复变函数 史上最全 上

合集下载

复变函数 全套课件

复变函数  全套课件

w1
8
2cos
9 16
i
sin
9 16
,
23
w2
8
2
cos
17 16
i sin 1176,
w3
8
2cos
25 16
i sin 2156.
y
w1
这四个根是内接于中
心在原点半径为8 2 的 圆的正方形的四个顶点.
w2
o
w0 x
w3
24
三、典型例题
例1 对于映射 w z 1 , 求圆周 z 2的象. z
3
三角表示法
利用直角坐标与极坐标的关系
x y
r r
cos , sin ,
复数可以表示成 z r(cos i sin )
指数表示法
利用欧拉公式 ei cos i sin ,
复数可以表示成 z rei 称为复数 z 的指数表示式.
4
方根
w
n
z
r
1 n
cos
2kπ
i sin
2kπ
n
n
6
2cos
12
i
sin
12 ,
w1
6
2cos
7 12
i sin 712,
w2
6
2cos
5 4
i
sin
5 4
.
22
例 计算 4 1 i 的值.

1i
2cos
4
i
sin
4
4
1
i
8
2cos 4
2k 4
i sin
4
2k
4

w0
8

复变函数第2讲

复变函数第2讲
区域: 连通的开集称为连通集.
闭区域: 区域D和它的边界∂D 的并集称 为闭区域,记为 D 有界(无界)区域: 根据区域D的是否有界区分
9
z1 区域 z2
不连通
10
无界区域的例子 y
角形域:0<ayrg z<ϕ
上半平面:Im z>0
x y
ϕ
x
b
带形域:a<Im z<b
x a
11
平面曲线 在数学上, 经常用参数方程来表 示各种平面曲线. 如果x(t)和y(t)是两个连续的 实变函数, 则方程组
18
例 考察函数 w=z2
令z=x+iy, w=u+iv, 则 u+iv=(x+iy)2=x2−y2+2xyi,
因而函数w=z2对应于两个二元函数: u=x2−y2, v=2xy
19
映射的概念 如用z平面上的点表示自变量z的值, 而用另
一个平面w平面上的点表示函数w的值, 则函 数w=f(z)在几何上就可以看做是把z平面上的 一个点集G(定义域)变到w平面上的一个点集 R(值域)的映射(或变换). 如果G中的点z被映射 w=f(z)映射成R中的点w, 则w称为z的像, 而z称 为w的原象.
a为一复数,
) 必包含E的点,
则称a为E的聚点(或极限点).
注:集合E的聚点不一定属于E
孤立点:若点a 即存在
B∈((Ea,,但δ )a,不使是得EB的((a聚,δ点) ∩,
E
=

定理:集合E为闭集的充要条件是E的聚点 必属于E
8
2. 区域 曲线 连通集: 复平面点集D中任何两点都可以用
完全属 于D的一条折线连接起来,则称D是连 通集.

复变函数(全)解析

复变函数(全)解析

1
2
1
2
1
2
乘法
z z (x x y y ) i(x y x y ),
12
12
12
21
12

z 1
xx 12
yy 12
i
xy 21
xy 12
z
x2 y2
x2 y2
2
2
2
2
2
第一节 复数及其代数运算
(2)性质
z z z z , zz zz;
1
2
2
1
12
21
z (z z ) (z z ) z ,z (z z ) (z z )z
1
2
3
1
2
3 1 23
12 3
z (z z ) z z z z
12
3
12
13
第二节 复数的几何表示
1.复平面 ( 1 ) 定 义 复 数 z x iy 与 有 序 实 数
(x, y) 一一对应,对于平面上给定的直角 坐标系,复数的全体与该平面上的点的全
体成一一对应关系,从而复数 z x iy 可
对复平面内任一点z ,用一条直线将N 与z 连结起来,该直线与球面交于异于N 的 唯一点P ,这样除了N 之外,复平面内点与 球面上的点存在一一对应的关系.这样的 球面称为复球面.
第三节 复数的乘幂与方根
1. 乘积与商
设有两个复数
(1)乘积
z1
r1 (cos 1
sin1 )
r e i1 1
,
z2
r2 (cos2
z2 r2
第二节 复数的几何表示
2.幂与根 (1) 幂 n个相同复数z 的乘积称为z 的n次幂,记作zn ,即

复变函数与积分变换公式汇总

复变函数与积分变换公式汇总

复变函数与积分变换公式汇总一、复变函数复变函数是将复数域上的变量映射到复数域上的函数。

形式上,复变函数可以表示为f(z) = u(x,y) + iv(x,y),其中z = x + iy是自变量,u(x,y)和v(x,y)是实部和虚部函数。

复变函数的性质包括解析性、全纯性、调和以及实部虚部的关系等。

1.解析函数性质解析函数是复变函数的重要性质之一,它表示函数在其定义域内处处可导,并且其导数连续。

如果f(z)是定义在区域D上的函数,满足Cauchy-Riemann条件,则f(z)是该区域上的解析函数。

Cauchy-Riemann条件可以表示为:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x2.全纯函数性质全纯函数是解析函数的特殊情形,它在整个复平面上都有定义,并且是解析的。

全纯函数还有许多重要的性质,如Liouville定理、最大模原理等。

3.调和函数性质调和函数是复平面上的实函数,满足拉普拉斯方程(△u=∂²u/∂x²+∂²u/∂y²=0)。

调和函数在物理学中有广泛的应用,例如描述电势、热力学等现象。

4.实部虚部关系对于任意一个复变函数f(z),其实部u(x,y)和虚部v(x,y)之间有一些重要的关系。

例如,如果f(z)是一个解析函数,则它的实部和虚部函数满足调和方程,并且u(x,y)和v(x,y)是共轭调和函数。

二、积分变换公式积分变换是对函数进行积分操作的数学工具,常用于求解微分方程、信号处理等问题。

常见的积分变换公式包括拉普拉斯变换和傅里叶变换等。

1.拉普拉斯变换拉普拉斯变换是一种广泛应用于信号分析和控制系统的积分变换方法。

定义域为半无穷区间的函数f(t)在复平面上进行拉普拉斯变换后得到一个复变函数F(s),满足积分方程:F(s) = L[f(t)] = ∫[0,∞] f(t)e^(-st) dt2.拉普拉斯变换的性质拉普拉斯变换具有一些重要的性质,如线性性、位移性质、尺度变换、微分性质等。

复变函数初步例题和知识点总结

复变函数初步例题和知识点总结

复变函数初步例题和知识点总结一、复变函数的基本概念复变函数是指定义在复数域上的函数。

一个复变函数通常可以表示为$w = f(z)$,其中$z = x + iy$ 是复数,$x$ 和$y$ 分别是实部和虚部,$w = u + iv$ 也是复数,$u$ 和$v$ 分别是其实部和虚部。

例如,函数$f(z) = z^2$ 就是一个简单的复变函数。

将$z = x +iy$ 代入,可得:\\begin{align}f(z)&=(x + iy)^2\\&=x^2 y^2 + 2ixy\end{align}\从而得到实部$u = x^2 y^2$,虚部$v = 2xy$。

二、复变函数的极限与连续(一)极限如果对于任意给定的正数$\epsilon$,都存在正数$\delta$,使得当$0 <|z z_0| <\delta$ 时,有$|f(z) A| <\epsilon$,则称$A$ 为函数$f(z)$当$z$ 趋向于$z_0$ 时的极限,记作$\lim_{z \to z_0} f(z) = A$。

例如,考虑函数$f(z) =\frac{z}{|z|}$,当$z$ 沿着实轴正方向趋近于$0$ 时,极限为$1$;当$z$ 沿着实轴负方向趋近于$0$ 时,极限为$-1$。

由于这两个极限不相等,所以该函数在$z = 0$ 处极限不存在。

(二)连续如果函数$f(z)$在点$z_0$ 处的极限存在且等于$f(z_0)$,则称函数$f(z)$在点$z_0$ 处连续。

例如,函数$f(z) = z$ 在整个复数域上都是连续的。

三、复变函数的导数复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程。

设函数$f(z) = u(x, y) + iv(x, y)$,则其导数为:\f'(z) =\lim_{\Delta z \to 0} \frac{f(z +\Delta z) f(z)}{\Delta z}\柯西黎曼方程为:\\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y},\quad \frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}\例如,函数$f(z) = z^2 =(x + iy)^2 = x^2 y^2 + 2ixy$,则$u = x^2 y^2$,$v = 2xy$。

复变函数与积分变公式汇总

复变函数与积分变公式汇总

复变函数复习重点 (一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示 1)模:22z x y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctanyx 之间的关系如下:当0,x >arg arctany z x =;当0,arg arctan 0,0,arg arctan yy z x x y y z x ππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩;4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二) 复数的运算 1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法: 1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x i y x i y z x i y x x y y y x y x i z x i y x i y x i y x y x y+-++-===+++-++。

2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。

(完整版)复变函数积分方法总结

(完整版)复变函数积分方法总结

复变函数积分方法总结[键入文档副标题]acer[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。

就复变函数: z=x+iy i²=-1 ,x,y 分别称为z 的实部和虚部,记作x=Re(z),y=Im(z)。

arg z =θ₁ θ₁称为主值 -π<θ₁≤π ,Arg=argz+2k π 。

利用直角坐标和极坐标的关系式x=rcos θ ,y=rsin θ,故z= rcos θ+i rsin θ;利用欧拉公式e i θ=cos θ+isin θ。

z=re i θ。

1.定义法求积分:定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点ξk 并作和式S n =∑f(ξk )n k−1(z k -z k-1)= ∑f(ξk )n k−1∆z k 记∆z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k≤n {∆S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即ξk 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:∫f(z)dz c=lim δ 0∑f(ξk )nk−1∆z k设C 负方向(即B 到A 的积分记作) ∫f(z)dz c−.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c(C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。

(1) 解:当C 为闭合曲线时,∫dz c=0.∵f(z)=1 S n =∑f(ξk)n k−1(z k -z k-1)=b-a ∴lim n 0Sn =b-a,即1)∫dz c=b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设ξk =z k-1,则∑1= ∑Z n k−1(k −1)(z k -z k-1) 有可设ξk =z k ,则∑2= ∑Z n k−1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。

数学的复变函数

数学的复变函数

数学的复变函数复变函数是数学中的一个重要分支,它研究的是复数域上的函数。

与实变函数不同,复变函数具有复数域上更加丰富的性质和特点。

在本文中,我将介绍复变函数的定义、性质和应用。

一、复变函数的定义和表示复变函数是定义在复数域上的函数,即输入和输出均为复数。

一般来说,复变函数可以表示为$f(z)$,其中$z$是复数,$f$是变换规则。

复数$z$可以表示为$z=x+iy$的形式,其中$x$和$y$分别是实数部分和虚数部分。

复变函数的表示形式有多种,最常见的是使用级数展开的形式。

例如,魏尔斯特拉斯级数是一种常见的复变函数表示方法。

它可以表示为$f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$,其中$a_n$是复数系数,$z_0$是复数常数。

二、复变函数的性质复变函数具有许多有趣且独特的性质,以下是其中的几个重要性质:1. 解析性:复变函数的一个重要性质是解析性(或称全纯性)。

一个函数在其定义域上是解析的,意味着它在该区域内可以进行无限次的复数微分。

解析函数满足柯西-黎曼方程,即其实部和虚部满足柯西-黎曼条件。

2. 否定性:与实变函数不同,复变函数的性质有时可以由其在定义域内的性质否定。

例如,某些函数可能在无限远处有奇点,或者在某些点上是不连续的。

3. 互补性:复数域上的函数可以分解成实部和虚部的和或差。

这种分解方式可用于简化复变函数的问题,并帮助我们理解函数性质。

三、复变函数的应用复变函数在数学和工程领域中有广泛的应用。

以下是其中一些主要应用领域:1. 数学物理学:复变函数在数学物理学中扮演着重要的角色。

例如,它们用于解决波动方程、电动力学和量子力学中的问题。

复变函数的工具和技术为解这些方程提供了很大的帮助。

2. 等势流理论:在流体力学领域,复变函数的概念广泛应用于等势流理论。

这个理论用于描述在理想流体中以连续形式流动的流线。

3. 统计和概率:复变函数也在统计学和概率论中有应用。

复变函数及积分变换重点公式归纳

复变函数及积分变换重点公式归纳

复变函数及积分变换重点公式归纳复变函数是指定义在复数域上的函数,其自变量和函数值都是复数。

复变函数可以表示为两个实变量的函数,即f(z)=u(x,y)+iv(x,y),其中u(x,y)和v(x,y)是实变量的函数。

复变函数的积分变换是指对复变函数进行积分变换,得到新的复变函数。

在复变函数的积分变换中,有一些重要的公式需要归纳,包括:1.度量公式:对于复变函数f(z)=u(x,y)+iv(x,y),其微分形式为dz=dx+idy。

根据度量公式,有dx=\frac{1}{2}(dz+d\bar{z}),dy=\frac{1}{2i}(dz-d\bar{z})。

2.柯西-黎曼方程:对于复变函数f(z)=u(x,y)+iv(x,y),满足柯西-黎曼方程的充要条件是u_x=v_y和u_y=-v_x。

3.柯西-黎曼积分定理:对于一个闭合曲线C,如果复变函数f(z)在C内解析(即在C内柯西-黎曼方程成立),那么有\oint_C f(z)dz=0。

4.柯西积分公式:对于一个有界区域D和在D内解析的复变函数f(z),柯西积分公式为\oint_C \frac{f(z)}{z-a} dz=2\pi i f(a),其中C是D内包围点a 的闭合曲线。

5.柯西积分公式的推广:对于一个有界区域D和在D内解析的复变函数f(z),柯西积分公式的推广形式为\oint_C \frac{f(z)}{(z-a)^n} dz=2\pi i \frac{f^{(n-1)}(a)}{(n-1)!},其中C是D内包围点a的闭合曲线。

6.柯西积分公式的应用:柯西积分公式可以用于计算复变函数的积分,如计算围道上的积分或者在无穷远处的积分等。

7.柯西主值公式:对于一个有界区域D和在D内解析的复变函数f(z),柯西主值公式为\frac{1}{2\pi i}\int_C \frac{f(z)}{z-a} dz=PV\frac{1}{2\pii}\int_C \frac{f(z)}{z-a} dz=PVf(a)+\frac{1}{2}f(a),其中PV表示柯西主值。

复变函数及连续性

复变函数及连续性

第三节复变函数的极限与连续一、复变函数的概念二、复变函数的极限三、复变函数的连续性一、复变函数的概念1. 复变函数的定义定义1.1 设E 是复平面上的点集, 若对任何z ∈E , 都存在惟一确定的复数w 和z 对应, 称在E 上确定了一个单值复变函数,用w =f (z )表示.E 称为该函数的定义域.在上述对应中, 当z ∈E 所对应的w 不止一个时, 称在E 上确定了一个多值复变函数.(){()|}() A f E f z z E w f z ==∈=称为复函的值域数.2. 复变函数与自变量之间的关系:() :w z w f z =复变函数与自变量之间的关系相当于两个实函数),,(),,(y x v v y x u u ==例3 , 2z w =函数,, iv u w iy x z +=+=令2)( iy x iv u +=+则,222xyi y x +−= : 2数对应于两个二元实变函于是函数z w =,22y x u −=.2xy v =,,z x iy w u iv =+=+因为,若记则()Re ()Im ()(,)(,).w f z f z i f z u x y iv x y ==+=+例4解,, iv u w iy x z +=+=令2)( iy x iv u +=+则,222xyi y x +−=,22y x u −=.2xy v =所以222424 4.w z z x y xy w u v =−====于是将平面上的双曲线与分别映为平面上直线和222,42w z z x y xy w =−== 设复函数试问它将平面上的双曲线 与 分别映为平面上的何种曲线?7函数w =z 2对应于两个二元实变函数: u =x 2−y 2, v =2xy 把z 平面上的两族双曲线x 2−y 2 = c 1 , 2xy = c 2 分别映射成w 平面上的两族平行直线u =c 1 , v =c 2 .101−1−1−10−8−6−4−2x 2468v =101y −10−8−6−4−2u =02468uv 1010−10−10⎯⎯→⎯=2z w θr ϕρ二、复变函数的极限1.复变函数极限的定义定义1.200000,()0,0,,0|||()|,()lim(),lim ().z z z E z z w f z E C z E C z E z z f z z z f z f z f z αεδδαεααα→∈→=⊂∈∀>∃>∈<−<−<== 设复函数在点集上有定义,为的一个聚点, 。

(完整版)复变函数知识点梳理解读

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。

一、复数及其表示法介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。

二、复数的运算高中知识,加减乘除,乘方开方等。

主要是用新的表示方法来解释了运算的几何意义。

三、复数形式的代数方程和平面几何图形就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。

四、复数域的几何模型——复球面将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。

五、复变函数不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。

六、复变函数的极限和连续性与实变函数的极限、连续性相同。

第二章:解析函数这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。

一、解析函数的概念介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。

所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。

而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。

二、解析函数和调和函数的关系出现了新的概念:调和函数。

就是对同一个未知数的二阶偏导数互为相反数的实变函数。

而解析函数的实部函数和虚部函数都是调和函数。

而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。

三、初等函数和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。

第三章:复变函数的积分这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。

但是很多知识都和实变函数的知识是类似的。

可以理解为实变函数积分问题的一个兄弟。

复变函数的基本概念和性质

复变函数的基本概念和性质

复变函数的基本概念和性质复变函数是数学中一个极其重要的分支,它涵盖了复平面上的函数及其性质,是许多数学分支的基础,也是物理、工程、经济学等领域中许多问题的核心。

那么什么是复变函数呢?本文将从基本概念、阐述复变函数的性质、复变函数的应用等方面进行分析,为读者揭示复变函数的奥秘。

一、基本概念1. 复数复数是由实数和虚数构成的,形如a+bi(其中a和b都是实数,i是虚数单位,有i²=-1)。

在复平面上,复数a+bi对应于平面上的点(x,y),其中x=a,y=b。

实部a对应于x轴上的一个数,虚部b对应于y轴上的一个数,点(x,y)则对应于区域R²上的一个点。

2. 复变函数复变函数是定义在复数域上的函数。

它的自变量可以为复数,也可以为实数,但它的取值必须是复数。

从定义和性质上看,复变函数和实变函数有很大的区别,前者更具有复杂性和丰富性。

3. 解析函数解析函数是指在某个区域T内,函数f(z)对于其内部的所有复数点z都是可导的函数。

当f(z)在T内处处可导时,称f(z)是T内的解析函数,也称为全纯函数。

如果f(z)在实轴上处处满足某些条件,并在实轴的两侧有相同的极限,那么f(x)在实轴上的延拓可称为f(z)的柯西主值,这种函数称为正则函数。

二、性质1. 洛朗级数洛朗级数是复变函数研究中一个重要的概念。

它可以将一个复变函数在一个圆环区域内展开成一系列级数求和的形式,这个级数是由函数在那个区域内的任意一点展开所得。

洛朗级数包含有证明复变函数在那个区域内无极点、无本性奇点、无孤立奇点的必要条件等信息。

2. 留数定理留数定理也是复变函数研究中一个重要的定理。

留数是一个数学概念,它对于复变函数在某些奇点的积分有着重要的作用。

留数定理是用来计算一个复变函数在一个区域内沿着一个封闭曲线的积分,当函数在曲线上有奇点的时候,可以利用留数定理来计算出积分的值,进而得到很多省时省力又具有重要意义的结论。

3. 最大模定理最大模定理是指在一个区域内解析函数的模(或幅值)必须在边缘处取到最大值或最小值。

复变函数与积分变换经典-复变函数

复变函数与积分变换经典-复变函数

解法
通过积分求解,即 $f(z) = int g(z) dz$。
高阶微分方程
定义
高阶微分方程是包含未知函数的高阶导数的方程。
形式
$f^{(n)}(z) = g(z)$,其中 $f^{(n)}(z)$ 表示函数 $f(z)$ 的第 $n$ 次导数,$g(z)$ 是已知函数。
解法
通过求解一系列一阶微分方程来求解高阶微分方程。
线性微分方程组
定义
01
线性微分方程组是包含多个未知函数的线性微分方程的集合。
形式
02
$sum_{i=1}^{n} a_i(z) f_i'(z) = g(z)$,其中 $a_i(z)$ 和
$g(z)$ 是已知函数,$f_i(z)$ 是未知函数。
解法
03
通过求解一系列一阶和二阶线性微分方程来求解线性微分方程
应用
柯西积分公式是复变函数中一个重要的公式,它可以用于求解某些复杂函数的 积分问题。
积分公式与路径无关
路径无关
对于复数函数 $f(z)$,如果 $int_{a}^{b} f(z) dz = int_{c}^{d} f(z) dz$,则称该积分与路径无关。
应用
在解决某些积分问题时,可以利用路径无关的性质选择合适的路径进行计算,简化计算过程。
柯西积分公式
柯西积分公式
如果 $f(z)$ 在包含原点的区域 $D$ 内解析,且 $a, b in D$,则 $int_{a}^{b} f(z) dz = frac{1}{2pi i} int_{C} frac{f(z)}{z-b} dz$,其中 $C$ 是从 $a$ 到 $b$ 的任意封闭曲线。
实部和虚部
复数可以表示为实部和虚部的和, 即 $z = x + yi$,其中 $x$ 是实 部,$y$ 是虚部。

复变函数

复变函数

解析函数的泰勒展开
充要:f(z)=∑f(n)(a)/n!*(z-a)^n
f(z)在a邻域解析
exp(z)=∑z^n/n!
例子
cosz=∑(-1)^n*z^2n/(2n)! sinz=∑(-1)^n*z^(2n+1)/(2n+1)!
ln(1+z)=∑(-1)^n*z^(n+1)/(n+1)!
分离(z-a)项
Res[f(z),∞]=-Res[1/z^2f(1/z),0]
留数及其应用
积分计算
∫R(cosθ,sinθ)dθ
z=exp(iθ) dθ=dz/izcosθ=1/2(z+1/z)sinθ=1/2i(z-1/z)
Q(x)在实轴无零点,且比P(x)至少高两次
有理函数积分∫P(x)/Q(x)dx
运算法则
exp(z)=exp(x)*(cosy+isiny)
求导:d(w_k)/dz=1/z
三角函数
cosz=(exp(iz)+exp(-iz))/2 sinz=(exp(iz)-exp(-iz))/2i
三角函数
双曲函数 反三角函数
coshz=(exp(z)+exp(-z))/2 sinhz=(exp(z)-exp(-z))/2
留数定理
定理:∫f(z)dz=2πi∑Res(f(z),a_k],要在C上解析
Res[f(z),a]=a_-1
泰勒展开
Res[f(z),a]=1/(m-1)!limd^(m-1)/dz^(m-1)[(z-a)^mf(z)]
计算
一级极点
Res[P(z)/Q(z),a]=P(a)/Q'(a) P(a)≠0,Q(a)=0,Q'(a)≠0

复变函数(全书知识点)

复变函数(全书知识点)
解 因为 z x iy ,所以
x
1 1 ( z z ), y ( z z ). 2 2i
将上式代入 ax by c 0 得:
a( z z) ib( z z) 2c 0 ,

(a ib) z (a ib) z 2c ,
B 2c ,则有 令 A a ib,
•复数z 的实部 Re(z) = x ; 虚部 Im(z) = y . (real part) (imaginary part) • 复数的模 | z | • 判断复数相等
x2 y2 0
z1 z2 x1 x2 , y1 y2 , 其中z1 x1 iy1 , z2 x2 iy2 z 0 Re( z ) Im( z ) 0
2 2 2

2

§1.2 复数的几何表示
1. 点的表示
易见, z x iy 一对有序实数 ( x, y ),
在 平 面 上 取 定 直 角 坐系 标, 则 任意点 P( x, y) 一 对 有 序 实 数 ( x, y) z x iy 平 面 上 的 点 P ( x, y )
《复变函数与积分变换》
Complex Analysis and Integral Transforms
朱传喜等编 江西高校出版社
复数的诞生
先从二次方程谈起: 公元前400年,巴比伦人发现和使用
ax2 bx c 0, (a 0),
则当 b 4ac 0 时无解,当 b 4ac 0 时有 解.
复变函数的理论和方法在数学,自然科学和工程技术中有着广泛 的应用,是解决诸如流体力学,电磁学,热学弹性理论中平面问 题的有力工具。

复变函数课件

复变函数课件
§3.解析函数在无穷远点的性质 3.解析函数在无穷远点的性质
定义: 内解析, 称点∞为 f (z)的孤立奇点.
1 作变换 w = 把扩充z平面上∞的去心邻域 R<|z|<+∞ z 1 0 映射成扩充w平面上原点的去心邻域:<| w |< . R 又 f ( z ) = f ( 1 ) = ϕ ( w) .这样, 我们可把在去心邻域R<|z|<+∞
tan
1 z k = 1 k + π 2
(k = 0,±1,±2,L)为本性奇点
z = 0为非孤立奇点;
§4.整函数与亚纯函数的概念 整函数与亚纯函数的概念 4.1 整函数 4.2 亚纯函数
4.1 整函数
定义:在整个复平面上解析的函数称为整函数。
设f ( z )为一整函数,则 f ( z )只以 z = ∞ 为孤立奇点,
且可设: f ( z ) =


n=0
c n z n (0 ≤| z |< +∞ ) (5.14)于是有
定理5.10 若 f (z ) 为一整函数,则 为一整函数, 定理 (1) z = ∞ 为的可去奇点的充要条件是f (z )为常数; 为常数; (2) z = ∞为 f (z )的 m 级极点的充要条件是f (z ) 是一 个m 次多项式. 次多项式 (3) z = ∞为的本性奇点的充要条件是 为的本性奇点的充要条件是(5.14)有无穷 有无穷 不等于零.(这样的整函数称为超越整函数 这样的整函数称为超越整函数) 多个 c n不等于零 这样的整函数称为超越整函数
定义 5.7 非有理函数的亚纯函数称为超越亚纯 函数。 亚纯函数可以表示成两个整函数的商,也可以 表示成部分分式(有理函数式)。

第一章 复变函数

第一章 复变函数

1.复变函数可导的充要条件: 当f(z)满足(ⅰ).函数f(z)的实部u(x,y)和虚部v(x,y)的 偏导数 存在且连续. ∂u ∂u ∂v ∂v , , , ∂x ∂y ∂x ∂y (ⅱ)满足C-R 条件
∂u ∂v = ∂x ∂y ∂u ∂v =− ∂y ∂x
(1)
(1)式为直角坐标形式. 极坐标形式:
∂ u dx ∂ x + ∂ u dy ∂ y
当v己知时由C-R条件就能知道du,并能求出u, 进一步可得 f(z). (3)由全微分取路径积分当己知v(或u)求出u(或v)
下面我们通过一个例题来说明: 例1 己知解析函数f(z)的实部u(x,y)= 解:方法1直接积分法;
e x cos y
∂v ∂u x ∂v ∂u x 由C − R条条件 = = e cos y, (1) = − = e sin y, (2) ∂y ∂x ∂x ∂y
∂u ∂v ∂u ∂v + =0 ∂x ∂x ∂y ∂y
等价二 维 ∇ u ⋅ ∇ v = 0
这相当于u=常数与v=常数是互相正交的两曲线族. 2. 解析函数的实部与虚部不是相互独立的,它们通过C-R 相联,故可以由解析函数的实部u (或虚部v )来求出解析函 数f(z). 己知u(或v)求f(z)的方法主要有3种: (1)直接积分法,(2)凑全微分法, (3)路径积分法 . (1)由C-R条件 ∂ u ∂v = ∂x ∂y 直接积分. ∂u ∂v = − ∂y ∂x 己知u就能求出v与f(z) . (2)由全微分du=
(f)复数共轭记为z*=x-iy=ρe –iφ .. zz*= ρ2 (三)无限远点: 对复变数z=x+iy, 当ρ→∞时就是z趋于无 穷运点.引入复数球,使复数球的s极与复数平面的原点 相切,这时对于复数平面上的任意一点A,它与复数球的 N极以直线相联与复数球面交于面上一点A′ ,这样就建 立了复数平面上的点与复数球面上点之间的一一对应 关系.当A不管以什么方式趋于无穷大时,其对应的A′都 趋于N极,因此可把平面上无限远看成一点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档