《函数的极值与导数(一)》课件

合集下载

函数的极值与导数 课件

函数的极值与导数    课件
【例2】 已知f(x)=x3+3ax2+bx+a2在x=-1处取极值0,求常数a,b的值.
分析:求f'(x)→建立关于a,b的方程组→求解a,b→将a,b代入原函
数验证极值情况→根的取舍
解:因为f(x)在x=-1时有极值0,
'(-1) = 0,
且 f'(x)=3x +6ax+b,所以
(-1) = 0,
(7)如果函数f(x)在[a,b]上有极值,那么它的极值点的分布是有规
律的.相邻两个极大值点之间必有一个极小值点,同样,相邻两个极
小值点之间必有一个极大值点.一般地,当函数f(x)在[a,b]上连续且
有有限个极值点时,函数f(x)在[a,b]上的极大值点、极小值点是交
替出现的.
2.如何求f(x)的极值?
f'(x)
+
0
f(x)


1
e
故当 x=e 时函数取得极大值,且极大值为 f(e)= , 函数无极小值.
反思求函数的极值应注意以下几点:
(1)在讨论可导函数f(x)在定义域内的极值时,若方程f'(x)=0的实
根较多时,应注意使用表格,使极值点一目了然.
(2)讨论函数的性质要遵循定义域优先的原则.
已知极值求参数
所以当x∈(-∞,-3)时,f(x)为增函数;
当x∈(-3,-1)时,f(x)为减函数;
当x∈(-1,+∞)时,f(x)为增函数.
所以f(x)在x=-1时取得极小值,
因此a=2,b=9.
极值的综合运用
【例3】 求函数f(x)=x3-3x2-a(a∈R)的极值,并讨论a为何值时函数
f(x)恰有一个零点.

《导数和极值》课件

《导数和极值》课件

反函数的导数
若$f'(x) neq 0$,则反 函数在相应点的导数为
$frac{1}{f'(x)}$。
高阶导数
二阶导数
二阶导数表示函数图像的弯曲程度, 即函数在某点的切线斜率的斜率。
三阶导数
高阶导数的计算方法
通过连续求导,直到得到所需的高阶 导数。高阶导数的计算在研究函数的 极值、拐点、曲率等方面具有重要意 义。
导数的几何意义
总结词
导数的几何意义是切线的斜率,即函数图像上某一点处切线 的斜率。
详细描述
导数的几何意义是切线的斜率。在函数图像上,任意一点的 切线斜率即为该点的导数值。导数越大,表示函数在该点附 近上升或下降得越快;导数越小,表示函数在该点附近变化 得越慢。
导数的物理意义
总结词
导数的物理意义是速度和加速度,可以用于描述物理量随时间的变化率。
05 导数和极值的应用
导数在几何中的应用
切线斜率
导数在几何中常用于求曲 线的切线斜率,从而研究 曲线的形状和变化趋势。
函数单调性
通过导数可以判断函数的 单调性,对于研究函数的 极值和最值问题具有重要 意义。
极值判定
导数在几何中还可以用于 判定函数的极值点,从而 确定函数的最值。
导数在物理中的应用
详细描述
导数在物理中有重要的应用,它可以描述物理量随时间的变化率。例如,速度是 位移对时间的导数,加速度是速度对时间的导数。通过导数,可以分析物理现象 的变化规律和动态特性。
02 导数的计算
导数的基本公式
01
02
03
04
ቤተ መጻሕፍቲ ባይዱ
一次函数导数
对于函数$f(x) = ax + b$, 其导数为$f'(x) = a$。

《函数的极值和导数》课件

《函数的极值和导数》课件

Part
05
导数的计算方法
导数的四则运算规则
01
加法法则
$(uv)' = u'v + uv'$
02
减法法则
$(u-v)' = u'-v'$
03
乘法法则
$(uv)' = u'v + uv'$
04
除法法则
$left(frac{u}{v}right)' = frac{u'v-uv'}{v^2}$
复合函数的导数计算
最小成本问题
总结词
利用极值理论寻找最小成本
详细描述
在生产和经营活动中,也常常需要寻求最小成本。通过建立数学模型,利用函数的极值和 导数,可以找到使得成本最小的生产量、原材料采购量等决策变量。
实例
某公司需要采购原材料,每次采购的成本包括固定成本5万元和变动成本与采购量的比例 系数0.1万元/单位。求该公司的最小总成本。通过建立函数并求导,可以找到使得总成本 最小的采购量。
Part
03
极值在实际问题中的应用
最大利润问题
01
总结词
利用极值理论寻找最大利润
02 03
详细描述
在生产和经营活动中,常常需要寻求最大利润。通过建立数学模型,利 用函数的极值和导数,可以找到使得利润最大的生产量、价格等决策变 量。
实例
某公司生产一种产品,其固定成本为100万元,每生产一个单位的产品 ,成本为2万元,售价为5万元。求该公司的最大利润。通过建立函数并 求导,可以找到使得利润最大的产量。
Part
04
导数的几何意义
导数在平面上的表示
切线斜率

函数的极值与导数 课件

函数的极值与导数 课件

[解析] ∵f(x)=-23ax3-x2+a2x2+2ax, ∴f ′(x)=-2ax2-2x+2a2x+2a =-2(ax2+x-a2x-a)=-2(x-a)(ax+1). 令f ′(x)=0,可得x=-1a或x=a.
若a>0,当x变化时,f ′(x),f(x)的变化情况如下表:
x
(-∞,-1a) -1a (-1a,a)
[方法规律总结] 若函数f(x)的解析式中含有参数,参数的 取值变化可能影响函数f(x)的单调区间与极值,求单调区间与 极值时应注意分段讨论.
注意极大值点与极小值点的区别
已知f(x)=x3+3ax2+bx+a2在x=-1时有极值 0,求常数a、b的值.
[错解] 因为 f(x)在 x=-1 时有极值 0,且 f ′(x)=3x2+ 6ax+b.
函数的极值与导数
函数的极值与导数的关系
思维导航
在函数的图象上,有的点左、右两侧函数的单调性相同, 有的点左、右两侧的单调性相反,有些情形下左增右减,在些 情况下左减右增,这些点对研究函数有何特殊意义?
新知导学
1.如图是函数y=f(x)的图象,在x=a邻.近.的左侧f(x)单调 递增,f′(x)___>_____0,右侧f(x)单调递减,f (x)__<______0, 在x=a邻近的函数值都比f(a)小,且f′(a)__=______0.在x=b邻 近情形恰好相反,图形上与a类似的点还有_(c_,__f_(c_)_)____,(e, f(e)),与b类似的点还有__(d_,__f_(_d_))____.
x
(-∞,a)
a
(a,-1a) -1a (-1a,+∞)
f ′(x)

0

0

函数的极值与导数 课件

函数的极值与导数 课件
讨论f(1)和f(-1)是函数f(x)的极大值还是极小值.
解析:f′(x)=3ax2+2bx-3, 所以 f′(1)=f′(-1)=0,即33aa+-22bb--33==00,, 解得 a=1,b=0.
所以 f(x)=x3-3x, f′(x)=3x2-3=3(x+1)(x-1). 令 f′(x)=0,得 x=-1 或 x=1, 若 x∈(-∞,-1)∪(1,+∞),则 f′(x)>0, 所以 f(x)在(-∞,-1)和(1,+∞)上是增函数, 若 x∈(-1,1),则 f′(x)<0,
所以f(x)在(-1,1)上是减函数,
所以f(-1)=2是极大值,f(1)=-2是极小值.
点评:对于求含参数函数的极值问题,若参数对函 数的单调性(即导数的正负)有影响则需对参数分类讨 论,否则不用讨论参数.
题型3 函数极值的应用 例3 已知a为实数,函数f(x)=-x3+3x+a. (1)求函数f(x)的极值; (2)当a为何值时,方程f(x)=0恰好有两个实数根?

0

y

极大值-61 ↘ 极小值-31

∴当 x=1 时,f(x)有极大值,且极大值为 f(1)=-16; 当 x=2 时,f(x)有极小值,且极小值为 f(2)=-31. 点评:求可导函数 f(x)的极值的方法: (1)求导数 f′(x); (2)求方程 f′(x)=0 的所有实数根;
(3)对每个实数根进行检验,判断在每个根的左右侧, 导函数 f′(x)的符号如何变化.
答案:2
题型1 求函数的极值 例1 求函数 f(x)=13x3-32x2+2x-1 的极值.
解析:f′(x)=x2-3x+2=(x-1)(x-2).
令 f′(x)=0,解得 x=1 或 x=2.

5.3.2函数的极值与导数课件(人教版)

5.3.2函数的极值与导数课件(人教版)

(3) f (x) 6 12x x3;
(4) f (x) 3x x3.
解:
(3) 令f ( x) 12 3x 2 0,解得 x1 2, x2 2.
所以, 当 x = –2 时, f (x)有极小值 – 10 ;
当 x = 2 时, f (x)有极大值 22 .
(4) 令f ( x) 3 3x2 0, 解得 x1 1, x2 1.
Ox
而x =0不是该函数的极值点.
f(x0) =0 x0 是可导函数f(x)的极值点
注意:f /(x0)=0是可导函数取得极值的必要不充分条件
请思考求可导函数的极值的步骤:
①求导数 f (x) ② 求方程 f (x) =0的根,这些根也称为可能极值点; ③ 检查 f (x) 在方程 f (x=) 0的根的左右两侧的
f (x) 单调递增
–3 (–3, 3)
0

54 单调递减
3 ( 3, +∞)
0
+
54 单调递增
所以, 当 x = –3 时, f (x)有极大值 54 ; 当 x = 3 时, f (x)有极小值 – 54 .
求下列函数的极值:
(1) f ( x) 6 x 2 x 2;
(2) f (x) x3 27x;
o
Q(x2,f(x2))
a x1 x2
x3 x4 b x
视察图像并类比函数的单调性与导数关系的研究 方法,看极值与导数之间有什么关系?
y
x x0左侧
x0 x(x) >0 f(x) =0 f(x) <0
f(x) 增
极大值 减
x x0左侧
x0 x0右侧
f(x) f(x) <0 f(x) =0 f(x) >0

函数的极值与导数 课件

函数的极值与导数 课件

4.极值点的分布规律 (1)函数f(x)在某区间内有极值,它的极值点的分布是有规律的, 相邻两个极大值点之间必有一个极小值点,同样相邻两个极小 值点之间必有一个极大值点. (2)当函数f(x)在某区间上连续且有有限个极值点时,函数f(x) 在该区间内的极大值点与极小值点是交替出现的.
5.函数在极值点附近切线斜率的变化规律 从曲线的切线角度看,曲线在极值点处切线的斜率为0,并且,曲 线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点 左侧切线的斜率为负,右侧为正.
【知识点拨】 1.对极值概念的两点说明 (1)函数的极值是一个局部性的概念,是仅对某一点的左右两侧 区域而言的.极值点是区间内部的点而不会是端点. (2)若f(x)在某区间内有极值,那么f(x)在某区间内一定不是单 调函数,即在区间上单调的函数没有极值.
2.函数极大值与极小值的关系 函数的极大值与极小值没有必然的大小关系,即极大值不一 定比极小值大,极小值不一定比极大值小.
3.极值点与导数为零的关系 (1)可导函数的极值点是导数为Байду номын сангаас的点,但是导数为零的点不 一定是极值点,即“点x0是可导函数f(x)的极值点”是 “f′(x0)=0”的充分不必要条件. (2)可导函数f(x)在点x0处取得极值的充要条件是f′(x0)=0, 且在x0左侧和右侧f′(x)的符号不同. (3)如果在x0的两侧f′(x)的符号相同,则x0不是f(x)的极值点.
函数的极值与导数
一、函数极值的有关概念 1.极小值点与极小值: (1)函数特征:函数y=f(x)在点x=a的函数值f(a)比它在点x=a 附近其他点的函数值_都__小__,且f′(a)=0.
(2)导数符号:在点x=a附近的左侧f′(x)_<__0, 右侧f′(x)_>__0. (3)结论:_点__a_叫做函数y=f(x)的极小值点,_f_(_a_)_叫做函数 y=f(x)的极小值.

《函数的极值与导数》课件

《函数的极值与导数》课件
极大值和极小值是极值的 两种分类,取决于导数的 变化情况。
应用示例
求函数的极值
通过求导和分析导数的变化,可以确定函数的极值 点和对应的极值。
求解实际问题
将实际问题转化为数学模型,并通过求导求解极值 来得到最优解。
端点的极值
函数定义域的端点如果存在极值,则称为端点描述函数在某一点处 的变化率,即函数曲线在 该点的切线斜率。
2 导数的意义
导数可以帮助我们分析函 数的变化趋势和特征,以 及确定函数的极值。
3 导数的符号表示
通常用f'(x)、dy/dx或y'来 表示函数f(x)的导数。
2
得到一些常见函数的导数表达式。
利用导数的性质,可以对复杂函数进行
四则运算的求导。
3
导数的链式法则
对复合函数求导时,可以使用链式法则 进行求导。
极值的判定
1 极值的必要条件
函数在极值点处的导数为 零或不存在。
2 极值的充分条件
当函数在极值点的导数发 生变号时,即可判断该点 为极值的充分条件。
3 极值的分类
导数与函数的关系
导数刻画函数的变化 趋势
导数的正负性可以描述函数的 单调性和变化趋势。
导数判断函数的单调 性
函数在导数大于零的区间上单 调递增,在导数小于零的区间 上单调递减。
极值与导数的关系
极值出现的地方,导数为零或 不存在。
导数的计算
1
基本导数公式
根据函数的基本性质和求导法则,可以
导数的四则运算
《函数的极值与导数》 PPT课件
欢迎来到《函数的极值与导数》PPT课件!本课程将带你深入了解函数的极值 和导数的概念,以及它们之间的关系。准备好迎接这趟知识之旅了吗?让我 们开始吧!

第3讲导数与函数的极值最值课件共83张PPT

第3讲导数与函数的极值最值课件共83张PPT

2.导数与函数的最值 (1)函数 f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数 y=f(x)的图象是一条 07 ___连__续__不__断___的曲线, 那么它必有最大值和最小值. (2)求 y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数 y=f(x)在(a,b)上的 08 _极__值___. ②将函数 y=f(x)的各极值与 09 __端__点__处__的__函__数__值__f(_a_)_,__f(_b_)_比较,其中 10 __最__大__的一个是最大值, 11 _最__小___的一个是最小值.
即 2x+y-13=0.

(2)显然 t≠0,因为 y=f(x)在点(t,12-t2)处的切线方程为 y-(12-t2)=
-2t(x-t),

x=0,得
y=t2+12,令
y=0,得
t2+12 x= 2t ,
所以 S(t)=12×(t2+12)·t2+2|t1| 2.
不妨设 t>0(t<0 时,结果一样),
例 1 (2021·南昌摸底考试)设函数 f(x)在 R 上可导,其导函数为 f′(x), 且函数 y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数 f(x)有极大值 f(2)和极小值 f(1) B.函数 f(x)有极大值 f(-2)和极小值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) D.函数 f(x)有极大值 f(-2)和极小值 f(2)
单调递减,所以 x=1 是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1
或 x=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-1<a<0.综合①②

函数的极值与导数同步课件

函数的极值与导数同步课件

探究点三 函数极值的综合应用 例3 设函数f(x)=x3-6x+5,x∈R.
(1)求函数f(x)的单调区间和极值; (2)若关于x的方程f(x)=a有三个不同的实根,求实数a的 取值范围. 解 (1)f′(x)=3x2-6,令f′(x)=0, 解得x1=- 2,x2= 2. 因为当x> 2或x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0. 所以f(x)的单调递增区间为(-∞,- 2)和( 2,+∞); 单调递减区间为(- 2, 2).
当 x=- 2时,f(x)有极大值 5+4 2; 当 x= 2时,f(x)有极小值 5-4 2. (2)由(1)的分析知 y=f(x)的图象的大致 形状及走向如图所示. 所以,当 5-4 2<a<5+4 2时, 直线 y=a 与 y=f(x)的图象有三个不 同的交点, 即方程 f(x)=a 有三个不同的实根.
x f′(x) f(x)
(-∞,-1) -1 (-1,3) 3 (3,+∞)

Байду номын сангаас
0-
0

10
-22
由表可知:当x=-1时,f(x)有极大值f(-1)=10. 当x=3时,f(x)有极小值f(3)=-22.
小结 求可导函数f(x)的极值的步骤 (1)确定函数的定义区间,求导数f′(x); (2)求方程f′(x)=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干 个小开区间,并列成表格.检测f′(x)在方程根左右两侧的 值的符号,如果左正右负,那么f(x)在这个根处取得极大 值;如果左负右正,那么f(x)在这个根处取得极小值;如果 左右不改变符号,那么f(x)在这个根处无极值.
探究点一 函数的极值与导数的关系 问题1 如图观察,函数y=f(x)在d、e、f、g、h、i等点处

函数的极值与导数 课件

函数的极值与导数   课件

又x=-1时,f(x)取得极大值7, ∴f(-1)=-1-3+9+c=7. ∴c=2. y极小值=f(3)=33-3×32-9×3+2=-25. 故所求的极小值为-25,a=-3,b=-9,c=2.
题型三 综合应用 例 3 已知函数 f(x)=3ax4-2(3a+1)x2+4x. (1)当 a=16时,求 f(x)的极值; (2)若 f(x)在(-1,1)上是增函数,求 a 的取值范围. 分析 本题考查求导法则及导数的应用,考查应用分类 讨论的数学思想解决数学问题的能力.
3.极值:极小值点、极大值点统称为________,极大 值、极小值统称为________.
1.函数的极小值点 答
2.函数的极大值点 案
3.极值点 极值
函数的极小值 函数的极大值
1.理解极值概念时需注意的几点 (1)函数的极值是一个局部性的概念,是仅对某一点的左 右两侧附近的点而言的. (2)极值点是函数定义域内的点,而函数定义域的端点绝 不是函数的极值点.
题型二 已知函数的极值求参数的值 例2 已知f(x)=x3+ax2+bx+c,当x=-1时取得极大值 7,x=3时取得极小值.求极小值及对应的a,b,c的值. 分析 根据已知条件寻找等量关系,列出方程,求a, b,c,确定f(x)后再求极小值.
解 依题意有:f′(-1)=0,f′(3)=0, 又f′(x)=3x2+2ax+b, ∴32-7+2a6+a+b=b=0,0, 解得ab==--39,. ∴f(x)=x3-3x2-9x+c.
(5)若函数f(x)在[a,b]上有极值,它的极值点的分布是有 规律的(如图所示),相邻两个极大值点之间必有一个极小值 点,同样相邻两个极小值点之间必有一个极大值点.
2. 求极值点的一般步骤 (1)求出导数f′(x); (2)解方程f′(x)=0; (3)对于方程f′(x)=0的每一个解x0,分析f′(x)在x0左、 右两侧的符号(即f(x)的单调性),确定极值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于e点 函数y=f(x)在点x=e的函数值f(e)比在其附
近其他点的函数值都大,f (e) =0 。
我们把点e叫做函数y=f(x)的极大值点, f(e)叫做函数y=f()的极大值。 在点 x=e 附近的左侧 f (x) >0 在点 x=e 附近的右侧 f (x) <0
极值的定义
1、极大值:函数y=f(x)在点x=a处的函数值f(a) 比它在点x=a附近其他点的函数值都大.
(1)极值是某一点附近的小区间而言 的,是函数的局部性质,不是整体的最值; (2)函数的极值不一定唯一,在整个定义区间 内可能有多个极大值和极小值;
(3)极大值与极小值没有必然关系, 极大值可能比极小值还小.
y P(x1,f(x1))
y=f(x)
o
Q(x2,f(x2))
a x1 x2
x3 x4 b x
导数值为0的点一定是函数的极值点吗?
例如f (x) x3
可知f (x) 3x2,从而f (0) 0
y
y x3
但x=0不是函数的极值点
导数为零的点是 该点为极值点的必要条件, 而不是充分条件.
o
x
例题选讲:
求函数 f x 1 x3 4x 4 的极值
3
解: y x2 4 ( x 2)( x 2).
x5
x
x6
b
3、极大值一定大于极小值吗?
1、x=a和x=b可以是极值点吗?
y
y f (x)
a x0 x1 O x2 x3 x4
x5
x
x6
b
1、x=a和x=b可以是极值点吗?
注意:1、函数在点a及其附近有定义;
y
y f (x)
a x0 x1 O x2 x3 x4
x5
x
x6
b
2、在定义域内可导函数的极值点 是唯一的吗?
函数的极值与导数(一)
复习: 单调性与导数的关系:
设函数y=f(x)在某个区间内可导,
•如果f ′(x)>0,则f(x)为增函数; •如果f ′(x)<0,则f(x)为减函数;
•如果f ′(x)=0,则f(x)为常数函数;
知识建构
跳水运动中,运动员相对于水面的高度 h(单位:米)与起跳后的时间t(单位:秒) 存在函数关系
x0 x0右侧
f(x) f(x) >0 f(x) =0 f(x) <0
oa
y
x0 b x
f(x) 增
极大值 减
x x0左侧
x0 x0右侧
f(x) f(x) <0 f(x) =0 f(x) >0
o a x0 b x
f(x) 减
极小值 增
左正右负为极大,右正左负为极小
•导数为0的点不一定是极值点;
•若极值点处的导数存在,则一定为0
f′(a)=0,且在 点x=a附近的左侧f′(x)>0, 右侧f′ (x)<0
我们就说f(a)是函数 y=f(x)的一个极大值. 点a叫做极大值点.
y
f′ (x)>0
f′(a)=0 f′(x)<0
x a
2、极小值:函数y=f(x)在点x=b的函数值f(b) 比它在点x=b附近其他点的函数值都小,
f′(b)=0,且在点x=b附近的左侧
当x变化时,f (x), f(x)的变化情况如下表;
x (-∞,-2) f (x) + f(x) 单调递增↗
-2 (-2,2)
h(t)=-4.9t 2+6.5t+10 h
其图象如右.
o
t
你能说出它的单调区间以及相应的导数的符号吗?
h(a) 0
单调递增
单调递减
h(t) 0
h(t) 0
h
oa
t
h'(x)先正后负
函数y=f(x)在d,e两点的函数值与这两点附 近的函数值有什么关系?函数在d,e两点的导数 值是多少?在d,e两点附近,y=f(x)的导数的符 号有什么规律?
求函数极值(极大值,极小值)的一般步骤:
(1)确定定义域并求导;
(2)令f’(x)=0并求出方程的根;
(3)用方程f’(x)=0的根,顺次将函数的定义域分成
若干个开区间,并列成表格
(4)由f’(x)在方程f’(x)=0的根左右的符号,来判断
f(x)在这个根处取极值的情况
x0
左负右正为极小, 即“谷底” +
下图是函数 y f (x) 定义在区间[a,b]上的图象, 指出哪
些是极大值点, 哪些是极小值点.
y
y f (x)
a x0 x1 O x2 x3 x4
x5
x
x6
b
1、x=a和x=b可以是极值点吗?
2、在定义域内可导函数的极值点 是唯一的吗?
y
y f (x)
a x0 x1 O x2 x3 x4
y
o
abc d e f
gh x
先负后正
y
先正后负
o
abc d e f
gh x
对于d点 函数y=f(x)在点x=d的函数值f(d)比在其附 近其他点的函数值都小, f (d ) =0 。 我们把点d叫做函数y=f(x)的极小值点, f(d)叫做函数y=f(x)的极小值。
在点x=d 附近的左侧 f (x) <0 在点x=d 附近的右侧 f (x) >0
令 y 0,解得x1=-2,x2=2. 当x变化时, y,y的变化情况如下表:
x (-∞,-2) -2
(-2,2) 2
y’ +
0
-
0
y
↗ 极大值28/3 ↘ 极小值- 4/3
(2,+∞) + ↗
因此,当x=-2时有极大值,并且,y极大值=28/3; 而,当x=2时有极小值,并且,y极小值=- 4/3.
f′(x)<0,右侧f′(x)>0 y
我们就说f(b)是函数的
y=f(x)一个极小值. 点b叫做极小值点. f′(x)<0
f′ (x)>0
x
f′ (b)=0
b
极小值点、极大值点统称为极值点 极小值、极大值统称为极值
极值反映了函数在某一点附件的大小情况
如何判断f (x0)是极大值或是极小值?
y
x x0左侧
y
y f (x)
a x0 x1 O x2 x3 x4
x5
x
x6
b
注意: 2、极值是一个局部的性质,在整个 定义域内可能有多个极值点;
3、极大值一定大于极小值吗?
y
y f (x)
a x0 x1 O x2 x3 x4
x5
x
x6
b
注意: 3、极大值与极小值没有必然关系, 极大值可能比极小值还小.
注意:
-
左正右负为极大。 即“峰顶”
+
-
求导—求极点—列表—求极值 x0
练习1:求函数f(x)=x3-12x+12的极值。 解: f (x) =3x2-12=3(x-2)(x+2)
令 f (x) =0 得x=2,或x=-2 下面分两种情况讨论:
(1)当 f (x)>0即x>2,或x<-2时; (2)当 f (x)<0即-2<x<2时;
相关文档
最新文档