人教新课标版数学高二人教A选修4-4试题 2.4渐开线与摆线 (2)

合集下载

数学人教A版选修4-4课后训练2-4 渐开线与摆线 含解析 精品

数学人教A版选修4-4课后训练2-4 渐开线与摆线 含解析 精品

四 渐开线与摆线练习1已知一个圆的参数方程为3cos ,3sin x y θθ=⎧⎨=⎩ (θ为参数),那么圆的摆线方程中与参数φ=2π对应的点A 与点B (32π,2)之间的距离为( ).A.2π-1 1 2如图,ABCD 是边长为1的正方形,曲线AEFGH …叫做“正方形的渐开线”,其中AE ,,,EF FG GH …的圆心依次按B ,C ,D ,A 循环,它们依次相连接,则曲线AEFGH 的长是( ).A .3πB .4πC .5πD .6π3我们知道关于直线y =x 对称的两个函数互为反函数,则圆的摆线(sin ),(1cos )x r y r ϕϕϕ=-⎧⎨=-⎩(φ为参数)关于直线y =x 对称的曲线的参数方程为________.4已知一个圆的摆线方程是44sin ,44cos x y ϕϕϕ=-⎧⎨=-⎩(φ为参数),则该圆的面积为________,对应圆的渐开线方程为________.5给出直径为6的圆,分别写出对应的渐开线的参数方程和摆线的参数方程.6有一标准的渐开线齿轮,齿轮的齿廓线的基圆直径为22 mm ,求齿廓线所在的渐开线的参数方程.7已知圆C 的参数方程是16cos ,26sin x y αα=+⎧⎨=-+⎩(α为参数)和直线l 对应的普通方程是x -y-0.(1)如果把圆心平移到原点O ,请问平移后圆和直线有什么位置关系? (2)写出平移后圆的渐开线方程.8已知一个参数方程是2cos ,2sin ,x t y t αα=+⎧⎨=+⎩如果把t 当成参数,它表示的图形是直线l (设斜率存在),如果把α当成参数(t >0),它表示半径为t 的圆.(1)请写出直线和圆的普通方程;(2)如果把圆心平移到(0,t ),求出圆对应的摆线的参数方程.9如图,若点Q 在半径AP 上(或在半径AP 的延长线上),当车轮滚动时,点Q 的轨迹称为变幅平摆线,取|AQ |=2r 或|AQ |=32r ,请推出Q 的轨迹的参数方程.参考答案1. 答案:C 根据圆的参数方程可知,圆的半径为3,那么它的摆线的参数方程为3(sin ),3(1cos )x y ϕϕϕ=-⎧⎨=-⎩ (φ为参数),把φ=2π代入参数方程中可得3(1),23,x y π⎧=-⎪⎨⎪=⎩ 即A 33,32π⎛⎫-⎪⎝⎭, ∴|AB |=2. 答案:C 根据渐开线的定义可知,AE 是半径为1的14圆周长,长度为2π,继续旋转可得EF 是半径为2的14圆周长,长度为π;FG 是半径为3的14圆周长,长度为32π;GH 是半径为4的14圆周长,长度为2π.所以曲线AEFGH 的长是5π.3.答案:(1cos ),(sin )x r y r ϕϕϕ=-⎧⎨=-⎩ (φ为参数)4. 答案:16π 4cos 4sin ,4sin 4cos x y ϕϕϕϕϕϕ=+⎧⎨=-⎩ (φ为参数)5. 答案:解:以圆的圆心为原点,一条半径所在的直线为x 轴,建立直角坐标系.又圆的直径为6,所以半径为3,所以圆的渐开线的参数方程是3cos 3sin ,3sin 3cos x y ϕϕϕϕϕϕ=+⎧⎨=-⎩ (φ为参数).以圆周上的某一定点为原点,以定直线所在的直线为x 轴,建立直角坐标系,∴摆线的参数方程为33sin ,33cos x y ϕϕϕ=-⎧⎨=-⎩(φ为参数).6. 答案:分析:直接利用圆的渐开线参数方程的形式代入即可.解:因为基圆的直径为22 mm ,所以基圆的半径为11 mm ,因此齿廓线所在的渐开线的参数方程为11(cos sin ),11(sin cos )x y ϕϕϕϕϕϕ=+⎧⎨=-⎩(φ为参数).7. 答案:解:(1)圆C 平移后圆心为O (0,0),它到直线x -y -0的距离为d=6,恰好等于圆的半径,所以直线和圆是相切的.(2)由于圆的半径是6,所以可得渐开线方程是6cos 6sin ,6sin 6cos x y ϕϕϕϕϕϕ=+⎧⎨=-⎩(φ为参数).8. 答案:解:(1)如果把t 看成参数,可得直线的普通方程为:y -2=tan α(x -2),即y =x tan α-2tan α+2,如果把α看成参数且t >0时,它表示半径为t 的圆,其普通方程为(x -2)2+(y -2)2=t 2.(2)由于圆的圆心在(0,t ),圆的半径为t ,所以对应的摆线的参数方程为(sin ),(1cos )x t y t ϕϕϕ=-⎧⎨=-⎩(φ为参数).9. 答案:解:设Q (x ,y ),P (x 0,y 0),若A (rθ,r ),则00(sin ),(1cos ).x r y r θθθ=-⎧⎨=-⎩当|AQ |=2r时,有002,2,x x r y y r θ=-⎧⎨=-⎩代入00(sin ),(1cos ).x r y r θθθ=-⎧⎨=-⎩ ∴点Q 的轨迹的参数方程为1(),21(1cos )2x r sin y r θθθ⎧=-⎪⎪⎨⎪=-⎪⎩ (θ为参数).当AQ =32r 时,有002,32,3r x x r y y θ+⎧=⎪⎪⎨+⎪=⎪⎩代入00(sin ),(1cos ).x r y r θθθ=-⎧⎨=-⎩∴点Q 的轨迹方程为3(sin )2,3(1cos )2x r y r θθθ⎧=-⎪⎪⎨⎪=-⎪⎩ (θ为参数).。

高中数学人教A版选修4-4全册 第二讲参数方程2.4渐开线与摆线

高中数学人教A版选修4-4全册 第二讲参数方程2.4渐开线与摆线
(4)在求圆的摆线和渐开线参数方程时,如果建立的坐标系的原点 和坐标轴不同,可能会得到不同的参数方程. ( √ )
探究一
探究二
思维辨析
圆的渐开线、摆线的参数方程的理解
【例 1】
已知圆的渐开线的参数方程为
������ = 3cos������ + 3������sin������, ������ = 3sin������-3������cos������

������ ������
= =
csions������������-���+���c���o���ss���i���n������,(φ
为参数).分别把
φ=π3和
φ=π2代入,可得
A,B
两点的坐标分别为
3+√3π 6
,
3√3-π 6
,
π 2
,1
.根据两点间的距离公式可
得 A,B 两点间的距离为
|AB|=
为参数).
答案:
������ ������
= =
40(������-sin������), 40(1-cos������) (φ
为参数)
探究一
探究二
思维辨析
反思感悟根据圆的摆线的定义和建立参数方程的过程,可知摆线 的参数方程中的字母r是指定圆的半径,参数φ是指圆上定点相对于 某一定点运动所张开角度的大小.
探究一
探究二
思维辨析
������ = ������-sin������, 变式训练3 设摆线 ������ = 1-cos������ (t为参数,0≤t≤2π)与直线y=1相 交于A,B两点,求A,B两点间的距离.
解:由 y=1 及 y=1-cos t 得 cos t=0,∵0≤t≤2π,

2020版高中数学第二讲参数方程2.4渐开线与摆线练习(含解析)新人教A版选修4_4

2020版高中数学第二讲参数方程2.4渐开线与摆线练习(含解析)新人教A版选修4_4

四渐开线与摆线课时过关·能力提升基础巩固1若基圆的直径为5,则其渐开线的参数方程为()A --为参数B --为参数C-为参数D --为参数5,所以它的半径为代入圆的渐开线的参数方程,知选项C正确.2给出下列说法:①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线的参数方程也可以转化为普通方程,但是转化后的普通方程比较麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系的原点和坐标轴不同,可能会得到不同的参数方程;④圆的渐开线和x轴一定有交点而且是唯一的交点.其中正确的说法有()A.①③B.②④C.②③D.①③④,只要半径确定,渐开线和摆线的形状就是确定的,但是随着坐标系选择的不同,其在坐标系中的位置也会不同,相应的参数方程也会有所区别,至于渐开线和坐标轴的交点要看选取的坐标系的位置.3下列各点中,在圆的摆线--为参数上的是A.(π,0)B.(π,1)C.(2π,2)D.(2π,0)4当φ=2π时,圆的渐开线-为参数上的点是A.(11,0) B.(11,11π)C.(11,-22π)D.(-π,22π)φ=2π时,代入圆的渐开线方程,得x=11(cos2π+2π·sin2π)=11,y=11(sin2π-2π·cos2π)=-22π.故所求点为(11,-22π).5已知圆的渐开线的参数方程是-为参数则此渐开线对应的基圆的直径是当参数时对应的曲线上的点的坐标为1,故直径为2.把θ代入渐开线的参数方程,得x由此可得对应点的坐标为--6已知渐开线-为参数的基圆的圆心为原点把基圆的横坐标伸长为原来的倍纵坐标不变得到的曲线的焦r=6,其方程为x2+y2=36,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线的方程为整理可得这是一个焦点在x轴上的椭圆.c--故焦点坐标为(和(-和7当φ时圆的摆线--为参数上对应的点的坐标是φ代入参数方程求解即可.π-4,4)8求摆线--为参数 ≤t≤ π)与直线y=2的交点的直角坐标.y=2时,2=2(1-cos t),∴cos t=0.∵ ≤t≤ π,∴t或∴x1=-x2=-故交点坐标为(π-2,2),(3π+2,2).能力提升1已知圆的摆线的参数方程为--为参数则它的一个拱的宽度和高度分别为A.4π,2B.2π,4C.2π,2D.4π,4,产生摆线的圆的半径r=2,又由摆线的产生过程可知,摆线一个拱的宽度等于圆的周长,即为2πr=4π,摆线的拱高等于圆的直径4.2已知一个圆的参数方程为为参数则在圆的摆线的参数方程中与参数对应的点与点之间的距离为A-,圆的半径为3,则它的摆线的参数方程为--为参数).把φ代入参数方程,得-即-所以|AB|---★3如图,四边形ABCD是边长为1的正方形,曲线AEFGH…叫做“正方形的渐开线”,其中的圆心依次按循环它们依次相连接则曲线段的长是A.3πB.4πC.5πD.6π是半径为1的圆周长,长度为继续旋转可得是半径为2的圆周长,长度为π是半径为3的圆周长,长度为是半径为4的圆周长,长度为2π.所以曲线段AEFGH的长是5π.4已知一个圆的摆线方程是--为参数则该圆的面积为对应圆的渐开线的参数方程为π-为参数5已知圆C的参数方程是-为参数直线的普通方程是(1)如果把圆心平移到原点O,请问平移后圆和直线有什么位置关系?(2)写出平移后圆的渐开线的参数方程.圆C平移后圆心为O(0,0),它到直线x-y-的距离为d等于圆的半径,所以直线和圆相切.(2)由圆的半径是6,得渐开线的参数方程是-为参数).6已知圆的渐开线-为参数 ≤φ≤ π)上有一点的坐标为(3,0),求渐开线对应的基圆的面积.(3,0)代入参数方程得-解得所以基圆的面积S=πr2=π×32=9π.7已知渐开线-为参数当为和时对应的点为求出的坐标及两点间的距离φ代入渐开线-得A,B两点的坐标分别为和--根据两点间的距离公式可得|AB|★8已知半径为8的圆沿x轴正向滚动,开始时圆与x轴相切于原点O,记圆上动点为M,它随圆的滚动而改变位置,写出圆滚动一周时点M的轨迹方程,画出相应的曲线,求此曲线上点的纵坐标y 的最大值,说明该曲线的对称轴.M的轨迹的参数方程为--为参数 ≤t≤ π).点M的轨迹曲线如图所示.由图可知,当t=π,即x=8π时,y有最大值16.曲线的对称轴为x=8π.。

数学人教A版选修4-4达标训练第二讲四渐开线与摆线含解析

数学人教A版选修4-4达标训练第二讲四渐开线与摆线含解析

更上一层楼基础·巩固1关于渐开线和摆线的叙述,正确的是()A。

只有圆才有渐开线B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形C。

正方形也可以有渐开线D.对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同思路解析:首先要明确不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的定义虽然从字面上有相似之处,但是它们的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同。

答案:C2给出下列说法①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线也可以转化为普通方程,但是转化后的普通方程比较麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;④圆的渐开线和x轴一定有交点而且是唯一的交点.其中正确的说法有( )A 。

①③ B。

②④ C。

②③D.①③④思路解析:对于一个圆,只要半径确定,渐开线和摆线的形状就是确定的,但是随着选择坐标系的不同,其在坐标系中的位置也会不同,相应的参数方程也会有所区别,至于渐开线和坐标轴的交点要看选取的坐标系的位置.答案:C3在圆的摆线上有点(π,0),那么在满足条件的摆线的参数方程中,使圆的半径最大的摆线上,参数φ=4π对应点的坐标为_________。

思路解析:首先根据摆线的参数方程⎩⎨⎧-=-=)cos 1(),sin (ϕϕϕr y r x (φ为参数),把点(π,0)代入可得⇒⎩⎨⎧-=-=)cos 1(0)sin (ϕϕϕπr r cosφ=1,则sinφ=0,φ=2kπ(k∈Z ), 所以r=k k 212=ππ(k∈Z ).又r >0,所以k∈N *,当k=1时,r 最大为21。

高中数学 第二讲 参数方程 2_4 渐开线与摆线练习 新人教A版选修4-4

高中数学 第二讲 参数方程 2_4 渐开线与摆线练习 新人教A版选修4-4

四渐开线与摆线课后篇巩固探究A组1.下列说法正确的是()①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线的参数方程也可以转化为普通方程,但是转化后的普通方程比较麻烦,所以常使用参数方程研究圆的渐开线问题;③圆的渐开线和x轴一定有交点而且是唯一的交点.其中正确的说法有()A.②③B.②C.③D.①③2.下列各点中,在圆的摆线(φ为参数)上的是()A.(π,0)B.(π,1)C.(2π,2)D.(2π,0).3.当φ=2π时,圆的渐开线(φ为参数)上对应的点是()A.(6,0)B.(6,6π)C.(6,-12π)D.(-π,12π)φ=2π时,将其代入圆的渐开线的参数方程,得即所求的坐标为(6,-12π).4.当φ=时,圆的摆线(φ为参数)上对应的点的坐标是.π+4,4)5.如果半径为3的圆的摆线上某点对应的参数φ=,那么该点的坐标为.r=3,所以圆的摆线的参数方程为(φ为参数).把φ=代入得x=π-,y=3-.故该点的坐标为.6.已知一个圆的摆线方程是(φ为参数),求该圆的面积和对应的圆的渐开线的参数方程.4,所以面积是16π,该圆对应的渐开线的参数方程是(φ为参数).7.已知圆C的参数方程是(α为参数),直线l的普通方程是x-y-6=0.(1)如果把圆心平移到原点O,请问平移后圆和直线有什么位置关系?(2)写出平移后的圆的渐开线的参数方程.圆C平移后的圆心为O(0,0),它到直线x-y-6=0的距离为d==6,恰好等于圆的半径,所以直线和圆是相切的.(2)由于圆的半径是6,所以可得平移后圆的渐开线的参数方程是(φ为参数).8.导学号73574057当φ=,π时,求出渐开线(φ为参数)上的对应点A,B,并求出A,B两点间的距离.φ=代入得所以A.将φ=π代入得所以B(-1,π).故A,B两点间的距离为|AB|=.9.已知圆的半径为r,圆沿x轴正向滚动,开始时圆与x轴相切于原点O,圆上点M从起始处(点O处)沿顺时针已偏转φ角.试求点M的轨迹的参数方程.x M=r·φ-r·cos=r(φ-sin φ),y M=r+r·sin=r(1-cos φ).故点M的轨迹的参数方程为(φ为参数).B组1.我们知道图象关于直线y=x对称的两个函数互为反函数,则圆的摆线(φ为参数)关于直线y=x对称的曲线的参数方程为()A.(φ为参数)B.(φ为参数)C.(φ为参数)D.(φ为参数)y=x对称的函数互为反函数,而求反函数的过程主要体现了x与y的互换.所以要写出摆线关于直线y=x对称的曲线方程,只需把其中的x与y互换.2.已知一个圆的参数方程为(θ为参数),则圆的摆线的参数方程中与φ=对应的点A与点B之间的距离为()A.-1B.C. D.,圆的半径为3,则它的摆线的参数方程为(φ为参数),把φ=代入参数方程中可得即A,所以|AB|=.3.导学号73574058如图,ABCD是边长为1的正方形,曲线AEFGH…叫做“正方形的渐开线”,其中,…的圆心依次按B,C,D,A循环,则曲线段AEFGH的长是()A.3πB.4πC.5πD.6π,是半径为1的圆周长,长度为是半径为2的圆周长,长度为π;是半径为3的圆周长,长度为是半径为4的圆周长,长度为2π.所以曲线段AEFGH的长是5π.4.已知渐开线(φ为参数)的基圆的圆心在原点,若把基圆的横坐标伸长为原来的2倍(纵坐标不变),则得到的曲线的焦点坐标为.r=7,其方程为x2+y2=49,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线方程为+y2=49,整理可得=1,这是一个焦点在x轴上的椭圆.c==7.故焦点坐标为(7,0)和(-7,0).,0)和(-7,0)5.导学号73574059已知一个圆的摆线经过定点(2,0),请写出该圆半径最大时对应的摆线的参数方程以及对应圆的渐开线的参数方程.y=0,可得r(1-cos φ)=0,由于r>0,即得cos φ=1,所以φ=2kπ(k∈Z).将其代入x=r(φ-sin φ),得x=r(2kπ-sin 2kπ)(k∈Z).又因为x=2,所以r(2kπ-sin 2kπ)=2,即得r=(k∈Z).又由实际可知r>0,所以r=(k∈N*).易知,当k=1时,r取最大值.故所求圆的摆线的参数方程为(φ为参数);所求圆的渐开线的参数方程为(φ为参数).6.设圆的半径为4,圆沿x轴正向滚动,开始时圆与x轴相切于原点O,记圆上动点为M,它随圆的滚动而改变位置,写出圆滚动一周时点M的轨迹方程,画出相应曲线,求此曲线上纵坐标y的最大值.M的轨迹是摆线,其参数方程为(φ为参数,且0≤φ≤2π).其曲线是摆线的第一拱(0≤φ≤2π),如图所示.易知,当x=4π时,y有最大值8,故该曲线上纵坐标y的最大值为8.。

新人教A版选修4-4《渐开线与摆线》习题及答案

新人教A版选修4-4《渐开线与摆线》习题及答案

2.4 渐开线与摆线►预习梳理1.以基圆圆心O 为原点,直线OA 为x 轴,建立平面直角坐标系,可得圆的渐开线的参数方程为:________________________________________________________________________(其中r 为基圆的半径).2.在研究平摆线的参数方程中,取定直线为x 轴,定点M 滚动时落在直线上的一个位置为原点,建立直角坐标系,设圆的半径为r ,可得摆线的参数方程为:______________________________________________________. ►预习思考半径为8的圆的渐开线参数方程为⎩⎪⎨⎪⎧x =8cos φ+8φsin φ,y =8sin φ-8φcos φ(φ为参数),摆线参数方程为______________.,预习梳理1.⎩⎪⎨⎪⎧x =r (cos φ+φsin φ),y =r (sin φ-φcos φ)(φ为参数) 2.⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数)预习思考⎩⎪⎨⎪⎧x =8φ-8sin φ,y =8-8cos φ(φ为参数)一层练习1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才能得到不同的图形C .正方形也可以有渐开线D .对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线形状就不同 1.C2.半径为1的圆的渐开线的参数方程为( )A.⎩⎪⎨⎪⎧x =θ-sin θ,y =1-cos θ(θ为参数)B.⎩⎪⎨⎪⎧x =1-sin θ,y =θ-cos θ(θ为参数)C.⎩⎪⎨⎪⎧x =cos θ+θsin θ,y =sin θ-θcos θ(θ为参数)D.⎩⎪⎨⎪⎧x =cos θ-θsin θ,y =sin θ+θcos θ2.C3.给出下列说法:①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线也可以转化为普通方程,但是转化后的普通方程比较麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;④圆的渐开线和x 轴一定有交点而且是唯一的交点.其中正确的说法有( )A .①③B .②④C .②③D .①③④ 3.C4.基圆半径为2的渐开线的参数方程是__________.⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ)(φ为参数) 二层练习5.如下图所示,ABCD 是边长为1的正方形,曲线AEFGH …叫作“正方形的渐开线”,其中AE ,EF ,FG ,GH ,…的圆心依次按B ,C ,D ,A 循环,它们依次相连接,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π 5.C6.已知摆线的生成圆的直径为80 mm ,则摆线的参数方程为____________________________________,其一拱的宽为________,拱高为________.6.⎩⎪⎨⎪⎧x =40(φ-sin φ),y =40(1-cos φ)(φ为参数) 80π mm80 mm7.已知参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2sin α(α为参数),则该圆的渐开线参数方程为__________________________,摆线参数方程为____________________________.7.⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ)(φ为参数) ⎩⎪⎨⎪⎧x =2(φ-sin φ),y =2(1-cos φ)(φ为参数) 8.渐开线⎩⎪⎨⎪⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变)得到的曲线的焦点坐标为________________.8.(63,0)和(-63,0)9.当φ=π2,π时,求出渐开线⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ(φ为参数)上的对应点A ,B ,并求出A ,B 间的距离.9.解析:将φ=π2代入⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ.得x =cos π2+π2sin π2=1,y =sin π2-π2cos π2=1.∴A ⎝ ⎛⎭⎪⎫π2,1.将φ=π代入⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ,得x =cos π+πsin π=-1,y =sin π-πcos π=π.∴B (-1,π). 故A ,B 间的距离为|AB |=(1-π)2+⎝ ⎛⎭⎪⎫π2+12=45π2-π+2. 三层练习10.已知圆的直径为2,其渐开线的参数方程对应的曲线上两点A ,B 对应的参数分别为π3和π2,求点A 、B 的直角坐标. 10.解析:根据题设条件可知圆的半径为1,所以对应的渐开线的参数方程为⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ(φ为参数). 将φ=π3代入得x =cos π3+π3sin π3=12+36π, y =sin π3-π3cos π3=32-π6. ∴A 点的坐标为⎝⎛⎭⎪⎫3+3π6,33-π6.当φ=π2时,同理可求得B 点的坐标为⎝ ⎛⎭⎪⎫π2,1.11.求摆线⎩⎪⎨⎪⎧x =2(φ-sin φ),y =2(1-cos φ)(φ为参数且0≤φ≤2π)与直线y =2的交点的直角坐标.11.解析:当y =2时,有2(1-cos φ)=2,∴cos φ=0.又0≤φ≤2π, ∴φ=π2或φ=3π2.当φ=π2时,x =π-2;当φ=3π2时,x =3π+2.∴摆线与直线y =2的交点为(π-2,2),(3π+2,2).12.设圆的半径为4,沿x 轴正向滚动,开始时圆与x 轴相切于原点O ,记圆上动点为M ,它随圆的滚动而改变位置,写出圆滚动一周时M 点的轨迹方程,画出相应曲线,求此曲线上纵坐标y 的最大值.12.解析:依题意可知,轨迹是摆线,其参数方程为⎩⎪⎨⎪⎧x =4(φ-sin φ),y =4(1-cos φ)(φ为参数).且0≤φ≤2π.其曲线是摆线的第一拱(0≤φ≤2π),如下图所示:易知,当x =4π时,y 有最大值8.13.已知一个圆的摆线方程是⎩⎪⎨⎪⎧x =4φ-4sin φ,y =4-4cos φ(φ为参数),求该圆的面积和对应的圆的渐开线的参数方程.13.分析:首先根据所给出的摆线方程判断出圆的半径为4,易得圆的面积,再代入渐开线的参数方程的标准形式,即可得圆的渐开线的参数方程.解析:首先根据摆线的参数方程可知圆的半径为4,所以面积是16π,该圆对应的渐开线参数方程是⎩⎪⎨⎪⎧x =4cos φ+4φsin φ,y =4sin φ-4φcos φ(φ为参数).14.已知一个圆的摆线过一定点(2,0),请写出该圆的半径最大时该摆线的参数方程以及对应的圆的渐开线的参数方程.14.分析:根据圆的摆线的参数方程⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数),只需把点(2,0)代入参数方程求出r 的表达式,根据表达式求出r 的最大值,再确定对应的摆线和渐开线的参数方程即可.解析:令y =0,可得r (1-cos φ)=0,由于r >0,即得cos φ=1,所以φ=2k π(k ∈Z).代入x =r (φ-sin φ),得x =r (2k π-sin 2k π).又因为x =2,所以r (2k π-sin 2k π)=2,即得r =1k π. 又由实际可知r >0,所以r =1k π(k ∈N *).易知,当k =1时,r 取最大值为1π. 代入即可得圆的摆线的参数方程为 ⎩⎪⎨⎪⎧x =1π(φ-sin φ),y =1π(1-cos φ)(φ为参数); 圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =1π(cos φ+φsin φ),y =1π(sin φ-φcos φ)(φ为参数).1.渐开线的实质是直线在圆上滚动时直线上定点的轨迹.圆的摆线的实质是一个圆沿着一条定直线无滑动地滚动时圆周上一个定点的轨迹.2.渐开线上任一点M 的坐标由圆心角φ(以弧度为单位)唯一确定,而在圆的摆线中,圆周上定点M 的位置也可以由圆心角φ唯一确定.3.圆的渐开线和摆线的参数方程均不宜化为普通方程,既繁琐又没有实际意义. 4.有关已知摆线过定点求摆线及渐开线的参数方程等问题,可进行如下思路解题:代入摆线的参数方程⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数),可求出φ,进一步求的r ,这样就可以写出该圆的摆线和渐开线的参数方程.【习题2.4】1.解析:因为基圆的直径是225 mm ,所以基圆的半径是112.5 mm ,齿廓线AB 所在的渐开线的参数方程为⎩⎪⎨⎪⎧x =112.5(cos φ+φsin φ),y =112.5(sin φ-φcos φ)(φ是参数).2.解析:将φ=π2,3π2分别代入⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ,得到A ,B 两点的坐标分别为⎝ ⎛⎭⎪⎫π2,1,⎝ ⎛⎭⎪⎫-3π2,-1,由两点间的距离公式得|AB |=⎝ ⎛⎭⎪⎫π2+3π22+(1+1)2=2π2+1.3.解析:设轮子的圆心为B ,以BM 的延长线与直线轨道垂直时的一个垂足O 为原点,直线轨道为x 轴,建立如图所示的直角坐标系.设圆滚动使点M 绕圆心B 转过φ角后点M 的坐标为(x ,y ),则x =OD =OA -DA =OA -MC =aφ-b sin φ,y =DM =AC =AB -CB =a -b cosφ,所以点M 的轨迹方程为⎩⎪⎨⎪⎧x =aφ-b sin φ,y =a -b cos φ(φ是参数).4.解析:建立如下图所示的直角坐标系,设点M 的坐标为(x ,y ),此时∠BOA =φ.因为OB =4CB ,所以∠BCM =4φ,∠MCD =π2-3φ.由于x =OF =OE +EF =3r cos φ+r sin ⎝ ⎛⎭⎪⎫π2。

人教版数学高二选修4-4课后练_2.4_渐开线与摆线_课后

人教版数学高二选修4-4课后练_2.4_渐开线与摆线_课后

第二讲 2.4一、选择题1.圆⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数)的摆线上一点的纵坐标为0,那么其横坐标可能是( D )A .πB .2πC .3πD .6π解析:根据条件可知摆线的参数方程为⎩⎪⎨⎪⎧x =3φ-3sin φ,y =3-3cos φ(φ为参数),把y =0代入得cos φ=1,所以φ=2k π(k ∈Z ), 则x =3φ-3sin φ=6k π(k ∈Z ).故选D .2.已知圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数),则基圆的直径为( B )A .6B .12C .3D .2解析:根据条件可知基圆的半径为6,故基圆的直径为12.故选B .3.圆的渐开线方程为⎩⎪⎨⎪⎧x =2(cos θ+θsin θ),y =2(sin θ-θcos θ)(θ为参数),当θ=π时,渐开线上对应的点的坐标为( A )A .(-2,2π)B .(-2,π)C .(4,2π)D .(-4,2π)解析:将θ=π代入参数方程得x =2(cos π+πsin π)=-2,y =2(sin π-πcos π )=2π,∴对应的点的坐标为(-2,2π).故选A .4.摆线⎩⎪⎨⎪⎧x =2(t -sin t ),y =2(1-cos t )(0≤t <2π)与直线y =2的交点的直角坐标是( A )A .(π-2,2),(3π+2,2)B .(π-3,2),(3π+3,2)C .(π,2),(-π,2)D .(2π-2,2),(2π+2,2)解析:由2=2(1-cos t )得cos t =0,∵t ∈[0,2π),∴t 1=π2,t 2=3π2,代入参数方程得到对应的交点的坐标为(π-2,2),(3π+2,2).故选A .5.有一个半径为8的圆盘沿着直线轨道滚动,在圆盘上有一点M 与圆盘中心的距离为3,则点M 的轨迹方程是( C )A .⎩⎪⎨⎪⎧x =8(φ-sin φ),y =8(1-cos φ)(φ为参数)B .⎩⎪⎨⎪⎧ x =8φ-3sin φ,y =8-3cos φ(φ为参数)C .⎩⎪⎨⎪⎧x =3(φ-sin φ),y =3(1-cos φ)(φ为参数)D .⎩⎪⎨⎪⎧x =3φ-8sin φ,y =3-8cos φ(φ为参数)解析:由摆线产生的过程知,M 的轨迹是圆的摆线,圆半径为3,故选C .6.已知一个圆的参数方程为⎩⎪⎨⎪⎧x =3cos φ,y =3sin φ(φ为参数),那么圆的摆线方程中参数取π2对应的点A 与点B ⎝⎛⎭⎫3π2,2之间的距离为( C )A .π2-1B . 2C .10D .3π2-1 解析:根据圆的参数方程可知,圆的半径为3,那么它的摆线的参数方程为⎩⎪⎨⎪⎧x =3(φ-sin φ),y =3(1-cos φ)(φ为参数),把φ=π2代入参数方程中可得⎩⎪⎨⎪⎧x =3⎝⎛⎭⎫π2-1,y =3,即A ⎝⎛⎭⎫3⎝⎛⎭⎫π2-1,3. ∴|AB |=⎣⎡⎦⎤3⎝⎛⎭⎫π2-1-3π22+(3-2)2=10.二、填空题7.我们知道关于直线y =x 对称的两个函数互为反函数,则摆线⎩⎪⎨⎪⎧x =r (θ-sin θ),y =r (1-cos θ)(θ为参数)关于直线y =x 对称的曲线的参数方程为⎩⎪⎨⎪⎧x =r (1-cos θ),y =r (θ-sin θ)(θ为参数).解析:关于直线y =x 对称的函数互为反函数,而求反函数的过程主要体现了x 与y 的互换,所以要写出摆线方程关于直线y =x 的对称曲线的参数方程,只需把其中的x 与y 互换.8.渐开线⎩⎪⎨⎪⎧x =6(cos φ-φsin φ),y =6(sinφ-φcos φ)(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍得到的曲线的两个焦点间的距离为解析:根据渐开线方程知基圆的半径为6,则基圆的方程为x 2+y 2=36,把横坐标伸长为原来的2倍得到的椭圆方程x 24+y 2=36,即x 2144+y 236=1,对应的焦点坐标为(63,0)和(-63,0),它们之间的距离为12 3.9.圆的渐开线⎩⎨⎧x =2(cos t +t sin t )y =2(sin t -t cos t )上与t =π4对应的点的直角坐标为⎝⎛⎭⎫1+π4,1-π4. 解析:对应点的直角坐标为⎩⎨⎧x =2⎝⎛⎭⎫cos π4+π4sin π4=2⎝⎛⎭⎫22+π4·22=1+π4y =2⎝⎛⎭⎫sin π4-π4·cos π4=2⎝⎛⎭⎫22-π4·22=1-π4∴t =π4对应的点的直角坐标为⎝⎛⎭⎫1+π4,1-π4. 三、解答题10.已知一个圆的摆线方程是⎩⎪⎨⎪⎧x =4φ-4sin φ,y =4-4cos φ(φ为参数),求该圆的面积和对应的圆的渐开线的参数方程.解析:根据摆线的参数方程可知圆的半径为4,所以面积为16π,该圆对应的渐开线的方程是⎩⎪⎨⎪⎧x =4cos φ+4φsin φ,y =4sin φ-4φcos φ(φ为参数). 11.已知圆C 的参数方程⎩⎪⎨⎪⎧x =1+6cos α,y =-2+6sin α(α为参数)和直线l 的普通方程x -y -62=0.(1)如果把圆心平移到原点O ,那么平移后圆和直线满足什么关系? (2)根据(1)中的条件,写出平移后的圆的摆线方程.解析:(1)圆C 平移后圆心为O (0,0),它到直线x -y -62=0的距离d =622=6,恰好等于圆的半径,所以直线和圆是相切的.(2)由于圆的半径是6,所以可得摆线的方程是⎩⎪⎨⎪⎧x =6(φ-sin φ),y =6(1-cos φ)(φ为参数). 12.半径为r 的圆沿直轨道滚动,M 在起始处和原点重合,当M 转过53π和72π时,求点M 的坐标.解析:由摆线方程知 φ=53π时,x M =10π+336r ,y M =12r ;φ=72π时,x M =12r (7π+2),y M =r .∴点M 的坐标分别是⎝⎛⎭⎪⎫10π+336,12r ,⎝⎛⎭⎫12r (7π+2),r。

高中数学 2.4渐开线与摆线 新人教A版选修4-4

高中数学 2.4渐开线与摆线 新人教A版选修4-4

A.只有圆才有渐开线
B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所
栏 目

以才能得到不同的图形

C.正方形也可以有渐开线
D.对于同一个圆,如果建立的直角坐标系的位置不同,那么画
出的渐开线形状就不同
编辑课件
分析:本题容易错选 A.渐开线不是圆独有的.其他图形,例如
椭圆、正方形也有.渐开线和摆线的定义虽然在字面上有相似之处,
题二 渐开线、摆线参数方程的应用
例 3 设摆线xy==1t--scionst,t (t 为参数,0≤t≤2π)与直线 y=1
相交与 A,B 两点,求 A,B 两点间的距离.


解析:由 y=1 及 y=1-cos t 得 cos
∴t1=π2 ,t2=3π2 .当
π t1= 2 时,
编辑课件
►变式训练
1.已知圆的渐开线的参数方程是
x=cos φ+φsin
y=sin
φ-φcos
φ, φ (φ 为参数),则此渐开线对应的基圆的直
栏 目


________




φ

π 4





线







链 接
__________________.
1
22+
28π, 22-
2π 8
编辑课件
φ+φsin φ-φcos
φ), φ) (φ 为参数)可求
π r 的值,然后把 φ= 2 代入方编辑程课,件即得对应的点的坐标.
解析:所给的圆的渐开线的参数方程可化为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(时间40分钟,满分60分)
一、选择题(每小题5分,共20分)
1.已知圆的渐开线的参数方程是⎩
⎪⎨⎪⎧
x =cos θ+θsin θ,
y =sin θ-θcos θ(θ为参数),则此渐开线对应的基
圆的周长是( )
A .π
B .2π
C .3π
D .4π
【解析】 圆的渐开线的参数方程由圆的半径惟一确定,从方程不难看出基圆的半径为1,所以基圆的周长为2π,故选B.
【答案】 B
2.给出下列说法:①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线的参数方程也可以转化为普通方程,但是转化后的普通方程比较麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;④圆的渐开线和x 轴一定有交点而且是惟一的交点.
其中正确的说法有( ) A .①③ B .②④ C .②③
D .①③④
【解析】 ①错,②正确,对于一个圆,只要半径确定,渐开线和摆线的形状就是确定的,但是随着选择坐标系的不同,其在坐标系中的位置也会不同,相应的参数方程也会有所区别,故③正确,至于渐开线和坐标轴的交点要看选取的坐标系的位置.故④错误,故选C.
【答案】 C
3.已知一个圆的参数方程为⎩
⎪⎨⎪

x =3cos θ,y =3sin θ(θ为参数),那么圆的摆线方程中与参数φ
=π2对应的点A 与点B (3π
2
,2)之间的距离为( ) A.π2-1 B. 2 C.10
D.
3π2
-1 【解析】 根据圆的参数方程可知,圆的半径为3,那么它的摆线的参数方程为
⎩⎪⎨⎪⎧
x =3(φ-sin φ),y =3(1-cos φ)(φ为参数),把φ=π2
代入参数方程中可得⎩⎪⎨⎪⎧
x =3(π2
-1),y =3,
即A (3π
2-3,3),
∴|AB |=
(3π2-3-3π
2
))2+(3-2)2=10. 【答案】 C
图2-4-1
4.如图2-4-1,ABCD 是边长为1的正方形,曲线AEFGH …叫做“正方形的渐开线”,其中AE 、EF 、FG 、GH …的圆心依次按B 、C 、D 、A 循环,它们依次相连接,则曲线AEFGH 的长是( )
A .3π
B .4π
C .5π
D .6π
【解析】 根据渐开线的定义可知,AE 是半径为1的14圆周长,长度为π
2,继续旋转可
得EF 是半径为2的14圆周长,长度为π;FG 是半径为3的14圆周长,长度为3π
2;GH 是半
径为4的1
4
圆周长,长度为2π.所以曲线AEFGH 的长是5π.
【答案】 C
二、填空题(每小题5分,共10分)
5.已知圆的方程为x 2+y 2=4,点P 为其渐开线上一点,对应的参数φ=π
2,则点P 的
坐标为________.
【解析】 由题意,圆的半径r =2,其渐开线的参数方程为

⎪⎨
⎪⎧
x =2(cos φ+φsin φ)
y =2(sin φ-φcos φ)(φ为参数). 当φ=π
2
时,x =π,y =2,故点P 的坐标为P (π,2).
【答案】 (π,2)
6.渐开线⎩
⎪⎨⎪

x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸
长为原来的2倍(纵坐标不变),得到的曲线的焦点坐标为________.
【解析】 根据圆的渐开线方程可知基圆的半径r =6,其方程为x 2+y 2=36,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线的方程为(12x )2+y 2=36,整理可得x 2
144+
y 2
36
=1,这是一个焦点在x 轴上的椭圆.c =a 2-b 2=
144-36=63,故焦点坐标为(63,
0)和(-63,0).
【答案】 (63,0)和(-63,0)
三、解答题(每小题10分,共30分)
7.给出直径为6的圆,分别写出对应的渐开线的参数方程和摆线的参数方程. 【解】 以圆的圆心为原点,一条半径所在的直线为x 轴,建立直角坐标系.又圆的直
径为6,所以半径为3,所以圆的渐开线的参数方程是⎩⎪⎨⎪⎧
x =3cos φ+3φsin φ,
y =3sin φ-3φcos φ
(φ为参数).
以圆周上的某一定点为原点,以给定定直线所在的直线为x 轴,建立直角坐标系,∴摆
线的参数方程为⎩⎪⎨⎪⎧
x =3φ-3sin φ,
y =3-3cos φ
(φ为参数).
8.有一标准的渐开线齿轮,齿轮的齿廓线的基圆直径为22 mm ,求齿廓线所在的渐开线的参数方程.
【解】 因为基圆的直径为22 mm ,所以基圆的半径为11 mm ,因此齿廓线所在的渐开线的参数方程为
⎩⎪⎨
⎪⎧
x =11(cos φ+φsin φ),
y =11(sin φ-φcos φ)
(φ为参数). 9.如图2-4-2,若点Q 在半径AP 上(或在半径AP 的延长线上),当车轮滚动时,点Q 的轨迹称为变幅平摆线,取|AQ |=r 2或|AQ |=3r
2
,请推出Q 的轨迹的参数方程.
图2-4-2
【解】 设Q (x ,y )、P (x 0,y 0),若A (rθ,r ),
则⎩⎪⎨⎪⎧
x 0=r (θ-sin θ),y 0=r (1-cos θ).当|AQ |=r 2
时,
有⎩⎪⎨⎪⎧ x 0=2x -rθ,y 0=2y -r ,代入⎩⎪⎨⎪⎧
x 0=r (θ-sin θ),y 0=r (1-cos θ).
∴点Q 的轨迹的参数方程为⎩⎨⎧
x =r (θ-1
2
sin θ),
y =r (1-1
2
cos θ)(θ为参数).
当AQ =3r
2时,有⎩⎪⎨⎪⎧
x 0=rθ+2x
3,y 0
=r +2y
3,
代入⎩
⎪⎨⎪⎧
x 0=r (θ-sin θ),y 0=r (1-cos θ).
∴点Q 的轨迹方程为⎩⎨⎧
x =r (θ-3
2
sin θ),
y =r (1-3
2
cos θ)(θ为参数).
教师备选
10.已知一个参数方程是⎩
⎪⎨⎪⎧
x =2+t cos α,
y =2+t sin α,如果把t 当成参数,它表示的图形是直线l (设
斜率存在),如果把α当成参数(t >0),它表示半径为t 的圆.(1)请写出直线和圆的普通方程;(2)如果把圆平移到圆心在(0,t ),求出圆对应的摆线的参数方程.
【解】 (1)如果把t 看成参数,可得直线的普通方程为:y -2=tan α(x -2),即y =x tan α-2tan α+2,
如果把α看成参数且t >0时,它表示半径为t 的圆,其普通方程为(x -2)2+(y -2)2=t 2.
(2)由于圆的圆心在(0,t ),圆的半径为t ,所以对应的摆线的参数方程为⎩⎪⎨
⎪⎧
x =t (φ-sin φ),
y =t (1-cos φ)
(φ为参数).。

相关文档
最新文档