高三一轮复习-立体几何讲义(带答案)

合集下载

高考数学复习讲义与习题:立体几何含详解

高考数学复习讲义与习题:立体几何含详解

.
解析 设 O
为球心,
2 AOB
由题意知
AB
2
2
sin
AOB 2
AOB
2
AB 2 2
, 底面圆的半径为:
AB 2sin
2
2 3
26 3
3
, 则正三棱柱的高为 2
22
26 3
2
43 3
, 所以正三棱柱的
体积为 3 2 2 2 4 3 8 .
4
3
变 式 1 直 三 棱 柱 ABC A1B1C1 的 各 顶 点 都 在 同 一 球 面 上 , 若
长为( ).
A. 2 3
B. 3 2
3 3
.
V
1 3
3 a2h 4
4
故选 C.
变 式 1 已 知 S, A, B,C 是 球 O 表 面 上 的 点 , SA 平 面
ABC, AB BC, SA AB 1, BC 2 , 则球 O 的表面积等于( )
A. 4
B. 3
C. 2
D.
变式 2 已知三棱锥 S ABC 的所有顶点都在球 O 的球面上, ABC 是边长为 1 的正三
直线在平面外 直线在平面内 平行 相交
相交 平行
平行 相交
只有一个公共点 没有公共点 没有公共点
有公共点
平行关系的 相互转化
线线 平行
线面 平行
面面 平行
空间直角坐标系
垂直关系的 相互转化
线线 垂直
线面 垂直
面面 垂直
空间的角 空间的距离
异面直线所成的角 直线与平面所成的角 二面角
点到面的距离 直线与平面的距离 平行平面之间的距离

高考数学一轮复习第七章 立体几何答案

高考数学一轮复习第七章 立体几何答案

第七章 立体几何第33讲 空间几何体的表面积与体积链教材·夯基固本 激活思维 1.B【解析】设圆柱的直径为2R ,则高为2R ,由题意得4R 2=8,所以R =2,则圆柱表面积为π×(2)2×2+2×2π×22=12π.故选B. 2.B【解析】设底面半径为r cm ,因为S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,所以r 2=4,所以r =2.3. A 【解析】 底面边长为2,高为1的正三棱柱的体积是V =Sh =12×2×2sin60°×1=3.4. C 【解析】 由题意,正方体的对角线就是球的直径,所以2R =3×23=6,所以R =3,S =4πR 2=36π.5.C【解析】设正四棱锥的高为h ,底面边长为a ,侧面三角形底边上的高为h ′,则依题意有⎩⎪⎨⎪⎧h2=12ah ′,h2=h ′2-⎝ ⎛⎭⎪⎪⎫a 22,因此有h ′2-⎝ ⎛⎭⎪⎪⎫a 22=12ah ′,4⎝ ⎛⎭⎪⎪⎫h ′a 2-2⎝ ⎛⎭⎪⎪⎫h ′a -1=0,解得h ′a =5+14(负值舍去).知识聚焦1. (1) 平行且相等 全等 多边形 公共点 平行于底面 相似 (2) 任一边任一直角边 垂直于底边的腰 直径2. 2πrl πrl π(r 1+r 2)l3. Sh 4πR 2研题型·融会贯通 分类解析【答案】 C【解析】 对于A ,通过圆台侧面上一点只能做出1条母线,故A 错误;对于B ,直角三角形绕其直角边所在直线旋转一周得到的几何体是圆锥,绕其斜边旋转一周,得到的是两个圆锥的组合体,故B 错误;对于C ,由圆柱的定义得圆柱的上底面、下底面互相平行,故C 正确; 对于D ,五棱锥有十条棱,故D 错误.(1) 【答案】 D 【解析】因为在梯形ABCD 中,∠ABC =π2,AD∥BC ,BC =2AD =2AB =2,所以将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB =1,高为BC =2的圆柱减去一个底面半径为AB =1,高为BC -AD =2-1=1的圆锥的组合体,所以该几何体的表面积S =π×12+2π×1×2+π×1×12+12=(5+2)π.(2) 【答案】 B【解析】 由题知三棱锥P -ABC 的四个顶点都在球O 上, 故该球为三棱锥P -ABC 的外接球. 在△ABC 中,BC =3,∠BAC =60°, 根据三角形的外接圆半径公式r =a2sin A ,可得△ABC 的外接圆半径r =12·332=3,设点P 在平面ABC 内的射影为D ,则AD =r =3.又球心O 在PD 上,在Rt△PAD 中,PA 2=PD 2+AD 2,则PD =3.设三棱锥P -ABC 外接球半径为R ,如图,在Rt △ODA 中,OA 2=OD 2+AD 2,即(3-R )2+(3)2=R 2,解得R =2.根据球体的表面积公式S =4πR 2,可得球O 的表面积为S =4π×22=16π.(例2(2))(1) 【答案】 12【解析】设正六棱锥的高为h ,侧面的斜高为h ′.由题意,得13×6×12×2×3×h =23,所以h =1,所以斜高h ′=12+(3)2=2, 所以S 侧=6×12×2×2=12.(2) 【答案】 C 【解析】 如图所示,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大,设球O 的半径为R ,此时V O -ABC =V C -AOB =13×12×R 2×R =16R 3=36,故R =6,则球O 的表面积为4πR 2=144π.(变式)【答案】 43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为2×13×1×(2)2=43.(1) 【答案】 C 【解析】过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3.(变式(1))(2) 【答案】 61π 【解析】由圆台的下底面半径为5,知下底面在外接球的大圆上,如图所示,设球的球心为O ,圆台上底面的圆心为O ′,则圆台的高OO ′=OQ2-O ′Q2=52-42=3,所以圆台的体积V =13π×3×(52+5×4+42)=61π.(变式(2))【答案】 C【解析】 因为正方体的内切球的体积与“牟合方盖”的体积之比应为π∶4,“牟合方盖”的体积为18,所以正方体的内切球的体积V 球=π4×18=92π,设正方体内切球半径为r ,则43πr 3=92π, 解得r =32,所以正方体的棱长为2r =3.【答案】 C【解析】 如图所示,过球心O 作平面ABC 的垂线, 则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝ ⎛⎭⎪⎪⎫522+62=132.(变式)课堂评价 1.3π【解析】 设圆锥的底面半径为r ,母线为l ,高为h ,则由题意可得l =2r .因为S 侧=πrl =2πr 2=6π,所以r =3,l =23,则h =l2-r2=12-3=3,所以圆锥的体积为V =13πr 2h =13π×3×3=3π.2.29π【解析】根据题意可知三棱锥P -ABC 可看作长方体的一个角,如图,该长方体的外接球就是经过P ,A ,B ,C 四点的球.因为PA =2 m ,PB =3 m ,PC =4 m ,所以长方体的体对角线的长为PA2+PB2+PC2=29 m ,即外接球的直径2R =29m ,可得R =292m ,因此外接球的表面积为S =4πR 2=4π×⎝ ⎛⎭⎪⎪⎫2922=29π(m 2).(第2题)(第3题)3.3【解析】如图,将直三棱柱ABC-A1B1C1沿BB1展开,则AM+MC1最小等价于在矩形ACC1A1中求AM+MC1的最小值.当A,M,C1三点共线时,AM+MC1最小.又AB=1,BC=2,AB∶BC=1∶2,所以AM=2,MC1=22.又在原三棱柱中,AC1=9+5=14,所以cos∠AMC1=AM2+C1M2-AC212AM·C1M=2+8-142×2×22=-12,故sin∠AMC1=32,△AMC1的面积为S=12×2×22×32=3.4. 10 【解析】因为长方体ABCD-A1B1C1D1的体积为120,所以AB·BC·CC1=120,因为E为CC1的中点,所以CE=12CC1,由长方体的性质知CC1⊥底面ABCD,所以CE是三棱锥E-BCD的底面BCD上的高,所以三棱锥E-BCD的体积V=13·12AB·BC·CE=13·12AB·BC·12CC1=112×120=10.第34讲空间点、线、面之间的位置关系链教材·夯基固本激活思维1. C 【解析】点A在平面α外,故A∉α;直线l在平面α内,故l⊂α.2. C 【解析】此时三个平面两两相交,且有三条平行的交线.3. C 【解析】根据平面的特征,绝对的平,无限延展,不计大小和厚薄,即可知,①对,②错;再根据点线面的关系可知,③④正确.4. C 【解析】如图,因为M,N分别是长方形A1B1C1D1与长方形BCC1B1的中心,所以M,N分别是A1 C1,BC1的中点,所以直线MN与直线A1B平行,所以A错误;因为直线MN经过平面BB1D1D内一点M,且点M不在直线DD1上,所以直线MN与直线DD1是异面直线,所以B错误;因为直线MN经过平面ABC1内一点N,且点N不在直线AC1上,所以直线MN与直线AC1是异面直线,所以C正确;因为直线MN经过平面A1CC1内一点M,且点M不在直线A1C上,所以直线MN与直线A1C是异面直线,所以D错误.(第4题)5. C 【解析】连接BD,BC1,因为AB=D1C1,AB∥D1C1,所以四边形ABC1D1为平行四边形,所以AD1∥BC1,所以∠BC1D为异面直线AD1与DC1所成的角.在正方体ABCD-A1B1C1D1中,BD=BC1=DC1,所以△BC1D为等边三角形,所以∠BC1D=60°,所以异面直线AD1与DC1所成的角的大小为60°.知识聚焦1. 两点所有的点经过这个公共点的一条直线有且只有一个平面2. 在同一平面内异面直线3. (1) 平行(2) 平行相同4. (3) 互相垂直研题型·融会贯通分类解析【解答】 (1) 因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体AC1中,B1D1∥BD,所以EF∥BD,所以EF,BD确定一个平面,即D,B,F,E四点共面.(2) 在正方体AC1中,设A1ACC1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β,则Q是α与β的公共点,所以α∩β=PQ.又A1C∩β=R,所以R∈A1C.所以R∈α,且R∈β,则R∈PQ,故P,Q,R三点共线.【解答】(1) 因为PQ⊂平面PQR,M∈直线PQ,所以M∈平面PQR.因为RQ ⊂平面PQR,N∈直线RQ,所以N∈平面PQR,所以直线MN⊂平面PQR.(2) 因为M∈直线CB,CB⊂平面BCD,所以M∈平面BCD.由(1)知M∈平面PQR,所以M在平面PQR与平面BCD的交线上,同理,可知N,K也在平面PQR与平面BCD的交线上,所以M,N,K三点共线,所以点K在直线MN上.【解答】(1) 不是异面直线,理由:连接MN,A1C1,AC,如图,因为M,N分别是A1B1,B1C1的中点,所以MN∥A1C1.又因为A1A綊D1D,D1D綊C1C,所以A1A綊C1C,所以四边形A1ACC1为平行四边形,所以A1C1∥AC,故MN∥A1C1∥AC,所以A,M,N,C在同一个平面内,故AM和CN不是异面直线.(例2)(2)是异面直线,证明如下:显然D1B与CC1不平行,假设D1B与CC1在同一个平面CC1D1内,则B∈平面CC1D1,C∈平面CC1D1,所以BC⊂平面CC1D1,这显然是不正确的,所以假设不成立,故D1B与CC1是异面直线.【解答】 (1) 由题意易知PQ∥DE,MN∥DE,所以PQ∥MN,所以M,N,P,Q四点共面.(2) 由条件知AD=1,DC=1,BC=2,(例3)如图,延长ED至R,使DR=ED,则ER=BC,ER∥BC,故四边形ERCB为平行四边形,所以RC∥EB,又AC∥QM.所以∠ACR为异面直线BE与QM所成的角(或补角).因为DA=DC=DR,且三线两两互相垂直,由勾股定理得AC=AR=RC=2.因为△ACR为正三角形,所以∠ACR=60°.所以异面直线BE 与MQ 所成的角为60°. 【题组强化】 1. C【解析】 如图,取CD 的中点M ,CF 的中点N ,连接MN ,则MN ∥DF .延长BC 到点P ,使CP =12BC ,连接MP ,NP ,则MP ∥AC .(第1题)令AB =2,则MP =MN =2,又△BCF 是等边三角形,NC =PC =1,在△NCP 中,由余弦定理可得NP 2=CP 2+CN 2-2·CP ·CN ·cos ∠PCN =1+1-2×1×1×⎝ ⎛⎭⎪⎪⎫-12=3,所以NP =3,又异面直线AC 和DF 所成角为∠NMP ,在△NMP 中,由余弦定理得cos ∠NMP =2+2-32×2×2=14.2. D 【解析】 如图,取CD 的中点G ,连接EG ,FG ,则FG ∥BC ,EG ∥AD ,则∠EGF 为异面直线AD 与BC 所成的角(或补角),因为FG =12BC =2,EG =12AD =3,所以由余弦定理得cos ∠EGF =4+9-22×2×3=1112,故异面直线AD 与BC 所成角的余弦值为1112.(第2题)3.C【解析】如图,设AC ∩BD =O ,连接OE ,易知OE 是△SAC 的中位线,故EO∥SA ,则∠BEO 为异面直线BE 与SA 所成的角.设SA =AB =2a ,则OE =12SA =a ,BE =32SA =3a ,OB =22SA =2a ,在△EOB 中,由余弦定理可得cos ∠BEO =a2+3a2-2a223a2=33.(第3题)4. 2 【解析】 如图,设AB 的中点为E ,连接EN ,则EN ∥AC 且EN =12AC ,所以∠MNE 或其补角即为异面直线MN 与AC 所成的角.连接ME ,在Rt △MEN 中,tan ∠MNE =MENE=2.所以异面直线MN 与AC 所成角的正切值为2.(第4题)【答案】 A 【解析】如图所示,在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD -A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.如图所示,取棱AB ,BB 1,B 1C 1,C 1D 1,D 1D ,DA 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×22×22×sin60°=334.故选A.(例4)【答案】 26【解析】由题知,过BD1的截面可能是矩形,可能是平行四边形.(1) 当截面为矩形,即截面为ABC1D1,A1BCD1,BB1D1D时,由正方体的对称性可知S矩形ABC1D1=S矩形A1BCD1=S矩形BB1D1D=42.(2) 当截面为平行四边形时,如图所示,过点E作EM⊥BD1于M,S▱BED1F=BD1·EM,又因为BD1=23,所以S▱BED1F=EM·23,过点M作MN∥D1D交BD于N,连接AN,当AN⊥BD时,AN最小,此时,EM的值最小,且EM=2,故四边形BED1F面积的最小值为S▱BED1F=2×23=26,又因为42>26,所以过BD1的截面面积S的最小值为26.(变式)课堂评价1. D 【解析】因为一条直线与两条异面直线中的一条平行,所以它与另一条异面直线可能异面也可能相交.2. B 【解析】当两个平面相互平行时,把空间分成3部分.当两个平面相交时,把空间分成4部分.所以不重合的两个平面可以把空间分成3或4部分.3. BD 【解析】对于A,两两相交的三条直线,若相交于同一点,则不一定共面,故A不正确;对于B,平行四边形两组对边分别平行,则平行四边形是平面图形,故B正确;对于C,若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补,故C不正确;对于D,由公理可得,若A∈α,A∈β,α∩β=l,则A∈l,故D正确.4. ABC 【解析】如图,过点A作AM⊥BF于点M,过点C作CN⊥DE于点N.在翻折过程中,AF是以F为顶点,AM为底面半径的圆锥的母线,同理AB,E C,DC边均可看作圆锥的母线.对于A,点A和点C的轨迹为圆周,所在平面平行,显然无公共点,故A正确;对于B,AF,EC分别可看成圆锥的母线,只需看以F为顶点、AM为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B正确;对于C,同理B,故C正确;对于D,能否使直线AB与CD所成的角为90°,只需看以B为顶点、AM为底面半径的圆锥轴截面的顶角是否大于等于90°即可,可知D不成立.故选ABC.(第4题)5. 【解答】(1) 因为DD1⊥平面ABCD,所以斜线BD1在平面ABCD内的射影是BD.又直线BD1和直线AC不同在任何一个平面内,所以直线BD1和直线AC是异面直线.(2) 连接BD.因为DD1⊥平面ABCD,AC⊂平面ABCD,所以DD1⊥AC.又因为AC⊥BD,BD∩DD1=D,所以AC⊥平面BDD1.因为BD1⊂平面BDD1,所以AC⊥BD1,故直线BD1和直线AC所成的角是90°.第35讲直线、平面平行的判定与性质链教材·夯基固本激活思维1. D 【解析】与一个平面平行的两条直线可以平行,相交,也可以异面.2. D 【解析】依题意,直线a必与平面α内的某直线平行,又a∥b,因此直线b与平面α的位置关系是平行或直线b在平面α内.3. BD 【解析】因为直线a∥平面α,直线a与平面α无公共点,所以直线a和平面α内的任意一条直线都不相交,与无数条直线平行.4. 平面ABCDEF、平面CC1D1D【解析】在正六棱柱中,易知A1F1∥AF,AF⊂平面ABCDEF,且A1F1⊄平面ABCDEF,所以A1F1∥平面ABCDEF.同理,A1F1∥C1D1,C1D1⊂平面CC1D1D,且A1F1⊄平面CC1D1D,所以A1F1∥平面CC1D1D.其他各面与A1F1均不满足直线与平面平行的条件.5. ①③【解析】直线l在平面α外⇔l∥α或直线l与平面α仅有一个交点.知识聚焦1. 直线a与平面α平行直线a与平面α相交直线a在平面α内研题型·融会贯通分类解析【答案】 D【解析】对于A,若a⊥c,b⊥c,则a与b可能平行、异面、相交,故A是假命题;对于B,设α∩β=m,若a,b均与m平行,则a∥b,故B是假命题;对于C,a,b可能平行、异面、相交,故C是假命题;对于D,若α∥β,a⊂α,则a与β没有公共点,故a∥β,故D是真命题.【答案】 C【解析】对于A,两条直线可能平行也可能异面或相交;对于B,如图,在正方体ABCD-A1B1CD1中,平面ABB1A1和平面BCC1B1与B1D1所成的角相等,但这两个平面垂直;对于D,1两平面也可能相交.C正确.(变式)【解答】因为在直三棱柱ABC-A1B1C1中,点D,E分别是边BC,B1C1的中点,所以EC1綊BD,所以四边形BDC1E是平行四边形,所以BE∥C1D.因为BE⊄平面AC1D,C1D⊂平面AC1D,所以BE∥平面AC1D.【解答】如图,连接BD,令AC∩BD=O,连接EO.因为在△BPD中,BO=OD,PE=ED,所以OE∥BP.又因为BP⊄平面ACE,OE⊂平面ACE,所以BP∥平面ACE.(变式)【解答】 因为BC ∥平面GEFH ,BC ⊂平面ABCD ,平面GEFH ∩平面ABCD =EF ,所以BC ∥EF .同理可得,BC ∥GH ,所以GH ∥EF .【解答】 因为AB ∥平面MNPQ ,平面ABC ∩平面MNPQ =MN ,且 AB ⊂平面ABC ,所以由线面平行的性质定理,知 AB ∥MN .同理可得PQ ∥AB ,故MN ∥PQ .同理可得MQ ∥NP ,所以截面四边形 MNPQ 为平行四边形.【解答】 (1) 在正方形AA 1B 1B 中,因为AE =B 1G =1,所以BG =A 1E =2,所以BG 綊A 1E ,所以四边形A 1GBE 是平行四边形,所以A 1G ∥BE .又C 1F 綊B 1G ,所以四边形C 1FGB 1是平行四边形,所以FG 綊C 1B 1綊D 1A 1,所以四边形A 1GFD 1是平行四边形,所以A 1G 綊D 1F ,所以D 1F 綊EB ,故E ,B ,F ,D 1四点共面.(2) 因为H 是B 1C 1的中点,所以B 1H =32. 又B 1G =1,所以B1G B1H =23. 又FC BC =23,且∠FCB =∠GB 1H =90°,所以△B 1HG ∽△CBF , 所以∠B 1GH =∠CFB =∠FBG ,所以HG ∥FB .因为GH ⊄平面FBED 1,FB ⊂平面FBED 1,所以GH ∥平面BED 1F .由(1)知A 1G ∥BE ,A 1G ⊄平面FBED 1,BE ⊂平面FBED 1,所以A 1G ∥平面BED 1F .又HG ∩A 1G =G ,所以平面A 1GH ∥平面BED 1F .【解答】 因为PM ∶MA =BN ∶ND =PQ ∶QD ,所以MQ ∥AD ,NQ ∥BP .又BP ⊂平面PBC ,NQ ⊄平面PBC ,所以NQ∥平面PBC.又因为四边形ABCD为平行四边形,所以BC∥AD,所以MQ∥BC.又BC⊂平面PBC,MQ⊄平面PBC,所以MQ∥平面PBC.又MQ∩NQ=Q,所以平面MNQ∥平面PBC.课堂评价1. D2. A3. B 【解析】因为平面SBC∩平面ABC=BC,EF⊂平面SBC,又EF∥平面ABC,所以EF∥BC.4. ABC 【解析】由题意知,OM是△BPD的中位线,所以OM∥PD,故A正确;因为PD⊂平面PCD,OM⊄平面PCD,所以OM∥平面PCD,故B正确;同理可得OM∥平面PDA,故C正确;因为OM与平面PBA相交,故D不正确.第36讲直线、平面垂直的判定与性质链教材·夯基固本激活思维1. B 【解析】设a,b为异面直线,a∥平面α,b∥平面α,直线l⊥a,l⊥b.过a作平面β∩平面α=a′,则a∥a′,所以l⊥a′.同理过b作平面γ∩α=b′,则l⊥b′.因为a,b异面,所以a′与b′相交,所以l⊥α.2. A 【解析】由l⊥α且m∥α能推出m⊥l,充分性成立;若l⊥α且m⊥l,则m∥α或者m⊂α,必要性不成立,因此“m∥α”是“m⊥l”的充分不必要条件,故选A.3. A 【解析】因为DD1⊥平面ABCD,所以AC⊥DD1.又因为AC⊥BD,DD1∩BD=D,所以AC⊥平面BDD1B1.因为OM⊂平面BDD1B1,所以OM⊥AC.设正方体的棱长为2,则OM=1+2=3,MN=1+1=2,ON=1+4=5,所以OM2+MN2=ON2,所以OM⊥MN.故选A.4. AC 【解析】由题意知PA⊥平面ABC,因为BC⊂平面ABC,所以PA⊥BC,故A正确;因为AC⊥BC,PA⊥BC,且PA∩AC=A,PA,AC⊂平面PAC,所以BC⊥平面PAC,故C正确;若AC⊥PB,因为AC⊥BC,故可得AC⊥平面PBC,则AC⊥PC,与题目矛盾,故B错误;由BC⊥平面PAC可得,BC⊥PC,则△PBC为直角三角形,若PC ⊥PB ,则BC ,PB 重合,与已知矛盾,故D 错误.5. (1) 外 (2) 垂【解析】 (1) 如图(1),连接OA ,OB ,OC ,OP ,在Rt △POA ,Rt △POB 和Rt △POC 中,PA =PC =PB ,所以OA =OB =OC ,即O 为△ABC 的外心.(2)如图(2),延长AO ,BO ,CO 分别交BC ,AC ,AB 于点H ,D ,G .因为PC ⊥PA ,PB ⊥PC ,PA ∩PB =P ,所以PC ⊥平面PAB ,又AB ⊂平面PAB ,所以PC ⊥AB ,又AB ⊥PO ,PO ∩PC =P ,所以AB ⊥平面PGC .又CG ⊂平面PGC ,所以AB ⊥CG ,即CG 为△ABC 边AB 的高.同理可证BD ,AH 为△ABC 底边上的高,即O 为△ABC 的垂心.(第5题(1))(第5题(2))知识聚焦1. (1) 任意一条直线 (2) 两条相交直线都垂直2. (1) 射影 锐角 直角 (2) ⎣⎢⎢⎡⎦⎥⎥⎤0,π2 3. (1) 两个半平面 (2) 垂直于棱 (4) 直二面角研题型·融会贯通分类解析【答案】 B【解析】 如图,连接AC 1,因为∠BAC =90°,所以AC ⊥AB ,因为BC 1⊥AC ,BC 1∩AB =B ,所以AC ⊥平面ABC 1. 又AC 在平面ABC 内,所以根据面面垂直的判定定理,知平面ABC ⊥平面ABC 1, 则根据面面垂直的性质定理知,在平面ABC 1内一点C 1向平面ABC 作垂线,垂足必落在交线AB 上.故选B.(例1)【答案】 C【解析】因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l.【解答】因为AB=AC,D是BC的中点,所以AD⊥BC. 在直三棱柱ABC-A1B1C1中,因为BB1⊥底面ABC,AD⊂底面ABC,所以AD⊥B1B.因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,所以AD⊥平面B1BCC1.因为B1F⊂平面B1BCC1,所以AD⊥B1F.方法一:在矩形B1BCC1中,因为C1F=CD=1,B1C1=CF=2,所以Rt△DCF≌Rt△FC1B1,所以∠CFD=∠C1B1F,所以∠B1FD=90°,即B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.方法二:在Rt△B1BD中,BD=CD=1,BB1=3,所以B1D=BD2+BB21=10.在Rt△B1C1F中,B1C1=2,C1F=1,所以B1F=B1C21+C1F2=5.在Rt△DCF中,CF=2,CD=1,所以DF=CD2+CF2=5.显然DF2+B1F2=B1D2,所以∠B1FD=90°,所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.【解答】在矩形CDEF中,CD⊥DE.因为∠ADC=90°,所以CD⊥AD.因为DE∩AD=D,DE,AD⊂平面ADE,所以CD⊥平面ADE. 因为DM⊂平面ADE,所以CD⊥DM.又因为AB∥CD,所以AB⊥DM.因为AD=DE,M为AE的中点,所以AE⊥DM.又因为AB∩AE=A,AB,AE⊂平面ABE,所以MD⊥平面ABE.因为BE⊂平面ABE,所以BE⊥MD.【解答】 (1) 因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC.因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2) 因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,AB∥EF,所以AB⊥AF.又AB⊥AD,点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A.又AF,AD⊂平面PAD,所以AB⊥平面PAD.又AB⊂平面ABCD,所以平面PAD⊥平面ABCD.【解答】 (1) 因为PA=PC,O是AC的中点,所以PO⊥AC. 在Rt△PAO中,因为PA=5,OA=3,所以由勾股定理得PO=4.因为AB=BC,O是AC的中点,所以BO⊥AC.在Rt△BAO中,因为AB=5,OA=3,所以由勾股定理得BO=4.因为PO=4,BO=4,PB=42,所以PO2+BO2=PB2,所以PO⊥BO.因为BO∩AC=O,所以PO⊥平面ABC.因为PO⊂平面PAC,所以平面PAC⊥平面ABC.(2) 由(1)可知平面PAC⊥平面ABC.因为平面ABC∩平面PAC=AC,BO⊥AC,BO⊂平面ABC,所以BO⊥平面PAC,所以V POBQ=V BPOQ=13S△PQO·BO=13×12S△PAO×4=13×14×3×4×4=4.所以四面体POBQ的体积为4.【解答】(1) 因为AB⊥AD,AB⊥BC,且A,B,C,D四点共面,所以AD ∥BC.因为BC⊄平面PAD,AD⊂平面PAD,所以BC∥平面PAD.(2) 如图,过点D作DH⊥PA于点H,因为△PAD是锐角三角形,所以H与A不重合.因为平面PAD⊥平面PAB,平面PAD∩平面PAB=PA,DH⊂平面PAD,所以DH⊥平面PAB,因为AB⊂平面PAB,所以DH⊥AB.因为AB⊥AD,AD∩DH=D,AD,DH⊂平面PAD,所以AB⊥平面PAD.因为AB⊂平面ABCD,所以平面PAD⊥平面ABCD.(变式2)课堂评价1. ③⑤②⑤2. AC 【解析】如图,连接AC,BD相交于点O,连接EM,EN,SO.由正四棱锥的性质可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC,可得AC⊥平面SBD,利用三角形的中位线结合面面平行判定定理得平面EMN∥平面SBD,进而得到AC⊥平面EMN,故A正确;由异面直线的定义可知不可能EP∥BD;由A易得C正确;由A同理可得EM⊥平面SAC,故D错误.3. [2,3] 【解析】因为CD⊥平面B1C1CB,EF⊂平面B1C1CB,所以CD⊥EF.连接BC1,B1C,则EF∥BC1,BC1⊥B1C,所以EF⊥B1C,因为CD∩B1C=C,所以EF⊥平面A1B1CD.当点P在线段CD上时,总有A1P⊥EF,所以A1P的最大值为A1C=3,A1P的最小值为A1D=2,故线段A1P长度的取值范围是[2,3].4. 【解答】 (1) 如图,连接BD,交AC于点O,连接OF.因为四边形ABCD是矩形,O是矩形ABCD对角线的交点,所以O为BD的中点.又因为F是BE的中点,所以在△BED中,OF∥DE.因为OF⊂平面ACF,DE⊄平面ACF,所以DE∥平面ACF.(2) 因为四边形ABCD是矩形,所以AB⊥BC.又因为平面ABCD⊥平面BCE,且平面ABCD∩平面BCE=BC,AB⊂平面ABCD ,所以AB ⊥平面BCE .因为CF ⊂平面BCE ,所以AB ⊥CF .在△BCE 中,因为CE =CB ,F 是BE 的中点,所以CF ⊥BE .因为AB ⊂平面ABE ,BE ⊂平面ABE ,AB ∩BE =B ,所以CF ⊥平面ABE .又CF ⊂平面AFC ,所以平面AFC ⊥平面ABE .(第4题)第37讲 综合法求角与距离链教材·夯基固本激活思维1. B 【解析】 如图,取AD 的中点F ,连接EF ,CF .因为E 为AB 的中点,所以EF ∥DB ,则∠CEF 为异面直线BD 与CE 所成的角.在正四面体ABCD 中,因为E ,F 分别为AB ,AD 的中点,所以CE =CF .设正四面体的棱长为2a ,则EF =a ,CE =CF =(2a )2-a 2=3a .在△CEF 中,由余弦定理得cos ∠CEF =CE2+EF2-CF22CE ·EF =a22×3a2=36.(第1题)2. A 【解析】 如图,连接A 1C 1,则∠AC 1A 1为AC 1与平面A 1B 1C 1D 1所成的角.因为AB =BC =2,所以A 1C 1=AC =22,又AA1=1,所以AC 1=3,所以sin ∠AC 1A 1=AA1AC1=13.故选A.(第2题)3. 233【解析】设棱长为a,BC的中点为E,连接A1E,AE,在正三棱柱ABC-A1B1C1中,由各棱长都相等,可得A1E⊥BC,AE⊥BC,故二面角A1-BC-A的平面角为∠A1EA.在Rt△AA1E中,AE=32a,所以tan ∠A1EA=AA1AE=a32a=233,即二面角A1-BC-A的平面角的正切值为233.(第3题)4. 8 【解析】由体积公式V=13Sh,得96=13×36h,所以h=8,即点P到平面ABCD的距离是8.5.33【解析】由题意知点S在平面ABC内的射影为AB的中点H,所以SH⊥平面ABC.因为SH=3,CH=1,在平面SHC内作SC的垂直平分线MO,交SH于点O,则O为三棱锥S-ABC的外接球球心.因为SC=2,所以SM=1,∠OSM=30°,所以SO=233,OH=33,即为O到平面ABC的距离.知识聚焦1. 锐角2. 垂直研题型·融会贯通分类解析【答案】 D【解析】因为PA⊥底面ABC,所以PA⊥AB,PA⊥AC,即∠PAB=∠PAC=90°,又因为AB=AC=1,PA=2,所以△PAB≌△PAC,所以PB=PC.如图,取BC的中点D,连接AD,PD,所以PD⊥BC,AD⊥BC.又因为PD∩AD=D,所以点BC⊥平面PAD.因为BC⊂平面PBC,所以平面PAD⊥平面PBC.过点A作AO⊥PD于点O,易得AO⊥平面PBC,所以∠APD就是直线PA与平面PBC所成的角. 在Rt△PAD中,AD=12,PA=2,则PD=PA2+AD2=32,则sin ∠APD=ADPD=13.故选D.(例1)【答案】 A【解析】因为平面ABD⊥底面BCD,AB=AD,取DB的中点O,连接AO,CO,则AO⊥BD,AO⊥平面BCD,所以∠ACO就是直线AC与底面BCD所成的角.因为BC⊥CD,BC=6,BD=43,所以CO=23.在Rt△ADO中,OA=AD2-OD2=2.在Rt△AOC中,tan ∠ACO=AOOC=33,故直线AC与底面BCD所成角的大小为30°.故选A.(变式)【答案】1 3【解析】如图,过点S作SO⊥底面ABC,点O为垂足,连接OA,OB,OC,则OA=OB=OC,点O为等边三角形ABC 的中心.延长AO交BC于点D,连接SD.(例2)则AD⊥BC,BC⊥SD,所以∠ODS为侧面SBC与底面ABC所成二面角的平面角.因为正三棱锥S-ABC的所有棱长均为2,所以SD=3,OD=13AD=33.在Rt△SOD中,cos ∠ODS=ODSD=13.【答案】π3【解析】在△BDC中,BC=3,CD=2,∠BCD=π2,则BD=13.在△ABC中,AB=1,BC=3,∠ABC=π2,则AC=10.又AD=23,在△ABD中,BD2=AB2+AD2,则∠BAD=π2.过点B作BE∥CD,使BE=CD,连接AE,DE,则四边形BEDC为矩形,BE=2.因为BC⊥AB,BC⊥BE,则BC⊥平面ABE,DE∥BC,则DE⊥平面ABE,则DE⊥AE,AE=AD2-DE2=3,在△ABE中,AE2+AB2=BE2,则∠BAE=π2,∠AEB=π6,∠ABE=π3,由于AB⊥BC,EB⊥BC,则∠ABE为二面角A-BC-D的平面角,且∠ABE=π3.【答案】 B【解析】过点B作BE∥AC,且BE=AC.因为AC⊥AB,所以BE⊥AB.因为BD⊥AB,BD∩BE=B,所以∠DBE是二面角α-l-β的平面角,且AB⊥平面DBE,所以AB⊥DE ,所以CE ⊥DE .因为AB =4,CD =8,所以DE =CD2-CE2=82-42=43,所以cos ∠DBE =BE2+BD2-DE22BE ·BD =36+36-482×6×6=13.故选B.【解答】 (1) 如图(1),取BD 的中点O ,连接OM ,OE .(例3(1))因为O ,M 分别为BD ,BC 的中点,所以OM ∥CD ,且OM =12CD .因为四边形ABCD 为菱形,所以CD ∥AB ,又EF∥AB ,所以CD∥EF ,又AB =CD =2EF ,所以EF =12CD ,所以OM∥EF ,且OM =EF ,所以四边形OMFE 为平行四边形,所以MF ∥OE .又OE ⊂平面BDE ,MF ⊄平面BDE ,所以MF ∥平面BDE .(2) 由(1)得FM ∥平面BDE ,所以点F 到平面BDE 的距离等于点M 到平面BDE 的距离. 如图(2),取AD 的中点H ,连接EH ,BH .(例3(2))因为EA =ED ,四边形ABCD 为菱形,且∠DAB =60°,所以EH ⊥AD ,BH ⊥AD .因为平面ADE ⊥平面ABCD ,平面ADE ∩平面ABCD =AD ,EH ⊂平面ADE ,所以EH ⊥平面ABCD ,所以EH ⊥BH ,易得EH =BH =3,所以BE =6,所以S △BDE =12×6×22-⎝ ⎛⎭⎪⎪⎫622=152.设点F 到平面BDE 的距离为h ,连接DM ,则S △BDM =12S △BCD =12×34×4=32,连接EM ,由V E -BDM =V M -BDE ,得13×3×32=13×h ×152,解得h =155,即点F 到平面BDE 的距离为155.【解答】(1)如图,连接AF ,则AF =2,又DF =2,AD =2,所以DF 2+AF 2=AD 2,所以DF ⊥AF .因为PA ⊥平面ABCD ,所以DF ⊥PA ,又PA ∩AF =A ,所以DF ⊥平面PAF .又PF ⊂平面PAF ,所以DF ⊥PF .(变式)(2) 如图,连接EP ,ED ,EF .因为S △EFD =S 矩形ABCD -S △BEF -S △ADE -S △CDF =2-54=34,所以V P -EFD =13S △EFD ·PA =13×34×1=14.设点E 到平面PFD 的距离为h , 则由V E -PFD =V P -EFD ,得13S△PFD ·h =13·62·h =14,解得h =64,即点E 到平面PFD 的距离为64. 课堂评价 1.D【解析】如图,连接BC 1,A 1C 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.(第1题)由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45,即异面直线A 1B 与AD 1所成角的余弦值为45.2.55【解析】连接EB ,由BB 1⊥平面ABCD ,知∠FEB 即为直线EF 与平面ABCD 所成的角.在Rt △FBE 中,BF =1,BE =5,则tan ∠FEB =BFBE =55.3. 60°【解析】 如图,取AB 的中点O ,连接VO ,CO .在三棱锥V -ABC 中,VA =VB =AC =BC =2,AB=23,VC =1,所以VO⊥AB ,CO⊥AB ,所以∠VOC 是二面角V -AB -C 的平面角,VO =VA2-⎝ ⎛⎭⎪⎪⎫AB 22=4-3=1,CO =BC2-⎝ ⎛⎭⎪⎪⎫AB 22=4-3=1,所以cos ∠VOC =VO2+CO2-VC22VO ·CO=1+1-12×1×1=12,所以∠VOC =60°,所以二面角V -AB -C 的平面角的度数为60°.(第3题)4.217【解析】 如图,取AB 的中点E ,连接CE ,C 1E ,过点C 作CF ⊥C 1E ,垂足为F .在正三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,则AB ⊥CC 1. 因为△ABC 是等边三角形,所以AB ⊥CE , 又CE ∩CC 1=C ,所以AB ⊥平面CC 1E .因为CF ⊂平面CC 1E ,所以CF ⊥AB ,因为C 1E ∩AB =E ,所以CF ⊥平面ABC 1,则CF 的长即为所求. 在Rt △CEC 1中,CC 1=1,CE =32AB =32,所以C 1E =CC21+CE2=72,由等面积法,得CF =CC1×CE C1E =217.(第4题)第38讲 空间直角坐标系与空间向量链教材·夯基固本 激活思维 1.D【解析】因为向量OA→,OB →,OC →不能构成空间的一个基底,所以向量OA→,OB→,OC→共面,因此O ,A ,B ,C 四点共面,故选D.2. C 【解析】 AE →=AA 1+A 1E =AA 1+12A 1C 1=AA 1+12(AB →+AD →),故x =12,y =12.3. 2 【解析】 |EF→|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →) =12+22+12+2(1×2×cos 120°+0+2×1×cos 120°) =2,所以|EF→|=2,所以EF 的长为2.4. 18 【解析】 因为P ,A ,B ,C 四点共面,所以34+18+t =1,所以t =18. 5. α⊥β α∥β 【解析】 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β.当v =(4,-4,-10)时,v =-2u ⇒α∥β.知识聚焦2. (1) ①〈a ,b 〉 [0,π] 互相垂直 ②|a ||b |cos 〈a ,b 〉 a·b |a ||b |cos 〈a ,b 〉 (2) λ(a ·b ) b ·a3. a 1b 1+a 2b 2+a 3b 3 a 1=λb 1,a 2=λb 2,a 3=λb 3 a 1b 1+a 2b 2+a 3b 3=0研题型·融会贯通 分类解析【解答】 ①因为P 是C 1D 1的中点,所以AP→=AA1→+A1D1→+D1P →=a +AD →+12D1C1→=a +c +12AB →=a +12b +c . ②因为N 是BC 的中点,所以A1N →=A1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .③因为M 是AA 1的中点,所以MP →=MA →+AP →=12A1A →+AP →=-12a +⎝ ⎛⎭⎪⎪⎫a +12b +c =12a +12b +c . 又NC1→=NC →+CC1→=12BC →+AA1→=12AD →+AA1→=a +12c ,所以MP →+NC1→=⎝ ⎛⎭⎪⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎪⎫a +12c =32a +12b +32c . (1) 【答案】 -3 【解析】因为AB→=(3,-1,1),AC →=(m +1,n -2,-2),且A ,B ,C 三点共线,所以存在实数λ,使得AC→=λAB→,即(m +1,n -2,-2)=λ(3,-1,1)=(3λ,-λ,λ),所以⎩⎪⎨⎪⎧m +1=3λ,n -2=-λ,-2=λ,解得⎩⎪⎨⎪⎧λ=-2,m =-7,n =4.所以m +n =-3.(2) 【解答】 ①由题知OA→+OB →+OC →=3OM →,所以OA →-OM →=(OM →-OB→)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,所以MA →,MB →,MC →共面. ②由①知MA→,MB→,MC→共面且过同一点M ,所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内.【解答】 因为AM→=k AC1→,BN →=k BC →,所以MN →=MA →+AB →+BN →=k C1A →+AB→+k BC →=k (C1A →+BC →)+AB →=k (C1A →+B1C1→)+AB →=k B1A →+AB →=AB →-k AB1→=AB →-k (AA1→+AB →)=(1-k )AB →-k AA1→,所以由共面向量定理知向量MN →与向量AB →,AA1→共面.【解答】 (1) 设AB→=a ,AC →=b ,AD →=c ,由题意知EG →=12(AC →+AD →-AB →)=12(b +c -a ),所以EG →·AB →=12(a ·b +a ·c -a 2)=12⎝ ⎛⎭⎪⎪⎫1×1×12+1×1×12-1=0. 故EG→⊥AB →,即EG ⊥AB . (2) 由题意知EG →=-12a +12b +12c ,得|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22,即EG 的长为22.(3) 因为AG →=12(AC →+AD →)=12b +12c ,CE →=CA →+AE →=-b +12a ,所以cos 〈AG→,CE →〉=AG →·CE →|AG→||CE →|=⎝ ⎛⎭⎪⎪⎫12b +12c ·⎝ ⎛⎭⎪⎪⎫-b +12a ⎝ ⎛⎭⎪⎪⎫12b +12c 2·⎝ ⎛⎭⎪⎪⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝ ⎛⎦⎥⎥⎤0,π2, 所以异面直线AG 与CE 所成角的余弦值为23.。

2025年新人教版高考数学一轮复习讲义 第七章 §7.10 立体几何中的动态、轨迹问题

2025年新人教版高考数学一轮复习讲义  第七章 §7.10 立体几何中的动态、轨迹问题
设 AB=a,BC=b,则 a2+b2+22= 5,可得 a2+b2=1,
所以 V=2ab≤a2+b2=1,当且仅当 a=b= 22时,等号成立.
如图,设AC,BD相交于点O,
因为BO⊥AC,BO⊥AA1,AC∩AA1=A,AC,AA1⊂平面A1ACC1, 所以 BO⊥平面 A1ACC1,因为直线 BP 与平面 A1ACC1
2π 则在此过程中动点M形成的轨迹长度为___8___.
如 图 , 设 AC 的 中 点 为 M0 , △ADE 沿 DE 翻 折 90°,此时平面A′DE⊥平面ABCD,取CD中 点P,CE中点Q,PQ中点N, 连接PQ,MP,MQ,MN,M0P,M0Q,M0N. MP=M0P=12AD=12,MQ=M0Q=12AE=12,PQ=12DE= 22,△MPQ 和△M0PQ 是等腰直角三角形,
1 2 3 4 5 6 7 8 9 10
知BP⊥平面ACN,CN⊂平面ACN,所以BP⊥CN, 所以动点Q的轨迹为线段CN, 在Rt△ABN,Rt△RAB中,∠BAN=∠ARB, 所以Rt△ABN∽Rt△RAB,
则BANB=ARBA,得 BN=12, 易得 CN= BN2+BC2=
212+12=
5 2.
题型一 平行、垂直中的动态轨迹问题
例1 如图,在棱长为a的正方体ABCD-A1B1C1D1 中,E,F,G,H,N分别是CC1,C1D1,DD1,CD, BC的中点,M在四边形EFGH边上及其内部运动,
若MN∥平面A1BD,则点M轨迹的长度是
A. 3a
B. 2a
3a C. 2
√D.
2a 2
连接HN,GN(图略), ∵在棱长为a的正方体ABCD-A1B1C1D1中,E,F,G,H,N分别是 CC1,C1D1,DD1,CD,BC的中点,则GH∥BA1,HN∥BD, 又GH⊄平面A1BD,BA1⊂平面A1BD, ∴GH∥平面A1BD, 同理可证得NH∥平面A1BD, 又GH∩HN=H,GH,HN⊂平面GHN,

高考第一轮复习材料之立体几何有答案详解(珍藏资料)

高考第一轮复习材料之立体几何有答案详解(珍藏资料)

质量检测(五)测试内容:立体几何 (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )解析:法一:∵体积为12,而高为1,故底面积为12,选C.法二:选项A 得到的几何体为正方体,其体积为1,故排除A ;而选项B 、D 所得几何体的体积都与π有关,排除B 、D ;易知选项C 符合.答案:C2.已知水平放置的△ABC 的直观图△A ′B ′C ′(斜二测画法)是边长为2a 的正三角形,则原△ABC 的面积为( )A.2a 2B.32a 2 C.62a 2D.6a 2解析:斜二测画法中原图面积与直观图面积之比为1∶24,则易知24S =34(2a )2,∴S =6a 2.故选D.答案:D3.已知直线a 、b 和平面α,下列推理错误的是( )A.⎭⎬⎫a ⊥αb ⊂α⇒a ⊥b B.⎭⎬⎫a ⊥αa ∥b ⇒b ⊥α C.⎭⎬⎫a ⊥b b ⊥α⇒a ∥α或a ⊂α D.⎭⎬⎫a ∥αb ⊂α⇒a ∥b 解析:对于D 项,可能a ∥b ,或a ,b 异面. 答案:D4.(2011年安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80解析:由三视图可知几何体是底面是等腰梯形的直棱柱,底面等腰梯形的上底为2,下底为4,高为4,两底面积和为2×12(2+4)×4=24,四个侧面的面积为4(4+2+217)=24+817,所以几何体的表面积为48+817,故选C.答案:C5.在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →等于( )A.12a +12b +14cB.14a +14b +12cC.14a +12b +14cD.12a +14b +14c解析:本题主要考查空间向量的三角形法则或平行四边形法则. OE →=OA →+AE →=OA →+12AD → =OA →+12×12(AB →+AC →) =OA →+14AB →+14AC →=OA →+14(OB →-OA →)+14(OC →-OA →)=12OA →+14OB →+14OC →=12a +14b +14c ,故选D. 答案:D6.正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AA 1,AB 的中点,则EF 与对角面BDD 1B 1所成角的度数是( )A .30°B .45°C .60°D .150°解析:如图,∵EF ∥A 1B ,∴EF ,A 1B 与对角面BDD 1B 1所成的角相等,设正方体的棱长为1,则A 1B = 2.连接A 1C 1,交D 1B 1于点M ,连接BM ,则有A 1M ⊥面BDD 1B 1,∠A 1BM 为A 1B 与面BDD 1B 1所成的角.Rt △A 1BM 中,A 1B =2,A 1M =22,故∠A 1BM =30°.∴EF 与对角面BDD 1B 1所成角的度数是30°.答案:A7.已知各顶点都在一个球面上的正四棱柱的高为2,这个球的表面积为6π,则这个正四棱柱的体积为() A.1 B.2C.3 D.4解析:S表=4πR2=6π,∴R=62,设正四棱柱底面边长为x,则(22x)2+1=R2,∴x=1,∴V正四棱柱=2.故选B.答案:B8.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β解析:AB∥l,AB⊄β,∴AB∥β,C成立∵m∥α,m∥β,∴m平行于α与β的交线l∴AB∥m成立,AC⊥m成立∵AC未必在α内,∴AC⊥β不一定成立,故选D.答案:D9.如图,已知直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,且∠DAB =60°,AD =AA 1=1,F 为棱AA 1的中点,则点D 到平面BFD 1的距离为A.12 B.22 C.2D .1解析:连接DF ,BD ,设点D 到平面BFD 1的距离为h ,由VD -BFD 1=VB -DFD 1,即13·S △BFD 1·h =13·S △DFD 1·AB ·sin 60°,得13×12×2×32×h =13×12×1×1×32,h =22.答案:B10.(2011年辽宁)如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( )A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角解析:⎭⎬⎫SD ⊥平面ABCD ,∴SD ⊥AC又正方形中AC ⊥BD ,SD ∩BD =D ⇒AC ⊥面SBD ∵SB ⊂面SBD ,∴AC ⊥SB ,A 正确. ∵AB ∥CD ,∴AB ∥平面SCD ,B 正确. 可证AC ⊥平面SBD ,令AC ∩BD =O ,连SO , ∴∠ASO 是SA 与平面SBD 所成角, ∠CSO 是SC 与平面SBD 所成角. 又△SAC 是等腰三角形,O 是中点, ∴∠ASO =∠CSO ,∴C 正确. 答案:D11.已知三棱锥P -ABC 的四个顶点均在半径为3的球面上,且满足P A →·PB →=0,PB →·PC →=0,PC →·P A →=0,则三棱锥P -ABC 的侧面积的最大值为( )A .9B .18C .36D .72解析:依题意P A 、PB 、PC 两两垂直,以P A 、PB 、PC 为棱构造长方体,则长方体的体对角线即为球的直径,∴P A 2+PB 2+PC 2=4R 2=36,S 侧=12(P A ·PB+PB ·PC +PC ·P A )≤12(P A 2+PB 22+PB 2+PC 22+PC 2+P A22)=18.答案:B12.(2012年江西)如图,已知正四棱锥S -ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE =x (0<x <1),截面下面部分的体积为V (x ),则函数y =V (x )的图象大致为解析:当12≤x <1时,截面只与CD 和CB 相交,设交点分别为E 1,E 2,则下面部分即为三棱锥C -EE 1E 2.此时CE =1-x ,EE 1⊥CE ,∠ECE 1=∠ECE 2=60°,则EE 1=EE 2=3(1-x ),CE 1=CE 2=2(1-x ),则E 1E 2=22(1-x ),此时V (x )=13(1-x )×12×22(1-x )×[3(1-x )]2-[2(1-x )]2=23(1-x )3.当0<x <12时,截面与SD ,DA ,AB ,BS 均相交,依次记为F ,G ,H ,M ,此时V (x )=V EFM -CDB +V FDG -MBH ,V EFM -CDB =V S -BCD -V S -EFM .∵SE =x ,则EF =EM =3x ,SF =SM =2x ,∴FM =22x ,V S -EFM =13×12×22x ×(3x )2-(2x )2·x =23x 3,又V S -BCD =13×12×1×1×22=212,故V EFM -CDB =212-23x 3.而MF 綊HG ,设AC 与BD 交于点O ,AC 与GH 交于点O 1,过M 作MP ⊥BD 于P ,过F 作FQ ⊥BD 于Q ,可得三棱柱MPH -FQG 为直三棱柱,此时HP =MP =22-2x ,GH =22x ,则V MPH -FQG =12×(22-2x )2×22x =22x (1-2x )2,又V M -BPH =V F -DQG =13×12(22-2x )2×(22-2x )=224(1-2x )3,故V FDG -MBH =22x (1-2x )2+2×224(1-2x )3=212(1-2x )2·(1+4x ), 则此时V (x )=212-23x 3+212(1-2x )2(1+4x )=26(6x 3-6x 2+1). 故有V (x )=⎩⎪⎨⎪⎧26(6x 3-6x 2+1), 0<x <12,23(1-x )3, 12≤x <1.V ′(x )=⎩⎪⎨⎪⎧2(3x 2-2x ), 0<x <12,2(-x 2+2x -1), 12≤x <1,故V ′(x )在(0,13)上为减函数,在(13,12)和(12,1)上为增函数,故选A. 答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x =________.解析:由题可知c -a =(0,0,1-x ),所以(c -a )·(2b )=(0,0,1-x )·2(1,2,1)=2(1-x )=-2,从而解得x =2. 答案:214.(2011年天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:由三视图可知,该几何体为下面是长方体,上面是圆锥的组合体,长方体的体积V 1=3×2×1=6.圆锥的体积V 2=13π×12×3=π∴该几何体的体积V =V 1+V 2=6+π. 答案:6+π15.(2012年上海)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是________.解析:根据图形的变化,利用四面体的性质和体积公式.当BA =BD =CA =CD =a ,且EF 为AD 和BC 的公垂线段,F 为AD 的中点时,该几何体体积V 最大,V max =13S △AED ·BC =13×12AD ·EF ·BC =2c 3a 2-c 2-1.答案:23c a 2-c 2-116.(2012年河北质检)三棱锥P -ABC 的两侧面P AB ,PBC 都是边长为2a 的正三角形,AC =3a ,则二面角A -PB -C 的大小为________.解析:取PB 的中点M ,连接AM ,CM ,则AM ⊥PB ,CM ⊥PB ,∠AMC 是二面角A -PB -C 的平面角.由已知易知AM =CM =3a ,所以△AMC 是正三角形,所以∠AMC =60°.答案:60°三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.(2013届武汉市高三11月调研)如图,在四棱锥S -ABCD 中,底面ABCD 是正方形,四个侧面都是等边三角形,AC 与BD 交于点O ,E 为侧棱SC 上的一点.(1)若E 为SC 的中点,求证:SA ∥平面BDE ; (2)求证:平面BDE ⊥平面SAC . 证明:(1)如图,连接OE .∵O 是AC 的中点,E 是SC 的中点,∴OE ∥SA ,又∵SA ⊄平面BDE ,OE ⊂平面BDE , ∴SA ∥平面BDE . (2)由已知,得SB =SD , O 是BD 的中点,∴BD ⊥SO .又∵四边形ABCD 是正方形,∴BD ⊥AC . ∵SO ∩AC =O ,∴BD ⊥平面SAC .∵BD ⊂平面BDE ,∴平面BDE ⊥平面SAC .18.(2012年湖南)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面P AE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.解:法一:(1)证明:如图(1),连接AC .由AB =4,BC =3,∠ABC =90°,得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE . 因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE . (2)过点B 作BG ∥CD ,分别与AE ,AD 相交于点F ,G ,连接PF . 由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角. 由题意∠PBA =∠BPF ,因为sin ∠PBA =P A PB ,sin ∠BPF =BFPB ,所以P A =BF , 由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD ,所以四边形BCDG 是平行四边形,故GD =BC =3,于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.法二:(1)证明:如图(2),以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)由题设和(1)知,CD →,P A →分别是平面P AE ,平面ABCD 的法向量, 而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以 |cos 〈CD →,PB →〉|=|cos 〈P A →,PB →〉|,即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪P A →·PB →|P A →|·|PB →|. 由(1)知,CD →=(-4,2,0),P A →=(0,0,-h ),又PB →=(4,0,-h ),故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.19.(2012年北京西城区期末)如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.解:证明:(1)由ABC -A 1B 1C 1是直三棱柱,且∠ABC =90°,得BA 、BC 、BB 1两两垂直.以BC 、BA 、BB 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系B -xyz .设BA =2,则B (0,0,0),C (2,0,0),A (0,2,0),C 1(2,0,1),D (1,0,0),A 1(0,2,1), 所以AD →=(1,-2,0),AC 1→=(2,-2,1),A 1B →=(0,-2,-1). 设平面ADC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AD →=0,n ·AC 1→=0.所以⎩⎨⎧x -2y =0,2x -2y +z =0.取y =1,得n =(2,1,-2).∵A 1B →·n =0,∴A 1B →⊥n , ∵A 1B ⊄平面ADC 1, ∴A 1B ∥平面ADC 1.(2)易知平面ADC 的一个法向量为ν=(0,0,1), 由(1)知平面ADC 1的一个法向量为n =(2,1,-2), 所以cos 〈n ,ν〉=n·ν|n |·|ν|=-23, 因为二面角C 1-AD -C 是锐二面角, 所以二面角C 1-AD -C 的余弦值为23. (3)假设存在满足条件的点E .因为点E 在线段A 1B 1上,A 1(0,2,1),B 1(0,0,1),故可设E (0,λ,1),其中0≤λ≤2. 所以AE →=(0,λ,-2,1),DC 1→=(1,0,1). 因为AE 与DC 1成60°角,所以|cos 〈AE →,DC 1→〉|=|AE →·DC 1→|AE →|·|DC 1→||=12,即|1(λ-2)2-1·2|=12,解得λ=1或λ=3(舍去).所以当点E 为线段A 1B 1的中点时,AE 与DC 1成60°角.20.(2012年浙江)如图,在四棱锥P -ABCD 中,底面是边长为23的菱形,∠BAD =120°,且P A ⊥平面ABCD ,P A =26,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A -MN -Q 的平面角的余弦值.解:(1)证明:因为M ,N 分别是PB ,PD 的中点,所以MN 是△PBD 的中位线,所以MN ∥BD .又因为MN ⊄平面ABCD ,所以MN ∥平面ABCD .(2)法一:连接AC 交BD 于O ,以O 为原点,OC ,OD 所在直线为x ,y 轴,建立空间直角坐标系O -xyz ,如图所示.在菱形ABCD 中,∠BAD =120°,得 AC =AB =23,BD =3AB =6. 又因为P A ⊥平面ABCD ,所以P A ⊥AC .在直角△P AC 中,AC =23,P A =26,AQ ⊥PC ,得QC =2,PQ =4. 由此知各点坐标如下:A (-3,0,0),B (0,-3,0),C (3,0,0),D (0,3,0),P (-3,0,26),M (-32,-32,6),N (-32,32,6),Q (33,0,263). 设m =(x ,y ,z )为平面AMN 的法向量, 由AM →=(32,-32,6),AN →=(32,32,6) 知⎩⎪⎨⎪⎧32x -32y +6z =0,32x +32y +6z =0,取z =-1,得m =(22,0,-1).设n =(x ,y ,z )为平面QMN 的法向量.由QM →=(-536,-32,63),QN →=(-536,32,63), 知⎩⎪⎨⎪⎧-536x -32y +63z =0,-536x +32y +63z =0,取z =5,得n =(22,0,5). 于是cos 〈m ,n 〉=m ·n |m |·|n |=3333.所以二面角A -MN -Q 的平面角的余弦值为3333.法二:在菱形ABCD 中,∠BAD =120°,得AC =AB =BC =CD =DA ,BD =3AB .又因为P A ⊥平面ABCD ,所以P A ⊥AB ,P A ⊥AC ,P A ⊥AD . 所以PB =PC =PD . 所以△PBC ≌△PDC .而M ,N 分别是PB ,PD 的中点,所以MQ =NQ ,且AM =12PB =12PD =AN , 取线段MN 的中点E ,连接AE ,EQ ,则AE ⊥MN ,QE ⊥MN , 所以∠AEQ 为二面角A -MN -Q 的平面角.由AB =23,P A =26,故在△AMN 中,AM =AN =3,MN =12BD =3,得AE =332.在直角△P AC 中,AQ ⊥PC ,得AQ =22,QC =2,PQ =4. 在△PBC 中,cos ∠BPC =PB 2+PC 2-BC 22PB ·PC =56,得MQ =PM 2+PQ 2-2PM ·PQ cos ∠BPC = 5. 在等腰△MQN 中,MQ =NQ =5,MN =3, 得QE =MQ 2-ME 2=112.在△AEQ 中,AE =332,QE =112,AQ =22,得cos ∠AEQ =AE 2+QE 2-AQ 22AE ·QE=3333.所以二面角A -MN -Q 的平面角的余弦值为3333.21.(2012年天津)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.解:法一:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B (-12,12,0),P (0,0,2). (1)证明:易得PC →=(0,1,-2), AD →=(2,0,0),于是PC →·AD →=0,所以PC ⊥AD . (2)PC →=(0,1,-2),CD →=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎨⎧y -2z =0,2x -y =0.不妨令z =1,可得n =(1,2,1). 可取平面P AC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m ·n |m |·|n |=16=66,从而sin 〈m ,n 〉=306. 所以二面角A -PC -D 的正弦值为306.(3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE →=(12,-12,h ). 由CD →=(2,-1,0),故cos 〈BE →,CD →〉=BE →·CD →|BE →|·|CD →|=3212+h 2·5=310+20h2, 所以,310+20h 2=cos 30°=32, 解得h =1010,即AE =1010. 法二:(1)证明:由P A ⊥平面ABCD ,可得P A ⊥AD ,又由AD ⊥AC ,P A ∩AC =A ,故AD ⊥平面P AC ,又PC ⊂平面P AC ,所以PC ⊥AD .(2)如图,作AH ⊥PC 于点H ,连接DH . 由PC ⊥AD ,PC ⊥AH ,可得PC ⊥平面ADH ,因此DH ⊥PC ,从而∠AHD 为二面角A -PC -D 的平面角. 在Rt △P AC 中,P A =2,AC =1,由此得AH =25. 由(1)知AD ⊥AH .故在Rt △DAH 中,DH =AD 2+AH 2=2305.因此sin ∠AHD =AD DH =306.所以二面角A -PC -D 的正弦值为306.(3)如图,因为∠ADC <45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF .故∠EBF 或其补角为异面直线BE 与CD 所成的角.由于BF ∥CD ,故∠AFB =∠ADC . 在Rt △DAC 中,CD =5,sin ∠ADC =15,故sin ∠AFB =15. 在△AFB 中,由BF sin ∠F AB =ABsin ∠AFB,AB =12,sin ∠F AB =sin 135°=22, 可得BF =52.由余弦定理,BF 2=AB 2+AF 2-2AB ·AF ·cos ∠F AB , 可得AF =12. 设AE =h . 在Rt △EAF 中, EF =AE 2+AF 2 =h 2+14.在Rt △BAE 中,BE=AE 2+AB 2=h 2+12.在△EBF 中,因为EF <BE ,从而∠EBF =30°,由余弦定理得cos 30°=BE 2+BF 2-EF 22BE ·BF.可解得h =1010. 所以AE =1010.22.(2012年安徽)平面图形ABB 1A 1C 1C 如图1所示,其中BB 1C 1C 是矩形,BC =2,BB 1=4,AB =AC =2,A 1B 1=A 1C 1= 5.现将该平面图形分别沿BC 和B 1C 1折叠,使△ABC 与△A 1B 1C 1所在平面都与平面BB 1C 1C 垂直,再分别连接A 1A ,A 1B ,A 1C ,得到如图2所示的空间图形.对此空间图形解答下列问题.(1)证明:AA 1⊥BC ; (2)求AA 1的长;(3)求二面角A -BC -A 1的余弦值.解:法一:(向量法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD .由BB 1C 1C 为矩形知,DD 1⊥B 1C 1. 因为平面BB 1C 1C ⊥平面A 1B 1C 1, 所以DD 1⊥平面A 1B 1C 1.又由A 1B 1=A 1C 1知,A 1D 1⊥B 1C 1.故以D 1为坐标原点,可建立如图所示的空间直角坐标系D 1-xyz . 由题设,可得A 1D 1=2,AD =1.由以上可知AD ⊥平面BB 1C 1C ,A 1D 1⊥平面BB 1C 1C ,于是AD ∥A 1D 1. 所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4).故AA 1→=(0,3,-4),BC →=(-2,0,0),AA 1→·BC →=0,因此AA 1→⊥BC →,即AA 1⊥BC .(2)因为AA 1→=(0,3,-4),所以|AA 1→|=5,即AA 1=5. (3)连接A 1D .由BC ⊥AD ,BC ⊥AA 1,可知BC ⊥平面A 1AD ,BC ⊥A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角.因为DA →=(0,-1,0),DA 1→=(0,2,-4), 所以cos 〈DA →,DA 1→〉=-21×22+(-4)2=-55,即二面角A -BC -A 1的余弦值为-55.(或用法向量求解)法二:(综合法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD ,A 1D .由条件可知,BC ⊥AD ,B 1C 1⊥A 1D 1.由上可得AD ⊥面BB 1C 1C ,A 1D 1⊥面BB 1C 1C , 因此AD ∥A 1D 1,即AD ,A 1D 1确定平面AD 1A 1D . 又因为DD 1∥BB 1,BB 1⊥BC .所以DD 1⊥BC .又考虑到AD ⊥BC ,所以BC ⊥平面AD 1A 1D ,故BC ⊥AA 1. (2)延长A 1D 1到G 点,使GD 1=AD .连接AG .21 / 21 因为AD 綊GD 1,所以AG 綊DD 1綊BB 1.由于BB 1⊥平面A 1B 1C 1,所以AG ⊥A 1G . 由条件可知,A 1G =A 1D 1+D 1G =3,AG =4,所以AA 1=5.(3)因为BC ⊥平面AD 1A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角.在Rt △A 1DD 1中,DD 1=4,A 1D 1=2,解得sin ∠D 1DA 1=55,cos ∠ADA 1=cos(π2+∠D 1DA 1)=-55,即二面角A -BC -A 1的余弦值为-55.。

2025年新人教版高考数学一轮复习讲义含答案解析 第七章§7.3 空间点、直线、平面之间的位置关系

2025年新人教版高考数学一轮复习讲义含答案解析  第七章§7.3 空间点、直线、平面之间的位置关系

2025年新人教版高考数学一轮复习讲义含答案解析§7.3空间点、直线、平面之间的位置关系课标要求1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义.2.了解四个基本事实和一个定理,并能应用定理解决问题.知识梳理1.基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行.2.“三个”推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间中直线与直线的位置关系异面直线:不同在任何一个平面内,没有公共点.4.空间中直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交a ∩α=A 1个平行a ∥α0个在平面内a ⊂α无数个平面与平面平行α∥β0个相交α∩β=l 无数个5.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.6.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 分别作直线a ′∥a ,b ′∥b ,我们把直线a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2),π2.常用结论1.过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.2.分别在两个平行平面内的直线平行或异面.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)没有公共点的两条直线是异面直线.(×)(2)直线与平面的位置关系有平行、垂直两种.(×)(3)如果两个平面有三个公共点,则这两个平面重合.(×)(4)两两相交的三条直线共面.(×)2.(必修第二册P147例1改编)已知正方体ABCD -A 1B 1C 1D 1,直线BD 1与直线AA 1所成角的余弦值是()A.12B.13C.63D.33答案D解析连接BD (图略),由于AA 1∥DD 1,所以∠DD 1B 即为直线BD 1与直线AA 1所成的角,不妨设正方体的棱长为a ,则BD =2a ,BD 1=D 1D 2+BD 2=3a ,所以cos ∠DD 1B =DD 1D 1B =13=33.3.(多选)给出以下四个命题,其中错误的是()A .不共面的四点中,其中任意三点不共线B .若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则点A ,B ,C ,D ,E 共面C .若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面D .依次首尾相接的四条线段必共面答案BCD解析反证法:如果四个点中,有3个点共线,第4个点不在这条直线上,根据基本事实2的推论可知,这四个点共面,这与已知矛盾,故A 正确;如图1,A ,B ,C ,D 共面,A ,B ,C ,E 共面,但A ,B ,C ,D ,E 不共面,故B 错误;如图2,a ,b 共面,a ,c 共面,但b ,c 异面,故C 错误;如图3,a ,b ,c ,d 四条线段首尾相接,但a ,b ,c ,d 不共面,故D 错误.图1图2图34.如图,在三棱锥A -BCD 中,E ,F ,G ,H 分别是棱AB ,BC ,CD ,DA 的中点,则:(1)当AC ,BD 满足条件________时,四边形EFGH 为菱形;(2)当AC ,BD 满足条件________时,四边形EFGH 为正方形.答案(1)AC =BD(2)AC =BD 且AC ⊥BD解析(1)由题意知,EF ∥AC ,EH ∥BD ,且EF =12AC ,EH =12BD ,∵四边形EFGH 为菱形,∴EF =EH ,∴AC =BD .(2)∵四边形EFGH 为正方形,∴EF =EH 且EF ⊥EH ,∴AC =BD 且AC ⊥BD .题型一基本事实的应用例1已知在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1C 1,C 1B 1的中点,AC ∩BD =P ,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于点R,则P,Q,R三点共线;(3)DE,BF,CC1三线交于一点.证明(1)如图所示,连接B1D1.因为EF是△C1D1B1的中位线,所以EF∥B1D1.在正方体ABCD-A1B1C1D1中,B1D1∥BD,所以EF∥BD,所以EF,BD确定一个平面,即D,B,F,E四点共面.(2)在正方体ABCD-A1B1C1D1中,连接A1C,设A1,C,C1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β,所以Q是α与β的公共点,同理,P是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,R∈α,且R∈β.则R∈PQ,故P,Q,R三点共线.(3)因为EF∥BD且EF<BD,所以DE与BF相交,设交点为M,则由M∈DE,DE⊂平面D1DCC1,得M∈平面D1DCC1,同理,M∈平面B1BCC1.又平面D1DCC1∩平面B1BCC1=CC1,所以M∈CC1.所以DE,BF,CC1三线交于一点.思维升华共面、共线、共点问题的证明(1)共面:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)共线:先由两点确定一条直线,再证其他各点都在这条直线上.(3)共点:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1在如图所示的空间几何体中,四边形ABEF 与ABCD 都是梯形,BC ∥AD 且BC =12AD ,BE ∥AF 且BE =12AF ,G ,H 分别为AF ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明由题设知,因为G ,H 分别为AF ,FD 的中点,所以GH ∥AD 且GH =12AD ,又BC ∥AD 且BC =12AD ,故GH ∥BC 且GH =BC ,所以四边形BCHG 是平行四边形.(2)解C ,D ,F ,E 四点共面.理由如下:由BE ∥AF 且BE =12AF ,G 是AF 的中点知BE ∥GF 且BE =GF ,所以四边形EFGB 是平行四边形,所以EF ∥BG .由(1)知BG ∥CH ,所以EF ∥CH .故EC ,FH 共面.又点D 在直线FH 上,所以C ,D ,F ,E 四点共面.题型二空间位置关系的判断例2(1)(多选)下列推断中,正确的是()A .M ∈α,M ∈β,α∩β=l ⇒M ∈lB .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=ABC .l ⊄α,A ∈l ⇒A ∉αD .A ,B ,C ∈α,A ,B ,C ∈β,且A ,B ,C 不共线⇒α,β重合答案ABD解析对于A ,因为M ∈α,M ∈β,α∩β=l ,由基本事实3可知M ∈l ,故A 正确;对于B,A∈α,A∈β,B∈α,B∈β,故直线AB⊂α,AB⊂β,即α∩β=AB,故B正确;对于C,若l∩α=A,则有l⊄α,A∈l,但A∈α,故C错误;对于D,有三个不共线的点在平面α,β中,α,β重合,故D正确.(2)(2023·龙岩模拟)若a和b是异面直线,b和c是异面直线,则a和c的位置关系是() A.异面或平行B.异面或相交C.异面D.相交、平行或异面答案D解析如图,在长方体ABCD-A1B1C1D1中,①若直线AA1记为直线a,直线BC记为直线b,直线B1A1记为直线c,此时a和c相交;②若直线AA1记为直线a,直线BC记为直线b,直线DD1记为直线c,此时a和c平行;③若直线AA1记为直线a,直线BC记为直线b,直线C1D1记为直线c,此时a和c异面.思维升华判断空间直线的位置关系一般有两种方法:一是构造几何体(如长方体、空间四边形等)模型来判断.二是排除法.特别地,对于异面直线的判定常用到结论:“平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.”跟踪训练2(1)空间中有三条线段AB,BC,CD,且∠ABC=∠BCD,那么直线AB与CD 的位置关系是()A.平行B.异面C.相交或平行D.平行或异面或相交均有可能答案D解析根据条件作出示意图,容易得到以下三种情况,由图可知AB与CD有相交、平行、异面三种情况.(2)(多选)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,以下四个选项正确的是()A .直线AM 与CC 1是相交直线B .直线AM 与BN 是平行直线C .直线BN 与MB 1是异面直线D .直线AM 与DD 1是异面直线答案CD解析因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以直线AM 与CC 1是异面直线,故A 错误;取DD 1的中点E ,连接AE (图略),则BN ∥AE ,但AE 与AM 相交,所以AM 与BN 不平行,故B 错误;因为点B 1与直线BN 都在平面BCC 1B 1内,点M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故C 正确;同理D 正确.题型三异面直线所成的角例3(1)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为()A.33B.55C.306D.66答案D解析如图,过点E 作圆柱的母线交下底面于点F ,连接AF ,易知F 为 AD 的中点,设四边形ABCD 的边长为2,则EF =2,AF =2,所以AE =22+(2)2= 6.连接ED ,则ED = 6.因为BC ∥AD ,所以异面直线AE 与BC 所成的角即为∠EAD (或其补角).在△EAD 中,cos ∠EAD =6+4-62×2×6=66.所以异面直线AE 与BC 所成角的余弦值为66.(2)四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PA ⊥底面ABCD ,异面直线AC 与PD 所成角的余弦值为105,则四棱锥外接球的表面积为()A .48πB .12πC .36πD .9π答案D解析如图,将其补成长方体.设PA =x ,x >0,连接AB 1,B 1C ,则异面直线AC 与PD 所成的角就是∠ACB 1或其补角.则cos ∠ACB 1=105=8+x 2+4-x 2-42×22×x 2+22,解得x =1(舍去负值),所以外接球的半径为12×12+22+22=32,所以该四棱锥外接球的表面积为4π=9π.思维升华异面直线所成角的求法方法解读平移法将异面直线中的某一条平移,使其与另一条相交,一般采用图中已有的平行线或者作平行线,形成三角形求解补形法在该几何体的某侧补接上一个几何体,在这两个几何体中找异面直线相应的位置,形成三角形求解跟踪训练3(1)(2023·莆田模拟)若正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的底面边长为1,高为6,则直线AE 1和EF 所成角的大小为()A.π6B.π4C.π3D.π2答案C解析如图所示,EF ∥E 1F 1,则∠AE 1F 1即为所求.∵AF =EF =1,EE 1=6,且∠AFE =2π3,∴AE =AF 2+EF 2-2AF ·EF ·cos2π3=3,∴AE 1=AE 2+EE 21=3,AF 1=AF 2+FF 21=7,∴cos ∠AE 1F 1=AE 21+E 1F 21-AF 212AE 1·E 1F 1=9+1-72×3×1=12,∴∠AE 1F 1=π3,即直线AE 1和EF 所成角的大小为π3.(2)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A.32B.22C.33D.13答案A解析如图所示,过点A 补作一个与正方体ABCD -A 1B 1C 1D 1相同棱长的正方体,易知平面α为平面AF 1E ,则m ,n 所成的角为∠EAF 1.∵△AF 1E 为正三角形,∴sin ∠EAF 1=sin 60°=32.课时精练一、单项选择题1.若直线上有两个点在平面外,则()A .直线上至少有一个点在平面内B .直线上有无穷多个点在平面内C .直线上所有点都在平面外D .直线上至多有一个点在平面内答案D解析根据题意,两点确定一条直线,那么由于直线上有两个点在平面外,则直线在平面外,只能是直线与平面相交,或者直线与平面平行,那么可知直线上至多有一个点在平面内.2.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案B解析由m ,n ,l 在同一平面内,可能有m ,n ,l 两两平行,所以m ,n ,l 可能没有公共点,所以不能推出m ,n ,l 两两相交.由m ,n ,l 两两相交且m ,n ,l 不经过同一点,可设l ∩m =A ,l ∩n =B ,m ∩n =C ,且A ∉n ,所以点A 和直线n 确定平面α,而B ,C ∈n ,所以B ,C ∈α,所以l ,m ⊂α,所以m ,n ,l 在同一平面内.3.已知平面α∩平面β=l ,点A ,C ∈α,点B ∈β,且B ∉l ,又AC ∩l =M ,过A ,B ,C 三点确定的平面为γ,则β∩γ是()A .直线CMB .直线BMC .直线ABD .直线BC答案B解析已知过A ,B ,C 三点确定的平面为γ,则AC ⊂γ.又AC ∩l =M ,则M ∈γ,又平面α∩平面β=l ,则l ⊂α,l ⊂β,又因为AC ∩l =M ,所以M ∈β,因为B ∈β,B ∈γ,所以β∩γ=BM .4.如图,已知直三棱柱ABC -A 1B 1C 1的所有棱长都相等,M 为A 1C 1的中点,则AM 与BC 1所成角的余弦值为()A.153B.155C.64D.104答案D 解析如图,取AC 的中点D ,连接DC 1,BD ,易知AM ∥DC 1,所以异面直线AM 与BC 1所成角就是直线DC 1与直线BC 1所成的角,即∠BC 1D ,因为直三棱柱ABC -A 1B 1C 1的所有棱长都相等,可设三棱柱的棱长都为2,则DC 1=5,BD =3,BC 1=22,则在△BDC 1中,由余弦定理可得cos ∠BC 1D =(5)2+(22)2-(3)22×5×22=104,即异面直线AM 与BC 1所成角的余弦值为104.5.四边形ABCD 是矩形,AB =3AD ,点E ,F 分别是AB ,CD 的中点,将四边形AEFD 绕EF 旋转至与四边形BEFC 重合,则直线ED ,BF 所成角α在旋转过程中()A .逐步变大B .逐步变小C .先变小后变大D .先变大后变小答案D 解析由题可知初始时刻ED 与BF 所成的角为0,如图1,故B ,C 错误;图1在四边形AEFD 绕EF 旋转过程中,EF ⊥DF ,EF ⊥FC ,DF ∩FC =F ,DF ,FC ⊂平面DFC ,所以EF ⊥平面DFC ,EF ⊂平面EFCB ,所以平面DFC ⊥平面EFCB ,故D 在平面BCFE 内的投影P 一直落在直线CF 上,如图2,图2所以一定存在某一时刻EP ⊥BF ,而DP ⊥平面EFCB ,DP ⊥BF ,又DP ∩PE =P ,DP ,PE ⊂平面DPE ,所以BF ⊥平面DPE ,此时DE 与BF 所成的角为π2,然后α开始变小,故直线ED ,BF 所成角α在旋转过程中先变大后变小,故A 错误,D 正确.6.在正四棱锥P -ABCD 中,AB =2,E ,F ,G 分别为AB ,PC ,AD 的中点,直线BF 与EG 所成角的余弦值为63,则三棱锥P -EFG 的体积为()A.5212 B.24 C.23 D.26答案B解析连接BD ,DF ,AC ,CG ,CE ,如图,设BF =DF =x ,由BD ∥EG ,得∠FBD 即为BF 与EG 所成的角,在△FBD 中,易知BD =22,cos ∠FBD =x 2+8-x 242x=63,解得x = 3.设PB =PC =y ,在△PFB +3-23·y 2cos ∠PFB =y 2,①因为∠PFB +∠BFC =180°,故cos ∠BFC =cos(180°-∠PFB )=-cos ∠PFB ,则在△BCF +3-23·y 2cos ∠BFC =4,即+3+23·y 2cos ∠PFB =4,②①+②得y 22+6=y 2+4,因为y >0,解得y =2.因为F 为PC 的中点,故V 三棱锥P -EFG =V 三棱锥C -EFG =V 三棱锥F -ECG ,因为PA 2+PC 2=AC 2,PA =PC ,所以△PAC 为等腰直角三角形,则在等腰直角三角形PAC 中,易求得点P 到AC 的距离即点P 到底面的距离为2×222=2,故点F 到平面CEG 的距离为22,S △ECG =S ▱ABCD -S △AEG -S △CDG -S △CEB =2×2-12×1×1-12×2×1-12×1×2=4-12-1-1=3 2,故所求三棱锥的体积为13×32×22=24.二、多项选择题7.如图,在正方体ABCD-A1B1C1D1中,O是DB的中点,直线A1C交平面C1BD于点M,则下列结论正确的是()A.C1,M,O三点共线B.C1,M,O,C四点共面C.C1,O,B1,B四点共面D.D1,D,O,M四点共面答案AB解析∵O∈AC,AC⊂平面ACC1A1,∴O∈平面ACC1A1.∵O∈BD,BD⊂平面C1BD,∴O∈平面C1BD,∴O是平面ACC1A1和平面C1BD的公共点,同理可得,点M和点C1都是平面ACC1A1和平面C1BD的公共点,∴点C1,M,O在平面C1BD与平面ACC1A1的交线上,即C1,M,O 三点共线,故A,B正确;根据异面直线的判定定理可得BB1与C1O为异面直线,故C1,O,B1,B四点不共面,故C不正确;根据异面直线的判定定理可得DD1与MO为异面直线,故D1,D,O,M四点不共面,故D不正确.8.(2024·朝阳模拟)在三棱锥A-BCD中,AB=CD=2,AD=BC=AC=BD=5,则() A.AB⊥CDB.三棱锥A-BCD的体积为23C.三棱锥A-BCD外接球的半径为6D.异面直线AD与BC所成角的余弦值为35答案ABD解析将三棱锥补形为长方体,如图所示.其中BE =BN =1,BF =2,所以AB =CD =2,AD =BC =AC =BD =5,连接MF ,则AM ∥BF ,AM =BF ,所以四边形AMFB 为平行四边形,所以AB ∥MF ,又四边形MCFD 为正方形,所以MF ⊥CD ,所以AB ⊥CD ,故A 正确;长方体的体积V 1=1×1×2=2,三棱锥E -ABC 的体积V 2=V 三棱锥A -BEC =13×12×1×2×1=13,同理,三棱锥N -ABD ,三棱锥F -BCD ,三棱锥M -ACD 的体积也为13,所以三棱锥A -BCD 的体积V =2-4×13=23,故B 正确;长方体的外接球的直径为12+12+22=6,所以长方体的外接球的半径为62,长方体的外接球也是三棱锥A -BCD 的外接球,所以三棱锥A -BCD 外接球的半径为62,故C 错误;连接MN ,交AD 于点O ,因为MN ∥BC ,所以∠AOM (或其补角)为异面直线AD 与BC 所成的角,由已知OA =12AD =52,OM =12MN =52,AM =2,所以cos ∠AOM =54+54-42×52×52=-35,所以异面直线AD 与BC 所成角的余弦值为35,故D 正确.9.已知α,β是不同的平面,l ,m ,n 是不同的直线,P 为空间中一点.若α∩β=l ,m ⊂α,n ⊂β,m ∩n =P ,则点P 与直线l 的位置关系用符号表示为________.答案P ∈l 解析∵m ⊂α,n ⊂β,m ∩n =P ,∴P ∈α且P ∈β,又α∩β=l ,∴点P 在直线l 上,即P ∈l .10.如图为正方体表面的一种展开图,则图中的AB ,CD ,EF ,GH 在原正方体中互为异面直线的有________对.答案3解析画出该正方体的直观图如图所示,易知异面直线有(AB ,GH ),(AB ,CD ),(GH ,EF ).故共有3对.11.(2023·南阳模拟)如图,AB 和CD 是异面直线,AB =CD =3,E ,F 分别为线段AD ,BC上的点,且AE ED =BF FC =12,EF =7,则AB 与CD 所成角的大小为________.答案60°解析在平面ABD 中,过E 作EG ∥AB ,交DB 于点G ,连接GF ,如图,∵AE ED =12,∴BG GD =12,又BF FC =12,∴BG GD =BF FC,∴∠EGF (或其补角)即为AB 与CD 所成的角,在△EGF 中,EG =23AB =2,GF =13CD =1,EF =7,∴cos ∠EGF =22+12-(7)22×2×1=-12,∴∠EGF =120°,∴AB 与CD 所成角的大小为60°.12.(2023·长春模拟)如图,在底面为正方形的棱台ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为棱CC 1,BB 1,CF ,AF 的中点,对空间任意两点M ,N ,若线段MN 与线段AE ,BD 1都不相交,则称点M 与点N 可视,下列与点D 不可视的为________.(填序号)①B 1;②F ;③H ;④G .答案①②③解析如图所示,连接B 1D 1,BD ,DB 1,EF ,DE ,DH ,DF ,DG ,因为E ,F 分别为棱CC 1,BB 1的中点,所以EF ∥BC ,又底面ABCD 为正方形,所以BC ∥AD ,所以EF ∥AD ,所以四边形EFAD 为梯形,所以DH 与AE 相交,DF 与AE 相交,故②③不可视;因为B 1D 1∥DB ,所以四边形B 1D 1DB 是梯形,所以B 1D 与BD 1相交,故①不可视;因为EFAD 为梯形,G 为CF 的中点,即G ∉EF ,则D ,E ,G ,A 四点不共面,所以DG 与AE 不相交,若DG 与BD 1相交,则D ,B ,G ,D 1四点共面,显然D ,B ,B 1,D 1四点共面,G ∉平面DBB 1D 1,所以D ,B ,G ,D 1四点不共面,即假设不成立,所以DG 与BD 1不相交,即点G 与点D 可视,故④可视.四、解答题13.已知ABCD 是空间四边形,如图所示(M ,N ,E ,F 分别是AB ,AD ,BC ,CD 上的点).(1)若直线MN 与直线EF 相交于点O ,证明:B ,D ,O 三点共线;(2)若E ,N 为BC ,AD 的中点,AB =6,DC =4,NE =2,求异面直线AB 与DC 所成角的余弦值.(1)证明因为M ∈AB ,N ∈AD ,AB ⊂平面ABD ,AD ⊂平面ABD ,所以MN ⊂平面ABD ,因为E ∈CB ,F ∈CD ,CB ⊂平面CBD ,CD ⊂平面CBD ,所以EF ⊂平面CBD ,由于直线MN 与直线EF 相交于点O ,即O ∈MN ,O ∈平面ABD ,O ∈EF ,O ∈平面CBD ,又平面ABD ∩平面CBD =BD ,则O ∈BD ,所以B ,D ,O 三点共线.(2)解连接BD ,作BD 的中点G ,并连接GN ,GE ,如图所示,在△ABD 中,点N ,G 分别是AD 和BD 的中点,且AB =6,所以GN ∥AB ,且GN =12AB =3,在△CBD 中,点E ,G 分别是BC 和BD 的中点,且DC =4,所以GE ∥CD ,且GE =12DC =2,则异面直线AB 与DC 所成的角等于直线GE 与GN 所成的角,即∠EGN 或∠EGN 的补角,又NE =2,由余弦定理得cos ∠EGN =GE 2+GN 2-NE 22GE ·GN =22+32-222×2×3=34>0,故异面直线AB 与DC 所成角的余弦值为34.14.如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AD ⊥DC ,AB ∥DC ,AB =2AD =2CD =2,点E 是PB 的中点.(1)线段PA 上是否存在一点G ,使得点D ,C ,E ,G 共面?若存在,请证明,若不存在,请说明理由;(2)若PC =2,求三棱锥P -ACE 的体积.解(1)存在.当G 为PA 的中点时满足条件.如图,连接GE ,GD ,则GE 是△PAB 的中位线,所以GE ∥AB .又AB ∥DC ,所以GE ∥DC ,所以G ,E ,C ,D 四点共面.(2)因为E 是PB 的中点,所以V 三棱锥P -ACE =V 三棱锥B -ACE =12V 三棱锥P -ACB .又S △ABC =12AB ·AD =12×2×1=1,V 三棱锥P -ACB =13PC ·S △ABC =23,所以V 三棱锥P -ACE =13.15.(多选)如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,点P 在线段BC 1上运动,则下列判断中正确的是()A .DP ∥平面AB 1D 1B .三棱锥C -AD 1P 的体积为定值C .平面PB 1D ⊥平面ACD 1D .异面直线DP 与AD 1所成角的范围是π4,π2答案ABC 解析对于A ,连接DB ,C 1D ,AB 1,D 1B 1,因为BC 1∥AD 1,BC 1⊄平面AB 1D 1,AD 1⊂平面AB 1D 1,所以BC 1∥平面AB 1D 1,因为DB ∥D 1B 1,DB ⊄平面AB 1D 1,D 1B 1⊂平面AB 1D 1,所以DB ∥平面AB 1D 1,又DB ∩BC 1=B ,DB ,BC 1⊂平面BDC 1,所以平面AB 1D 1∥平面BDC 1,又DP ⊂平面BDC 1,所以DP ∥平面AB 1D 1,故A 正确;对于B ,由点P 在线段BC 1上运动知平面AD 1P 即平面AD 1C 1B ,故点C 到平面AD 1P 的距离不变,且△AD 1P 的面积不变,所以三棱锥C -AD 1P 的体积不变,故B 正确;对于C ,因为四边形DCC 1D 1为正方形,则CD 1⊥C 1D ,而AD ⊥平面DCC 1D 1,CD 1⊂平面DCC 1D 1,所以CD 1⊥AD ,又AD ∩C 1D =D ,AD ,C 1D ⊂平面AB 1C 1D ,则CD 1⊥平面AB 1C 1D ,而DB 1⊂平面AB 1C 1D ,因此DB 1⊥CD 1,同理DB 1⊥CA ,又CD 1∩CA =C ,CD 1,CA ⊂平面ACD 1,所以DB 1⊥平面ACD 1,又DB 1⊂平面PB 1D ,则平面PB 1D ⊥平面ACD 1,故C 正确;对于D ,由AD 1∥BC 1,异面直线DP 与AD 1所成角即为DP 与BC 1所成角,又△DBC 1为等边三角形,当P 与线段BC 1的两端点重合时,DP 与AD 1所成角取最小值π3,当P 与线段BC 1的中点重合时,DP 与AD 1所成角取最大值π2,故DP 与AD 1所成角的范围为π3,π2,故D 错误.16.(2023·孝感模拟)已知正方体ABCD -A 1B 1C 1D 1的所有顶点均在体积为43π的球O 上,则该正方体的棱长为________,若动点P 在四边形A 1B 1C 1D 1内运动,且满足直线CC 1与直线AP 所成角的正弦值为13,则OP 的最小值为________.答案262解析设正方体ABCD -A 1B 1C 1D 1的棱长为a ,球O 的半径为R ,则由正方体体对角线L =3a =2R 得R =3a 2,所以V 球O =43πR 3=43π3a 23=43π,故a =2,因为CC 1∥AA 1,所以AA 1与AP 所成角的正弦值也是13,即sin ∠A 1AP =13,又因为AA 1⊥平面A 1B 1C 1D 1,A 1P ⊂平面A 1B 1C 1D 1,所以AA 1⊥A 1P ,故sin ∠A 1AP =A 1P AP =A 1P A 1P 2+AA 21,即A 1P A 1P 2+4=13,解得A 1P =22,所以点P 的轨迹是以A 1为圆心,22为半径的圆与四边形A 1B 1C 1D 1内的一段弧,如图所示,设正方形A 1B 1C 1D 1的中心为O 1,连接O 1P ,OO 1,因为O 1A 1=12A 1C 1=12×22+22=2,所以(O 1P )min =O 1A 1-A 1P =22,所以(OP )min =OO 21+(O 1P )2min =1+12=62,即(OP )min =62.。

2023届高三数学一轮复习专题 立体几何平行系统 讲义 (解析版)

2023届高三数学一轮复习专题  立体几何平行系统  讲义 (解析版)

高三数学第一轮复习专题 平行系统专题第一部分 直线与平面平行的判定与性质一。

线面平行判定定理:★★★若平面外一条直线与平面内一条直线平行,则该直线与这个平面平行。

⇒线线平行线面平行,,a b αα⊄⊂a ∥b a ⇒∥α一个核心条件:a ∥b证明:(用反证法)假设a 不平行于平面α,则设a P α⋂=。

若,P b a b P ∈⋂=则,与a ∥b 矛盾;若,P b ∉则a 、b 异面,与a ∥b矛盾。

故a ∥α。

例。

空间四边形ABCD 中,E 、F 分别为AB 、AD 中点,求证:EF ∥BCD 平面。

证明:,ABD E 在中、F 分别为AB 、AD 中点EF ∴∥BD又,EF BCD BD BCD ⊄⊂平面平面(二者均可省略)EF ∴∥BCD 平面二。

线面平行性质定理: ★★若一条直线与一个平面平行,经过这条直线的任一平面与已知平面相交,则这条直线与两个平面的交线平行。

⇒线面平行线线平行a ∥α,,ab βαβ⊂⋂=⇒a ∥b证明:a ∥α a α∴与无公共点b αβ⋂= b α∴⊂ a b ∴与无公共点又,a b ββ⊂⊂ a ∴∥b 。

题型一:由线线平行证明线面平行。

★★★★总的规律方法:先看线的走向,然后取中点或者作平行线,构造三角形的中位线,或构造平行四边形。

①既有三角形的中位线,又有平行四边形例1。

在四棱锥O ABCD -中,底面ABCD 是边长为1的菱形,,,OA ABCD M OA ⊥平面为中点N BC 为中点。

证明:MN ∥OCD 平面。

证明:OD E 取中点,CE 连接、ME ,OAD 在中M 、E 分别为OA 、OD 中点 (二证明)ME ∴∥AD ,12ME AD =,ABCD N BC 菱形中为中点NC ∴∥AD ,12NC AD = ME ∴∥NC ,ME NC = MECN ∴四边形为平行四边形 MN ∴∥CE又CE OCD ⊂平面 MN ∴∥OCD 平面。

练2。

2023年新高考数学大一轮复习专题四立体几何第1讲空间几何体(含答案)

2023年新高考数学大一轮复习专题四立体几何第1讲空间几何体(含答案)

新高考数学大一轮复习专题:第1讲 空间几何体[考情分析] 几何体的结构特征是立体几何的基础,空间几何体的表面积与体积是高考题的重点与热点,多以小题的形式进行考查,属于中等难度. 考点一 表面积与体积 核心提炼1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).例1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________. 答案 402π解析 因为母线SA 与圆锥底面所成的角为45°, 所以圆锥的轴截面为等腰直角三角形. 设底面圆的半径为r ,则母线长l =2r . 在△SAB 中,cos∠ASB =78,所以sin∠ASB =158.因为△SAB 的面积为515,即12SA ·SB sin∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.答案 233解析 如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2, ∴AC =2,OC =1,则AO = 3. ∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3. 又11BB C S=12×2×2=2, ∴11D BB C V =13×2×3=233.易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算). (2)一些不规则几何体的体积不会采用分割法或补形思想转化求解. (3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.跟踪演练1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π答案 B解析 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt△ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.答案327解析 设CD =DE =x (0<x <1),则四边形ABDE 的面积S =12(1+x )(1-x )=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝ ⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 考点二 多面体与球 核心提炼解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.例2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________. 答案 64π解析 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上, 即球心就是△PAB 的外心,根据正弦定理ABsin∠APB =2R ,解得R =4,所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB , 故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心. (3)多面体的内切球可利用等积法求半径.跟踪演练2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB.64πC.144πD.256π 答案 C解析 如图所示,设球O 的半径为R ,因为∠AOB =90°, 所以S △AOB =12R 2,因为V O -ABC =V C -AOB , 而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大, 此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36,故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.答案 20π解析 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3, ∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2,设鳖臑P -ADE 的外接球的半径为R 1, 则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21,可得PA 2=R 21-r 21=102,∴PA =10.正方形ABCD 的外接圆直径为2r 2=AC =2AD =10, ∴r 2=102, ∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题强化练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形 答案 A解析 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt△AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt△SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22,∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( )A.12B.13C.14D.18答案 C解析如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r,l为底面圆周长,R为母线长,则12lR=2πr2,即12·2π·r·R=2πr2,解得R=2r,故∠ADC=30°,则△DEF为等边三角形,设B为△DEF的重心,过B作BC⊥DF,则DB为圆锥的外接球半径,BC为圆锥的内切球半径,则BCBD=12,∴r内r外=12,故S1S2=14.4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体的费用最少为( )A.4500元B.4000元C.2880元D.2380元答案 B解析因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高 1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V=1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1000元,所以气体的费用最少为4×1000=4000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关 答案 B解析 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h (h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3B.4π3 C.5π3D .2π 答案 C解析 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3.7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64πB.48πC.36πD.32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt△OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3B .3πC.4π3D .8π 答案 A解析 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3,∴2r =AB sin∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A.9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2000π9B.4000π27C .81πD .128π答案 B解析 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,V 单调递增;当53<h <5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝⎛⎭⎪⎫53+5=4000π27,故选B.10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( ) A.36B.12C.13D.32答案 C解析 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O , ∵球O 的半径为1,∴正方体的边长为233,即PA =PB =PC =233,球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13S △PAB ×PC =13×12×⎝⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形,S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13.二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值 答案 AD解析 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFGAB,即AE ·AH 是定值,故D 正确.12.(2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π 答案 AD解析 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE .由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, 即r ·l =2.由于侧面展开图为半圆, 可知12πl 2=2π,可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40cm ,母线长最短50cm ,最长80cm ,则斜截圆柱的侧面面积S =________cm 2.答案 2600π解析 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2600π(cm 2).15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________. 答案823π 解析 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π.16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r , 则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.。

高三一轮复习 立体几何 教案,习题,答案

高三一轮复习 立体几何 教案,习题,答案

第七章立体几何第一节空间几何体的结构特征及三视图和直观图2019考纲考题考情1.空间几何体的结构特征2.空间几何体的三视图(1)三视图的形成与名称空间几何体的三视图是用平行投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图。

(2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线。

②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线。

3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直。

(2)原图形中平行于坐标轴的线段,直观图中还是平行于坐标轴的线段。

平行于x轴和z轴的线段长度在直观图中保持不变,平行于y轴的线段长度在直观图中变为原来的一半。

1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点。

2.三视图的基本要求(1)长对正,高平齐,宽相等。

(2)在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”。

在三视图的判断与识别中要特别注意其中的虚线。

3.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧ 坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变。

“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变。

一、走进教材1.(必修2P 8A 组T 1(1)改编)在如图所示的几何体中,是棱柱的为________。

(填写所有正确的序号)答案 ③⑤2.(必修2P 15练习T 1改编)已知如图所示的几何体,其俯视图正确的是()解析由俯视图定义易知选项C符合题意。

故选C。

答案 C二、走近高考3.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示。

2025高考数学一轮复习之立体几何基本概念

2025高考数学一轮复习之立体几何基本概念

2025高考数学一轮复习之立体几何基本概念一、空间几何体的结构特征及表面积与体积1.多面体的结构特征注意:特殊的棱柱和棱锥①直棱柱:侧棱垂直于底面的棱柱⇒正棱柱:底面是正多边形的直棱柱;②平行六面体:六个面都是平行四边形⇒直平行六面体:侧棱垂直于底面的平行六面体⇒长方体:底面是矩形的直棱柱⇒正四棱柱:底面是正方形的直棱柱⇒正方体:侧棱和底面边长相等的正四棱柱.③正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心⇒正四面体:各棱长均相等的正三棱锥.2.旋转体的结构特征3. 简单组合体由简单几何体组合而成的几何体叫简单组合体. 其构成形式主要有:由简单几何体拼接,或由简单几何体截去或挖去一部分.4.空间几何体的直观图斜二测画法画水平放置的平面图形直观图的步骤:⑴在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴相交于点O′,且使∠x′O′y′=45° (或135°),它们确定的平面表示水平面.⑵已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.⑶已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,在直观图中长度为原来的一半.画几何体的直观图时,与画平面图形的直观图相比,只是多画一个与x轴、y轴都垂直的z轴,并且使平行于z轴的线段的平行性和长度都不变.4.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l其中r,r′为底面半径,l为母线长.5.柱、锥、台、球的表面积和体积S直棱柱=cℎ+2S底S斜棱柱=c′l+2S底(c′为直截面周长)S圆锥=2πr2+2πrl=2πr(r+l)S正棱锥=12naℎ′+S底S圆锥=πr2+πrl=πr(r+l)S正棱台=12n(a+a′)ℎ+S上+S下S圆台=π(r′2+r2+r′l+rl)6、祖暅原理夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.【重要结论、方法】1.斜二测画法中的“三变”与“三不变”: “三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变 ;“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变.2.直观图结论⑴在斜二测画法中,要确定关键点及关键线段:“平行于x 轴的线段平行性不变,长度不变;平行于y 轴的线段平行性不变,长度减半.”⑵按照斜二测画法得到的平面图形的直观图,其面积与原平面图形面积的关系:S 直观图=√24S 原图形.3.正四面体的棱长为a,则其外接球的半径R =√64a ,内切球的半径r =√612a ,其半径R:r =3:14.几个与球有关的切、接常用结论:(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=√3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=√2a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=√a2+b2+c2.5.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等,祖暅原理6、求几何体表面上两个点的最短表面距离问题通常用:展开平面图线段距离最短解决7、.求解几何体表面积的常用求法:2. 求空间几何体的体积的常用方法:1.球的截面问题若用一个平面α去截半径为R的球O,得到的截面是一个圆:⑴若平面α过球心,则截面圆是以球心O为圆心的圆;⑵若平面α不过球心,如图所示,小圆圆心为O′,则OO′⊥α,记OO′=d,则r=√R2−d2.2.解决与球“外接”问题的方法⑴正方体、长方体的外接球长方体、正方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.⑵构造正(长)方体等特殊几何体,转化为特殊几何体的外接球问题①三棱锥P−ABC的三条侧棱两两互相垂直,则可将其放入某个长方体内,如图1所示;②三棱锥P−ABC的四个面均是直角三角形,则此时可构造长方体,如图2所示;③正四面体P−ABC可以补形为正方体,如图3所示;④三棱锥P−ABC的对棱两两相等,则可将其放入某个长方体内,如图4所示图1 图2 图3 图4⑶共斜边拼接模型三棱锥A−BCD中,AB⊥AD,CB⊥CD,BD为公共的斜边,设点O为公共斜边BD的中点,BD,即点O到A,B,C,D四点的距离相等,故点O就是三棱锥A−则OA=OB=OC=OD=12BCD外接球的球心, BD就是外接球的一条直径.⑷直棱柱外接球第一步:确定球心O的位置:O1是∆ABC的外心,O2是∆A1B1C1的外心,则O1O2⊥平面ABC,则O为O1O2的中点,即OO1=12AA1;第二步:正弦定理求出小圆O1的半径r;第三步:求外接圆的半径:R2=r2+(12AA1)2.⑸直棱锥外接球如图,PA⊥平面ABC,求外接球半径.第一步:将∆ABC画在小圆面上,A为小圆直径的一个端点,作小圆的直径AD,连接PD,则PD必过球心O;第二步:O1是∆ABC的外心,所以OO1⊥平面ABC,正弦定理求算出小圆O1的半径OD1=r,则OO1=12PA;第三步:求外接圆的半径:R2=r2+(12PA)2.⑹垂面模型三棱锥P−ABC,已知平面PAB⊥平面ABC,其外接球问题的步骤如下:第一步:找出∆PAB和∆ABC的外接圆圆心,分别记为O1和O2.第二步:分别过O1和O2作平面PAB和平面ABC的垂线,其交点为球心,记为O.第三步:过O1作AB的垂线,垂足记为D,连接O2D,则O2D⊥AB,在四棱锥A−DO1OO2,AD⊥平面DO1OO2,则四边形DO1OO2的四个顶点共圆且OD为该圆的直径.3.解决与球“内切”问题的方法(1)体积分割法求内切球半径:13S多面体表面积∙R内切球半径=V多面体体积.(2)作出合适的截面(过球心、切点等),转化为平面图形求解.(3)多球相切的问题,连接各球球心,转化为处理多面体和轴截面的问题.二、点、线、面位置关系1.与平面有关的三个基本事实基本事实1基本事实2基本事实3文字语言过不在一条直线上的三个点,有且只有一个平面如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线图形语言符号语言A,B,C三点不共线⇒有且只有一个平面α,使A∈α,B∈α,C∈αA∈l,B∈l,且A∈α,B∈α⇒l⊂αP∈α,且P∈β⇒α∩β=l,且P∈l作用①确定平面;②证明点、线共面;③证明两个平面重合判断直线是否在平面内①判断两个平面是否相交;②证明点共线和线共点问题2.基本事实1的三个推论自然语言图形语言作用推论1经过一条直线和这条直线外一点,有且只有一个平面确定平面的依据推论2经过两条相交直线,有且只有一个平面推论3经过两条平行直线,有且只有一个平面3.空间中直线与直线的位置关系(1) 位置关系分类位置关系异面直线共面直线平行直线相交直线文字语言不同在任何一个平面内,没有公共点在同一平面内,没有公共点在同一平面内,有且仅有一个公共点公共点无公共点一个公共点无公共点符号语言a,b是异面直线a∥b a∩b=A图形表示(2) 异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).②范围:0°<θ≤90°.(3) 基本事实4自然语言图形语言符号语言作用平行于同一条直线的两条直线平行a∥b且b∥c⇒a∥c判断两条直线是否平行(4) 等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.4.空间中直线与平面的位置关系位置关系直线a在平面α内直线a在平面α外直线a与平面α相交直线a与平面α平行公共点有无数公共点有且只有一个公共点没有公共点符号表示a⊂αa∩α=A a∥α图形表示5.空间中平面与平面的位置关系位置关系两个平面平行两个平面相交公共点没有公共点有无数个公共点(在一条直线上)符号表示α∥βα∩β=l 图形表示【重要结论方法】1.唯一性定理⑴过直线外一点有且只有一条直线与已知直线平行.⑵过直线外一点有且只有一个平面与已知直线垂直.⑶过平面外一点有且只有一个平面与已知平面平行.⑷过平面外一点有且只有一条直线与已知平面垂直.2.异面直线的2个结论⑴平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.⑵分别在两个平行平面内的直线平行或异面.1.证明4点共面问题⑴4个点不共线,任取这4点中2点作一条直线,证明作出的2条直线平行、相交;⑵4个点不共线,先假设不共面,结合题设推出矛盾,即用“反证法”证明共面;⑶4个点不共线,由其中三点确定一个平面,再证明第四点在这个平面内;2.证明共线问题(1)利用基本事实3:先找出两个平面,证明这些点都是这两个平面的公共点,根据基本事实3,则这些点都在两个平面的交线上;(2)同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.3.证明线共点问题(1)说明两条直线共面且交于一点;(2)说明这个点在另两个平面内,并且这两个平面相交;(3)根据基本事实3,则两个平面的交线也过此点,从而得到三线共点.注意:反证法:证明立体几何问题的一种重要方法.第一步:提出与结论相反的假设;第二步:由此假设推出与已知条件或某一公理、定理或某一已被证明是正确的命题相矛盾的结果;第三步:推翻假设,从而原命题成立.1.空间中两直线位置关系的判断空间中两直线关系的判定,主要是异面,平行和垂直的判定.(1)建立空间观念,全面考虑两条直线平行、相交和异面三种位置关系.特别关注异面直线.平行:可利用中位线的性质、基本事实4及线面平行与面面平行的性质定理判定;垂直:可利用线面垂直或面面垂直的性质判定;异面:可证明两条直线既不平行又不相交;可利用“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线”、“一条直线上两点与另一条与它异面的直线上两点所连成的两条直线为异面直线”、“一条直线上两点与另一条与它异面的直线上两点所连成的两条直线为异面直线”等结论判定.(2)构造长方体等常见几何体模型,在几何体中举例说明两条直线的位置关系.2.直线与平面位置关系的判断⑴定义法:要证明直线在平面内,只要证明直线上两点在平面α内,要证明直线与平面相交,只需说明直线与平面只有一个公共点,要证明直线与平面平行,则必须说明直线与平面没有公共点.⑵借助常见几何体模型:在几何体中举例说明直线与平面的位置关系.3.平面与平面的位置关系的判断方法⑴定义法:平面与平面相交的判断,主要是以基本事实3为依据找出一个交点;平面与平面平行的判断,要说明两个平面没有公共点.⑵借助常见几何体模型:在几何体中举例说明平面与平面的位置关系.1.作交线的方法有如下两种:⑴利用基本事实3作交线;⑵利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线.2.作截面遵循的原则:⑴在同一平面上的两点可引直线;⑵凡是相交的直线都要画出它们的交点;⑶凡是相交的平面都要画出它们的交线.三、空间中的平行和垂直1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行即:“线线平行⇒线面平行”性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行 即:“线面平行⇒线线平行”2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行即:“线面平行⇒面面平行”性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行 即:“面面平行⇒线线平行”3. 直线与平面垂直⑴定义:一般地,如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α. 直线l 叫做平面α的垂线,平面α叫做直线l 的垂面. 直线与平面垂直时,它们唯一的公共点P 叫做垂足.⑵直线与平面垂直的判定定理和性质定理:文字语言图形语言符号语言判定定理如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直即:“线线垂直⇒线面垂直”性质定理垂直于同一个平面的两条直线平行即:“线面垂直⇒线线平行”4.平面与平面垂直⑴二面角:从一条直线出发的两个半平面所组成的图形叫做二面角. 以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角,二面角的大小可以用它的平面角度量. 二面角的范围是[0°,180°].若两个平面相交,所成的二面角是直二面角,就说这两个平面相互垂直.⑵平面与平面垂直的判定定理和性质定理文字语言图形语言符号语言判定定理如果一个平面过另一个平面的垂线,那么这两个平面垂直即:“线面垂直⇒面面垂直”性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直即:“面面垂直⇒线面垂直”【重要结论】1. 与平行有关的结论⑴两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.⑵夹在两个平行平面之间的平行线段长度相等.⑶经过平面外一点有且只有一个平面与已知平面平行.⑷两条直线被三个平行平面所截,截得的对应线段成比例.⑸同一条直线与两个平行平面所成角相等.⑹如果两个平面分别平行于第三个平面,那么这两个平面互相平行.⑺垂直于同一条直线的两个平面平行⑻如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.2. 与垂直有关的结论⑴若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.⑵若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.⑶垂直于同一条直线的两个平面平行.⑷一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.⑸两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.3. 三垂线定理在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.4.三种平行关系的转化5.三种垂直关系的转化1.判断或证明线面平行的常用方法:⑴利用线面平行的定义:证明直线与平面无公共点;⑵利用线面平行的判定定理:a⊄α,b⊂α,a∥b⟹a∥α;补充:“找”线线平行的方法:①空间直线平行关系的传递性法;②三角形中位线法;③平行四边形法;④线段成比例法;⑤利用直线与平面平行的性质定理寻找线线平行.⑶利用面面平行的定义:α∥β,a⊂α⟹a∥β;注意:线面平行的判定定理必须具备三个条件:⑴直线a在平面α外,即a⊄α;⑵直线b在平面α内,即b⊂α;⑶两直线a,b平行,即a∥b,这三个条件缺一不可.2.线面平行性质定理的应用证明线线平行,常常将线面平行转化为该线与过该线的一个平面和已知平面的交线平行.关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.1.判断或证明面面平行的常用方法:⑴面面平行的定义:即证两个平面没有公共点;⑵面面平行的判定定理:a∥α,b∥α,a∩b=P,a⊂β,b⊂β⟹α∥β;注意:利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.⑶利用垂直于同一条直线的两个平面平行;⑷利用平行的传递性:如果两个平面同时平行于第三个平面,那么这两个平面平行.2.面面平行性质定理的应用⑴两平面平行,分别构造与之相交的第三个平面,交线平行;⑵两平面平行,其中一个平面内的任意一条直线与另一个平面平行.1. 证明线面垂直的常用方法:⑴线面垂直的判定定理:a,b⊂α,a∩b=O,l⊥a,l⊥b⟹l⊥α;⑵垂直于平面的传递性:a∥b,a⊥α⟹b⊥α,或α∥β,a⊥α⟹a⊥β;⑶面面垂直的性质定理:α⊥β,l⊂β,α∩β=a,l⊥a⟹l⊥α.补充:“找”线线垂直的方法:①要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等;②通过线面垂直的定义得到线线垂直.1.证明面面垂直的常用方法:⑴面面垂直的定义:两个平面二面角为90°;⑵面面垂直的判定定理:l⊂β,l⊥α⟹α⊥β;在已知两个平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.2.面面垂直性质定理的应用⑴两平面垂直的性质定理是把面面垂直转化为线面垂直的依据,运用时要注意“平面内的直线”.⑵两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.1.证明折叠问题中的平行与垂直关键是分清折叠前后图形的位置和数量关系的变与不变.一般地,折叠前位于“折痕”同侧的点、线间的位置和数量关系折叠后不变,而折叠前位于“折痕”两侧的点、线间的位置关系折叠后会发生化.对于不变的关系可在平面图形中处理,而对于变化的关系则要在立体图形中解决.与折痕垂直的线段,翻折前后垂直关系不变;与折痕平行的线段,翻折前后平行关系不变.2.与探索性问题有关的解题策略(1)求条件探索性问题的主要途径:①先猜后证,即先观察与尝试给出条件再证明;②先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.(2)涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.立体几何基本概念复习【默写版本】一、空间几何体的结构特征及表面积与体积1.多面体的结构特征注意:特殊的棱柱和棱锥①直棱柱:_________________⇒正棱柱:_________________;②平行六面体:_________________⇒直平行六面体:_________________⇒长方体:_________________⇒正四棱柱:_________________⇒正方体:_________________.③正棱锥:_________________⇒正四面体:_________________.2.旋转体的结构特征3. 简单组合体由简单几何体组合而成的几何体叫简单组合体. 其构成形式主要有:由简单几何体拼接,或由简单几何体截去或挖去一部分.4.空间几何体的直观图斜二测画法画水平放置的平面图形直观图的步骤:⑴在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴相交于点O′,且使∠x′O′y′=_________________,它们确定的平面表示水平面.⑵____________________________________________________________________⑶已知图形中平行于x轴的线段,_________________,平行于y轴的线段,_________________注意:画几何体的直观图时,与画平面图形的直观图相比,只是多画一个与x轴、y轴都垂直的z轴,并且使平行于z轴的线段的平行性和长度都不变.4.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式___________________________________________________其中r,r′为底面半径,l为母线长.5.柱、锥、台、球的表面积和体积S=_________________直棱柱=_________________S斜棱柱S=_________________圆锥=____________________S正棱锥S=____________________圆锥=_______________________S正棱台=_________________________S圆台6、祖暅原理_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________【重要结论、方法】1.斜二测画法中的“三变”与“三不变”:“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变 ;“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变.2.直观图结论⑴在斜二测画法中,要确定关键点及关键线段:“平行于x 轴的线段平行性不变,长度不变;平行于y 轴的线段平行性不变,长度减半.”⑵按照斜二测画法得到的平面图形的直观图,其面积与原平面图形面积的关系:S 直观图=√24S 原图形【证明】请作图三角形证明这个结论3.正四面体的棱长为a,则正四面体的外接球的半径R=√64a,内切球的半径r=√612a,其半径R:r=3:1【证明】如右图若正四面体A−BCD的边长为a,求证其外接球半径,和内切球半径。

专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)

专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)
因为点 E 是 AC 中点,点 F 为 AB 的中点,
所以 EF∥BC.
又因为 EF⊄平面 PBC,BC⊂平面 PBC,
△PAD 是正三角形,平面 PAD⊥平面 PBD.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)设二面角 P﹣BD﹣A 的大小为α,直线 PA 与平面 PBC 所成角的大小为β,求 cos
(α+β)的值.
【解答】(Ⅰ)证明:∵∠BAD=45°,AD=1,�� = 2,
∴由余弦定理,得:
BD=
1 + 2 − 2 × 1 × 2 × ���45° =1,…(2 分)
性质定理
行,则过这条直线的任一
∵l∥α,
平面与此平面的交线与
l⊂β,α∩β
该直线平行(简记为“线面
=b,∴l∥b
平行⇒线线平行”)
2.平面与平面平行的判定定理和性质定理
文字语言
判定定理
图形语言
符号语言
一个平面内的两条相交
∵a∥β,b
直线与另一个平面平行,
∥β,a∩b
则这两个平面平行(简记
=P,a⊂α,
⊥AC,
所以 PA⊥面 ABC,
因为 BC⊂平面 ABC,
所以 PA⊥BC.
又因为 AB⊥BC,且 PA∩AB=A,
所以 BC⊥面 PAB.
….(9 分)
(Ⅲ)解:当点 F 是线段 AB 中点时,过点 D,E,F 的平面内的任一条直线都与平面 PBC
平行.
取 AB 中点 F,连 EF,连 DF.
由(Ⅰ)可知 DE∥平面 PBC.
��
理由.
【解答】(Ⅰ)证明:取 AB 中点 O,连接 EO,DO.
因为 EA=EB,所以 EO⊥AB. …(2 分)

2025数学大一轮复习讲义人教版 第七章 立体几何中的截面、交线问题

2025数学大一轮复习讲义人教版   第七章 立体几何中的截面、交线问题

题型三 截面图形的周长或面积
例3 (2024·朔州模拟)在正方体ABCD-A1B1C1D1中,棱长为3,E为棱 BB1上靠近B1的三等分点,则平面AED1截正方体ABCD-A1B1C1D1的截面 面积为
A.2 11
√C.2 22
B.4 11 D.4 22
延长AE,A1B1交于点F,连接D1F交B1C1于点G, 如图, 在 正 方 体 ABCD - A1B1C1D1 中 , 平 面 ADD1A1∥ 平面BCC1B1, ∵平面AFD1∩平面ADD1A1=AD1,平面AFD1∩ 平面BCC1B1=EG, ∴AD1∥GE,又∵AD1=3 2,GE= 2,
设DA=a,DB=b,DC=c,所以AC2=a2+c2,
AB2=a2+b2,BC2=b2+c2.
所以由余弦定理得,cos∠CAB=AB2+2AABC·A2-CBC2=2
2a2 a2+b2
a2+c2>0,
所 以 ∠CAB 为 锐 角 . 同 理 可 求 , ∠ACB 为 锐 角 , ∠CBA 为 锐 角 . 所 以
√A.3 2+2 5
B.2 2+ 5+3
9 C.2
D.2 2+2 5+2
如图,取BC的中点F,连接EF,AF,BC1, E,F分别为棱CC1,BC的中点,则EF∥BC1, 又在正方体中BC1∥AD1, 则有EF∥AD1,所以平面AFED1为所求截面, 因为正方体ABCD-A1B1C1D1的棱长为2, 所以 EF= 2,D1E=AF= 22+12= 5,AD1=2 2,
例2 (多选)在正方体ABCD-A1B1C1D1中,点E是线段DD1上的动点,
若过A,B1,E三点的平面将正方体截为两个部分,则所得截面的形状
可能为
√A.等边三角形

高中数学一轮复习理数通用版:第八章 立体几何 Word版含解析

高中数学一轮复习理数通用版:第八章 立体几何 Word版含解析

第八章⎪⎪⎪立体几何第一节 空间几何体的三视图、直观图、表面积与体积本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.突破点(一) 空间几何体的三视图和直观图[基本知识]1.空间几何体的结构特征 (1)多面体的结构特征 多面体 结构特征棱柱 有两个面平行,其余各面都是四边形且每相邻两个面的交线都平行且相等棱锥 有一个面是多边形,而其余各面都是有一个公共顶点的三角形 棱台棱锥被平行于底面的平面所截,截面和底面之间的部分叫做棱台几何体 旋转图形 旋转轴圆柱 矩形 矩形任一边所在的直线 圆锥 直角三角形 一条直角边所在的直线圆台 直角梯形或等腰梯形直角腰所在的直线或等腰梯形上下底中点的连线球半圆或圆直径所在的直线(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.[基本能力]1.判断题(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)棱台各侧棱的延长线交于一点.()(3)正方体、球、圆锥各自的三视图中,三视图均相同.()(4)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.()答案:(1)×(2)√(3)×(4)×2.填空题(1)如图所示的几何体中,是棱柱的为________(填写所有正确的序号).解析:根据棱柱的定义,结合给出的几何体可知③⑤满足条件.答案:③⑤(2)有一个几何体的三视图如图所示,这个几何体的形状为________.解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台.答案:棱台(3)已知一个几何体的三视图如图所示,则此几何体从上往下依次由____________构成.解析:由三视图可知,该几何体是由一个圆台和一个圆柱组成的组合体.答案:圆台,圆柱(4)利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的个数是________.解析:由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案:1[全析考法]空间几何体的结构特征[例1]给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3[解析]①错误,只有这两点的连线平行于旋转轴时才是母线;②错误,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③错误,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.[答案] A[方法技巧]解决与空间几何体结构特征有关问题的技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1中的命题②④易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(·河北衡水中学调研)正方体ABCD -A1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧视图为()(2)(·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 2 B.2 3C.2 2 D.2[解析](1)过点A,E,C1的截面为AEC1F,如图,则剩余几何体的侧视图为选项C中的图形.故选C.(2)在正方体中还原该四棱锥如图所示,从图中易得最长的棱为AC1=AC2+CC21=(22+22)+22=2 3.[答案](1)C(2)B[方法技巧]有关三视图问题的解题方法(1)由几何体的直观图画三视图需注意的事项①注意正视图、侧视图和俯视图对应的观察方向;②注意能看到的线用实线画,被挡住的线用虚线画;③画出的三视图要符合“长对正、高平齐、宽相等”的基本特征.(2)由几何体的部分视图画出剩余视图的方法先根据已知的部分视图推测直观图的可能形式,然后推测其剩余视图的可能情形,若为选择题,也可以逐项检验.(3)由几何体三视图还原其直观图时应注意的问题要熟悉柱、锥、球、台的三视图,结合空间想象将三视图还原为直观图.空间几何体的直观图按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A[全练题点]1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:选B俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边长为2的直角三角形,则该三棱锥的正视图可能为()解析:选C空间几何体的正视图和侧视图“高平齐”,故正视图的高一定为2,正视图和俯视图“长对正”,故正视图的底边长为 2.侧视图中的直角说明这个三棱锥最前面的面垂直于底面,这个面遮住了后面的一条侧棱.综合以上可知,这个三棱锥的正视图可能是C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二]已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选D 由题意知,三棱锥放置在长方体中如图所示,利用长方体模型可知,此三棱锥的四个面全部是直角三角形.故选D.突破点(二) 空间几何体的表面积与体积[基本知识]1.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)lS 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3[基本能力]1.判断题(1)锥体的体积等于底面面积与高之积.( ) (2)台体的体积可转化为两个锥体的体积之差.( ) (3)球的体积之比等于半径比的平方.( ) 答案:(1)× (2)√ (3)× 2.填空题(1)已知圆柱的底面半径为a ,高为66a ,则此圆柱的侧面积等于________. 解析:底面周长l =2πa ,则S 侧=l ·h =2πa ·⎝⎛⎭⎫66a =63πa 2. 答案:63πa 2(2)已知某棱台的上、下底面面积分别为63和243,高为2,则其体积为________. 解析:V =13(63+243+63×243)×2=28 3.答案:28 3(3)已知圆锥的母线长是8,底面周长为6π,则它的体积是________.解析:设圆锥底面圆的半径为r ,则2πr =6π,∴r =3.设圆锥的高为h ,则h =82-32=55,∴V 圆锥=13πr 2h =355π.答案:355π(4)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为________.解析:在正三棱柱ABC -A 1B 1C 1中,∵AD ⊥BC ,AD ⊥BB 1,BB 1∩BC =B ,∴AD ⊥平面B 1DC 1.∴VA -B1DC1=13S△B1DC1·AD=13×12×2×3×3=1.答案:1(5)一个空间几何体的三视图如图所示,则该几何体的表面积为________.解析:由三视图可知该几何体是一个底面为等腰梯形的平放的直四棱柱,所以该直四棱柱的表面积为S=2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.答案:48+817[全析考法]空间几何体的表面积[例1](1)(·福州市五校联考)某几何体的三视图如图所示,其中俯视图为一个直角三角形,一个锐角为30°,则该几何体的表面积为()A.24+12 3B.24+5 3C.12+15 3D.12+12 3(2)(·南昌市十校联考)已知某几何体的三视图如图所示,则该几何体的表面积是()A.(25+35)πB.(25+317)πC.(29+35)πD.(29+317)π[解析](1)由已知可得,该几何体为三棱柱,底面是斜边长为4,斜边上的高为3的直角三角形,底面面积为23,底面周长为6+23,棱柱的高为4,故棱柱的表面积S=2×23+4×(6+23)=24+123,故选A.(2)由三视图可知该几何体由一个上下底面直径分别为2和4,高为4的圆台,一个底面直径为4,高为4的圆柱和一个直径为4的半球组成,其直观图如图所示,所以该几何体的表面积为π+π×(1+2)×17+π×4×4+4π×222=π+317π+16π+8π=(25+317)π,故选B.[答案](1)A(2)B[方法技巧]求空间几何体表面积的常见类型及思路求多面体的表面积只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积求旋转体的表面积可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系求不规则几何体的表面积通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积空间几何体的体积[例2](1)(·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为()A .60B .30C .20D .10(2)(·洛阳市第一次统考)某几何体的三视图如图所示,则该几何体的体积是()A.15π2 B .8π C.17π2D .9π[解析] (1)如图,把三棱锥A -BCD 放到长方体中,长方体的长、宽、高分别为5,3,4,△BCD 为直角三角形,直角边分别为5和3,三棱锥A -BCD 的高为4,故该三棱锥的体积V =13×12×5×3×4=10.(2)依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接,恰好可以形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,选B.[答案] (1)D (2)B[方法技巧] 求空间几何体体积的常见类型及思路 规则 几何体 若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法不规则 几何体 若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解三视图若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观形式 图,然后根据条件求解[全练题点]1.[考点二](·石家庄市教学质量检测)某几何体的三视图如图所示(在网格线中,每个小正方形的边长为1),则该几何体的体积为( )A .2B .3C .4D .6解析:选A 由三视图知,该几何体为四棱锥如图所示,其底面面积S =12×(1+2)×2=3,高为2,所以该几何体的体积V =13×3×2=2,故选A.2.[考点一](·长沙市统一模拟考试)如图是某几何体的三视图,其正视图、侧视图均是直径为2的半圆,俯视图是直径为2的圆,则该几何体的表面积为( )A .3πB .4πC .5πD .12π解析:选A 由三视图可知,该几何体是半径为1的半球,其表面积为2π+π=3π.选A.3.[考点二](·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1D.3π2+3 解析:选A 由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为2的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V =12×13π×12×3+13×12×2×2×3=π2+1.4.[考点一](·南昌市模拟)如图,直角梯形ABCD 中,AD ⊥DC ,AD ∥BC ,BC =2CD =2AD =2,若将该直角梯形绕BC 边旋转一周,则所得的几何体的表面积为________.解析:根据题意可知,此旋转体的上半部分为圆锥(底面半径为1,高为1),下半部分为圆柱(底面半径为1,高为1),如图所示.则所得几何体的表面积为圆锥的侧面积、圆柱的侧面积以及圆柱的下底面积之和,即表面积为π·1·12+12+2π·12+π·12=(2+3)π.答案:(2+3)π5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得(5.4-x )×3×1+π×⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题与球有关的组合体问题常涉及内切和外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体时,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体时,正方体的各个顶点均在球面上,正方体的体对角线长等于球的直径.球与其他旋转体组合时,通常作它们的轴截面解题;球与多面体组合时,通常过多面体的一条侧棱和球心及“切点”或“接点”作截面图进行解题.[全析考法]多面体的内切球问题[例1] (1)(·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.(2)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] (1)设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.(2)设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14×63a =612a , 因此内切球表面积为S 2=4πr 2=πa 26, 则S 1S 2=3a 2π6a 2=63π. [答案] (1)32 (2)63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(2)(·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.(3)(·河北衡水调研)一个直六棱柱的底面是边长为2的正六边形,侧棱长为3,则它的外接球的表面积为________.[解析] (1)如图所示,设球半径为R ,底面中心为O ′且球心为O , ∵正四棱锥P -ABCD 中AB =2, ∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(2)由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.(3)由直六棱柱的外接球的直径为直六棱柱中最长的对角线,知该直六棱柱的外接球的直径为42+32=5,∴其外接球的表面积为4π×⎝⎛⎭⎫522=25π. [答案] (1)A (2)9π2 (3)25π[方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.[全练题点]1.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 2.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.3.[考点一](·东北三省模拟)三棱柱ABC -A 1B 1C 1的底面是边长为3的正三角形,侧棱AA 1⊥底面ABC ,若球O 与三棱柱ABC -A 1B 1C 1各侧面、底面均相切,则侧棱AA 1的长为( )A.12B.32C .1D. 3解析:选C 因为球O 与直三棱柱的侧面、底面均相切,所以侧棱AA 1的长等于球的直径.设球的半径为R ,则球心在底面上的射影是底面正三角形ABC 的中心,如图所示.因为AC =3,所以AD =12AC =32.因为tan π6=MD AD ,所以球的半径R =MD =AD tan π6=32×33×1=12,所以AA 1=2R =2×12=1.4.[考点二]三棱锥P -ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC =BC =1,PA =3,则该三棱锥外接球的表面积为( )A .5π B.2π C .20πD .4π解析:选A 把三棱锥P -ABC 看作由一个长、宽、高分别为1、1、3的长方体截得的一部分(如图).易知该三棱锥的外接球就是对应长方体的外接球.又长方体的体对角线长为12+12+(3)2=5,故外接球半径为52,表面积为4π×⎝⎛⎭⎫522=5π. 5.[考点二](·洛阳统考)已知三棱锥P -ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P -ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3B.40π3C.64π3D.80π3解析:选D 依题意,记三棱锥P -ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P -ABC =13S △ABC h =13×⎝⎛⎭⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝⎛⎭⎫2332=203,所以三棱锥P -ABC 的外接球的表面积为4πR 2=80π3,故选D.[全国卷5年真题集中演练——明规律] 1.(·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.2.(·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:选B 设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以圆柱的体积V =34π×1=3π4. 3.(·全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2 C .6πD.32π3解析:选B设球的半径为R,∵△ABC的内切圆半径为6+8-102=2,∴R≤2.又2R≤3,∴R≤32,∴V max=43×π×⎝⎛⎭⎫323=9π2.故选B.4.(·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π解析:选C由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r,周长为c,圆锥母线长为l,圆柱高为h.由图得r=2,c=2πr=4π,h=4,由勾股定理得:l =22+(23)2=4,S表=πr2+ch+12cl=4π+16π+8π=28π.5.(·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18 B.17C.16 D.15解析:选D由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V1=13×12×1×1×1=16,剩余部分的体积V2=13-16=56.所以V1V2=1656=15,故选D.6.(·全国卷Ⅱ)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O 的表面积为________.解析:由题意知,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R,则有2R=14,R=142,因此球O的表面积为S=4πR2=14π.答案:14π[课时达标检测][小题对点练——点点落实]对点练(一)空间几何体的三视图和直观图1.给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是()A.0 B.1C.2 D.3解析:选A①直平行六面体底面是菱形,满足条件但不是正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③④显然错误,故选A.2.(·广州六校联考)已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数为()A.5 B.4C.3 D.2解析:选B由题知可以作为该几何体的俯视图的图形可以为①②③⑤.故选B.3.在如图所示的空间直角坐标系O -xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四面体的正视图和俯视图分别为()A .①和③B .③和①C .④和③D .④和②解析:选D 由题意得,该几何体的正视图是一个直角三角形,三个顶点的坐标分别是(0,0,2),(0,2,0),(0,2,2),且内有一条虚线(一顶点与另一直角边中点的连线),故正视图是④;俯视图即在底面的射影,是一个斜三角形,三个顶点的坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.4.如图,△O ′A ′B ′是△OAB 的水平放置的直观图,其中O ′A ′=O ′B ′=2,则△OAB 的面积是________.解析:在Rt △OAB 中,OA =2,OB =4,△OAB 的面积S =12×2×4=4.答案:45.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为_______cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C .在Rt △ABC 中,AC =12 cm ,BC =8-3=5(cm).∴AB =122+52=13(cm).答案:13对点练(二) 空间几何体的表面积与体积1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a 2B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.(·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π解析:选B由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V=π×32×10-12×π×32×6=63π.3.(·湖北四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为()A.16 B.(10+5)πC.4+(5+5)πD.6+(5+5)π解析:选C该几何体是两个相同的半圆锥与一个半圆柱的组合体,其表面积为S=π+4π+4+5π=4+(5+5)π.4.(·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,。

高考数学一轮复习立体几何多选题(讲义及答案)含答案

高考数学一轮复习立体几何多选题(讲义及答案)含答案

高考数学一轮复习立体几何多选题(讲义及答案)含答案一、立体几何多选题1.已知三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,其长度分别为a ,b ,c .点A在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为A S ,B S ,C S ,D S .在下列所给的命题中,正确的有( ) A .2A BCO D S SS ⋅=; B .3333A B C D S S S S <++;C .若三条侧棱与底面所成的角分别为1α,1β,1γ,则222111sin sin sin 1αβγ++=;D .若点M 是面BCD 内一个动点,且AM 与三条侧棱所成的角分别为2α,2β,2γ,则22cos α+2222cos cos 1βγ+=.【答案】ACD 【分析】由Rt O OA '与Rt O AD '相似,得边长关系,进而判断A 正确;当M 与O 重合时,注意线面角与线线角的关系,即可得C 正确;构造长方体,建立直角坐标系,代入夹角公式计算可得D 正确;代入特殊值,可得B 错误. 【详解】由三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,则将三棱锥A BCD -补成长方体ABFC DGHE -,连接DO 并延长交BC 于O ', 则AO BC ⊥.对A :由Rt O OA '与Rt O AD '相似,则2O A O O O D '''=⨯ 又12A S BC O D '=⋅,12BCOS BC O O '=⋅, 22221124DS BC O A BC O A ⎛⎫''=⋅=⋅ ⎪⎝⎭所以2A BCOD S SS ⋅=,故A 正确.对B :当1a b c ===时,33318B C D S S S ===,则33338B C D S S S ++=,而3332288A S ⎛⎫==> ⎪ ⎪⎝⎭,此时3333A B C D S S S S >++,故B 不正确. 对D :分别以AB ,AC ,AD 为x ,y ,z 轴,建立空间直角坐标系.设(),,M x y z ,则(),,AM x y z =,AM =(),0,0AB a =,()0,,0AC b =,()0,0,AD c =所以222222222cos cos cos AM AB AM AC AM AD AM ABAM ACAM ADαβγ⎛⎫⎛⎫⎛⎫⋅⋅⋅++=++ ⎪ ⎪ ⎪ ⎪⎪⎪⋅⋅⋅⎝⎭⎝⎭⎝⎭2222221x y z AMAMAM=++=,所以D 正确.对C :当M 与O 重合时,AO ⊥面BCD ,由D 有222222cos cos cos 1αβγ++=,由各侧棱与底面所成角与侧棱与所AO 成角互为余角,可得C 正确. 故选:ACD.【点睛】关键点睛:本题考查空间线面角、线线角、面积关系的问题,计算角的问题关键是建立空间直角坐标系,写出点的坐标,利用数量积的公式代入计算,解决这道题目还要结合线面角与线线角的关系判断.2.如图所示,正三角形ABC 中,D ,E 分别为边AB ,AC 的中点,其中AB =8,把△ADE 沿着DE 翻折至A 'DE 位置,使得二面角A '-DE -B 为60°,则下列选项中正确的是( )A .点A '到平面BCED 的距离为3B .直线A 'D 与直线CE 所成的角的余弦值为58C .A 'D ⊥BDD .四棱锥A '-BCED 237【答案】ABD 【分析】作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N .利用线面垂直的判定定理判定CD ⊥平面A'MN ,利用面面垂直的判定定理与性质定理得到'A 到平面面BCED 的高A'H ,并根据二面角的平面角,在直角三角形中计算求得A'H 的值,从而判定A;根据异面直线所成角的定义找到∠A'DN 就是直线A'D 与CE 所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N ,在利用外接球的球心的性质进行得到四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC ,经过计算求解可得半径从而判定D. 【详解】如图所示,作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N . 则A'M ⊥DE ,MN ⊥DE , ,∵'A M ∩MN =M ,∴CD ⊥平面A'MN , 又∵CD ⊂平面ABDC ,∴平面A'MN ⊥平面ABDC , 在平面A'MN 中作A'H ⊥MN ,则A'H ⊥平面BCED , ∵二面角A'-DE -B 为60°,∴∠A'EF =60°,∵正三角形ABC 中,AB =8,∴AN =∴A'M ,∴A'H =A'M sin60°=3,故A 正确; 连接DN ,易得DN ‖EC ,DN =EC =4, ∠A'DN 就是直线A'D 与CE 所成的角,DN =DA'=4,A'N =A'M ,cos ∠A'DN =22441252448+-=⨯⨯,故B 正确;A'D =DB =4,==,∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC , 若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()2222243x x R +=-+=,解得23x =-,舍去; 故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()2222243x x R +=++=, 解得23x =,∴244371699R ⨯=+=,R ∴=故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.AB M,连3.如图,矩形ABCD中,M为BC的中点,将ABM沿直线AM翻折成1结1B D,N为1B D的中点,则在翻折过程中,下列说法中所有正确的是()A .存在某个位置,使得1CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -外接球的体积是43π 【答案】BD 【分析】对于A ,取AD 中点E ,连接EC 交MD 与F ,可得到EN NF ⊥,又EN CN ⊥,且三线,,NE NF NC 共面共点,不可能;对于B ,可得由1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值),由余弦定理可得NC 是定值.对于C ,取AM 中点O ,连接1,B O DO ,假设1AM B D ⊥,易得AM ⊥面1ODB ,即可得OD AM ⊥,从而AD MD =,显然不一定成立.对于D ,当平面B 1AM ⊥平面AMD 时,三棱锥B 1﹣AMD 的体积最大,可得球半径为1,体积是43π. 【详解】对于A 选项:如图1,取AD 中点E ,连接EC 交MD 与F , 则11////NE AB NF MB ,,又11AB MB ⊥,所以EN NF ⊥, 如果1CN AB ⊥,可得EN CN ⊥,且三线,,NE NF NC 共面共点, 不可能,故A 选项不正确;对于B 选项:如图1,由A 选项可得1AMB EFN ≈△△,故1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值), 故在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 选项正确.对于C 选项:如图,取AM 中点O ,连接1,B O DO , 由AB BM =,得1B O AM ⊥,假设1AM B D ⊥,111B D B O B =,所以AM ⊥面1ODB ,所以OD AM ⊥,从而AD MD =,显然不恒成立,所以假设不成立,可得C 选项不正确.对于D 选项:由题易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得12BO =,DM =11B E ===, 因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,体积是43π.故D 选项正确. 故答案为:BD . 【点睛】本题主要考查了线面、面面平行与垂直的判定和性质定理,考查了空间想象能力和推理论证能力,属于难题.本题C 选项的解题的关键在于采用反证法证明,进而推出矛盾解题,D 选项求解的关键在于把握平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大.4.在直角梯形ABCD 中,2ABC BCD π∠=∠=,1AB BC ==,2DC =,E 为DC 中点,现将ADE 沿AE 折起,得到一个四棱锥D ABCE -,则下列命题正确的有( ) A .在ADE 沿AE 折起的过程中,四棱锥D ABCE -体积的最大值为13B .在ADE 沿AE 折起的过程中,异面直线AD 与BC 所成的角恒为4π C .在ADE 沿AE 折起的过程中,二面角A EC D --的大小为45︒D .在四棱锥D ABCE -中,当D 在EC 上的射影恰好为EC 的中点F 时,DB 与平面ABCE所成的角的正切为5【答案】ABD 【分析】对于A ,四棱锥D ABCE -的底面面积是固定值,要使得体积最大,需要平面DAE ⊥平面ABCE ,此时DE CE ⊥,可求得1133D ABCE ABCE V S DE -=⋅=可判断A ;对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC所成角,由翻折前可知4DAE π∠=可判断B ;对于C ,利用线面垂直的判定定理,结合翻折前可知AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的在大小为2π判断C ;对于D ,利用线面垂直的判定定理可知DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,15tanDF DBF BF ∠==,可判断D 正确;【详解】对于A ,ADE 沿AE 折起得到四棱锥D ABCE -,由四棱锥底面面积是固定值,要使得体积最大,需要四棱锥的高最大,即平面DAE ⊥平面ABCE ,此时DE CE ⊥,由已知得1DE =,则111111333D ABCE ABCE V S DE -=⋅=⨯⨯⨯=,故A 正确; 对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC 所成角,又1AB BC ==,2DC =,E 为DC 中点,可知4DAE π∠=,即异面直线AD 与BC 所成的角恒为4π,故B 正确; 对于C ,由翻折前知,,AE EC AE ED ⊥⊥,且ECED E =,则AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的大小为2π,故C 错误; 对于D ,如图连接,DF BF ,由C 选项知,AE ⊥平面DEC ,又DF ⊂平面DEC ,则AE DF ⊥,又由已知得EC DF ⊥,且EC AE E ⋂=,则DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,222222113122152tan 5511122DE CE DFDBF BFBC CE ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∠=====⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以DB 与平面ABCE 15D 正确; 故选:ABD 【点睛】关键点睛:本题考查立体几何综合问题,求体积,求线线角,线面角,面面角,解题的关键要熟悉几种角的定义,通过平移法找到线线角,通过证垂直找到线面角和面面角,再结合三角形求出角,考查了学生的逻辑推理能力,转化能力与运算求解能力,属于难题.5.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为30︒C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为2D .设正方体棱长为1,则过点E ,F ,A 5 【答案】AC 【分析】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;【详解】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=1tan 3023︒<=,所以B 错误; 平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11111tan B C B FC C F∠==22C 正确;因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为6,故D 错误. 故选:AC.【点睛】本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.6.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到5tan θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确;若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误; 如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==, 1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理: 2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确;过O 作OM AB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAM θ∠=∠=,84ππθ<<,则22DAG πθ∠=-, tan tan 22DGOG AG πθθ==⎛⎫- ⎪⎝⎭,化简得到2tan tan 21θθ=,解得5tan θ=,验证满足,故D 正确;故选:ACD .【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.7.(多选题)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )A .113P AA D V -=B .点P 必在线段1BC 上C .1AP BC ⊥D .AP ∥平面11AC D 【答案】BD【分析】对于A ,1111111113326P AA D AA D V S CD -=⋅=⨯⨯⨯⨯=, 对于B,C,D ,如图以D 为坐标原点可建立空间直角坐标系,利用空间向量判即可.【详解】对于A ,因为点P 在平面11BCC B ,平面11BCC B ∥平面1AA D ,所以点P 到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长,所以1111111113326P AA D AA D V S CD -=⋅=⨯⨯⨯⨯=,A 错误; 对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则11(1,0,0),(,1,),(1,1,0),(0,0,1),(1,1,1),(0,1,0)A P x z B D B C所以11(1,1,),(1,1,1),(1,0,1)AP x z BD BC =-=--=--, 因为1AP BD ⊥,所以1110AP BD x z ⋅=--+=,所以x z =,即(,1,)P x x ,所以(,0,)CP x x =,所以1CP xBC =-,即1,,B C P 三点共线, 所以点P 必在线段1B C 上,B 正确;对于C ,因为1(1,1,),(1,0,1)AP x x BC =-=-,所以111AP BC x x ⋅=-+=,所以1AP BC ⊥不成立,C 错误;对于D ,因为11(1,0,1),(0,1,1),(0,0,0)A C D ,所以11(1,0,1),(0,1,1)DA DC ==, 设平面11AC D 的法向量为(,,)n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 令1x =,则1,1z y =-=,所以(1,1,1)n =-,所以110AP n x x ⋅=-+-=,所以AP n ⊥,所以AP ∥平面11AC D ,D 正确,故选:BD【点睛】此题考查了空间线线垂直的判定,线面平行的判定,三棱锥的体积,考查空间想象能力,考查计算能力,属于较难题.8.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( )A .四边形1BFD E 不一定是平行四边形B .平面α分正方体所得两部分的体积相等C .平面α与平面1DBB 不可能垂直D .四边形1BFDE 面积的最大值为2【答案】BD【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积最大,且最大值为2,可判断D 正确.【详解】如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E 平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误;对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确; 对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥,又1BD BB B ⋂=,所以AC ⊥平面1BB D ,当E 、F 分别为棱11,AA CC 的中点时,有//AC EF ,则EF ⊥平面1BB D ,又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD ,当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值, 此时1212S D E BE =⋅=⋅=,故D 正确;故选:BD.【点睛】本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.9.M ,N 分别为菱形ABCD 的边BC ,CD 的中点,将菱形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,下列结论正确的有( )A .MN ∥平面ABDB .异面直线AC 与MN 所成的角为定值C .在二面角D AC B --逐渐变小的过程中,三棱锥D ABC -外接球的半径先变小后变大D .若存在某个位置,使得直线AD 与直线BC 垂直,则ABC ∠的取值范围是0,2π⎛⎫ ⎪⎝⎭【答案】ABD【分析】利用线面平行的判定即可判断选项A ;利用线面垂直的判定求出异面直线AC 与MN 所成的角即可判断选项B ;借助极限状态,当平面DAC 与平面ABC 重合时,三棱锥D ABC -外接球即是以ABC ∆外接圆圆心为球心,外接圆的半径为球的半径,当二面角D AC B --逐渐变大时,利用空间想象能力进行分析即可判断选项C;过A 作AH BC ⊥,垂足为H ,分ABC ∠为锐角、直角、钝角三种情况分别进行分析判断即可判断选项D.【详解】对于选项A:因为M ,N 分别为菱形ABCD 的边BC ,CD 的中点,所以MN 为BCD ∆的中位线,所以//MN BD ,因为MN ⊄平面ABD ,BD ⊂平面ABD ,所以MN ∥平面ABD ,故选项A 正确;对于选项B :取AC 的中点O ,连接,DO BO ,作图如下:则,AC DO AC BO ⊥⊥,BO DO O =,由线面垂直的判定知,AC ⊥平面BOD ,所以AC BD ⊥,因为//MN BD ,所以AC MN ⊥,即异面直线AC 与MN 所成的角为定值90,故选项B 正确;对于选项C:借助极限状态,当平面DAC 与平面ABC 重合时,三棱锥D ABC -外接球即是以ABC ∆外接圆圆心为球心,外接圆的半径为球的半径,当二面角D AC B --逐渐变大时,球心离开平面ABC ,但是球心在底面的投影仍然是ABC ∆外接圆圆心,故二面角D AC B --逐渐变小的过程中,三棱锥D ABC -外接球的半径不可能先变小后变大, 故选项C 错误;对于选项D:过A 作AH BC ⊥,垂足为H ,若ABC ∠为锐角,H 在线段BC 上;若ABC ∠为直角,H 与B 重合;若ABC ∠为钝角,H 在线段BC 的延长线上;若存在某个位置,使得直线AD 与直线BC 垂直,因为AH BC ⊥,所以CB ⊥平面AHD ,由线面垂直的性质知,CB HD ⊥,若ABC ∠为直角,H 与B 重合,所以CB BD ⊥,在CBD ∆中,因为CB CD =, 所以CB BD ⊥不可能成立,即ABC ∠为直角不可能成立;若ABC ∠为钝角,H 在线段BC 的延长线上,则在原平面图菱形ABCD 中,DCB ∠为锐角,由于立体图中DB DO OB <+,所以立体图中DCB ∠一定比原平面图中更小,,所以DCB ∠为锐角,CB HD ⊥,故点H 在线段BC 与H 在线段BC 的延长线上矛盾,因此ABC ∠不可能为钝角;综上可知,ABC ∠的取值范围是0,2π⎛⎫ ⎪⎝⎭.故选项D 正确; 故选:ABD【点睛】本题考查异面垂直、线面平行与线面垂直的判定、多面体的外接球问题;考查空间想象能力和逻辑推理能力;借助极限状态和反证法思想的运用是求解本题的关键;属于综合型强、难度大型试题.10.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D DB .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2D .过点1A 与异面直线AD 与1CB 成60角的直线有2条【答案】ABD【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D .【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥,由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D , 1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥,1AC B C C =,1BD ∴⊥平面1ACB ,故B 正确; 对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA mDA m DA m y z ⋅<>===⋅++, 1122111cos ,221CB m z CB m CB m y z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-12z =-由已知可得3z ≤,所以,12z =-+22y =±因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确.故选:ABD.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.。

(浙江专用)高考数学一轮复习第七章立体几何第二节空间几何体的表面积与体积教案(含解析)

(浙江专用)高考数学一轮复习第七章立体几何第二节空间几何体的表面积与体积教案(含解析)

(浙江专用)高考数学一轮复习第七章立体几何第二节空间几何体的表面积与体积教案(含解析)第二节 空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱 圆锥 圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrl S 圆台侧=π(r +r ′)l名称 几何体 表面积体积柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh锥体(棱锥和圆锥) S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3[1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得:l =22+232=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(教材习题改编)某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知,该几何体是一个直三棱柱,其底面为侧视图,该侧视图是底边为2,高为3的三角形,正视图的长为三棱柱的高,故h =3,所以该几何体的体积V =S ·h =⎝ ⎛⎭⎪⎫12×2×3×3=3 3. 答案:3 33.若球O 的表面积为4π,则该球的体积为________.解析:由题可得,设该球的半径为r ,则其表面积为S =4πr 2=4π,解得r =1.所以其体积为V =43πr 3=43π.答案:43π1.求组合体的表面积时,组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.易混侧面积与表面积的概念. [小题纠偏]1.(教材习题改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱体积之比为________,球的表面积与圆柱的侧面积之比为________.答案:2∶3 1∶12.若某几何体的三视图如图所示,则此几何体的表面积是________.解析:由三视图可知,该几何体由一个正四棱柱和一个棱台组成,其表面积S =3×4×2+2×2×2+4×22×2+4×6+12×(2+6)×2×2=72+16 2.答案:72+16 2考点一 空间几何体的表面积基础送分型考点——自主练透[题组练透]1.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .8+2 2 B .11+2 2 C .14+2 2 D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.2.(2018·浙江新高考联盟高三期初联考)如图是某四棱锥的三视图,则该几何体的表面积等于( )A .34+6 5B .44+12 5C .34+6 3D .32+6 5解析:选A 由三视图知几何体底面是一个长为6,宽为2的矩形,高为4的四棱锥,所以该几何体的表面积为12×6×25+12×6×4+2×12×2×5+6×2=34+65,故选A.3.如图,网格纸上小正方形的边长为1,粗线是一个棱锥的三视图,则该棱锥的表面积为( )A .6+42+2 3B .8+4 2C .6+6 2D .6+22+4 3解析:选A 由三视图可知该棱锥为如图所示的四棱锥P ­ABCD ,S △PAB=S △PAD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S 四边形ABCD =22×2=42,故该棱锥的表面积为6+42+2 3.[谨记通法]几何体的表面积的求法(1)求表面积问题的思路是将立体几何问题转化为平面问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得几何体的表面积.注意衔接部分的处理.考点二 空间几何体的体积重点保分型考点——师生共研[典例引领]1.(2018·金华高三期末考试)某几何体的三视图如图所示,则该几何体的体积为( )A.223 B.233 C.423D.433解析:选D 由三视图可知该几何体是一个以俯视图为底面的四棱锥,其直观图如图所示.底面ABCD 的面积为2×2=4,高PO =3,故该几何体的体积V =13×4×3=433.2.(2018·宁波十校联考)某几何体的三视图如图所示,则该几何体的体积等于________,表面积等于________.解析:如图,由三视图可知该几何体是底面半径为2,高为3的圆柱的一半,故该几何体的体积为12×π×22×3=6π,表面积为2×12×π×22+4×3+π×2×3=10π+12.答案:6π 12+10π[由题悟法]有关几何体体积的类型及解题策略常见类型解题策略球的体积问题直接利用球的体积公式求解,在实际问题中要根据题意作出图形,构造直角三角形确定球的半径 锥体、柱体的体积问题根据题设条件求出所给几何体的底面积和高,直接套用公式求解以三视图为载体的几何体体积问题将三视图还原为几何体,利用空间几何体的体积公式求解不规则几何体的体积问题常用分割或补形的思想,若几何体的底不规则,也需采用同样的方法,将不规则的几何体或平面图形转化为规则的几何体或平面图形,易于求解1.(2018·杭州高级中学模拟)一个几何体的三视图如图所示,则该几何体的体积为( )A .1 B.32 C.12D.34解析:选C 由题可得,该几何体是一个四棱锥,底面是上下底边分别为1和2,高为1的直角梯形,又四棱锥的高为1.所以该几何体的体积为V =13×12×(1+2)×1×1=12.2.(2019·台州高三适考)如图是一个几何体的三视图,则该几何体的体积为________,几何体中最长棱的长是________.解析:由三视图可知,该几何体是棱长为2的正方体ABCD ­A 1B 1C 1D 1中的三棱锥M ­A 1B 1N ,如图所示,M 是棱AB 上靠近点A 的一个三等分点,N 是棱C 1D 1的中点,所以VM ­A 1B 1N =13×12×2×2×2=43.又A 1B 1=2,A 1N =B 1N=22+12=5,A 1M =22+⎝ ⎛⎭⎪⎫232=2103,B 1M =22+⎝ ⎛⎭⎪⎫432=2133,MN =22+22+⎝ ⎛⎭⎪⎫132=733,所以该几何体中最长棱的长是733. 答案:437333.(2018·温州高三一模)如图,一个简单几何体的三视图的正视图与侧视图都是边长为1的正三角形,其俯视图的轮廓为正方形,则该几何体的体积为________,表面积为________.解析:如图,还原三视图为正四棱锥,易得正四棱锥的高为32,底面积为1,体积V =13×1×32=36;易得正四棱锥侧面的高为⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫122=1,所以表面积S =4×12×1×1+1=3. 答案:363 考点三 与球有关的切、接问题题点多变型考点——多角探明 [锁定考向]与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点,命题角度多变. 常见的命题角度有: (1)球与柱体的切、接问题; (2)球与锥体的切、接问题.[题点全练]角度一:球与柱体的切、接问题1.如图,已知球O 是棱长为1的正方体ABCD ­A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A.66π B.π3 C.π6D.33π 解析:选C 平面ACD 1截球O 的截面为△ACD 1的内切圆.因为正方体的棱长为1,所以AC =CD 1=AD 1=2,所以内切圆的半径r =22×tan 30°=66, 所以S =πr 2=π×16=16π.2.(2018·金华一模)一个圆柱的轴截面是正方形,在圆柱内有一个球O ,该球与圆柱的上、下底面及母线均相切.记球O 的体积为V 1,圆柱内除了球之外的几何体体积为V 2,则V 1V 2的值为________. 解析:如图,设圆柱的底面半径为r ,则圆柱的高为2r ,球O 的半径为r ,∴球O 的体积V 1=43πr 3,圆柱内除了球之外的几何体体积 V 2=πr 2×2r -43πr3=23πr3,∴V1V2=43πr323πr3=2.答案:2角度二:球与锥体的切、接问题3.(2018·绍兴质检)四棱锥P­ABCD的底面ABCD是边长为6的正方形,且PA=PB=PC =PD,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( ) A.6 B.5C.92D.94解析:选D 过点P作PH⊥平面ABCD于点H.由题知,四棱锥P­ABCD是正四棱锥,内切球的球心O应在四棱锥的高PH上.过正四棱锥的高作组合体的轴截面如图,其中PE,PF是斜高,M为球面与侧面的一个切点.设PH=h,易知Rt△PMO∽Rt△PHF,所以OMFH=POPF,即13=h-1h2+32,解得h=94.4.(2018·嘉兴一模)如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为( )A.20π3B.8πC.9π D.19π3解析:选D 如图,该几何体为三棱锥A­BCD,设三棱锥外接球的球心为O,O1,O2分别为△BCD,△ABD的外心,依题意得,OO1=36AB=33,O1D=12CD=52,∴球的半径R=OO21+O1D2=1912,∴该几何体外接球的表面积S=4πR2=19π3.[通法在握]解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:[演练冲关]1.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20π B.205π3 C .5πD.55π6解析:选D 由题意知六棱柱的底面正六边形的外接圆半径r =1,其高h =1,∴球半径为R =r 2+⎝ ⎛⎭⎪⎫h 22=1+14=52,∴该球的体积V =43πR 3=43×⎝ ⎛⎭⎪⎫523π=55π6. 2.(2018·镇海期中)一个棱长为6的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体体积的最大值为________.解析:由题可得,要使正方体可以在纸盒内任意转动,则只需该正方体在正四面体的内接球内即可.因为正四面体的棱长为6,所以其底面正三角形的高为33,正四面体的高为26,则该正四面体的内球的半径为62,设该正方体的边长为a ,要满足条件,则3a ≤6,即a ≤ 2.所以正方体的最大体积为V =a 3≤2 2.答案:2 2一抓基础,多练小题做到眼疾手快1.(2018·浙江名校联考)“某几何体的三视图完全相同”是“该几何体为球”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 由题可得,球的三个视图都是圆,所以三视图完全相同;三视图完全相同的几何体除了球,还有正方体,所以是必要不充分条件.2.(2018·长兴中学适应性测试)一个几何体的三视图如图所示,则该几何体的体积为( )A .64B .72C .80D .112解析:选C 由题可得,该几何体是一个棱长为4的正方体与一个底面是边长为4的正方形,高为3的四棱锥的组合体,所以其体积为V =43+13×42×3=80.3.(2019·杭二月考)一个几何体的三视图如图所示,则该几何体的体积为( )A .π+33B .2π+33C .2π+ 3D .π+ 3解析:选A 由三视图知,该几何体的上半部分是一个三棱锥,下半部分是一个圆柱.由题图中的数据知V 圆柱=π×12×1=π,三棱锥垂直于底面的侧面是边长为2的等边三角形,故其高即为三棱锥的高,故三棱锥的高为3,由于三棱锥底面为一等腰直角三角形,且斜边长为2,因此两直角边长都是2,则底面三角形的面积是12×2×2=1,故V三棱锥=13×1×3=33,故该几何体的体积为π+33. 4.(2018·嘉兴模拟)如图是一个几何体的三视图,若它的体积是33,则a =________,该几何体的表面积为________.解析:由题可得,该几何体是一个水平放置的三棱柱,其底面是一个底边长为2、高为a 的等腰三角形,高为3.因为其体积为33,所以V =12×2a ×3=3a =33,解得a = 3.所以该几何体的表面积为S =2×12×2×3+2×3×3=23+18.答案: 3 23+185.(2018·丽水模拟)若三棱锥P ­ABC 的最长的棱PA =2,且各面均为直角三角形,则此三棱锥的外接球的体积是________,表面积是________.解析:如图,根据题意,可把该三棱锥补成长方体,则该三棱锥的外接球即该长方体的外接球,易得外接球的半径R =12PA =1,所以该三棱锥的外接球的体积V =43×π×13=43π,表面积S =4πR 2=4π.答案:43π 4π二保高考,全练题型做到高考达标1.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .3解析:选A 设圆台较小底面半径为r , 则另一底面半径为3r .由S =π(r +3r )·3=84π,解得r =7.2.(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π解析:选B 设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2=12π.故选B.3.(2018·温州十校联考)已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是( )A.4 B.16 3C.8 D.32 3解析:选B 由题可得,该几何体是一个底面为长方形的四棱锥,所以其体积为V=13×4×2×2=163.4.(2018·兰州实战考试)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为( )A.32π B.32C.3πD.3解析:选A 由题意得,该几何体为四棱锥,且该四棱锥的外接球即为棱长为1的正方体的外接球,其半径为32,故体积为43π⎝⎛⎭⎪⎫323=32π,故选A.5.(2018·宁波十校联考)如图,某多面体的三视图中正视图、侧视图和俯视图的外轮廓分别为直角三角形、直角梯形和直角三角形,则该多面体的各条棱中,最长的棱的长度为( )A.2 2 B.10C.2 3 D.13解析:选C 由题可得,该几何体是水平放置的四棱锥,其底面是一个直角梯形.所以其最长的棱的长度为22+22+22=2 3.6.(2018·宁波一模)某空间几何体的三视图如图所示,则该几何体的体积为( )A.73B.8-π3C.83D.7-π3解析:选B 由三视图得,该几何体是从四棱锥P ­ABCD 中挖去半个圆锥后剩余的部分,四棱锥的底面是以2为边长的正方形、高是2,圆锥的底面半径是1、高是2,则所求的体积V =13×2×2×2-12×13π×12×2=8-π3.7.(2018·衢州调研)已知某几何体的三视图如图所示,则此几何体的体积是________;表面积是________.解析:该几何体是一个三棱锥,其高为2,其底面是一个等腰直角三角形,腰长为2,所以其体积为V =13×12×(2)2×2=23,表面积为S =12×2×2+12×(2)2+12×2×2+12×2×6=3+3+ 2.答案:233+3+ 28.(2018·杭州模拟)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =3,BC =2,则棱锥O ­ABCD 的体积为________.解析:依题意得,球心O 在底面ABCD 上的射影是矩形ABCD 的中心,因此棱锥O ­ABCD的高等于42-⎝ ⎛⎭⎪⎫1232+222=512,所以棱锥O ­ABCD 的体积等于13×3×2×512=51.答案:519.(2019·舟山六校联考)某四面体的三视图如图所示,其中侧视图与俯视图都是腰长为2的等腰直角三角形,正视图是边长为2的正方形,则此四面体的体积为________.解析:由三视图可知,该四面体是四面体ABCD ,如图,其中,BE ⊥底面ACD ,AD =DC =BE =2,则该四面体的体积为13×12×2×2×2=43.答案:4310.(2018·武汉调研)已知正四棱锥的顶点都在同一球面上,且该棱锥的高为4,底面边长为22,则该球的表面积为________.解析:如图,正四棱锥P ­ABCD 的外接球的球心O 在它的高PO 1上,设球的半径为R ,为底面边长为22,所以AC =4.在Rt △AOO 1中,R 2=(4-R )2+22,所以R =52,所以球的表面积S =4πR 2=25π.答案:25π三上台阶,自主选做志在冲刺名校1.(2018·广西质检)高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积与原直三棱柱的体积的比值为( )A.34B.14C.12D.38解析:选C 由侧视图、俯视图知该几何体是高为2、底面积为12×2×(2+4)=6的四棱锥,其体积为4.易知直三棱柱的体积为8,则该几何体的体积与原直三棱柱的体积的比值为12,故选C. 2.(2018·温州一模)三棱锥的三视图如图所示,则该三棱锥外接球的体积为( )A .43πB .23πC .42πD .22π解析:选A 三棱锥的直观图如图,设H 为三棱锥P ­ABC 外接球的球心,O 1为△PAC 外接圆的圆心,O 2为△ABC 外接圆的圆心,取AC 的中点O ,连接PO ,HO 1,O 2H ,HB ,结合三视图易知OO 1=13PO =12,O 2B=12AB =12×32+222=112.∵平面PAC ⊥平面ABC ,HO 2⊥平面ABC ,HO 2⊄平面PAC ,∴HO 2∥平面PAC ,∵PO ⊥平面ABC ,∴OO 1∥HO 2,连接OO 2,易知OO 2∥HO 1,∴四边形HO 1OO 2为平行四边形,∴HO 2=OO 1=12.在Rt △HO 2B 中,HB =HO 22+O 2B 2=3,即三棱锥P ­ABC 外接球的半径为3,故所求体积为43×π×(3)3=43π.3.已知A ,B ,C 是球O 的球面上三点,且AB =AC =3,BC =33,D 为该球面上的动点,球心O 到平面ABC 的距离为球半径的一半,求三棱锥D ­ABC 体积的最大值.解:如图,在△ABC 中, ∵AB =AC =3,BC =33, ∴由余弦定理可得 cos A =32+32-3322×3×3=-12,∴sin A =32. 设△ABC 外接圆O ′的半径为r ,则3332=2r,得r=3.设球的半径为R,连接OO′,BO′,OB,则R2=⎝⎛⎭⎪⎫R22+32,解得R=2 3. 由图可知,当点D到平面ABC的距离为32R时,三棱锥D­ABC的体积最大,∵S△ABC=12×3×3×32=934,∴三棱锥D­ABC体积的最大值为13×934×33=274.。

2025届高考数学一轮复习讲义立体几何与空间向量之 空间直线、平面的垂直

2025届高考数学一轮复习讲义立体几何与空间向量之 空间直线、平面的垂直
⋂=

ቋ⇒α⊥β

⇒l⊥α
二、基础题练习
1. 在空间中,α,β是两个不同的平面, m , n 是两条不同的直线,下列说法错误的
是(
C )
A. 若m⊥α,m∥n,n⊂β,则α⊥β
B. 若α∥β,m⊥α,n⊥β,则m∥n
C. 若α∥β,m⊂α,n⊂β,则m∥n
D. 若α⊥β,m⊂α,α∩β=n,m⊥n,则m⊥β
三、知识点例题讲解及方法技巧总结
命题点1
线面垂直的判定与性质
例1 [2024惠州市二调节选]如图,已知平行六面体 ABCD - A 1 B 1 C 1 D 1中,底面
ABCD 是正方形,侧面 ADD 1 A 1是矩形,点 P 为 D 1 C 1的中点,且 PD = PC .
求证: DD 1⊥平面 ABCD .
因为 AB 1∥ DC 1,所以直线 AB 1与 AD 1所成的角即直线 DC 1与 AD 1所
成的角.
又 AD 1= AB 1= B 1 D 1,所以△ AB 1 D 1为正三角形,
所以∠ D 1 AB 1=60°,所以直线 AD 1与 AB 1所成角的大小为60°,
即直线 AD 1与 DC 1所成角的大小为60°.
D 与正方体的12条棱所成的角都相等.连接 BD 1,与平面 A 1 C 1 D 交于点 O ,连接 A 1
1
3
O ,则 BD 1⊥平面 A 1 C 1 D ,则α=∠ D 1 A 1 O ,且 D 1 O = BD 1=
3
1
=3
1 1
1

3
,故选B.
3
3
,所以
3
sin α=
4. [教材改编]在正方体 ABCD - A 1 B 1 C 1 D 1中,直线 AB 与 A 1 D 1所成角的大小

2023届高三数学一轮复习专题 立体几何垂直系统 讲义 (解析版)

2023届高三数学一轮复习专题  立体几何垂直系统  讲义 (解析版)

高三数学第一轮复习专题 垂直系统专题第一部分 直线与平面垂直的判定及性质一。

线面垂直的定义:l l αα若直线与平面内的任意一条直线都垂直,则称直线与平面垂直.记作:l α⊥。

l 直线叫做α平面的垂线,α平面叫做l 直线的垂面。

(★★★)线面垂直的定义可以作为线面垂直的性质定理使用: 若l 直线与α平面垂直,则l 直线与α平面内任意一条直线都垂直。

,l a l a αα⊥⊂⇒⊥ ⇒线面垂直线线垂直二。

线面垂直的判定定理:1。

判定定理1:若一条直线和一个平面内的两条相交直线都垂直,则该直线与这个平面垂直。

(★★★)⇒线线垂直线面垂直,,,,a b a b P l a l b l ααα⊂⊂⋂=⊥⊥⇒⊥两个核心条件:,l a l b ⊥⊥2。

判定定理2:若两平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面。

(★★)a ∥b ,a α⊥b α⇒⊥三。

线面垂直的性质定理:1。

性质定理1:垂直于同一平面的两直线平行。

a α⊥,b α⊥a ⇒∥bα2。

性质定理2:垂直于同一直线的两平面平行。

l α⊥,l β⊥⇒α∥β题型一:线线垂直与线面垂直的互相证明 ★★★★★判定定义线线垂直线面垂直这两个定理(定义)构成了一个很重要的小循环:⇒⇒⇒⇒⋅⋅⋅⋅⋅⋅线线垂直线面垂直线线垂直线面垂直例1。

P 为ABC 所在平面外一点,PA ABC ⊥平面,090ABC ∠=,AE PB E ⊥于,AF PC F ⊥于。

求证:PC AEF ⊥平面。

(★★)规律:常用线面垂直来证明两直线“异面垂直”。

已知的是相交垂直,要证的是异面垂直。

分析:从后往前分析。

要证()PC AF PC AEF PC AE AE PBC ⎧⊥⎪⊥⇐⎨⊥⇐⊥⎪⎩已知平面平面 α()090AE PB BC AB ABC AE BC BC PAB BC PA PA ABC ⎧⊥⎪⎪⇐⎨⎧⊥⇐∠=⎪⊥⇐⊥⇐⎨⎪⊥⇐⊥⎩⎩已知平面平面 但写证明过程时要从前往后写。

2025届新高考一轮复习特训---立体几何初步(含解析)

2025届新高考一轮复习特训---立体几何初步(含解析)

2025届新高考一轮复习特训 立体几何初步一、选择题1.平行六面体1111ABCD A B C D -中,底面ABCD 为正方形,11A AD A AB ∠=∠=11AA AB ==,E 为11C D 的中点,则异面直线BE 和DC 所成角的余弦值为( )2.已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别是AB ,1BB ,11B C 的中点,则过这三点的截面面积是( )A.3.已知平面α,β,γ,l αβ= ,则“l γ⊥”是“αγ⊥且βγ⊥”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且AP BP =,O 为上底面圆的圆心,则OP 与平面ABC 所成的角的正切值为( )5.已知长方体的一条棱长为2,体积为16,则其外接球表面积的最小值为( )A.5πB.12πC.20πD.80π6.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为线段1DD 的中点,F 为线段1BB 的中点.直线1FC 到平面1AB E 的距离为( ).7.在三棱柱111ABC A B C -中,AB BC AC ==,侧棱1AA ⊥底面ABC ,若该三棱柱的所有顶点都在同一个球O 的表面上,且球O 的表面积的最小值为4π,则该三棱柱的侧面积为( )A.8.设A ,B ,C ,D 是同一个半径为4的球的球面上的四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A. C.二、多项选择题9.在ABC △中,AC BC ==2AB =,ABD △是有一个角是30°的直角三角形,若二面角D AB C --是直二面角,则DC 的长可以是( )10.如图,P 为矩形ABCD 所在平面外一点,矩形对角线的交点为O ,M 为PB 的中点,则下列结论成立的是( )A.//OM 平面PCDB.//OM 平面PDAC.//OM 平面PBAD.平面PBC11.如图,正方体1111ABCD A B C D -的棱长为1,动点P 在对角线1BD 上,过P 作垂直于1BD 的平面α,记平面α与正方体1111ABCD A B C D -的截面多边形(含三角形)的周长为L,面积为S ,BP x =,(x ∈,下面关于函数()L x 和()S x 的描述正确的是( )A.(S x B.()L x 在x=C.()L x 在⎛⎝上单调递增,在上单调递减;D.()S x 在⎛⎝上单调递增,在上单调递减三、填空题12.如图一个正六棱柱的茶叶盒,底面边长为10cm ,高为20cm ,则这个茶叶盒的表面积为______2cm .13.已知正三棱柱111ABC A B C-的各棱长都等于2,点E 是11A B 的中点,则异面直线AE 与1BC 所成角的余弦值为________.14.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,//OM高为3的正四棱锥,所得棱台的体积为____________.四、解答题15.如图,在三棱锥A BCD -中,BCD △是边长为2的等边三角形,AB AC =,O 是BC 的中点,OA CD ⊥.(1)证明:平面ABC ⊥平面BCD .(2)若点E 是棱AC 上的一点,则从①2CE EA =,②二面角E BD C --的大小为60︒,③三棱锥A BCD -成立.16.如图,垂直于梯形ABCD 所在平面,,F 为线段PA 上一点,112ABAD CD ===,四边形为矩形.(1)若F 是PA 的中点,求证:平面DEF ;(2)求直线与平面BCP 所成角的正弦值;(3)若点F 到平面的长.17.如图,P 为圆锥的顶点,O 为圆锥底面的圆心,AC 为底面直径,ABD △为底面四O 的内接正三角形,且△PC 上,且AE =1CE =.PD 90ADC BAD ∠∠==︒PD =PDCE //AC AE(1)求证:BD AE ⊥,并求三棱锥P BDE -的体积;(2)若点M 为线段PO 上的动点,当直线DM 与平面ABE 所成角的正弦值最大时,求此时点M 到平面ABE 的距离.18.如图,在多面体ABCDEF 中,已知四边形ABCD 是菱形,AF ⊥平面ABCD .(1)证明:平面BDE ⊥平面ACF ;(2)若4AD =,6AF =,3DE =,//DE AF ,AE 与平面BDE 三棱锥F CDE -的体积.19.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =1AF =,M 是线段EF 的中点.求证:(1)//AM 平面BDE ;(2)AM ⊥平面BDF .参考答案1.答案:A解析:由题意,11π11cos 3AA AB AA AD ⋅=⋅=⨯⨯= 0AB AD ⋅= ,又DC AB = ,1111112BE AE AB AA A D D E AB AA AD AB =-=++-=+-,所以111100222BE DC AA AD AB AB ⎛⎫⋅=+-⋅=+-= ⎪⎝⎭,即有BE DC ⊥ ,故选:A.2.答案:D解析:如图所示,分别取11C D ,1DD ,AD 的中点H ,M ,N ,连接GH ,HM ,MN ,NE ,在正方体1111ABCD A B C D -中,可得//GH NE ,//HM EF ,//MN FG ,所以经过点E,F ,G 的截面为正六边形EFGHMN ,又因为正方体1111ABCDA B C D -的棱长为2,在直角BEF△中,可得EF==所以截面正六边形的面积为26=故选:D.3.答案:C解析:由于l αβ= ,所以l α⊂,l β⊂,若l γ⊥,则αγ⊥,βγ⊥,故充分性成立,若αγ⊥,βγ⊥,设m αγ= ,n βγ= ,则存在直线,a γ⊂使得a m ⊥,所以a α⊥,由于l ⊂α,故a l ⊥,同理存在直线,b γ⊂使得b n ⊥,所以b β⊥,由于l β⊂,故b l ⊥,由于a ,b 不平行,所以a ,b 是平面γ内两条相交直线,所以l γ⊥,故必要性成立,故选:C.4.答案:A解析:设O '为下底面圆的圆心,连接OO ',CO '和CO ,因为AP BP =,所以AB OP ⊥,又因为AB OO ⊥',OP OO O '= ,OP ,OO '⊂平面OO P ',所以AB ⊥平面OO P ',因为PC 是该圆台的一条母线,所以O ,O ',C ,P 四点共面,且//O C OP ',又AB ⊂平面ABC ,所以平面ABC ⊥平面POC ,又因为平面ABC 平面POC OC =,所以点P 在平面ABC 的射影在直线OC 上,则OP 与平面ABC 所成的角即为POC OCO ∠=∠',过点C 作CD OP ⊥于点D ,因为4cm OP =,2cm O C '=,所以tan tan 2OO POC OCO O C∠=''∠=='.故选:A.5.答案:C解析:设长方体的长、宽、高分别为a ,b ,2,所以长方体的体积为216V ab ==,解得:8ab =,设长方体的外接球的半径为R ,所以2R =22242420R a b ab =++≥+=,即R ≥b ==所以min R =所以其外接球表面积的最小值为24π20πS R ==.故选:C.6.答案:D解析:1//AE FC ,1FC ⊂/平面1AB E ,AE ⊂平面1AB E ,1//FC ∴平面1AB E ,因此直线1FC 到平面1AB E 的距离等于点1C 到平面1AB E 的距离,如图,以D 点为坐标原点,DA 所在的直线为x 轴,DC 所在的直线为y 轴,1DD 所在的直线为轴,建立直角坐标系.则(1,0,0)A ,1(1,1,1)B ,1(0,1,1)C ,10,0,2E ⎛⎫ ⎪⎝⎭,11,1,2F ⎛⎫ ⎪⎝⎭,,,,,设平面的法向量为,则,令,则设点到平面1AB E 的距离为d ,则1113n C B d n⋅==故直线1FC 到平面1ABE 故选:D.7.答案:B解析:如图:设三棱柱上,下底面中心分别为1O ,2O ,则12OO 的中点为O ,111,0,2FC ⎛⎫=- ⎪⎝⎭ 11,0,2AE ⎛⎫=- ⎪⎝⎭ 1(0,1,1)AB =11(1,0,0)C B = 1AB E (,,)n x y z =11020n AE x z n AB y z ⎧⋅=-+=⎪⎨⎪⋅=+=⎩2z =(1,2,2)n =- 1C设球O 的半径为R ,则OA R =,设AB BC AC a ===,1AA h =,则212OO h =,223O A AB ==,则在2Rt OO A △中,222222*********R OA OO O A h a h ==+=+≥⨯=,当且仅当h =时,等号成立,所以24π4πS R =≥球4πah =,所以ah =所以该三棱柱的侧面积为3ah =故选:B.8.答案:B解析:如图,设点O 为球心,点M 为三角形ABC 的中心,E 为AC 的中点,连接OB ,DM ,且DM 过球心O ,连接BE ,且BE 过点M ,当DM ⊥平面ABC 时,三棱锥D ABC -的体积最大.2ABC S AB == △6AB =.又 点M 为三角形ABC 的中心,23BM BE ∴==,在Rt OMB △中,2OM ==,426DM OD OM ∴=+=+=,∴三棱锥D ABC -体积的最大6=9.答案:ACD 解析:如图①,当60ADB ∠=︒且90DBA ∠=︒时,二面角D AB C --是直二面角,故平面ABD ⊥平面ABC ,且平面ABD 平面ABC AB =,DB ⊂平面ABD ,故DB ⊥平面ABC ,所以DB BC ⊥,因为tan AB DB ADB ==∠==同理可得,当30ADB ∠=︒且90DBA ∠=︒时,DB ⊥平面ABC ,所以DB BC ⊥,因为tan ABDB ADB==∠==当90ADB ∠=︒且30DAB ∠=︒时,如图②,过点D 作DE AB ⊥,垂足为E ,连接CE ,因为平面ABD ⊥平面ABC ,且平面ABD 平面ABC AB =,DE ⊂平面ABD ,故DE ⊥平面ABC ,所以DE CE ⊥,此时cos DA AB DAB =∠=,sin DE DA DAB =∠=cos AE AD DAB =∠===所以DC ==当90ADB ∠=︒且60DAB ∠=︒时,同理可得,sinDE DA DAB=∠====故选:ACD.10.答案:AB解析:矩形ABCD 的对角线AC 与BD 交于点O ,所以点O 为BD 的中点,在△PBD 中,因为点M 是PB 的中点,所以OM 是的中位线,,平面PCD ,平面PCD ,平面PCD ,故A 正确;PD ⊂平面PDA ,平面PDA ,平面PDA ,故B 正确;因为M ∈PB ,O ∉平面PBC ,O ∉平面PAB ,所以OM 与平面PAB ,平面PBC 相交,故CD 错误;故选:AB.11.答案:AD解析:当x ⎛∈⎝时,截面为等边三角形,如图:因为BP x =,所以EF =,所以:()L x =,()2S x x =,x ⎛∈ ⎝.此时()L x ,()S x 在上单调递增,且当时截面为六边形,如图:PBD △//OM PD PD ⊂OM ⊄//OM ∴OM⊄//OM ∴⎛ ⎝()L x ≤()x ≤x ∈设AE t =,则11AE AF CG CH B N B M t======所以六边形EFGHMN 的周长为:)1t +-=为定值;做1NN ⊥平面ABCD 于1N ,1MM ⊥平面ABCD 于1M .设平面EFGHMN 与平面ABCD 所成的角为α,则易求cos α=所以11cos EFDHMN FAN M CG S S α⋅=,所以()22111122EFDHMN S t t ⎡⎤=---⎢⎥⎣⎦212t t ⎫=+-⎪⎭,在10,2t ⎛⎤∈ ⎥⎝⎦上递增,在1,12t ⎡⎫∈⎪⎢⎣⎭上递减,111224⎫+-=⎪⎭=x =所以()S x 在上递增,在上递减.x =()x当x ∈时,易得:())L x x =,())2S x x=-此时()L x ,()S x 在上单调递减,()L x <()x <综上可知:AD 是正确的,BC 错误.故选:AD12.答案:300(4解析:由题设,一个底面的面积为21161010sin 602S =⨯⨯⨯⨯︒=,一个侧面矩形面积为22102020c 0m S =⨯=,所以茶叶盒的表面积为22126300(4c mS S +=+.故答案为:300(4解析:连结1A B ,交AE 于点M ,作1//MN BC ,交11A C 于点N ,连结EN ,异面直线AE 与1BC 所成的角为EMN ∠或其补角,因为1//A E AB ,且,所以1::1:2EM MA A M MB ==,所以113BC ==,EN ==中,222cos 2ME MN EN EMN ME MN +-∠==⋅14.答案:28=(44)6⨯⨯=(22)34⨯⨯=,所以棱台的体积为32428-=.112A E AB =13ME AE ==123A N =EMN △3(16428⨯++=.故答案为28.15.答案:(1)证明见解析(2)见解析解析:(1)证明:因为AB AC =,O 是BC 的中点,所以OA BC ⊥.又因为OA CD ⊥,BC CD C = ,,BC CD ⊂平面BCD ,所以OA ⊥平面BCD .因为OA ⊂平面ABC ,所以平面ABC ⊥平面BCD .(2)如图,连接OD .因为BCD △是边长为2的等边三角形,所以DO BC ⊥.由(1)知,OA ⊥平面BCD ,所以AO ,BC ,DO 两两互相垂直.以O 为坐标原点,分别以OB ,OD ,OA 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.设||(0)OA m m =>,则(0,0,0)O ,(0,0,)A m ,(1,0,0)B ,(1,0,0)C -,D .若选①②作为条件,证明③成立.因为2CE EA =,所以2CE EA = ,所以12,0,33m E ⎛⎫- ⎪⎝⎭.易知平面BCD 的一个法向量为(0,0,1)=n ,42,0,33m BE ⎛⎫=- ⎪⎝⎭,(BD =-.设(,,)x y z =m 是平面BDE 的法向量,则0,0,BE BD ⎧⋅=⎪⎨⋅=⎪⎩m m 所以420,330.m x z x ⎧-+=⎪⎨⎪-=⎩令1x =,则y =z =2m ⎛⎫= ⎪ ⎪⎝⎭.由二面角EBD C --的大小为60||60||||⋅︒===m n m n 3m =.所以三棱锥A -1232⨯=若选①③作为条件,证明②成立.因为三棱锥A -122m ⨯=3=,即(0,0,3)A .又因为2CE EA =,所以1,0,23E ⎛⎫- ⎪⎝⎭.易知平面BCD 的一个法向量为(0,0,1)=n ,4,0,23BE ⎛⎫=- ⎪⎝⎭,(BD =-.设(,,)x y z =m 是平面BDE 的法向量,则0,0,BE BD ⎧⋅=⎪⎨⋅=⎪⎩ m m 即420,30.x z x ⎧-+=⎪⎨⎪-=⎩令1x =,则y =z =23⎛⎫= ⎪ ⎪⎝⎭.设二面角E BD C --的大小为θ,则|||cos |||||θ⋅===m n m n BD C --的大小为60︒.若选②③作为条件,证明①成立.又(1,0,0)C -,所以(1,0,3)AC =--.设(,,)E x y z .不妨设(01)AE AC λλ=≤≤,则(,,3)(1,0,3)x y z λ-=--,所以(,0,33)E λλ--+.易知平面BCD 的一个法向量为(0,0,1)=n ,(1,0,33)BE λλ=---+ ,(BD =-.设(,,)x y z =m 是平面BDE 的法向量,则0,0,BE BD ⎧⋅=⎪⎨⋅=⎪⎩ m m 即(1)(33)0,0.x z x λλ--+-=⎧⎪⎨-+=⎪⎩当1λ=时,二面角E BD C --的大小为0︒,不合题意,所以01λ≤<.令1x =,则y=z =133λλ⎛⎫+= ⎪ ⎪-⎝⎭.设二面角E BD C --的大小为θ,则|||cos |||||θ⋅===m n m n 解得3λ=(舍去)或λ=所以2CE EA =.16.答案:(1)证明见解析;;解析:(1)设CP DE G = ,连接, 四边形为矩形,∴G 为中点,又F 为PA 中点,,又FG ⊂平面,AC ⊄平面,//AC ∴平面.(2)以D 为坐标原点,DA ,,DP正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,FG PDCE PC //AC FG ∴DEF DEF DEF DC则,()1,1,0B ,,(P ,()1,1,0BC ∴=-,,(1,AE =-设平面BCP 的法向量,20BC n x y CP n y ⎧⋅=-+=⎪∴⎨⋅=-+=⎪⎩,令,解得:1x=,(n = ;设直线与平面BCP 所成角为,sin cos ,AE n AE n AE n θ⋅∴===⋅则直线与平面(3)(1,0,PA =,设,[]0,1λ∈由平面的法向量(n =,点F 到平面的距离2PF n d nλ⋅===解得,13PA = 解析:(1)设AC BD F = ,连接EF ,ABD △为底面圆O 的内接正三角形,2AC ∴==,F 为BD 中点,又AF ==322CF ∴=-=312AO AF ==;()1,0,0A ()0,2,0C (0,E (0,CP =- (),,n x y z =1y =z =AE θAE (),0,PF PA λλ==BCP BCP 13λ=AE = 1=,222AE CE AC ∴+=,AE EC ∴⊥,AF AE =AEF ACE ∽△△,AFE AEC ∠∠∴=,EF AC ∴⊥,;PO ⊥ 平面ABD ,PO ⊂平面PAC ,∴平面PAC ⊥平面ABD ,平面PAC 平面ABD AC =,EF ⊂平面PAC ,EF ∴⊥平面ABD ,又BD ⊆面ABD ,EF BD ⊥,又BD AC ⊥,EF AC F = ,BD ⊥面AEC ,又AE ⊂面AEC ,所以BD AE⊥又PO ⊥平面ABD ,//EF PO ∴,PO ⊄ 平面BDE ,EF ⊂平面BDE ,//PO ∴平面BDE ;F 为BD 中点,AF BD ∴⊥,即OF BD ⊥,又EF ⊥平面ABD ,平面,,OF BD ⊂平面ABD ,EF OF ∴⊥,EF BD ⊥,EF BD F = ,,EF BD ⊂平面BDE ,OF ∴⊥平面BDE ,EF === BD ⊥,1122BDE S BD EF ∴=⋅==△又12OF AF ==//平面BDE ,11313342P BDE O BDE BDE V V S OF --∴==⋅=⨯⨯=△(2)OF CF ==F 为OC 中点,又//PO EF ,∴E 为PC 中点,2PO EF =,PO ∴=2=,以F 为坐标原点,FB ,FC ,FE正方向为x ,y ,z 轴,可建立如图所示空间直角坐标系,则30,,02A ⎛⎫-⎪⎝⎭,B ⎫⎪⎪⎭,E ⎛⎝,D ⎛⎫ ⎪ ⎪⎝⎭,10,,02O ⎛⎫- ⎪⎝⎭,10,2P ⎛-⎝,3,02AB ⎫∴=⎪⎪⎭ ,30,2AE ⎛=⎝ ,(OP =,1,02DO ⎫=-⎪⎪⎭ ,3,02DA ⎫=-⎪⎪⎭ ,设()()01OMOP λλ==≤≤,12DM DO OM ⎫∴=+=-⎪⎪⎭ ;设平面ABE 的法向量(),,n x y z =,则302ABn x y ⋅=+= 则302AE n y z ⋅=+=令1y =-,解得:x =z =n =-,设直线DM 与平面ABE 所成角为θ,sin DM n DM n θ⋅∴===⋅令32t λ=+,则[]2,5t ∈,λ∴=2222222(2)1314717431(32)33t t t t t t t λλ-++-+⎛⎫∴===-+ ⎪+⎝⎭,111,52t⎡⎤∈⎢⎥⎣⎦,∴=即λ=22min 3131449(32)4λλ+⎤+==⎥+⎦max (sin )1θ∴==,此时12DM =- ,0,1,MA DA DM ⎛∴=-=- ⎝,∴点M 到平面ABE的距离MA n d n ⋅=== 18.答案:(1)证明见解析;(2)解析:(1)如图,设AC 与BD 交于点O .因为四边形ABCD 是菱形,所以AC BD ⊥.因为AF ⊥平面ABCD ,BD ⊂平面ABCD ,所以AF BD ⊥.因为AF AC A = ,AF AC ⊂、平面ACF ,所以BD ⊥平面ACF.又因为BD ⊂平面BDE ,所以平面BDE ⊥平面ACF .(2)因为AF ⊥平面ABCD ,//DE AF ,所以DE ⊥平面ABCD ,因为AC ⊂平面ABCD ,所以DE AC ⊥.又因为AC BD ⊥,DE BD D = ,,DE BD ⊂平面BDE ,所以AC ⊥平面BDE .连接OE ,AEO ∠即为AE 与平面BDE 所成的角,所以sin AO AEO AE ∠==因为4AD =,3DE =,所以5AE =,所以2AO =,所以24AC AO ==,所以ACD △是等边三角形.因为//DE AF ,DE ⊂平面BDE ,AF ⊄平面BDE ,所以//AF 平面BDE,所以111443332F CDE A CDE E ACD ACD V V V S DE ---===⋅=⨯⨯⨯=△19.答案:(1)见解析;(2)见解析解析:(1)建立如图所示的空间直角坐标系,设AC BD N = ,连结NE .则N ⎫⎪⎪⎭,()0,0,1E ,)A,M ⎫⎪⎪⎭.∴NE ⎛⎫ ⎪ ⎪⎝=⎭,AM ⎛⎫ =⎪ ⎪⎝⎭ .∴//AM NE 且NE 与AM 不共线.∴//NE AM . NE ⊂平面BDE ,AM ⊄平面BDE ,∴//AM 平面BDE .(2)由(1)知AM ⎛⎫ =⎪⎪⎝⎭ ,)D,)F ,∴()DF = ,∴0DF AM ⋅= ,∴AM DF ⊥.同理.又,平面.AM BF ⊥DF BF F = ∴AM ⊥BDF。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个性化辅导授课教案轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段在直观图中长度为原来的一半.【方法与技巧】1.三视图的画法特征“长对正、宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.2.求空间几何体的侧面积、体积的思想与方法(1)转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(2)求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.【失误与防范】1.画三视图应注意的问题(1)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.(2)确定正视、侧视、俯视的方向,观察同一物体方向不同,所画的三视图也不同.2.求空间几何体的表面积应注意的问题(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.【高频考点突破】考点一空间几何体的结构特征例1、给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3【解析】①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.【答案】A【方法技巧】解决与空间几何体结构特征有关问题的技巧(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定;(3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.考点二空间几何体的三视图与例2、(1)一个几何体的三视图如图所示,则该几何体的直观图可以是()(2)(2013年高考湖南卷)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1 B.2 C.2-12 D.2+12【答案】(1)D (2)C 考点三 几何体的直观图例3、用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )【解析】由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.【答案】A 【特别提醒】利用斜二测画法时,注意原图与直观图中的“三变、三不变”即 “三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度改变减半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不变,与x 轴平行的线段长度不变,相对位置不变.【变式探究】等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.【解析】∵OE =22-1=1,∴O ′E ′=12,E ′F =24. ∴直观图A ′B ′C ′D ′的面积为S ′=12×(1+3)×24=22.【答案】22考点四 空间几何体中的最值问题例4、某四面体的三视图如图所示,该四面体四个面的面积中最大的是( )A .8B .6 2C .10D .8 2【解析】由三视图,可知该几何体的四个面都是直角三角形,面积分别为6,62,8,10,所以面积最大的是10.【答案】C【变式探究】在如图所示的几何体中,四边形ABCD 是矩形,平面ABCD ⊥平面ABE ,已知AB =2,AE =BE =3,且当规定主(正)视图方向垂直于平面ABCD 时,该几何体的左(侧)视图的面积为22.若M ,N 分别是线段DE ,CE 上的动点,则AM +MN +NB 的最小值为________.【解析】由题意,可得左视图是一条直角边为2的直角三角形,所以其面积为12×2×BC =22,解得BC =1.所以DE =CE =2.所以△DCE 是边长为2的等边三角形,∠AED =∠BEC =30°.将△ADE ,△DCE ,△BCE 展开到同一平面上,如图所示,在平面△AEB 中,AE =BE =3,∠AEB =∠AED +∠DEC +∠BEC =120°,所以AB =3.所以AM +MN +NB 的最小值是3.【答案】3(二)折叠问题2.2折叠后的线面关系【典例2】将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四边形ABCD(如图2),则在空间四边形ABCD中,AD与BC的位置关系是()图1图2A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【变式训练】将下面的平面图形(每个点都是正三角形的顶点或边的中点)沿虚线折成一个正四面体后,直线MN 与PQ是异面直线的是……………………………………………()A.①②B.②④C.①④D.①③【答案】C【解析】3.折叠后几何体的数字特征折叠后几何体的数字特征包括线段长度、几何体的表面积与体积、空间角与距离等,设计问题综合、全面,也是高考命题的重点.解决此类问题的关键是准确确定折叠后几何体的结构特征以及平面图形折叠前后的数量关系之间的对应.【典例3】(体积问题)如图所示,等腰ABC △的底边66AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的PED F BCA位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积. (1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?【典例4】(空间角问题)如左图,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如右图所示),连结AP 、EF 、PF ,其中25PF =.(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.【典例5】如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于A'。

'⊥EF;(1)求证:A D'--的平面角的余弦值.(2)求二面角A EF D【总结】折叠问题分析求解两原则:(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变。

二、空间几何体的表面积和体积【考情解读】1.了解球、棱柱、棱锥、台的表面积和体积的计算公式. 【重点知识梳理】1.柱、锥、台和球的表面积和体积名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3【高频考点突破】 题型一 几何体的表面积例1、某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240【解析】由三视图知该几何体是如图所示的四棱柱ABCD -A 1B 1C 1D 1. S 四边形ABB 1A 1=2×10=20, S 四边形DCC 1D 1=(3+2+3)×10=80,S 四边形ABCD =S 四边形A 1B 1C 1D 1=12×(2+8)×4=20,S 四边形AA 1D 1D =S 四边形BB 1C 1C =10×5=50, ∴表面积=20+80+2×20+2×50=240. 故选D. 【答案】D【变式探究】四棱锥P -ABCD 的顶点P 在底面ABCD 中的投影恰好是点A ,其三视图如图所示,则四棱锥P -ABCD 的表面积为________.【答案】(2+2)a2题型二几何体的体积例2、(1)如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点.设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.(2)某几何体的三视图如图所示,则该几何体的体积是________.【答案】(1)1∶24(2)16π-16【变式探究】如图是一个几何体的三视图.若它的体积是33,则a=________.【解析】由三视图可知几何体为一个直三棱柱(如图),底面三角形中边长为2的边上的高为a ,所以V =3×(12×2×a )=33,解得a = 3.【答案】 3题型三 球的表面积与体积例3、已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.【答案】92π【变式探究】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) A.6π B .43π C .46πD .63π【解析】如图,设平面α截球O 所得圆的圆心为O 1,则|OO 1|=2,|O 1A |=1,∴球的半径R =|OA |=2+1= 3.∴球的体积V =43πR 3=43π.故选B.【答案】B题型四 多面体与球有关的切、接问题例4、如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A.32π B .3π C.23π D .2π 所以该球的体积V =43π⎝⎛⎭⎫323=32π.故选A.【答案】A【变式探究】已知一个正方体的所有顶点在一个球面上.若球的体积为9π2,则正方体的棱长为________.三、空间点、直线、平面间的位置关系【考情解读】1.理解空间直线、平面位置关系的定义,并了解有关的可以作为推理依据的公理和定理;2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题. 【重点知识梳理】1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. (4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面. 推论2:经过两条相交直线有且只有一个平面. 推论3:经过两条平行直线有且只有一个平面. 2.空间中两直线的位置关系 (1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2.(3)平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况. (2)平面与平面的位置关系有平行、相交两种情况. 【高频考点突破】考点一 平面基本性质的应用【例1】 (1)以下四个命题中,正确命题的个数是( ) ①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0 B.1C.2 D.3(2)在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R的截面图形是()A.三角形B.四边形C.五边形D.六边形答案(1)B(2)D规律方法(1)公理1是判断一条直线是否在某个平面的依据;公理2及其推论是判断或证明点、线共面的依据;公理3是证明三线共点或三点共线的依据.要能够熟练用文字语言、符号语言、图形语言来表示公理.(2)画几何体的截面,关键是画截面与几何体各面的交线,此交线只需两个公共点即可确定,作图时充分利用几何体本身提供的面面平行等条件,可以更快地确定交线的位置.【变式探究】如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形的序号是________.解析可证①中的四边形PQRS为梯形;②中,如图所示,取A1A和BC的中点分别为M,N,可证明PMQNRS 为平面图形,且PMQNRS为正六边形;③中,可证四边形PQRS为平行四边形;④中,可证Q点所在棱与面PRS 平行,因此,P,Q,R,S四点不共面.答案①②③考点二空间两条直线的位置关系【例2】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.【变式探究】(1)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).答案(1)D(2)②④考点三求异面直线所成的角【例3】如图,在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.(1)求四棱锥的体积;(2)若E是PB的中点,求异面直线DE与P A所成角的余弦值.规律方法求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.【变式探究】已知在三棱锥A-BCD中,AB=CD,且点M,N分别是BC,AD的中点.(1)若直线AB与CD所成的角为60°,则直线AB和MN所成的角为________.(2)若直线AB⊥CD,则直线AB与MN所成的角为________.(2)取AC 的中点P ,连接PM ,PN ,则PM 綉12AB ,所以∠MPN (或其补角)为AB 与CD 所成的角,由于AB ⊥CD ,所以∠MPN =90°.又AB =CD ,所以PM =PN ,从而∠PMN =45°, 即AB 与MN 所成的角为45°. 答案 (1)60°或30° (2)45°四、空间中的平行关系【考情解读】1.以立体几何的有关定义、公理和定理为出发点,认识和理解空间中线面平行、面面平行的有关性质与判定定理,并能够证明相关性质定理;2.能运用线面平行、面面平行的判定及性质定理证明一些空间图形的平行关系的简单命题. 【重点知识梳理】1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b 结论a∥αb∥αa∩α=∅a∥b2.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥b a∥α【高频考点突破】考点一有关线面、面面平行的命题真假判断【例1】(1)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β(2)设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β规律方法线面平行、面面平行的命题真假判断多以小题出现,处理方法是数形结合,画图或结合正方体等有关模型来解题.【变式探究】(1)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α(2)给出下列关于互不相同的直线l,m,n和平面α,β,γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为()A.3 B.2 C.1 D.0答案(1)D(2)C考点二直线与平面平行的判定与性质【例2】如图,几何体E-ABC D是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明(1)如图,取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,又EO⊂平面EOC,因此BD⊥EO.又O为BD的中点,所以BE=DE.法二 如图,延长AD ,BC 交于点F ,连接EF . 因为CB =CD ,∠BCD =120°, 所以∠CBD =30°. 因为△ABD 为正三角形, 所以∠BAD =∠ABD =60°, ∠ABC =90°,因为∠AFB =30°,所以AB =12AF .又AB =AD ,所以D 为线段AF 的中点. 连接DM ,由于点M 是线段AE 的中点, 因此DM ∥EF .又DM ⊄平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .规律方法 判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).【变式探究】 如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′; (2)求三棱锥A ′-MNC 的体积.(2)解 法一 连接BN ,如上图,由题意A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,A ′N ⊂平面A ′B ′C ′,所以A ′N ⊥平面NBC .又A ′N =12B ′C ′=1,故V A ′-MNC =V N -A ′MC =12V N -A ′BC =12V A ′-NBC =16.法二 V A ′-MNC =V A ′-NBC -V M -NBC =12V A ′-NBC =16.考点三 平面与平面平行的判定与性质【例3】 如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心,A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面A 1BD ∥平面CD 1B 1; (2)求三棱柱ABD -A 1B 1D 1的体积.规律方法证明两个平面平行的方法有:(1)用定义,此类题目常用反证法来完成证明;(2)用判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)根据“垂直于同一条直线的两个平面平行”这一性质进行证明;(4)借助“传递性”来完成:两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.【变式探究】如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.考点四平行关系中的探索性问题【例4】(2014·四川卷)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.规律方法解决探究性问题一般先假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了使结论成立的充分条件,则存在;如果找不到使结论成立的充分条件(出现矛盾),则不存在.而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.【变式探究】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.(1)求三棱锥A-PDE的体积;(2)AC边上是否存在一点M,使得P A∥平面EDM?若存在,求出AM的长;若不存在,请说明理由.五、空间中的垂直关系【考情解读】1.以立体几何的有关定义、公理和定理为出发点,认识和理解空间中线面垂直、面面垂直的有关性质与判定定理,并能够证明相关性质定理;2.能运用线面垂直、面面垂直的判定及性质定理证明一些空间图形的垂直关系的简单命题.【重点知识梳理】1.直线与平面垂直(1)直线和平面垂直的定义如果一条直线l与平面α内的任意直线都垂直,就说直线l与平面α互相垂直.(2)判定定理与性质定理文字语言图形语言符号语言判定定理如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l⊥αl⊂β⇒l⊥α性质定理如果两条直线垂直于同一个平面,那么这两条直线平行⎭⎪⎬⎪⎫a⊥αb⊥α⇒a∥b2.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理文字语言图形语言 符号语言判定 定理如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎪⎬⎪⎫l ⊥αl ⊂β⇒α⊥β 性质 定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βα∩β=al ⊥al ⊂β⇒l ⊥α 3.直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和这个平面所成的角. (2)线面角θ的范围:θ∈⎣⎡⎦⎤0,π2.4.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.【高频考点突破】考点一 直线与平面垂直的判定与性质【例1】 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD , ∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)CD ⊥AE ; (2)PD ⊥平面ABE .证明 (1)在四棱锥P -ABCD 中, ∵P A ⊥底面ABCD ,CD ⊂平面ABCD ,∴P A ⊥CD , ∵AC ⊥CD ,且P A ∩AC =A , ∴CD ⊥平面P AC .而AE ⊂平面P AC , ∴CD ⊥AE .规律方法 (1)证明直线和平面垂直的常用方法:①线面垂直的定义;②判定定理;③垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);④面面平行的性质(a ⊥α,α∥β⇒a ⊥β);⑤面面垂直的性质.(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.【变式探究】 (2014·山东卷)如图,在四棱锥P -ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E ,F 分别为线段AD ,PC 的中点.求证:(1)AP ∥平面BEF ; (2)BE ⊥平面P AC .(2)由题意知ED ∥BC ,ED =BC , 所以四边形BCDE 为平行四边形, 因此BE ∥CD .又AP ⊥平面PCD , 所以AP ⊥CD ,因此AP ⊥BE .因为四边形ABCE 为菱形,所以BE ⊥AC . 又AP ∩AC =A ,AP ,AC ⊂平面P AC , 所以BE ⊥平面P AC .考点二 平面与平面垂直的判定与性质【例2】 如图,在四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥P A ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.求证:(1)CE ∥平面P AD ; (2)平面EFG ⊥平面EMN .法二 连接CF .因为F 为AB 的中点,所以AF =12AB .又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形. 因此CF ∥AD .又CF ⊄平面P AD ,AD ⊂平面P AD , 所以CF ∥平面P AD .因为E ,F 分别为PB ,AB 的中点, 所以EF ∥P A .又EF ⊄平面P AD ,P A ⊂平面P AD , 所以EF ∥平面P AD .因为CF ∩EF =F ,故平面CEF ∥平面P AD . 又CE ⊂平面CEF ,所以CE ∥平面P AD .规律方法(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.【变式探究】(2014·江苏卷)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.证明(1)因为D,E分别为棱PC,AC的中点,所以DE∥P A.又因为P A⊄平面DEF,DE⊂平面DEF,所以直线P A∥平面DEF.考点三线面角、二面角的求法【例3】如图,在四棱锥P­ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.(1)求PB和平面P AD所成的角的大小;(2)证明:AE⊥平面PCD;(3)求二面角A-PD-C的正弦值.(1)解在四棱锥P-ABCD中,因P A⊥底面ABCD,AB⊂平面ABCD,故P A⊥AB.又AB⊥AD,P A∩AD=A,从而AB⊥平面P AD,故PB在平面P AD内的射影为P A,从而∠APB为PB和平面P AD所成的角.在Rt△P AB中,AB=P A,故∠APB=45°.所以PB和平面P AD所成的角的大小为45°.(2)证明在四棱锥P-ABCD中,因P A⊥底面ABCD,CD⊂平面ABCD,故CD⊥P A.由条件CD⊥AC,P A∩AC=A,∴CD⊥平面P AC.又AE⊂平面P AC,∴AE⊥CD.由P A=AB=BC,∠AB C=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.又PC∩CD=C,综上得AE⊥平面PCD.规律方法求线面角、二面角的常用方法:(1)线面角的求法,找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解.(2)二面角的大小求法,二面角的大小用它的平面角来度量.平面角的作法常见的有①定义法;②垂面法.注意利用等腰、等边三角形的性质.【变式探究】如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC.E 是PC的中点,作EF⊥PB交PB于点F.(1)证明P A∥平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C-PB-D的大小.(1)证明如图所示,连接AC,AC交BD于O,连接EO.∵底面ABCD是正方形,∴点O是AC的中点.在△P AC中,EO是中位线,∴P A∥EO.而EO⊂平面EDB且P A⊄平面EDB,∴P A∥平面EDB.六、空间向量及其运算【考情解读】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2.掌握空间向量的线性运算及其坐标表示;3.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.【重点知识梳理】1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a=b相反向量方向相反且模相等的向量a的相反向量为-a共线向量 表示空间向量的有向线段所在的直线互相平行或重合a ∥b 共面向量平行于同一个平面的向量2.共线向量、共面向量定理和空间向量基本定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面⇔存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a·b ,即a·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ;③分配律:a ·(b +c )=a·b +a·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示 坐标表示 数量积 a·b a 1b 1+a 2b 2+a 3b 3共线 a =λb (b ≠0) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a·b =0 (a ≠0,b ≠0) a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23【高频考点突破】考点一 空间向量的线性运算。

相关文档
最新文档