均无分. 1.设 z = e x ,则
2
y
2 z = xy
2 2
.
2.曲面 3 x − 2 y + z + 4 = 0 在点 (1, 2,1) 处的切平面方程为 3. z = e y 在点 (1,1) 处沿 (1,1) 到 (2,3) 的方向导数为
2
(
( x + y ln x)
).
C. x (1 + y ln x)
y
A. x
y −1
(1 + y ln x)
B. x
y −1
D. x ( x + y ln x)
y
10.设 z = arctan A. dx + dy C. −
y ,则 dz (0,1) = 1+ x
(
).
B. dx − dy D.
1 1 dx + dy 2 2
(
).
第 1 页
A.若 f xx ( x0 , y0 ) 0 且 f yy ( x0 , y0 ) 0 ,则 f ( x0 , y0 ) 为极大值;
B.若 f xx ( x0 , y0 ) 0 且 f yy ( x0 , y0 ) 0 ,则 f ( x0 , y0 ) 为极小值; C.若 f xx ( x0 , y0 ) 0 且 f yy ( x0 , y0 ) 0 ,则 f ( x0 , y0 ) 非极值; D.若 f xx ( x0 , y0 ) 0 且 f yy ( x0 , y0 ) 0 ,则 f ( x0 , y0 ) 非极值; 5.三元函数 f ( x, y, z ) = e z 在点 (1,1,1) 处的梯度为 A. ei + e j − ek B. ei + e j + ek C. e
1
0
dx
0
ydy
1− x − y
0
15. I = ( x + y )ds 其中 L 为连接 (0, 0) 及 (1,1) 二点的直线段,则 I =
L
(
D. 2
).
A. 0
B. 1
C.
2 2
z y = ( x x y y y A. f 1 ( x + 2 y, ) + f 2 ( x + 2 y, ) x x x y y y C. 2 f 1 ( x + 2 y, ) − 2 f 2 ( x + 2 y, ) x x x
16. z = f ( x + 2 y, ) ,则 17.对于二元函数下列结论正确的是 A.偏导存在一定连续
).
B .
y y y f1 ( x + 2 y, ) − 2 f 2 ( x + 2 y, ) x x x y y y D. 2 f 1 ( x + 2 y, ) + 2 f 2 ( x + 2 y, ) x x x
2
0 1
f (r 2 )rdr
2 0
d f (r 2 )dr
0
1
2 0
d f (r 2 )rdr
0
14.设 是由平面 x = 0 , y = 0 , z = 0 以及平面 x + y + z = 1 所围成的有界闭区域,且
f ( x, y, z ) 在 上连续,则 f ( x, y, z )dv =
x
D1
3
sin y dxdy
2
D. 2
( y sin x
D1
2
+ x 3 sin y 2 )dxdy
7 . 设 是 由 x = 0 , y = 0 , z = 0 以 及 x + 2 y + 3z = 1 所 围 成 的 有 界 闭 区 域 , 且
f ( x, y, z ) 在 上连续,则 f ( x, y, z )dv =
A.
(
− F1 + F2 − F3 F1 + F2 + F3
).
B.
− F1 + F2 − F3 − F1 − F2 − F3
C.
F1 + F2 + F3 − F1 + F2 − F3
D.
− F1 − F2 − F3 − F1 + F2 − F3
4.设点 ( x0 , y0 ) 为 f ( x, y ) 的驻点,其中 f 连续且一阶、二阶连续可偏导,则下列结论正 确的是
.
14.交换积分次序
dx
1
x
f ( x, y )dy =
.
15.设 L 为从 (0,0) 到 (1,1) 的直线段,则 xds =
L
.
三.计算题(本大题共 8 小题,每小题 6 分,共 48 分) .
2 y 1.设 z = x f ( xy , ) + xe ,其中 f 可微,求
x y
z z , . x y
2 2
7. u = xy 在点 (1, 2) 处沿方向 l = (
2 2 , ) 的方向导数为 2 2
.
8.
x 2 + y 2 1
( y x + x y )dxdy =
.
9.交换积分次序
dy
0
1
1 y
f ( x, y )dx =
.
10.设 L 为从 (0, 0, 0) 到 (1,1,1) 的直线段,则
1 1 dx + dy 2 2
第 2 页
xy x2 + y 2 0 2 2 11.对于函数 f ( x, y ) = x + y ,则下列结论正确的是 2 2 0 x +y =0
A.在 (0, 0) 处偏导存在 且 f x (0, 0) = f y (0, 0) = 0 C.在 (0, 0) 处可微 12.二元函数 f ( x, y ) = x + xy + 1