雷电电磁脉冲防护分级计算方法
塔机防雷规范
根据IEC 61312 《雷电电磁脉冲的防护》、GB 50057-94 《建筑物防雷设计规范》、GB 50054-95 《低压配电设计规范》、JGJ/T 16-92《民用建筑电气设计规范》及GBJ 64-83《工业与民用电力装置的过电压保护设计规范》中防雷及过电压规范有关防雷分区的划分和各级电源系统雷电及过电压保护要求,针对现场勘察报告中关于配电系统的描述,将其分为三个防雷区分别加以考虑。
由于单级防雷可能会带来因雷电流过大而导致的泄流后残压过大或者保护能力不足引起的设备损坏。
因此选用电源系统多级保护,可防范从直击雷到操作浪涌的各级过电压的侵袭。
1、电源一级防护:设计依据依据GB 50057-94《建筑物防雷设计规范》第六章:防雷击电磁脉冲;第四节,第6.4.1至6412条LPZ0A、LPZ0B区对电涌保护器(SPD)的要求及GB 50054-95《低压配电设计规范》第四章:配电线路的保护中有关低压防雷的有关规定;参照JGJ/T 16-92《民用建筑电气设计规范》第13部分:电力设备防雷、第14 部分接地及安全以及GBJ 64-83《工业与民用电力装置的过电压保护设计规范》第五、六、八章;DL/T620-1997《交流电气装置的过电压保护和绝缘配合》第三章到第十章;DL/T621-1997 《交流电气装置的接地》第三章、第四章、第六章、第七章的部分条文。
设计说明依据《建筑物防雷设计规范》第六章:防雷击电磁脉冲第三节屏蔽、接地和等电位连接的要求:第6.3.4 条及第四节对电涌保护器和其他的要求:第 6.4.7条规定,在LPZOA或LPZ0B区与LPZ1区交界处,从室外引来的线路上安装SPD 当线路有屏蔽时,每个SPD 的雷电流按雷电流的幅值的30%考虑.本建筑物为二类防雷建筑物,首次雷电流幅值为150KA,电源线路为铠装埋地,TN-S配电模式,因此首次直击雷在低压配电线路上每线的分配电流为:在建筑物已安装合格的防直击雷措施后,有50%的雷电流通过引下线流入接地装置,因此每线分配电流为:150KA*50%*30%/4=5.6KA ,按《建筑物防雷设计规范》第六章:第四节:第6.4.7条要求每线标称放电电流不宜小于15KA。
交通银行中心机房雷电防护分级的确定
交通银行中心机房雷电防护分级的确定摘要:金融系统中心机房雷电防护对保护系统的业务正常运行具有非常重要的作用。
建筑物电子信息系统的雷电防护等级应按防雷装置的拦截效率划分为A、B、C、D四级,雷电防护等级应按以下方种之一划分:按建筑物电子信息系统所处环境进行雷击风险评估,确定雷电防护等级;按建筑物电子信息系统的重要性和使用性质确定雷电防护等级;此次雷电防护分级的确定是按建筑物电子信息系统所处环境进行雷击风险评估,确定交通银行中心机房雷电防护等级。
关键词:机房;雷电;分级;年预计雷击次数交通银行鞍山分行位于二一九路38号,主要经营办理人民币储蓄存款、贷款、结算业务,办理票据贴现、代理发行金融债券;代理发行、兑付、销售政府债券等。
中心机房位于3楼,总楼层14层。
中心机房配置交换机、路由器、光端机等;通讯线路有联通、电信通过电缆井敷设,铁通线路架空敷设,所有通讯线路全部采用光纤。
电源线路全部埋地敷设。
下面对交通银行中心机房做下一下雷电防护等级的确定。
一、建筑物及入户设施年预计雷击次数(N)的计算1、建筑物年预计雷击次数N1按下式计算N=k×Ng×Ae;k,校正系数,在一般情况下取1。
雷击大地的年平均密度Ng=0.024×Td1.3, Td,年平均雷暴日,根据当地气象局资料确定为30天。
与建筑物截收相同雷击次数的等效面积Ae计算,交通银行大楼为长方形,孤立楼体,长(L)、宽(W)、高(H )分别为53m、40m、60m。
Ae=[LW+2(L+W)H1/2(200-H)1/2+3.14H(200-H)] ×10-6=0.046所以N1=0.024×83.2×0.046=0.091次/年2、入户设施年预计雷击次数N2N2= Ng×Ae’=0.024×Td1.3(Ae1’+ Ae2’)次/年Ae1’—电源线缆入户设施的截收面积(km2)Ae1’—信号线缆入户设施的截收面积(km2)低压埋地电源电缆有效截收面积:2×ds×L×10-6埋地信号线有效截收面积:2×ds×L×10-6注1:L是线路从所考虑建筑物至网络的第一个分支点或相邻建筑物的长度,单位为m,最大值为1000m,当L未知时,应采用L=1000 m。
按雷击风险评估确定雷电防护等级
《建筑物电子信息系统防雷技术规范》学习辅导[摘要] 建筑物雷电环境风险评估计算,线路屏蔽、等电位和SPD参数选择等。
[关键詞] 雷电环境风险评估防雷接地防雷工程施工(福州350001)福建省防雷中心王燐藩雷电高电压以及雷电电磁脉冲侵入所产生的电磁效应、热效应都会对系统和设备造成干扰或永久性损坏。
建筑物安装防雷装置后,并非万无一失的。
只可能将雷电灾害降低到最低限度,减小设备遭受雷击损害的风险。
雷电防护工程设计的依据之一是雷电防护分级,其关键问题是防雷工程按照什么等级进行设计,而雷电防护分级的依据,就是对工程所处地区的雷电环境进行风险评估,按照风险评估的结果确定系统是否需要防护,需要什么等级的防护。
因此,雷电环境的风险评估是工程设计必不可少的环节。
雷电环境风险评估其目的是使防雷设计建立在科学的基础上,避免盲目性,保证防雷工程安全可靠,技术先进,经济合理。
雷击按雷击点可分为四种:1.雷击建筑物;2. 雷击建筑物附近大地;3.雷击入户服务设施;4. 雷击入户服务设施附近大地。
造成的损害有三种:1.由于接触和跨步电压造成生物触电;2.物理损害(如火灾、爆炸、机械损坏和化学品泄露等);3.电气和电子系统由于过电压而失效或故障。
一、按雷击风险评估确定雷电防护等级A.设:福州某小区新建筑物,高度51.05m,长度35m,宽度24.7m,年平均雷暴日数福州53天/a,该建筑物高压埋地线缆L= 500m,,低压埋地线缆L=200m,信号埋地线缆L=500m, ds=250 Ω·m。
新建筑物属智能建筑,计算该建筑物预计雷击次数及属第几类防雷建筑,并按雷击风险评估确定雷电防护等级。
答:1.建筑物年预计雷击次数N1应按下式确定:N 1=k×Ng×Ae(次/年),式中:N1---建筑物年预计雷击次数(次/年);k---校正系数;k=1、1.5、1.7、2.0(根据建筑物所处的不同地理环境取值)。
雷电保护区域的划分
根据IEC61312-1防雷分区的定义:将需要保护和控制雷击电磁环境的建筑物空间,从外部对内部划分为多个不同的雷电防护区域(LPZ),以规定各部分LPZ空间内的雷电电磁脉冲(LEMP)的强度变化的严重程度,以便采取不同的防护措施。
如附图所示,对于一个保护对象,从电磁兼容的角度出发,可由外到内分为几级保护区域,建筑物外部是直接雷击的区域,在这个区域内的设备最容易遭受损害,危险性最高,是暴露区域,称为0区。
而0区内的各类物体都可能遭到直接雷击,且电磁场没有衰减,属于完全暴露的不设防的直击雷防护区域称为LPZ0A区;各类建筑物(如天线、热泵机组)很少遭到直接雷击但本区电磁场没有衰减,属于充分暴露的直击雷防护区域称为LPZ0B区。
建筑物内部及电气设备不可能遭到直接雷击,流经各类设备导体的电流比LPZ0B区进一步减少,由于建筑物的屏蔽措施,其建筑物内部设备的金属外壳,所处的位置为非暴露区,可将其称为LPZ1区、LPZ2区,越往内部,危险程度越低,雷电过电压主要是沿线引入。
保护区的界面通过外部的防雷系统、建筑物的钢筋混凝土及金属外壳等构成的屏蔽层而形成的,电气通道以及金属管道等则通过这些界面。
1、保护区域的划分
◆雷电保护区LPZOA
该区内的各物体都可能遭受直接雷击,同时在该区内雷电产生的电磁场能自由传播,没有衰减。
◆雷电保护区LPZOB
该区内的各种物体在接闪器保护范围内,不会遭受直接雷击,但该区内的雷电电磁场因没有屏
蔽装置,雷电产生的电磁场也能自由传播,没有衰减。
◆雷电保护区LPZi(i=1,2,...)
当需要进一步减少雷电流和电磁场时,应引入后续防雷区,并按照需要保护的系统所需求的环
境选择后续防雷区的要求条件。
建筑物雷电防护等级计算
N1=k*Ng*Ae
校正系数K 扩大宽度D (米) 86.60254 等效面积 Ae(平方公 里) 0.03253899 雷击年均密度 Ng(平方公里 *a) 2.075665
年均雷暴日Td (d/a) 30.90
14.00
50.00
2.0
0.13508
入户设施年预计累计次数计算
序 低压架空电源电 高压架空电源电 号 缆长度L1(米) 缆长度L2(米) 0.00 2 有效截收面积 Ae1' 0.000000 500.00 有效截收面积 Ae2' 0.250000 低压埋地电源电 缆长度L3(米) 100.00 有效截收面积 Ae3' 0.050000 高压埋地电源电 架空信号线缆 缆长度L4(米) 长度L5(米) 0.00 有效截收面积 Ae4' 0.000000 500.00 有效截收面积 Ae5' 1.000000
NC=5.8*0.0316227766/C
各类因子之 和C 10.50 可接受的最 大年平均雷 击次数Nc 击次数Nc
0.01747
按防雷装置的拦截效率确定雷电防护等级
E=1-Nc/N
0.993946002
结论: 结论: 应该安装雷电防护装置
A级
建
建筑物年预计累计次数计算
序 号 1 建筑长度L (米) 35.00 建筑宽度W(米) 建筑高度H(米)
筑
物
雷
电
防
护
等
级
表
备 注
预计年雷击次数N1(次/a) 总预计年雷 击次数N 击次数N = N1+N2(次 /a) 蓝色单元格是 需要人工填写 的。无金属铠 装或带金属芯 线的光纤电缆, 其有效截收面 积Ae'为0。L是 线路从所考虑 建筑物至网络 的第一个分支 点或相邻建筑 物的长度,单 位为m,最大值 为1000m,当L 未知时,应采 用L=1000m
雷电电磁脉冲防护分级计算方法.doc
雷电电磁脉冲防护分级计算方法雷电过电压对电子设备的危害随着通信技术、计算机技术、信息技术的飞速发展,今日已是电子化时代,日益繁忙庞杂的事物通过高速电脑、自动化设备及通信发展得到井然有序、而这些敏感电子设备的工作电压却在不断降低,其数量和规模不断扩大,因而它们受到过电压特别是雷电袭击而受到损坏的可能性就大大增加,这是由于以雷击中心1.5km—2km范围内都可能产生危险过电压,损坏线路上设备;其后果可能使整个系统的运行中断,并造成难以估计的经济损失,雷电和浪涌电压成了电子化时代的一大公害。
防雷器就是在最短时间(纳秒级)内将被保护线路连入等电位系统中,使设备各端口等电位,同时释放电路上因雷击而产生的大量脉冲能量短路泄放到大地,降低设备各接口端的电位差,从而保护线路上用户的设备。
对系统设备而言,电源线路和信号线路是雷电袭击产生过电压并传导的两条主要通道,因此防雷器就分电源系统避雷器和信号系统防雷器。
防雷区域的划分一、LPZ0A区:本区内的各物体都可能遭到直接雷击和导走全部雷击电流;本区内的电磁场强度没有衰减。
二、LPZ0B区:本区内的各种物体不可能遭到大于所选滚球半径对应的雷电流直接雷击,但本区内的电磁场强度没有衰减。
三、LPZ1区:本区内的各种物体不可能遭到直接雷击,流经各导体的电流比LPZ0B区更小;本区内的电磁场强度可能衰减,这取决于屏蔽措施。
四、LPZn+1后续防雷区:当需要进一步减小流入的电流和电磁场强度时,应增设后续防雷区,并按照需要保护的对象所要求的环境去选择后续防雷区的要求条件。
注:n=1、2、......。
雷电电磁脉冲防护分级计算方法1.建筑物年预计雷击次数N:N=K·(0.024·Td1.3)·(Ae+Ae’)式中:K──校正系数,一般取1。
Td──年平均雷暴日Ae──建筑物截收相同雷击次数的等效面积(KM2)Ae’──建筑物入户设施的截收面积(电源线、信号线)2.等效面积Ae的计算当建筑物高度H<100M:D= [ H·(200-H)]1/2 (M)Ae=[L·W+2(L+W)·D+π·H(200-H)]·10-6 (KM2)式中:L,W ,H分别为建筑物的长,宽,高(米)。
雷电电磁脉冲及其防护
雷电电磁脉冲及其防护1 、雷电电磁脉冲的物理特性(1)物理特性从积雨云的密布到发生闪电,会出现三种物理现象。
①云中静止电荷产生的静电场,产生静电感应现象,地面及各种导体会产生感应电荷,呈观静电场的作用。
这种作用随着距离的增大而迅速减小,与距离的三次方成反比。
②积雨云中电荷的移动(包括闪电)会产生磁场,若磁场强度发生变化就会出现电磁感应现象,这就是感应场产生的作用。
这种作用随着距离的增大而减小较快,与距离的平方成反比。
③闪电发生时,会出现电磁波辐射。
这种辐射场也随距离增大而减小,但比较缓慢,它与距离的一次方成反比。
除了注意上述三种物理现象,更应密切注意雷电流的变化特性,因为雷电的破坏作用与雷电流的峰值和波形密切相关。
现代防雷装臵正是根据雷电流的物理特性设计的,其主要的物理特性是:①峰值电流决定闪电的机械力和电力的作用大小以及雷灾的危害程度;②到达峰值的时间,数值愈小,冲击力愈大,在选用防雷元器件时应考虑响应速度;③最大电流变化率决定了闪电的电磁感应强弱,是电子设备防雷技术中应特别重视的参量,因为电子设备防雷技术中主要是对感应雷的防护;④半峰值时间或到达波尾中间的时间,是指回击电流减小到峰值一半时的时间,这个时间越长,热效应越大,容易造成元器件的损坏,也容易引起火灾。
超过lOO}上s就属于热闪电了。
(2)雷电电磁脉冲的频谱分析雷电电磁脉冲的频谱是研究避雷的重要依据,从频谱结构可以获得雷电电磁脉冲电压、电流的能量在各频段的分布。
根据这些资料可以估算通信设备或系统在其频率范围内可能遭受到的雷电冲击的幅度和能量大小,并以此作为确定避雷措施的参数。
①雷电流峰值比率的频率分析雷电流峰值比率的频率分布是指在雷电流的频谱范围内,每一个频率的电流峰值与雷电流峰值之比的频率分布。
雷电流主要贫布在低频部分,随频率升高迅速递减。
电波的波头越陡,高次谐波越丰富,波尾越长,低频部分越丰富。
②电流峰值比率积累的频率分布雷电流的破坏作用主要表现在对设备的过电压击穿和冲击能量过大的热击穿。
雷电电磁脉冲的防护
及 防雷 区交 界处 做等 电位 连接 。
()在 电 源线 和信 号线 上必 须 安装 相 应 的避 雷 3
器。
223 防雷 区 间内部 的等 电位连 接 ..
… 各 防雷 区间 内部应 设 有 闭合 环 形 的 等 电位 1 连 接 带 。该 连 接 带 至少 应 有 两 处 与 大 楼 主 钢 筋 相 连, 把各 种 接 地 线 连 成 到该 连 接 带 上 , 该 防雷 冉 使
用。
我们若 用 会属壳 体将 干扰 源 屏蔽起 来, 图 2f 如 b 所示 ,图 中 c 为干 扰 源 与屏 蔽 壳体 之 间 的 电容, ) l
c 为 电子设 备 与 屏 蔽壳 体 之 间 的 电容 , 2
为屏 蔽
() 3 把天 面 网格 、 引下线 、 平均 压环 、 地 网可 水 接 靠地 焊 接起来 。
环 路 感应 过 电压 ;④ 雷 电击在 远 处架 空 电力 线 上 ;
会属套 管两端 应做好 等 电位连 接 。
221 构造 “ .. 法拉 第 笼 ”
⑤ 雷 云 之 间放 电在 电力 线 上 弓起 感 应 雷 电波 及 过 I 电压 ; 雷击 通 信线 、 ⑥ 电力 线 附 近地 面或 地 面 上 其
同样 , 如果 干 扰 源不 屏 蔽, 而将 电子 设备 屏 蔽 ,
结 果 与上述 屏蔽 效果类 似 。 实 际工作 中, 在 是屏 蔽干 扰 源还 是 屏 蔽受 感 器, 议进 行综 合全 盘 考虑 。 根 建 应 据简便 、 济 、 作方 便 、 经 操 场地等 具体 情况 丽定 。 对 于平 行 导 线 , 于分 布 电容 较 大 , 合 干 扰 南 耦
一1一j) ( ) ( 1 [
各种 电源 线 、信 号线穿 金 属管 埋地 引 入 , 时信 号 同
雷电电磁脉冲的防护
国际电工委员会标准IEC61312-11995-02第一版雷电电磁脉冲的防护第一部分:通则Protection against lightning electromagneticImpulse —Part 1: General principles国际电工委员会雷电电磁脉冲的防护第一部分:通则前言1) IEC (国际电工委员会)是一个由各国电工委员会(IEC 国家委员会)组成的全球性的标准化组织。
IEC 的目标是促进在电气和电子领域内涉及标准化的所有问题的国际间的合作。
为此,除其它的工作外,IEC 还出版国际标准。
这些标准的编制是委托给合技术委员会的,对所涉课题感兴趣的任何一个IEC 国家委员会,均可参一标准的编制工作。
与IEC 保持联系的国际的政府及非政府组织也参与此编制工作。
IEC 根据与国际标准化组织(ISO )双方之间的协议所确定的条件与该组织紧密协作。
2)IEC 就有关的技术问题所通过的正式决定或协议(由代表了对相关问题有特别兴趣的所有国家委员会的各个技术委员会所编制),尽可能接近地表达了对所涉主题国际上的一致看法。
3)IEC 所通过的决定或协议,以标准、技术报告或指南的形式出版,并以推荐的形式供国际使用,在此意义上它们是为和国家委员会所接受的。
4)为了促进国际上的统一,各个IEC 国家委员会应致力于将IEC 国际标准尽可能最大程度地透明地应用于其国家标准及区域标准中去。
IEC 标准与相应的国家标准或区域标准中去。
IEC 标准与相应的国家标准或区域标准间的任何分歧应在后者中明确地指出。
IEC61312-1国际标准已由IEC 81 技术委员会(“防雷”)制订。
此标准的正文根据以下的文件写成:DIS (国际标准草案) 投票报告81(CO )21 81/66/RVD本标准的认可投票的详尽信息可在上表所示的投票报告上找到。
IEC61312-1构成了总标题为“雷电电磁脉冲的防护”的系列出版物的一部分。
建筑物防雷击电磁脉冲防护等级的划分
信息设备越是深藏在建筑物内部,抗击雷电脉冲能力最强(C4=0.5)。LPZOA 是处在
建筑物接闪器保护范围外的室外空间(C4=2.0),LPZOB 是处在接闪器保护范围内的室外
空间,以及与室外空间连通的地方,如阳台(C4=1.5)。
信息设备越是重要,对电磁环境要求越是严格, C2 越大,在 0.5~3.0 范围内取值,
GB50343-2004《建筑物电子信息系统防雷技术规范》提出了对雷击风险进行评估的 分级计算方法,可说是对 GB50057-94(2000 年版)的补充和完善。
笔者根据一些资料,叙述怎样进行分级计算。
1 确定系统设备损坏可接受的最大年平均雷击次数 Nc
Nc 可理解为系统设备的防范能力,单位是次/年,如果建筑物实际雷击次数在 Nc 以
表 3 因子 C 的总和与 NC 的关系
C 的总和 Nc
9
8
7
6
5
4
0.020 0.023 0.026 0.031 0.037 0.046
3 0.061
2 根据地区的年雷暴日数 Td,决定地区雷击频度 Ng Ng=0.024·Td1.3 (次/年·km2) 雷击频度又称雷击大地的年平均密度,Td 是年平均雷暴日数(次/年)。
请见表 4。
-3-
表 4 防雷设施等级的决定
E
雷电防护等级
E>0.98
A
0.90<E≤0.98
B
0.80<E≤0.90
C
E≤0.8
D
按 GB50343-2004 的条文说明,在少雷区或多雷区,有信息系统的建筑物,按 A 级设
计的概率为 10%~20%左右,按 B 级设计的概率为 70%~80%,少数设计为 C 级和 D 级。
雷电电磁脉冲(LEMP)的特性分析及屏蔽
雷电电磁脉冲(LEMP)的特性分析及屏蔽王庆祥1姚烨1崔喆1孙冬迪1薛文安2(1.天津市中力防雷技术有限公司,天津300384;2.中国民航大学,天津300384)摘要本文讨论了雷电电磁脉冲的危害,包括传导浪涌、辐射电磁场、感应电压,分析雷电电磁脉冲的特性;并以磁屏蔽为主介绍雷电电磁脉冲的防护,以及磁屏蔽的材料选择。
关键词雷电流;雷电电磁脉冲(LEMP);电磁屏蔽引言雷电是由带电的云在空中对地放电导致的一种特殊的天气现象,其具有选择性、随机性、不可预测性以及破坏性。
雷电存在的形式除了可以直观感受到的发光、发热、发声的雷电流以外,在雷电流形成的同时由于电磁效应还会产生雷电电磁脉冲。
在当今信息化的时代,强大的雷电电磁脉冲是造成电子设备损坏的重要原因,可导致各种微电子设备的运行失效甚至损坏,成为威胁航空航天、国防军事、铁路运输、计算机与通信等领域的一大公害。
本文以磁屏蔽内容为主,介绍雷电电磁脉冲的防护。
1、雷电电磁脉冲(LEMP)的特性雷电电磁脉冲(LEMP)是由雷电流的电磁效应产生,它包括传导浪涌和辐射脉冲电磁场辐射作用。
传导浪涌又会在附近回路中产生感应电压;辐射脉冲磁场干扰附近电气电子设备正常工作。
1.1 传导浪涌雷电流是雷电造成各种损害的损害源,它表现为以下四种情况:S1:雷击建筑物;S2:雷击建筑物附近;S3:雷击连接到建筑物的线路;S4:雷击连接到建筑物的线路附近。
雷电流通过这四种形式在线路中产生传导浪涌。
表1 雷击低压系统浪涌过电流的预期值表2 雷击通信系统浪涌过电流的预期值过电流预期值,其中S3(直接雷击)是雷电直接击在了连接建筑物的线路上,在线路的两个方向上均有分流,与此同时,强大的直接雷击电流会产生强大的电磁场,在线路上再次产生浪涌,造成叠加性的伤害。
1.2 辐射电磁场1.2.1 附近雷击时LPZ1格栅形空间屏蔽如图1所示为附近雷击时的情况。
LPZ1屏蔽空间周围的入射场可以近似地当作平面波。
雷电防护等级的确定
雷电防护等级的确定摘要:阐述了建筑物电子信息系统雷电防护的重要性,以及雷电防护等级的确定方法,并通过一个实例加以分析说明。
关键词:电子信息系统;雷电;防护等级中图分类号: f407.63文献标识码:a 文章编号:0 前言雷电是自然界积雨云的放电现象,它的放电电流可达几十千安培,甚至几百千安培。
产生的静电感应和电磁感应具有极大的破坏性,闪电电涌也可能会沿着服务设施侵入建筑物内,危害人身财产安全[1]。
随着社会发展,电子设备越来越广泛应用,雷电灾害的范围和形式也随之扩大,给航空、航天、国防、通信、电子、石化、交通等国民经济部门造成重大损失[2,3]。
1 雷电的危害1.1 直接雷击根据目前的防雷理论,无论采取哪种保护方法,都需要使用接闪器接闪,通过引下线将雷电流引下至接地装置,由接地装置散入大地中,在此过程中存在以下雷击安全隐患[4,5]:1)雷电流沿引下线传导中,周围存在很强的电磁场,可能引起感应过电压和过电流。
2)雷电流由散流入地过程中形成的电位梯度过大会导致行人因跨步电压发生人身伤亡。
3)雷电流在泄放和散流过程中因电阻压降和电感压降导致高电位反击;在水平布设的线路上产生的感应过电压损坏设备接口,并有可能导致反击及人身触电伤亡事故。
1.2 感应雷击1)当雷电击中建筑物散流时,分流到配电系统、信号线路、其它金属管道中的雷电流引起设备过压(流)损坏或人身触电导致伤亡事故。
2)发生直接雷击,雷电流泄放时,建筑物内部分布着暂态电磁场,尤其以引下线周围最为强烈。
此电磁场将会对建筑物内部各个系统产生作用,引起设备误动作或损坏。
3)室内暂态磁场作用在系统环路上,将会产生感应过电压(流),导致设备损坏。
4)当有雷雨云经过沿线上空或附近时,由于静电感应会在各种线路上感应出极性相反的静电荷,当雷云放电后,这些静电荷由于不能及时入地会产生过电压(流)损坏设备。
因此,为了保护电子信息系统的正常、安全运行,根据建筑物的雷电防护等级采取相应的防护措施显得尤为重要[6,7]。
雷击电磁脉冲的防护pt
第三节 屏 蔽
在发生雷击时,由雷电流产生的脉冲电磁场 会从空中直接辐进电子信息系统,为了保护电子 信息系统免受雷电脉冲电场的侵害,需要采取屏 蔽措施。同时,雷电流在防雷接地装置上产生暂 态地电位抬高,容易在防雷系统中引起危险的电 位差,为了防护这种危险的电位差,需要采取等 电位连接措施来均衡电压。随着信息技术的发展, 大量先进的微电子设备正日益广泛地投入使用, 这些设备对电磁干扰为敏感,对雷电暂态电涌过 电压的耐受能力很差,因此在现代防雷工程中, 切实落实好屏蔽和等电位连接措施就显得十分必 要。
u i R O i L0 x t i u G o u Co x t
在上述方程中,如果忽略电阻 RO 和电导 GO , 则有
:
u i Lo x t
(2-4) (2-5)
i u Co x t
对应于以上方程的传输线称为无损线。诚然,无 损线在实际上是不存在的,但其方程毕竟是反映了均 匀传输线上波的基本传输特征,且便于进一步简化分 析,因此可以从方程(2-4)和(2-5)入手,来分析 传输线的波过程。将方程(2-4)对x求偏导,将方程 (2-5)对t求偏导,得:
此时该电压分量沿线分布如图 2-19中实线 所示。当经过一段时间△ t 后,该电压分量将 变成为:
u f ( x, t0 t ) u f ( x vt vt0 ) u f ( x x vt0 )
Uf(x,t0+t)的分布如图2-19中的虚线所示。由图2-19可见, Uf ( x,t0 )与 Uf ( x,t0+t )的波形完全相同,但后者比前者在 x 的正方向移动了一段距离 x=vt ,因此Uf ( x,t )随时间的增大 是向前(沿x正方向)运动的,它被称为电压前行波,其波速度为:
电磁脉冲防护技术
电磁脉冲防护技术引言电磁脉冲(Electromagnetic Pulse,EMP)是一种由强烈电磁辐射引起的短暂放电现象,能对电子设备、通信系统和电力系统等造成严重破坏。
为了保护关键基础设施免受电磁脉冲的影响,电磁脉冲防护技术应运而生。
本文将介绍电磁脉冲的基本原理,常见的电磁脉冲防护技术以及其应用。
电磁脉冲原理电磁脉冲是一种电磁波,包含辐射能量较高的宽带频谱。
它通常由核爆炸、雷电和高能电磁波干扰器等导致。
当电磁脉冲遇到导体时,会在导体中产生感应电流,从而对电子设备造成破坏。
电磁脉冲可以分为三个阶段:E1、E2和E3。
•E1阶段是由高能粒子引起的,具有短暂的高能量脉冲,能够瞬时击穿导体表面,并对微电子设备、通信和导航系统等造成严重破坏。
•E2阶段是由电离的大气分子引起的,主要通过大气传播,对长导线和电力系统等造成损坏。
•E3阶段则是由高能电离粒子的辐射引起的,具有较长时间和较低频率,主要对电力系统和电网设备造成影响。
电磁脉冲防护技术为了有效抵御电磁脉冲的破坏,人们开发了多种电磁脉冲防护技术。
以下是一些常见的电磁脉冲防护技术。
Faraday笼Faraday笼是一种由导体构成的闭合结构,能够将导体内部的电场屏蔽,从而防止电磁脉冲的侵入。
Faraday笼通常由金属网格或薄金属板构成,具有良好的电磁波反射和吸收能力。
在高频率范围内,Faraday笼能够提供高度的电磁脉冲抑制效果,被广泛用于电子设备、通信站和电力设施的防护。
漏斗结构漏斗结构是一种特殊设计的导电结构,可以将电磁脉冲的能量引导到地面上。
漏斗结构由金属片或导电材料制成,具有较好的电磁波导向和吸收特性。
通过合理设计漏斗结构的尺寸和角度,可以最大限度地将电磁脉冲的能量转化为热能,并将其远离设备敏感区域。
屏蔽材料屏蔽材料是一种能够吸收和反射电磁脉冲能量的特殊材料。
常见的屏蔽材料包括金属粉末、碳纤维和铁磁材料等。
这些材料具有良好的导电性和磁导率,能够有效屏蔽电磁脉冲,保护设备免受损坏。
防雷区的划分
防雷区的划分
为实施等电位连接和浪涌(过电压)保护器的安装,根据IEC1312-1雷电电磁脉冲的防护标准,将需要保护的空间划分为不同的防雷保护区,各区交界处应作相应的防雷处理。
各区划分如下:LPZ0A区:直击雷作用区,处于建筑物避雷针系统保护区以外的区域,由于本区内所有物体均有可能遭受直接雷击,并可能导走全部雷电流;另外本区能所有物体均处于雷电电磁场最强处,故对于雷电的感应最强。
LPZ0B区:感应雷主作用区,处于建筑物避雷针系统保护区内,但未经空间电磁屏蔽,雷电作用电磁场并不衰减,处于此空间的所用可导电物体均可感应较强雷电流的区域。
LPZ1区:建筑物屏蔽区,本区内各物体不可能遭受直击雷,流往各导体的雷电流比0B区进一步减小,本区内电磁场也可能会衰减,取决于建筑物的屏蔽措施。
LPZ2区:房间屏蔽区,对于计算机主机房所处空间,应采用屏蔽措施,以进一步减小空间电磁场的干扰。
当金属导线(电源线、信号线等)穿越不同的保护分区时,因电磁感应的作用,会产生较高的过电压,影响室内设备的安全。
因此,需安装相应的过电压保护器,对设备进行保护。
在不同的保护分区,所采用的防雷器级别是不同的。
同时,需要作相应的等电位处理。
微电子信息设备的雷电电磁脉冲(LEMP)防护高红兵
微电子信息设备的雷电电磁脉冲(LEMP)防护高红兵发布时间:2021-10-14T06:50:40.397Z 来源:《防护工程》2021年18期作者:高红兵黄中根[导读] 随着科技的进步和发展,微电子信息系统广泛应用于我们生活的各个领域。
互联网系统、金融系统、各种控系统等等,而这些信息系统是由脉冲数字电路构成,其信息传输是通过脉冲信号转化成以0或1为代表的数字信号实现的,实际上它的工作电压只有0~5V,所以它的工作环境要求无电磁干扰、无瞬间过电压、无浪涌电流等。
江西省九江市气象局 332000[摘要] 针对微电子设备性能特点,指出雷电电磁脉冲(LEMP)进入微电子设备的主要路径,阐述了引下线上电位瞬间抬高时周边空间产生的瞬时磁场、放电线路周边空间产生的瞬时磁场、雷电电磁脉冲在空间产生电磁辐射等是造成微电子设备损坏主要原因,分析了可承受的最大年平均雷击次数因子Nc值的影响因子和雷电电磁脉冲的防护等级,并提出了相应的防护措施。
同时还指出了微电子设备空间安装要求等。
[关键词] 微电子设备雷电电磁脉冲电磁辐射因子Nc 防护等级防护措施1概述随着科技的进步和发展,微电子信息系统广泛应用于我们生活的各个领域。
互联网系统、金融系统、各种控系统等等,而这些信息系统是由脉冲数字电路构成,其信息传输是通过脉冲信号转化成以0或1为代表的数字信号实现的,实际上它的工作电压只有0~5V,所以它的工作环境要求无电磁干扰、无瞬间过电压、无浪涌电流等。
但由于雷电的影响,经常遭受雷电的破坏,损失严重,有时造成信息系统的网络中断,致使设备的永久性损坏。
所以微电子信息系统的雷电电磁脉冲(LEMP)防护十分重要。
2雷电电磁脉冲如何损害微电子信息设备通常情况下,微电子信息系统处在LPZ1区甚至在LPZ2区,如图1所示的微电子信息系统安装位置。
图1:防雷区分界2.1 雷电电磁脉冲侵入的主要途径和危害笔者从十几年的雷电灾害调查事件中发现,微电子信息系统一般不会受到直击雷的侵害,但雷电电磁脉冲损害的途径主要出现在以下几种情况:(1) 直接击建筑物的防雷装置时,引下线瞬间电位急剧上升,导致连接在等电位端子板电位抬升对微电子信息设备的反击;(2) 雷电电磁脉冲在线路上产生的感应过电压,从而沿线路(包括电源线路、各种信号等线路)侵入设备造成损坏;(3) 雷电电磁脉冲在空间产生电磁辐射进入微电子设备。
《建筑物电子信息系统防雷技术规范条文说明》GB50343-2004
中华人民共和国国家标准建筑物电子信息系统防雷技术规范GB50343——2004条文说明目次1 总则 (1)3 雷电防护分区 (3)3.1 地区雷暴日等级划分 (3)3.2 雷电防护区划分 (3)4 雷电防护分级 (4)4.1 一般规定 (4)4.2 按雷击风险评估确定雷电防护等级 (4)按雷击风险评估确定雷电防护分级计算实例 (5)5 防雷设计 (10)5.2 等电位连接与共用接地系统设计 (10)5.3 屏蔽及布线 (17)5.4 防雷与接地 (17)6 防雷施工 (23)6.2 接地装置安装 (23)6.4 等电位接地端子板(等电位连接带) (23)6.5 浪涌保护器 (23)7 施工质量验收 (24)7.1 验收项目 (24)8 维护与管理 (25)8.1 维护 (25)1 总则1.0.1 随着经济建设的高速发展,电子信息设备的应用已深入至国民经济、国防建设和人民生活的各个领域,各种电子、微电子装备已在各行业大量使用。
由于这些系统和设备耐过电压能力低,特别是雷电高电压以及雷电电磁脉冲的侵入所产生的电磁效应、热效应都会对信息系统设备造成干扰或永久性损坏。
每年我国电子设备因雷击造成的经济损失相当惊人。
因此电子信息系统对雷电灾害的防护问题,特别是雷电防护标准的制定,更是迫在眉睫。
由于雷击发生的时间和地点以及雷击强度的随机性,因此对雷击的防范,难度很大,要达到阻止和完全避免雷击的发生是不可能的。
国际电工委员会标准IEC-61024和国家标准GB50057就已明确指出,建筑物安装防雷装置后,并非万无一失的。
所以按照本规范要求安装防雷装置和采取防护措施后,只能将雷电灾害降低到最低限度,大大减小被保护的电子信息系统设备遭受雷击损害的风险。
1.0.2 对易燃、易爆等危险环境和场所的雷电防护问题,由有关行业标准解决。
1.0.4雷电防护设计应坚持预防为主、安全第一的原则,这就是说,凡是雷电可能侵入电子信息系统的通道和途径,都必须预先考虑到,采取相应的防护措施,将雷电高电压、大电流堵截消除在电子信息设备之外,不允许雷电电磁脉冲进入设备,即使漏过来的很小一部分,也要采取有效措施将其疏导入大地,这样才能达到对雷电的有效防护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷电电磁脉冲防护分级计算方法
雷电过电压对电子设备的危害
随着通信技术、计算机技术、信息技术的飞速发展,今日已是电子化时代,日益繁忙庞杂的事物通过高速电脑、自动化设备及通信发展得到井然有序、而这些敏感电子设备的工作电压却在不断降低,其数量和规模不断扩大,因而它们受到过电压特别是雷电袭击而受到损坏的可能性就大大增加,这是由于以雷击中心1.5km—2km范围内都可能产生危险过电压,损坏线路上设备;其后果可能使整个系统的运行中断,并造成难以估计的经济损失,雷电和浪涌电压成了电子化时代的一大公害。
防雷器就是在最短时间(纳秒级)内将被保护线路连入等电位系统中,使设备各端口等电位,同时释放电路上因雷击而产生的大量脉冲能量短路泄放到大地,降低设备各接口端的电位差,从而保护线路上用户的设备。
对系统设备而言,电源线路和信号线路是雷电袭击产生过电压并传导的两条主要通道,因此防雷器就分电源系统避雷器和信号系统防雷器。
防雷区域的划分
一、LPZ0A区:本区内的各物体都可能遭到直接雷击和导走全部雷击电流;本区内的电磁场强度没有衰减。
二、LPZ0B区:本区内的各种物体不可能遭到大于所选滚球半径对应的雷电流直接雷击,但本区内的电磁场强度没有衰减。
三、LPZ1区:本区内的各种物体不可能遭到直接雷击,流经各导体的电流比LPZ0B区更小;本区内的电磁场强度可能衰减,这取决于屏蔽措施。
四、LPZn+1后续防雷区:当需要进一步减小流入的电流和电磁场强度时,应增设后续防雷区,并按照需要保护的对象所要求的环境去选择后续防雷区的要求条件。
注:n=1、2、......。
雷电电磁脉冲防护分级计算方法
1.建筑物年预计雷击次数N:
N=K·(0.024·Td1.3)·(Ae+Ae’)
式中:K──校正系数,一般取1。
Td──年平均雷暴日
Ae──建筑物截收相同雷击次数的等效面积(KM2)
Ae’──建筑物入户设施的截收面积(电源线、信号线)
2.等效面积Ae的计算
当建筑物高度H<100M:
D= [ H·(200-H)]1/2 (M)
Ae=[L·W+2(L+W)·D+π·H(200-H)]·10-6 (KM2)式中:L,W ,H分别为建筑物的长,宽,高(米)。
(见规范)
1000米。
当L未知时,应采用1000米。
(2) Ds数值上等于土壤电阻率(欧·米),最大为500米。
4.因直接雷击和雷电电磁脉冲引起的电子信息系统设备损坏的可接受最大年平均雷击次数
NC=5.8·10-3/C
式中:C=C1+C2+C3+C4+C5
5.雷电电磁脉冲防护等级计算:
E=1-NC/N
当E>0.98时,定为A级
当0.90<E≤0.98时,定为B级
当0.8<E≤0.9时,定为C级
当E≤0.8时,定为D级。
6.供电电源系统防雷设计
1)信息系统机房内电源严禁采用架空线路引出户外;
2)信息设备交流供电系统应采用TN-S或TN-C-S系统供电;
3)供电系统抗浪涌电压的类别及过电压保护器分级如图所示:
4)电源系统SPD
l 入户电力变压器低压侧安装的SPD作为第一级保护时应为三相电压开关型SPD,其雷电通流量不应低于60KA;
l 分配电柜线路输出端SPD作为第二级保护时应为限压型SPD,其雷电通流量不应低于20KA;
l 在电子信息设备交流电源进线端安装SPD作为第三级保护时应为串接式限压型SPD,其雷电通流量不应低于10KA;
l对于微波通讯设备,移动机站通讯设备及雷达设备等使用的整流电源,视其工作电压的保护需要,宜分别选用工作电压适配的直流电源SPD,作为末级保护。
5)配电系统中电源SPD前,后二级的安装距离应大于10米,否则要在期间增加退藕器件。
B级
三级
10-20
(10/350μs)
60
(8/20μs)
40-60
(8/20μs)
20-40
(8/20μs)
10-20
(8/20μs)
UPS后装功率>1.2倍设备总用电量的SPD
第一级埋地进线>50m;第四级SPD应带滤波
C级
二级
10-20
(10/350μs)
60
(8/20μs)
20-40
(8/20μs)
埋地进线>50m
D级
一级
20-40
(8/20μs)
电源SPD的自保护要求
1.SPD应有当自身泄漏电流超标时能从电路自动切除的装置2.SPD的外封装材料应为阻燃型材料。