2010年上海高考数学真题试卷及答案解析(文科)
2010年高考文科数学真题试卷及部分答案(全国1卷word版)
2010年高考数学真题试卷(全国1卷word 版)及答案(1-18题答案)2010年普通高等学校招生全国统一考试文科数学(必修+选修I )第I 卷一、选择题(1)cos300°= (A )32- (B )12- (C )12 (D )32(2)设全集U =(1,2,3,4,5),集合M =(1,4),N =(1,3,5),则N ⋂(C ,M )(A )(1,3) (B )(1,5) (C )(3,5) (D )(4,5)(3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z =x-2y 的最大值为(A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(A )52 (B)7 (C)6 (D)4 2(5)(1-x )2(1-x )3的展开式中x 2的系数是(A)-6 (B )-3 (C)0 (D)3(6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于(A )30° (B)45° (C)60° (D)90° (7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是(A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞)(8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则 1PF ·2PF =(A )2 (B)4 (C)6 (D)8(9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为(A) 23 (B)33 (C) 23 (D) 63 (10)设a =log 3,2,b =ln2,c =125-,则(A )a <b <c (B)b <c <a (C)c <a <b (D)c <b <a(11)已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ·PB 的最小值为(A )-4+2 (B )-3+2 (C )-4+22 (D )-3+22(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为(A )233 (B) 433 (C) 23 (D) 833第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(13)不等式2232x x x -++>0的解集是 . (14)已知α为第一象限的角,sin α=35,则tan α= . (15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程种各至少选一门.则不同的选法共有 种.(用数字作答)(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)记等差数列{a n }的前n 项和为S ,设S 3=12,且2a 1,a 2,a 3+1成等比数列,求S n .(18)(本小题满分12分)已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a cot A +b cot B ,求内角C .(19)(本小题满分12分)投到某杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用:若两位初审专家都未予通过,则不予录用:若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审. (Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.(20)(本小题满分12分)如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A—DC—C的大小.(21)(本小题满分12分)已知函数f(x)=3a x4-2(3a+2)x2+4x.(Ⅰ)当a=16时,求f(x)的极值;(Ⅱ)若f(x)在(-1,1)上是增函数,求a的取值范围.(22)(本小题满分12分)已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直线l与C相交为A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设89FA FB−−→-−−→=,求△BDK的内切圆M的方程.2010年高考文科数学参考答案(全国卷1)1.C2.C3.B4.A5.A6.D7.C8.B9.D 10.C 11.D 12.B13.(-2,-1)并(2,+无穷) 14 -24/25 15..30 16.√3/317、{an}是等差数列S3=a1+a2+a3=3a2=12a2=4设公差为da1=4-d a3=4+d2a1,a2,a3+1成等比数列(a2)^2=2a1·(a3+1)4^2=2(4-d)(4+d+1)8=(4-d)(d+5)8=20-d-d^2d^2+d-12=0(d+4)(d-3)=0d=-4 或d=3若d=-4,则a1=8,an=a1+d(n-1)=8-4(n-1)=12-4nSn=(a1+an)n/2=(8+12-4n)n/2=-2n^2+10n若d=3,则a1=1,an=a1+d(n-1)=1+3(n-1)=3n-2Sn=(a1+an)n/2=(1+3n-2)n/2=(3/2)n^2-(1/2)n18、a+b=acosA/sinA+bcosB/sinB合并同类项,a(1-cosA/sinA)=b(cosB/sinB-1)由正弦定理a/b=sinA/sinB得到:cosB-sinB=sinA-cosA(自己带进去化简吧)根据两角和差公式,两边都提取根号2根号2(sin45°cosB-cos45°sinB)=根号2(sinAcos45°-cosAsin45°)即:sin(45°-B)=sin(A-45°)所以:45°-B=A-45°或45°-B+A-45°=180°(舍去)所以A+B=90°,即C=90°。
2010年上海高考数学文科试卷带详解
2010年普通高等学校招生全国统一考试(上海卷)数学(文科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.已知集合{}1,3,A m =,{}3,4B =,{}1,2,3,4AB =则m = .【测量目标】集合的基本运算.【考查方式】直接给出两个集的并集,根据集合的定义求元素. 【参考答案】2【试题解析】显然m =2. 2.不等式204xx ->+的解集是 . 【测量目标】解一元二次不等式.【考查方式】直接给出分数不等式,求不等式的解集. 【参考答案】{}24|<<-x x 【试题解析】204xx ->+等价于(x -2)(x +4)<0,所以4x -<<2. 3.行列式ππcossin 66ππsin cos 66的值是 .【测量目标】行列式的运算.【考查方式】直接给出行列式,根据行列式运算法则求值. 【参考答案】0.5 【试题解析】ππcossin66ππsin cos 66=πππππ1cos cos sin sin cos 666632-==.4.若复数12i z =-(i 为虚数单位),则z z z += .【测量目标】复数的基本运算.【考查方式】直接给出复数z ,求其共轭复数,进而根据运算法则求值. 【参考答案】62i -【试题解析】z z z +=(12i)(12i)12i 62i -++-=-.5.将一个总数为A 、B 、C 三层,其个体数之比为5:3:2.若用分层抽样方法抽取容量为100的样本,则应从C 中抽取 个体. 【测量目标】分层抽样.【考查方式】给出样本,根据分层抽样求样本的个体. 【参考答案】20【试题解析】从C 中抽取20102100=⨯. 6.已知四棱椎P ABCD -的底面是边长为6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =则该四棱椎的体积是 . 【测量目标】锥的体积.【考查方式】直接给出四棱锥的底面边长和高的值,利用椎体体积公式求体积. 【参考答案】96 【试题解析】9683631=⨯⨯=V . 7.圆22:2440C x y x y +--+=的圆心到直线3440x y ++=的距离d = . 【测量目标】点到直线的距离公式.【考查方式】给出圆一般方程,得到圆心坐标,根据点到直线的距离公式求解. 【参考答案】3【试题解析】圆心(1,2)到直线3440x y ++=距离为3542413=+⨯+⨯.8.动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则P 的轨迹方程为 . 【测量目标】抛物线的定义及其标准方程.【考查方式】给出符合抛物线定义的动点数据,利用代数关系求动点的轨迹方程. 【参考答案】y 2=8x【试题解析】P 的轨迹是以(2,0)F 为焦点的抛物线,p =2所以其方程为y 2=8x. 9.函数3()log (3)f x x =+的反函数的图像与y 轴的交点坐标是 . 【测量目标】反函数的概念和性质.【考查方式】直接给出函数,求其反函数,进而得出交点坐标. 【参考答案】(0,-2)【试题解析】函数3()log (3)f x x =+的反函数为33-=xy ,另x =0,有y =2-.10. 从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率 为 (结果用最简分数表示). 【测量目标】随机事件与概率.【考查方式】给出等可能事件,利用排列组合求概率.【参考答案】351【试题解析】“抽出的2张均为红桃”的概率为213252C 3C 51=.11. 2010年上海世博会园区每天9:00开园,20:00停止入园.在右边的框图中,S 表示上海世博会官方网站在每个整点报道的入园总人数,a 表示整点报道前1个小时内入园人数,则空白的执行框内应填入 .【测量目标】循环结构的程序框图.【考查方式】根据程序框图的逻辑结构,得到S 与a 的数量关系. 【参考答案】S ←S +a.【试题解析】依步骤得S ←S +a.12.在n 行m 列矩阵12321234113*********n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪⎪⋅⋅⋅ ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭中,第11 题图 记位于第i 行第j 列的数为(,1,2,)ij a i j n =⋅⋅⋅.当9n =时,11223399a a a a +++⋅⋅⋅+= . 【测量目标】矩阵的定义.【考查方式】给出矩阵的行和列,求出各对角元素值,最后求和. 【参考答案】45【试题解析】11223399a a a a +++⋅⋅⋅+=1+3+5+7+9+2+4+6+8=45.13.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为(5,0),1(2,1)e =、2(2,1)e =-分别是两条渐近线的方向向量.任取双曲线Γ上的点P ,若12OP ae be =+(a 、b ∈R ),则a 、b 满足的一个等式是 . 【测量目标】双曲线的几何性质,平面向量的线性运算.【考查方式】根据给出的方向向量,求出渐进线的方程,从而得到双曲线的标准方程,再利 用平面向量得到点到坐标原点的向量坐标求出啊,a ,b 关系. 【参考答案】4ab =1.【试题解析】1(2,1)e =、2(2,1)e =-是渐进线方向向量,所以双曲线渐近线方程 为.x y 21±=,又1,2,5==∴=b a c (步骤1) 双曲线方程为1422=-y x ,12OP ae be =+=),22(b a b a -+,1)(4)22(22=--+∴b a b a ,化简得4ab =1 . (步骤2)14.将直线1:10l x y +-=、2:0l nx y n +-=、3:0l x ny n +-=(n ∈*N ,2n)围成的三角形面积记为n S ,则lim n n S →∞= .【测量目标】简单的极限运算.【考查方式】直接给出直线方程,观察图形得出可行域代数关系,利用极限求最小值.【参考答案】12【试题解析】B )1,1(++n nn n 所以BO AC ⊥,(步骤1) n S =)1(21)2221(221+-=-+⨯⨯n n n n 所以lim n n S →∞=12 . (步骤2)二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生必须 在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.满足线性约束条件23,23,0,0x y x y x y +⎧⎪+⎪⎨⎪⎪⎩的目标函数z x y =+的最大值是 ( )A .1B .32C.2D.3 【测量目标】线性规划求目标函数的最值.【考查方式】直接给出约束条件,利用线性规划求目标函数的最大值.【参考答案】C 【试题解析】当直线z x y =+过点B (1,1)时,z 最大值为2. 16.“()π2π4x k k =+∈Z ”是“tan 1x =”成立的 ( )A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件 【测量目标】充要条件的判定. 【考查方式】充分,必要条件. 【参考答案】A【试题解析】ππtan(2π)tan144k +==,所以充分;但反之不成立,如5πtan 14=. 17.若0x 是方程式 lg 2x x +=的解,则0x 属于区间 ( ) A.(0,1) B.(1,1.25) C.(1.25,1.75) D.(1.75,2)【测量目标】二分法的计算.【考查方式】根据给出的函数,构造新的函数,将选项带入新函数得到答案. 【参考答案】D【试题解析】04147lg)47()75.1(,2lg )(<-==-+=f f x x x f 由构造函数.02lg )2(>=f 知0x 属于区间(1.75,2).18.若ABC △的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC △ ( ) A.一定是锐角三角形 B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形 【测量目标】正弦定理,余弦定理.【考查方式】给出三角形内角正弦的比值,从而得到三角形边长的比值,利用余弦定理得到 余弦值,最后判断角的大小. 【参考答案】C【试题解析】由sin :sin :sin 5:11:13A B C =及正弦定理得::a b c =5:11:13由余弦定理得22251113cos 02511C +-=<⨯⨯,所以角C 为钝角. 三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的 规定区域内写出必要的步骤. 19.(本题满分12分) 已知π02x <<,化简: 2πlg(cos tan 12sin )lg[2cos()]lg(1sin 2)24x x x x x +-+--+.【测量目标】三角函数的诱导公式,对数的化简和计算.【考查方式】给出计算式,通过三角函数的变换,化简,再根据对数的基本运算求值. 【试题解析】原式=2lg(sin cos )lg(cos sin )lg(sin cos )0x x x x x x +++-+=.20.(本满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该 最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出 用于灯笼的三视图(作图时,不需考虑骨架等因素).【测量目标】平面图形的直观图和三视图,柱体的面积.【考查方式】写出含未知量底面积代数式,利用函数的知识求最值,根据空间想像能力绘制 较为准确三视图.【试题解析】(1) 设圆柱形灯笼的母线长为l ,则l =1.2-2r (0<r <0.6), (2) 23π(0.4)0.48πS r =--+, (步骤1) (3) 所以当r =0.4时,S 取得最大值约为1.51平方米; (4) 当r =0.3时,l =0.6,作三视图. (步骤2)21.(本题满分14分)本题共有2个小题,第一个小题满分6分,第2个小题满分8分.已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,n ∈*N(1)证明:{}1n a -是等比数列;(2)求数列{}n S 的通项公式,并求出使得1n n S S +>成立的最小正整数n . 【测量目标】数列的通项公式与前n 项和n S 的关系.【考查方式】给出数列前n 项和的代数关系式,证明等比数列,进而求出等比数列的前n 和, 利用比较大小求解.【试题解析】(1) 当n =1时,a 1=-14;当2n时,a n =S n -S n -1=-5a n +5a n -1+1,所以151(1)6n n a a --=-, (步骤1)又a 1-1=-15≠0,所以数列{a n -1}是等比数列;(2) 由(1)知:151156n n a -⎛⎫-=- ⎪⎝⎭,得151156n n a -⎛⎫=- ⎪⎝⎭(步骤2)从而1575906n n S n -⎛⎫=+- ⎪⎝⎭ (n ∈*N ); (步骤3)由S n +1 > S n ,得156522,log 114.96525n n -⎛⎫<>+ ⎪⎝⎭≈,最小正整数n =15.(步骤4) 22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分. 若实数x 、y 、m 满足x m y m -<-,则称x 比y 接近m . (1)若21x -比3接近0,求x 的取值范围;(2)对任意两个不相等的正数a 、b ,证明:22a b ab +比33a b +接近2(3)已知函数()f x 的定义域{}π,,D x x k k x ≠∈∈Z R .任取x D ∈,()f x 等于1sin x +和1sin x -中接近0的那个值.写出函数()f x 的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).【测量目标】解一元二次不等式,不等式的基本性质,函数的单调性与最值,奇偶性和周期..【考查方式】给出条件求符合条件自变量的取值范围.满足条件的绝对不等式相互之间比较大小.根据函数的奇偶,周期性,以及最小值求解函数的单调区间.【试题解析】(1) x ∈(-2,2); (步骤1)(2) 对任意两个不相等的正数a 、b,有223322a b ab a b +>+>(步骤2)因为2233222()()0a b ab a b a b a b +--+-=-+-<,(步骤3)所以223322a b ab a b +-<+-,即a 2b +ab 2比a 3+b 3接近2(3) 1sin ,(2ππ,2π)()1|sin |,π1sin ,(2π,2ππ)x x k k f x x x k x x k k +∈-⎧==-≠⎨-∈+⎩,k ∈Z ,(步骤4) f (x )是偶函数,f (x )是周期函数,最小正周期T =π,函数f (x )的最小值为0,(步骤5) 函数f (x )在区间π(π,π)2k k -单调递增,在区间π(π,π+)2k k 单调递减,k ∈Z .(步骤6) 23(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知椭圆Γ的方程为22221(0)x y a b a b+=>>,(0,)A b 、(0,)B b -和(,0)Q a 为Γ的三顶点.(1)若点M 满足1()2AM AQ AB =+,求点M 的坐标; (2)设直线11:l y k x p =+交椭圆Γ于C 、D 两点,交直线22:l y k x =于点E .若2122b k k a=-,证明:E 为CD 的中点;(3)设点P 在椭圆Γ内且不在x 轴上,如何构作过PQ 中点F 的直线l ,使得l 与椭圆Γ的两个交点1P 、2P 满足12PP PP PQ +=12PP PP PQ +=?令10a =,5b =,点P 的坐标是(-8,-1),若椭圆Γ上的点1P 、2P 满足12PP PP PQ +=,求点1P 、2P 的坐标.【测量目标】平面向量的线性运算,直线方程和椭圆标准方程,直线和椭圆的位置关系,椭圆中的探索性问题.【考查方式】通过向量坐标的基本运算求M.根据直线方程和椭圆方程的位置关系,解出两直线的斜率代数关系,再进行证明.根据向量等式的关系以及直线和椭圆方程的线性关系求出坐标. 【试题解析】(1) (,)22ab M -;(步骤1)(2) 由方程组122221y k x p x y a b=+⎧⎪⎨+=⎪⎩,消y 得方程2222222211()2()0a k b x a k px a p b +++-=,因为直线11l y k x p =+:交椭圆Γ于C 、D 两点,所以∆>0,即22221a k b p +->0,设C (x 1,y 1)、D (x 2,y 2),CD 中点坐标为(x 0,y 0),(步骤2)则212102221201022212x x a k px a k b b p y k x p a k b ⎧+==-⎪+⎪⎨⎪=+=⎪+⎩,由方程组12y k x py k x =+⎧⎨=⎩,消y 得方程(k 2-k 1)x =p ,(步骤3)又因为2221b k a k =-,所以2102222112202221a k p px x k k a k b b p y k x ya kb ⎧==-=⎪-+⎪⎨⎪===⎪+⎩,(步骤4)故E 为CD 的中点;(3) 因为点P 在椭圆Γ内且不在x 轴上,所以点F 在椭圆Γ内,可以求得直线OF 的斜率k 2,由12PP PP PQ +=知F 为P 1P 2的中点,根据(2)可得直线l 的斜率2122b k a k =-,从而得直线l 的方程.(步骤5)1(1,)2F -,直线OF 的斜率212k =-,直线l 的斜率212212b k a k =-=-,解方程组22112110025y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消y :x 2-2x -48=0,解得P 1(-6,-4)、P 2(8,3).(步骤6)。
2010年普通高等学校招生全国统一考试数学文科试题(全国I卷)真题精品解析
2010年普通高等学校招生全国统一考试文科数学(必修+选修II)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
【教师简评】本试卷整体上明显比去年加大了难度,整套题对程度中等的学生来说有比较有难度,估计最后的考试分数不会特别理想。
试题不仅注意对基础知识的考查,更注重了对能力的考查。
体现了“稳中求变,深化能力”的主导思想。
知识分布还是比较广的,题的形式稳定,延续以前试题格式。
本套试卷基础与能力并重,前6题都是常见题,在考场上能够稳定学生情绪,第10、11、12三题是较为综合性的试题,这是近几年来全国1套试卷难度最大的,填空题难度不算大。
主观题试题类型都是常规题,难度和运算量仍然不小。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一.选择题 (1)cos300︒=(A)2-12 (C)12(D) 2 【答案】C【命题意图】本试题主要考查三角函数的诱导公式及特殊角求值。
2010年高考试题文科数学(全国卷I)及答案解析
A
1 1 + x2
=
,
O
P
��� � ��� � ��� � ��� � PA • PB =| PA| ⋅ | PB| cos 2α
2 2 4 2
x 2 (1 − 2 sin2 α )
= B
��� � ��� � x ( x − 1) x − x x4 − x2 = ,令 PA • PB = y ,则 y = , x2 + 1 x2 + 1 x2 + 1
| PF1 |i| PF2 | =
(A)2 (B)4 (C) 6 (D) 8 8.B【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想, 通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析 1】.由余弦定理得 cos ∠ F1 P F2 =
| PF1 |2 + | PF2 |2 − | F1 F2 |2 2 | PF1 || PF2 |
D1 A1 D A O B1
C1
C B
面 AC D1 所 成 角 相 等 , 设 DO ⊥ 平 面 AC D1 , 由 等 体 积 法 得 VD − ACD1 = VD1− ACD , 即
1 1 S ∆ACD1 ⋅ DO = S∆ACD ⋅ DD1 .设 DD1=a, 3 3
则 S∆ ACD1 =
7.C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本 小题时极易忽视 a 的取值范围,而利用均值不等式求得 a+b= a + 题者的用苦良心之处. 【解析 1】因为 f(a)=f(b), 所以|lga|=|lgb|, 所以 a=b(舍去) ,或 b =
1 ≥ 2 , 从而错选 D,这也是命 a
2010年高考文科数学真题试卷及部分答案(全国1卷word版)
及答案( 1-18 题答案)
2010 年普通高等学校招生全国统一考试
一、选择题 ( 1) cos300°=
文科数学(必修 +选修 I )
第 I卷
3B)
2
1
( C)
2
3
(D )
2
( 2)设全集 U=( 1,2, 3,4,5),集合 M =( 1,4),N=( 1,3,5),则 N ( C,
x 轴的对称点为 D.
(Ⅰ )证明:点 F 在直线 BD 上;
(Ⅱ )设 FA
8
FB
,求△ BDK 的内切圆 M 的方程 .
9
2010 年高考文科数学参考答案 (全国卷 1)
1.C 2.C 3.B 4.A 5.A 6.D 7.C 8.B 9.D 10.C 11.D 12.B
13.(-2, -1)并 (2,+ 无穷 )
(B)45 °
(C)60 °
(D)90 °
(7) 已知函数 f(x)= lg x .若 a≠b,且 f(a)=f(b),则 a+b 的取值范围是
(A )(1, +∞)
(B ) [1,+ ∞]
(C)(2,+ ∞)
(D)[2,+ ∞ )
(8) 已知 F 1、 F 2 为双曲线 C:x2 -y2 =1 的左、右焦点,点 P 在 C 上,∠ F 1PF2=60°,则
(A )5 2
(B)7
(C)6
(D)4 2
(5)(1 - x)2(1- x )3 的展开式中 x2的系数是
(A) - 6
(B)- 3
(C)0
(D)3
2010年全国统一高考数学试卷(文科)(新课标)解析版
2010年全国统一高考数学试卷(文科)(新课标)解析版参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合{|||2A x x =…,}x R ∈,{|4B x =,}x Z ∈,则(A B = )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}【考点】1E :交集及其运算 【专题】11:计算题【分析】由题意可得{|22}A x x =-剟,{0B =,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求 【解答】解:{|||2}{|22}A x x x x ==-剟?{|4B x =,}{0x Z ∈=,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则{0A B =,1,2}故选:D .【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A ,B ,属于基础试题2.(5分)平面向量,a b ,已知(4,3)a =,2(3,18)a b +=,则,a b 夹角的余弦值等于( ) A .865B .865-C .1665D .1665-【考点】9S :数量积表示两个向量的夹角【分析】先设出b 的坐标,根据(4,3)a =,2(3,18)a b +=,求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦 【解答】解:设(,)b x y =, (4,3)a =,2(3,18)a b +=,∴(5,12)b =-2036cos 513θ-+∴=⨯1665=,【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)已知复数Z =,则||(z = )A .14B .12C .1D .2【考点】5A :复数的运算 【专题】11:计算题【分析】由复数的代数形式的乘除运算化简可得4iZ =+,由复数的模长公式可得答案.【解答】解:化简得13213iZ i+===-+1(3)(13)12323224(13)(13)i i i ii i +--=-=-=-++-,故1||2z =, 故选:B .【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题. 4.(5分)曲线321y x x =-+在点(1,0)处的切线方程为( ) A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+【考点】6H :利用导数研究曲线上某点切线方程 【专题】1:常规题型;11:计算题【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在1x =处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. 【解答】解:验证知,点(1,0)在曲线上321y x x =-+,232y x '=-,所以1|1x k y -='=,得切线的斜率为1,所以1k =; 所以曲线()y f x =在点(1,0)处的切线方程为: 01(1)y x -=⨯-,即1y x =-.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为( )A BC D 【考点】KC :双曲线的性质 【专题】11:计算题【分析】先求渐近线斜率,再用222c a b =+求离心率. 【解答】解:渐近线的方程是by x a =±,24ba∴=,12b a =,2a b =,c =,c e a ==. 故选:D .【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )A .B .C .D .【考点】3A :函数的图象与图象的变换【分析】本题的求解可以利用排除法,根据某具体时刻点P 的位置到到x 轴距离来确定答案.【解答】解:通过分析可知当0t =时,点P 到x 轴距离d ,于是可以排除答案A ,D , 再根据当4t π=时,可知点P 在x 轴上此时点P 到x 轴距离d 为0,排除答案B ,故选:C .【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题. 7.(5分)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .23a πB .26a πC .212a πD .224a π【考点】LG :球的体积和表面积 【专题】11:计算题【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R 满足22(2)6R a =,代入球的表面积公式,24S R π=球,即可得到答案. 【解答】解:根据题意球的半径R 满足22(2)6R a =,所以2246S R a ππ==球. 故选:B .【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入5N =,则输出的数等于( )A .54B .45C .65D .56【考点】EF :程序框图 【专题】28:操作型【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出111111223344556S =++++⨯⨯⨯⨯⨯的值. 【解答】解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知: 该程序的作用是累加并输出111111223344556S =++++⨯⨯⨯⨯⨯的值. 11111151122334455666S =++++=-=⨯⨯⨯⨯⨯ 故选:D .【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数()f x 满足()24(0)x f x x =-…,则{|(2)0}(x f x ->= ) A .{|2x x <-或4}x > B .{|0x x <或4}x > C .{|0x x <或6}x >D .{|2x x <-或2}x >【考点】3K :函数奇偶性的性质与判断 【专题】11:计算题【分析】由偶函数()f x 满足()24(0)x f x x =-…,可得||()(||)24x f x f x ==-,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数()f x 满足()24(0)x f x x =-…,可得||()(||)24x f x f x ==-, 则|2|(2)(|2|)24x f x f x --=-=-,要使(|2|)0f x ->,只需|2|240x -->,|2|2x -> 解得4x >,或0x <. 应选:B .【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算. 10.(5分)若cos 45α=-,α是第三象限的角,则sin()(4πα+= )A .BC .D 【考点】GG :同角三角函数间的基本关系;GP :两角和与差的三角函数 【专题】11:计算题【分析】根据α的所在的象限以及同角三角函数的基本关系求得sin α的值,进而利用两角和与差的正弦函数求得答案. 【解答】解:α是第三象限的角3sin 5α∴==-,所以324s i()445ππααα+=+=故选:A .【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知ABCD 的三个顶点为(1,2)A -,(3,4)B ,(4,2)C -,点(,)x y 在ABCD 的内部,则25z x y =-的取值范围是( ) A .(14,16)-B .(14,20)-C .(12,18)-D .(12,20)-【考点】7C :简单线性规划 【专题】11:计算题;16:压轴题【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D 的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围. 【解答】解:由已知条件得(0,4)AB DC D =⇒-, 由25z x y =-得255z y x =-,平移直线当直线经过点(3,4)B 时,5z-最大, 即z 取最小为14-;当直线经过点(0,4)D -时,5z-最小,即z 取最大为20,又由于点(,)x y 在四边形的内部,故(14,20)z ∈-. 如图:故选B .【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数||,010()16,102lgx x f x x x <⎧⎪=⎨-+>⎪⎩…,若a ,b ,c 互不相等,且f (a )f =(b )f =(c ),则abc 的取值范围是( ) A .(1,10)B .(5,6)C .(10,12)D .(20,24)【考点】3A :函数的图象与图象的变换;3B :分段函数的解析式求法及其图象的作法;4H :对数的运算性质;4N :对数函数的图象与性质 【专题】13:作图题;16:压轴题;31:数形结合【分析】画出函数的图象,根据f (a )f =(b )f =(c ),不妨a b c <<,求出abc 的范围即可.【解答】解:作出函数()f x 的图象如图, 不妨设a b c <<,则16(0,1)2lga lgb c -==-+∈1ab =,10612c <-+<则(10,12)abc c =∈. 故选:C .【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力. 二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线20x y +-=相切的圆的方程为 222x y += . 【考点】1J :圆的标准方程;9J :直线与圆的位置关系【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r =,所求圆的方程为222x y +=.故答案为:222x y +=【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数()y f x =为区间(0,1]上的图象是连续不断的一条曲线,且恒有0()1f x 剟,可以用随机模拟方法计算由曲线()y f x =及直线0x =,1x =,0y =所围成部分的面积S ,先产生两组(每组N 个),区间(0,1]上的均匀随机数1x ,2x ,⋯,n x 和1y ,2y ,⋯,n y ,由此得到N 个点(x ,)(1y i -,2⋯,)N .再数出其中满足1()(1y f x i =…,2⋯,)N 的点数1N ,那么由随机模拟方法可得S 的近似值为1N N. 【考点】CE :模拟方法估计概率;CF :几何概型【分析】由题意知本题是求10()f x dx ⎰,而它的几何意义是函数()f x (其中0()1)f x 剟的图象与x 轴、直线0x =和直线1x =所围成图形的面积,积分得到结果. 【解答】解:1()f x dx ⎰的几何意义是函数()f x (其中0()1)f x 剟的图象与x 轴、直线0x =和直线1x =所围成图形的面积,∴根据几何概型易知110()N f x dx N≈⎰.故答案为:1N N. 【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 ①②③⑤ (填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】7L :简单空间图形的三视图 【专题】15:综合题;16:压轴题【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项. 【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形; 故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在ABC ∆中,D 为BC 边上一点,3BC BD =,AD =,135ADB ∠=︒.若AC ,则BD = 2【考点】HR :余弦定理【专题】11:计算题;16:压轴题【分析】先利用余弦定理可分别表示出AB ,AC ,把已知条件代入整理,根据3BC BD =推断出2C D B D =,进而整理2222AC CD CD =+- 得22424AC BD BD =+-把AC ,代入整理,最后联立方程消去AB 求得BD 的方程求得BD .【解答】用余弦定理求得2222cos135AB BD AD AD BD =+-︒ 2222cos45AC CD AD AD CD =+-︒即2222AB BD BD =++①2222AC CD CD =+-② 又3BC BD = 所以2CD BD =所以 由(2)得22424AC BD BD =+-(3)因为 A C A B所以 由(3)得222424AB BD BD =+- (4) (4)2-(1) 2410BD BD --=求得2BD =故答案为:2【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(10分)设等差数列{}n a 满足35a =,109a =-. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值. 【考点】84:等差数列的通项公式;85:等差数列的前n 项和【分析】(1)设出首项和公差,根据35a =,109a =-,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{}n a 的前n 项和,整理成关于n 的一元二次函数,二次项为负数求出最值.【解答】解:(1)由1(1)n a a n d =+-及35a =,109a =-得 199a d +=-,125a d +=解得2d =-,19a =,数列{}n a 的通项公式为112n a n =- (2)由(1)知21(1)102n n n S na d n n -=+=-. 因为2(5)25n S n =--+. 所以5n =时,n S 取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高. (Ⅰ)证明:平面PAC ⊥平面PBD ;(Ⅱ)若AB 60APB ADB ∠=∠=︒,求四棱锥P ABCD -的体积.【考点】LF :棱柱、棱锥、棱台的体积;LY :平面与平面垂直 【专题】11:计算题;14:证明题;35:转化思想【分析】(Ⅰ)要证平面PAC ⊥平面PBD ,只需证明平面PAC 内的直线AC ,垂直平面PBD 内的两条相交直线PH ,BD 即可.(Ⅱ)AB 60APB ADB ∠=∠=︒,计算等腰梯形ABCD 的面积,PH 是棱锥的高,然后求四棱锥P ABCD -的体积. 【解答】解:(1)因为PH 是四棱锥P ABCD -的高.所以AC PH ⊥,又AC BD ⊥,PH ,BD 都在平PHD 内,且PH BD H =.所以AC ⊥平面PBD .故平面PAC ⊥平面PBD (6分)(2)因为ABCD 为等腰梯形,//AB CD ,AC BD ⊥,AB =所以HA HB = 因为60APB ADB ∠=∠=︒所以PA PB ==1HD HC ==.可得PH =.等腰梯形ABCD 的面积为122S ACxBD ==+9分)所以四棱锥的体积为1(23V=⨯+.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.附:2()()()()()n ad bcKa b c d a c b d-=++++.【考点】BL:独立性检验【专题】11:计算题;5I:概率与统计【分析】(1)由样本的频率率估计总体的概率,(2)求2K的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为7014%500=(2)2K的观测值2500(4027030160)9.96720030070430k⨯-⨯=≈⨯⨯⨯因为9.967 6.635>,且2( 6.635)0.01P K=…,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设1F ,2F 分别是椭圆222:1(01)y E x b b+=<<的左、右焦点,过1F 的直线l 与E相交于A 、B 两点,且2||AF ,||AB ,2||BF 成等差数列. (Ⅰ)求||AB ;(Ⅱ)若直线l 的斜率为1,求b 的值. 【考点】4K :椭圆的性质 【专题】15:综合题【分析】(1)由椭圆定义知22||||||4AF AB BF ++=,再由2||AF ,||AB ,2||BF 成等差数列,能够求出||AB 的值.(2)L 的方程式为y x c =+,其中c ,设1(A x ,1)y ,1(B x ,1)y ,则A ,B 两点坐标满足方程组2221y x cy x b =+⎧⎪⎨+=⎪⎩,化简得222(1)2120b x cx b +++-=.然后结合题设条件和根与系数的关系能够求出b 的大小.【解答】解:(1)由椭圆定义知22||||||4AF AB BF ++= 又222||||||AB AF BF =+,得4||3AB =(2)L 的方程式为y x c =+,其中c =设1(A x ,1)y ,2(B x ,2)y ,则A ,B 两点坐标满足方程组2221y x c y x b =+⎧⎪⎨+=⎪⎩.,化简得222(1)2120b x cx b +++-=.则2121222212,11c b x x x x b b --+==++. 因为直线AB 的斜率为1,所以21|||AB x x =-即214|3x x =-. 则224212122222284(1)4(12)8()49(1)1(1)b b b x x x x b b b --=+-=-=+++.解得b . 【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数2()(1)x f x x e ax =-- (Ⅰ)若12a =,求()f x 的单调区间; (Ⅱ)若当0x …时()0f x …,求a 的取值范围. 【考点】6B :利用导数研究函数的单调性 【专题】15:综合题;53:导数的综合应用【分析】()I 求导函数,由导数的正负可得函数的单调区间;()()(1)x II f x x e ax =--,令()1x g x e ax =--,分类讨论,确定()g x 的正负,即可求得a 的取值范围. 【解答】解:1()2I a =时,21()(1)2x f x x e x =--,()1(1)(1)x x x f x e xe x e x '=-+-=-+ 令()0f x '>,可得1x <-或0x >;令()0f x '<,可得10x -<<;∴函数的单调增区间是(,1)-∞-,(0,)+∞;单调减区间为(1,0)-;()()(1)x II f x x e ax =--.令()1x g x e ax =--,则()x g x e a '=-.若1a …,则当(0,)x ∈+∞时,()0g x '>,()g x 为增函数, 而(0)0g =,从而当0x …时()0g x …,即()0f x …. 若1a >,则当(0,)x lna ∈时,()0g x '<,()g x 为减函数, 而(0)0g =,从而当(0,)x lna ∈时,()0g x <,即()0f x <. 综合得a 的取值范围为(-∞,1]. 另解:当0x =时,()0f x =成立;当0x >,可得10xe ax --…,即有1x e a x-…的最小值,由1x y e x =--的导数为1x y e '=-,当0x >时,函数y 递增;0x <时,函数递减, 可得函数y 取得最小值0,即10x e x --…,0x >时,可得11x e x-…, 则1a ….【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧AC BD =,过C 点的圆的切线与BA 的延长线交于E 点,证明:(Ⅰ)ACE BCD ∠=∠. (Ⅱ)2BC BE CD =.【考点】9N :圆的切线的判定定理的证明;NB :弦切角 【专题】14:证明题【分析】()I 先根据题中条件:“AC BD =”,得BCD ABC ∠=∠.再根据EC 是圆的切线,得到ACE ABC ∠=∠,从而即可得出结论. ()II 欲证2BC BE = x CD .即证BC CDBE BC=.故只须证明~BDC ECB ∆∆即可. 【解答】解:(Ⅰ)因为AC BD =, 所以BCD ABC ∠=∠. 又因为EC 与圆相切于点C , 故ACE ABC ∠=∠所以ACE BCD ∠=∠.(5分)(Ⅱ)因为ECB CDB ∠=∠,EBC BCD ∠=∠, 所以~BDC ECB ∆∆, 故BC CDBE BC=. 即2BC BE CD =⨯.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线11cos (sin x t C t y t αα=+⎧⎨=⎩为参数),2cos (sin x C y θθθ=⎧⎨=⎩为参数),(Ⅰ)当3πα=时,求1C 与2C 的交点坐标;(Ⅱ)过坐标原点O 做1C 的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】3J :轨迹方程;JE :直线和圆的方程的应用;4Q :简单曲线的极坐标方程;QJ :直线的参数方程;QK :圆的参数方程 【专题】15:综合题;16:压轴题【分析】()I 先消去参数将曲线1C 与2C 的参数方程化成普通方程,再联立方程组求出交点坐标即可,()II 设(,)P x y ,利用中点坐标公式得P 点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线. 【解答】解:(Ⅰ)当3πα=时,1C的普通方程为1)y x =-,2C 的普通方程为221x y +=.联立方程组221)1y x x y ⎧=-⎪⎨+=⎪⎩, 解得1C 与2C 的交点为(1,10)(,2.(Ⅱ)1C 的普通方程为sin cos sin 0x y ααα--=①. 则OA 的方程为cos sin 0x y αα+=②, 联立①②可得2sin x α=,cos sin y αα=-;A 点坐标为2(sin α,cos sin )αα-,故当α变化时,P 点轨迹的参数方程为:()21212x sin y sin cos αααα⎧=⎪⎪⎨⎪=-⎪⎩为参数,P 点轨迹的普通方程2211()416x y -+=.故P 点轨迹是圆心为1(,0)4,半径为14的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数()|24|1f x x =-+. (Ⅰ)画出函数()y f x =的图象:(Ⅱ)若不等式()f x ax …的解集非空,求a 的取值范围.【考点】3A :函数的图象与图象的变换;7E :其他不等式的解法;5R :绝对值不等式的解法【专题】11:计算题;13:作图题;16:压轴题【分析】()I 先讨论x 的范围,将函数()f x 写成分段函数,然后根据分段函数分段画出函数的图象即可;()II 根据函数()y f x =与函数y ax =的图象可知先寻找满足()f x ax …的零界情况,从而求出a 的范围.【解答】解:(Ⅰ)由于25,2()23,2x x f x x x -+<⎧=⎨-⎩…,函数()y f x =的图象如图所示.(Ⅱ)由函数()y f x =与函数y ax =的图象可知,极小值在点(2,1) 当且仅当2a <-或12a …时,函数()y f x =与函数y ax =的图象有交点.故不等式()f x ax …的解集非空时,a 的取值范围为1(,2)[2-∞-,)+∞.【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
2010年全国高考文科数学试题及答案-上海(word版)
2010年普通高等学校招生全国统一考试(上海卷)数学(文科)考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码2.本试卷共有23道试题,满分150分,考试时间120分钟。
一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知集合{}1,3,A m =,{}3,4B =,{}1,2,3,4AB =则m = 。
2.不等式204x x ->+的解集是 。
3.行列式cossin66sin cos 66ππππ的值是 。
4.若复数12z i =-(i 为虚数单位),则z z z ⋅+= 。
5.将一个总数为A 、B 、C 三层,其个体数之比为5:3:2。
若用分层抽样方法抽取容量为100的样本,则应从C 中抽取 个个体。
6.已知四棱椎P ABCD -的底面是边长为6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱椎的体积是 。
7.圆22:2440C x y x y +--+=的圆心到直线3440x y ++=的距离d = 。
8.动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则P 的轨迹方程为 。
9.函数3()log (3)f x x =+的反函数的图像与y 轴的交点坐标是 。
10. 从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为 (结果用最简分数表示)。
11. 2010年上海世博会园区每天9:00开园,20:00停止入园。
在右边的框图中,S 表示上海世博会官方网站在每个整点报道的入园总人数,a 表示整点报道前1个小时内入园人数,则空白的执行框内应填入 。
12.在n 行m 列矩阵12321234113451212321n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪⎪⋅⋅⋅ ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭中,记位于第i 行第j 列的数为(,1,2,)ij a i j n =⋅⋅⋅。
上海高考数学真题(文科)试卷(word解析版)
绝密★启用前2010年普通高等学校招生全国统一考试(上海卷)数学试卷(文史类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题满分56分,每小题4分)1.已知集合A={1,3,m},B={3,4},A⋃B={1,2,3,4},则m=_______________.2.不等式24xx->+的解集是_______________.3.行列式cos sin66sin cos66ππππ的值是_______________.4.若复数z=1-2i(i为虚数单位),则z z z⋅+=_______________.5.将一个总体分为A、B、C三层,其个体数之比为5:3:2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取_______________个个体.6.已知四棱锥P—ABCD的底面是边长为6的正方体,侧棱P A⊥底面ABCD,且P A=8,则该四棱锥的体积是_______________.7.圆C:x2+y2-2x-4y+4=0的圆心到直线3x+4y+4=0的距离d=_______________.8.动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则点P的轨迹方程为_________.9.函数f(x)=log3(x+3)的反函数的图像与y轴的交点坐标是_____.10.从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为____________(结果用最简分数表示).11.2010年上海世博会园区每天9:00开园,20:00停止入园.在右边的框图中,S表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园人数,则空白的执行框内应填入_______________.12.在n 行n 列矩阵12321234113451212321n n n n n nn n n n --⎛⎫ ⎪- ⎪⎪ ⎪ ⎪⎪---⎝⎭中, 记位于第i 行第j 列的数为a ij (i ,j =1,2,···,n ). 当n =9时,a 11+a 22+a 33+···+a 99=_______________.13.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为,1(2,1)e =、2(2,1)e =-分别是两条渐近线的方向向量.任取双曲线Γ上的点P ,若12OP ae be =+(a 、b ∈R ),则a 、b 满足的一个等式是_______________.14.将直线l 1:x +y -1=0、l 2:nx +y -n =0、l 3:x +ny -n =0(n ∈N *,n ≥2)围成的三角形面积记为S n ,则lim n n S →∞=_______________.二、选择题(本大题满分20分,每小题5分)15.满足线性约束条件23,23,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z =x +y 的最大值是( ) A .1 B .32C .2D .316.“24x k ππ=+(k ∈Z )”是“tan x =1”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 17.若x 0是方程lg x +x =2的解,则x 0属于区间 ( )A .(0,1)B .(1,1.25)C .(1.25,1.75)D .(1.75,2) 18.若∆ABC 的三个内角满足sin A :sin B :sin C =5:11:13,则∆ABC( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形 D .可能是锐角三角形,也可能是钝角三角形三、解答题(本大题满分74分) 19.(本题满分12分)已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.20.(本题满分14分)第1小题满分7分,第2小题满分7分.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1) 当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米);(2) 若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素). 21.(本题满分14分)第1小题满分6分,第2小题满分8分.已知数列{a n }的前n 项和为S n ,且S n =n -5a n -85,n ∈N *. (1) 证明:{a n -1}是等比数列;(2) 求数列{S n }的通项公式,并求出使得S n +1>S n 成立的最小正整数n . 22.(本题满分16分)第1小题满分3分,第2小题满分5分,第3小题满分8分.若实数x 、y 、m 满足|x -m |<|y -m |,则称x 比y 接近m . (1) 若x 2-1比3接近0,求x 的取值范围;(2) 对任意两个不相等的正数a 、b ,证明:a 2b +ab 2比a 3+b 3接近2ab ab ;(3) 已知函数f (x )的定义域D ={x |x ≠k π,k ∈Z ,x ∈R }.任取x ∈D ,f (x )等于1+sin x 和1-sin x 中接近0的那个值.写出函数f (x )的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明) 23.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满分8分.已知椭圆Γ的方程为22221(0)x y a b a b +=>>,A (0,b )、B (0,-b )和Q (a ,0)为Γ的三个顶点.(1) 若点M 满足1()2AM AQ AB =+,求点M 的坐标;(2) 设直线l 1:y =k 1x +p 交椭圆Γ于C 、D 两点,交直线l 2:y =k 2x 于点E .若2122b k k a⋅=-,证明:E 为CD 的中点;(3) 设点P 在椭圆Γ内且不在x 轴上,如何构作过PQ 中点F 的直线l ,使得l 与椭圆Γ的两个交点P 1、P 2满足12PP PP PQ +=?令a =10,b =5,点P 的坐标是(-8,-1).若椭圆Γ上的点P 1、P 2满足12PP PP PQ +=,求点P 1、P 2的坐标.2010年高考数学(理科)上海试题2010-6-7班级_____,学号_____,姓名_____________一、填空题(本大题满分56分,每小题4分) 1.不等式204xx ->+的解集是_______________. 2.若复数z =1-2i (i 为虚数单位),则z z z ⋅+=_______________.3.动点P 到点F (2,0)的距离与它到直线x +2=0的距离相等,则点P 的轨迹方程为_________.4.行列式cossin 36sincos36ππππ的值是_______________.5.圆C :x 2+y 2-2x -4y +4=0的圆心到直线3x +4y +4=0的距离d =_______________. 6.随机变量ξ的概率分布由下表给出:7.2010年上海世博会园区每天9:00开园,20:00停止入园.在右边的框图中,S 表示上海世博会官方网站在每个整点报道的入园总人数,a 表示整点报道前1个小时内入园人数,则空白的执行框内应填入_______________.8.对于不等于1的正数a ,函数f (x )=log a (x +3)的反函数的图像都经过点P ,则点P 的坐标为_______________.9.从一副混合后的扑克牌(52张)中,随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得黑桃”,则概率()P A B=______________(结果用最简分数表示). 10.在n 行n 列矩阵12321234113451212321n n n n n nn n n n --⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎪---⎝⎭中a ij (i ,j =1,2,···,n ).当n =9时,a 11+a 22+a 33+···+a 99=_______________.11.将直线l 1:nx +y -n =0、l 2:x +ny -n =0(n ∈N *)、x 轴、y 轴围成的封闭区域的面积记为S n ,则lim n n S →∞=_______________.12.如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD相交于点O ,剪去∆AOB ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A (B )、C 、D 、O 为顶点的四面体的体积是_______________.13.如图所示,直线2x =与双曲线22:14x y Γ-=的渐近线交于1E 、2E 两点,记11OE e =,22OE e =,任取双曲线Γ上的点P ,若12(,)OP ae be a b R =+∈,则a 、b 满足的一个等式是_______________.14.从集合{,,,}U a b c d =的子集中选出4个不同的子集,需同时满足以下两个条件:(1) ,U ∅都要选出;(2)对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇. 那么,共有___________种不同的选择. 二、选择题(本大题满分20分,每小题5分) 15.“24x k ππ=+(k ∈Z )”是“tan x =1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.直线l 的参数方程是12()2x tt y t =+⎧∈⎨=-⎩R ,则l 的方向向量d 可以是( ) A .(1,2)B .(2,1)C .(-2,1)D .(1,-2) 17.若x 0是方程1312xx ⎛⎫= ⎪⎝⎭的解,则x 0属于区间( ) A .2,13⎛⎫ ⎪⎝⎭B .12,23⎛⎫ ⎪⎝⎭C .11,32⎛⎫ ⎪⎝⎭D .10,3⎛⎫ ⎪⎝⎭18.某人要作一个三角形,要求它的三条高的长度分别是113、111、15,则此人将 ( ) A .不能作出满足要求的三角形 B .作出一个锐角三角形 C .作出一个直角三角形 D .作出一个钝角三角形三、解答题(本大题满分74分) 19.(本题满分12分)已知02x π<<,化简:2lg(cos tan 12sin )lg[2cos()]lg(1sin 2)24x x x x x π⋅+-+--+.20.(本题满分13分)第1小题满分5分,第2小题满分8分.已知数列{a n }的前n 项和为S n ,且S n =n -5a n -85,n ∈N *. (1) 证明:{a n -1}是等比数列;(2) 求数列{S n }的通项公式,并指出n 为何值时,S n 取得最小值,并说明理由.21.(本题满分14分)第1小题满分5分,第2小题满分8分.A 6A 7A 8B 1B 2B 3 B 4B 5B 6 B 7B 8如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.骨架将圆柱底面8等分.再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1) 当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米);(2) 在灯笼内,以矩形骨架的顶点为端点,安装一些霓虹灯.当灯笼底面半径为0.3米时,求图中两根直线型霓虹灯A 1B 3、A 3B 5所在异面直线所成角的大小(结果用反三角函数值表示).22.(本题满分18分)第1小题满分3分,第2小题满分5分,第3小题满分10分.若实数x 、y 、m 满足|x -m |﹥|y -m |,则称x 比y 远离m . (1) 若x 2-1比1远离0,求x 的取值范围;(2) 对任意两个不相等的正数a 、b ,证明:a 3+b 3比a 2b +ab 2远离2;(3) 已知函数f (x )的定义域{|,,}24k D x x k x ππ=≠+∈∈Z R .任取x ∈D ,f (x )等于sin x 和cos x 中远离0的那个值.写出函数f (x )的解析式,并指出它的基本性质(结论不要求证明) 23.(本题满分18分)第1小题满分3分,第2小题满分6分,第3小题满分9分.已知椭圆Γ的方程为22221(0)x y a b a b+=>>,点P 的坐标为(-a ,b ).(1) 若直角坐标平面上的点M 、A (0,-b )、B (a ,0)满足1()2PM PA PB =+,求点M 的坐标;(2) 设直线l 1:y =k 1x +p 交椭圆Γ于C 、D 两点,交直线l 2:y =k 2x 于点E .若2122b k k a⋅=-,证明:E 为CD 的中点;(3) 对于椭圆Γ上的点Q (a cos θ ,b sin θ )(0<θ <π),如果椭圆Γ上存在不同的两点P 1、P 2使12PP PP PQ +=,写出求作点P 1、P 2的步骤,并求出使P 1、P 2存在的θ 的取值范围.文科参考答案一、填空题 1.2; 2.(-4,2); 3.0.5; 4.6-2i ; 5.20; 6.96;7.3; 8.y 2=8x ; 9.(0,-2); 10.351; 11.S ←S +a ; 12.45; 13.4ab =1;14.12. 二、选择题 15.C ; 16.A ; 17.C ; 18.C . 三、解答题19.原式=lg(sin x +cos x )+lg(cos x +sin x )-lg(sin x +cos x )2=0.20.(1) 设圆柱形灯笼的母线长为l ,则l =1.2-2r (0<r <0.6),S =-3π(r -0.4)2+0.48π,所以当r =0.4时,S 取得最大值约为1.51平方米; (2) 当r =0.3时,l =0.6,作三视图略. 21.(1) 当n =1时,a 1=-14;当n ≥2时,a n =S n -S n -1=-5a n +5a n -1+1,所以151(1)6n n a a --=-,又a 1-1=-15≠0,所以数列{a n -1}是等比数列;(2) 由(1)知:151156n n a -⎛⎫-=-⋅ ⎪⎝⎭,得151156n n a -⎛⎫=-⋅ ⎪⎝⎭,从而1575906n n S n -⎛⎫=⋅+- ⎪⎝⎭(n ∈N *);由S n +1>S n ,得15265n -⎛⎫<⎪⎝⎭,562log 114.925n >+≈,最小正整数n =15. 22.(1) x ∈(-2,2);(2) 对任意两个不相等的正数a 、b,有222a b ab +>332a b +>因为22332|2|2()()0a b ab a b a b a b +--+-=-+-<,所以2233|2|2a b ab a b +-<+-,即a 2b +ab 2比a 3+b 3接近2; (3) 1sin ,(2,2)()1|sin |,1sin ,(2,2)x x k k f x x x k x x k k πππππππ+∈-⎧==-≠⎨-∈+⎩,k ∈Z , f (x )是偶函数,f (x )是周期函数,最小正周期T =π,函数f (x )的最小值为0, 函数f (x )在区间[,)2k k πππ-单调递增,在区间(,]2k k πππ+单调递减,k ∈Z . 23.(1) (,)22a bM -;(2) 由方程组122221y k x p x y ab =+⎧⎪⎨+=⎪⎩,消y 得方程2222222211()2()0a k b x a k px a p b +++-=,因为直线11:l y k x p =+交椭圆Γ于C 、D 两点, 所以∆>0,即222210a k b p +->,设C (x 1,y 1)、D (x 2,y 2),CD 中点坐标为(x 0,y 0), 则212102221201022212x x a k p x a k b b p y k x p a k b ⎧+==-⎪+⎪⎨⎪=+=⎪+⎩, 由方程组12y k x py k x =+⎧⎨=⎩,消y 得方程(k 2-k 1)x =p ,又因为2221b k a k =-,所以2102222112202221a k p px x k k a k b b p y k x y a k b ⎧==-=⎪-+⎪⎨⎪===⎪+⎩, 故E 为CD 的中点;(3) 因为点P 在椭圆Γ内且不在x 轴上,所以点F 在椭圆Γ内,可以求得直线OF 的斜率k 2,由12PP PP PQ +=知F 为P 1P 2的中点,根据(2)可得直线l 的斜率2122b k a k =-,从而得直线l 的方程.1(1,)2F -,直线OF 的斜率212k =-,直线l 的斜率212212b k a k =-=,解方程组22112110025y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消y :x 2-2x -48=0,解得P 1(-6,-4)、P 2(8,3).2010年普通高等学校招生全国统一考试(上海卷)数学(文科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
2010上海高考数学(文科)+答案
2010年高考数学(文科)上海试题一、填空题(本大题满分56分,每小题4分)1.已知集合A ={1,3,m },B ={3,4},A ⋃B ={1,2,3,4},则m =_______________.2.不等式204xx ->+的解集是_______________.3.行列式cos sin 66sincos66ππππ的值是_______________.4.若复数z =1-2i (i 为虚数单位),则z z z ⋅+=_______________.5.将一个总体分为A 、B 、C 三层,其个体数之比为5:3:2.若用分层抽样方法抽 取容量为100的样本,则应从C 中抽取_______________个个体.6.已知四棱锥P —ABCD 的底面是边长为6的正方体,侧棱P A ⊥底面ABCD , 且P A =8,则该四棱锥的体积是_______________.7.圆C :x 2+y 2-2x -4y +4=0的圆心到直线3x +4y +4=0的距离d =_______________. 8.动点P 到点F (2,0)的距离与它到直线x +2=0的距离相等, 则点P 的轨迹方程为_________.9.函数f (x )=log 3(x +3)的反函数的图像与y 轴的交点坐标是_____.10.从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的 概率为____________(结果用最简分数表示).11.2010年上海世博会园区每天9:00开园,20:00停止入园.在右边的框图中, S 表示上海世博会官方网站在每个整点报道的入园总人数,a 表示整点报道前 1个小时内入园人数,则空白的执行框内应填入_______________. 12.在n 行n列矩阵12321234113*********n n n n n n n n n n --⎛⎫ ⎪- ⎪ ⎪ ⎪⎪ ⎪---⎝⎭中,记位于第i 行第j 列的数为a ij (i ,j =1,2,···,n ).当n =9时,a 11+a 22+a 33+···+a 99=_______________.13.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为,1(2,1)e = 、2(2,1)e =-分别是两条渐近线的方向向量.任取双曲线Γ上的点P ,若12OP ae be =+ (a 、b ∈R ),则a 、b 满足的一个等式是_______________. 14.将直线l 1:x +y -1=0、l 2:nx +y -n =0、l 3:x +ny -n =0(n ∈N *,n ≥2)围成的三角形面积记为S n ,则l i m n n S →∞=_______.二、选择题(本大题满分20分,每小题5分)15.满足线性约束条件23,23,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z =x +y 的最大值是 ( )A .1B .32C .2D .316.“24x k ππ=+(k ∈Z )”是“tan x =1”成立的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 17.若x 0是方程lg x +x =2的解,则x 0属于区间 ( ) A .(0,1) B .(1,1.25) C .(1.25,1.75) D .(1.75,2) 18.若∆ABC 的三个内角满足sin A :sin B :sin C =5:11:13,则∆ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形 D .可能是锐角三角形,也可能是钝角三角形三、解答题(本大题满分74分)19.(本题满分12分) 已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.20.(本题满分14分)第1小题满分7分,第2小题满分7分.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6 米铁丝.再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1) 当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米); (2) 若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图 (作图时,不需考虑骨架等因素). 21.(本题满分14分)第1小题满分6分,第2小题满分8分. 已知数列{a n }的前n 项和为S n ,且S n =n -5a n -85,n ∈N *.(1) 证明:{a n -1}是等比数列; (2) 求数列{S n }的通项公式,并求出使得S n +1>S n 成立的最小正整数n . 22.(本题满分16分)第1小题满分3分,第2小题满分5分,第3小题满分8分. 若实数x 、y 、m 满足|x -m |<|y -m |,则称x 比y 接近m . (1) 若x 2-1比3接近0,求x 的取值范围;(2) 对任意两个不相等的正数a 、b ,证明:a 2b +ab 2比a 3+b 3接近2;(3) 已知函数f (x )的定义域D ={x |x ≠k π,k ∈Z ,x ∈R }.任取x ∈D ,f (x )等于1+sin x 和1-sin x 中接近0的那个值.写出函数f (x )的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明) 23.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满分8分.已知椭圆Γ的方程为22221(0)x y a b a b +=>>,A (0,b )、B (0,-b )和Q (a ,0)为Γ的三个顶点.(1) 若点M 满足1()2AM AQ AB =+,求点M 的坐标;(2) 设直线l 1:y =k 1x +p 交椭圆Γ于C 、D 两点,交直线l 2:y =k 2x 于点E .若2122b k k a⋅=-,证明:E 为CD 的中点;(3) 设点P 在椭圆Γ内且不在x 轴上,如何构作过PQ 中点F 的直线l ,使得l 与椭圆Γ的两个交点P 1、P 2满足12PP PP PQ +=?令a =10,b =5,点P 的坐标是(-8,-1).若椭圆Γ上的点P 1、P 2满足12PP PP PQ += ,求点P 1、P 2的坐标.2010年上海高考数学文科参考答案一、填空题 1.2; 2.(-4,2); 3.0.5; 4.6-2i ; 5.20; 6.96; 7.3;8.y 2=8x ; 9.(0,-2); 10.117; 11.S ←S +a ; 12.45; 13.4ab =1;14.12.二、选择题15.C ; 16.A ; 17.D ; 18.C . 三、解答题19.原式=lg(sin x +cos x )+lg(cos x +sin x )-lg(sin x +cos x )2=0.20.(1) 设圆柱形灯笼的母线长为l ,则l =1.2-2r (0<r <0.6),S =-3π(r -0.4)2+0.48π,所以当r =0.4时,S 取得最大值约为1.51平方米;(2) 当r =0.3时,l =0.6,作三视图为两个圆,一个正方形.21.(1) 当n =1时,a 1=-14;当n ≥2时,a n =S n -S n -1=-5a n +5a n -1+1,所以151(1)6n n a a --=-,又a 1-1=-15≠0,所以数列{a n -1}是等比数列;(2) 由(1)知:151156n n a -⎛⎫-=-⋅ ⎪⎝⎭,得151156n n a -⎛⎫=-⋅ ⎪⎝⎭,从而1575906n n S n -⎛⎫=⋅+- ⎪⎝⎭(n ∈N *);由S n +1>S n ,得15265n -⎛⎫<⎪⎝⎭,562log 114.925n >+≈,最小正整数n =15. 22.(1) x ∈(-2,2);(2) 对任意两个不相等的正数a 、b,有222a b ab +>332a b +>因为22332|2|2()()0a b ab a b a b a b +--+-=-+-<,所以2233|2|2a b ab a b +-<+-,即a 2b +ab 2比a 3+b 3接近2; (3) 1sin ,(2,2)()1|sin |,1sin ,(2,2)x x k k f x x x k x x k k πππππππ+∈-⎧==-≠⎨-∈+⎩,k ∈Z , f (x )是偶函数,f (x )是周期函数,最小正周期T =π,函数f (x )的最小值为0,函数f (x )在区间[,)2k k πππ-单调递增,在区间(,]2k k πππ+单调递减,k ∈Z . 23.(1) (,)22a bM -; (2) 由方程组122221y k x p x y ab =+⎧⎪⎨+=⎪⎩,消y 得方程2222222211()2()0a k b x a k px a p b +++-=,因为直线11:l y k x p =+交椭圆Γ于C 、D 两点,所以∆>0,即222210a k b p +->, 设C (x 1,y 1)、D (x 2,y 2),CD 中点坐标为(x 0,y 0),则212102221201022212x x a k p x a k b b p y k x p a k b ⎧+==-⎪+⎪⎨⎪=+=⎪+⎩ 由方程组12y k x p y k x =+⎧⎨=⎩得 (k 2-k 1)x =p ,又2221b k a k =-,所以2102222112202221a k p p x x k k a k b b p y k x y a k b ⎧==-=⎪-+⎪⎨⎪===⎪+⎩, 故E 为CD 的中点;(3) 因为点P 在椭圆Γ内且不在x 轴上,所以点F 在椭圆Γ内,可以求得直线OF 的斜率k 2,由12PP PP PQ += 知F 为P 1P 2的中点,根据(2)可得直线l 的斜率2122b k a k =-,从而得直线l 的方程.1(1,)2F -,直线OF 的斜率212k =-,直线l 的斜率212212b k a k =-=,解方程组22112110025y x x y⎧=-⎪⎪⎨⎪+=⎪⎩,得P 1(-6,-4)、P 2(8,3)。
2010年高考全国数学卷(全国Ⅰ.文)(含详解答案)
2010年普通高等学校招生全国统一考试文科数学(必修+选修)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k k n kn n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-12 (C)12 (D) 21.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos 602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a === ,37897988()a a a a a a a === 10,所以132850a a =,所以133364564655()(50)a a a a a a a =====(5)43(1)(1x -的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭x +y20y -=2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a a=+1由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则 12||||PF PF =(A)2 (B)4 (C) 6 (D) 8AB C DA 1B 1C 1D 1 O8.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +- ()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF = 4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆===== 12||||PF PF = 4(9)正方体ABCD -1111A B C D中,1BB 与平面1ACD 所成角的余弦值为(A )(B(C )23 (D 9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯= ,21122ACD SAD CD a ∆== . 所以131A C D A C D S D D D O a S ∆∆= ,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos O O O OD OD ∠=== (10)设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析1】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-222log 4log 3>=>,所以c<a,综上c<a<b. 【解析2】a =3log 2=321log ,b =ln2=21log e, 3221log log 2e <<< ,32211112log log e <<<; c=12152-=<=,∴c<a<b(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为(A) 4-+3-(C) 4-+3-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,,sin α=||||cos2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙= ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得3y ≤--3y ≥-+.故min ()3PA PB ∙=-+此时x =【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫∙== ⎪⎝⎭ 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x x x--∙==+-≥ 【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x ∙=-+-=-+--=+-≥(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为12.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2010年高考数学文科试题解析版(全国卷II)
2010年普通高等学校招生全国统一考试(全国卷Ⅱ)第Ⅰ卷 (选择题 共50分)一、选择题(A ){}1,4 (B ){}1,5 (C ){}2,4 (D ){}2,5 C . (2)不等式32x x -+<0的解集为 (A ){}23x x -<< (B ){}2x x <- (C ){}23x x x <->或 (D ){}3x x > 【解析】A (3)已知2sin 3α=,则cos(2)x α-= (A)B )19-(C )19(D【解析】B :21cos(2)cos 2(12sin )9πααα-=-=--=-(4)函数y=1+ln(x-1)(x>1)的反函数是 (A )y=1x e+-1(x>0) (B) y=1x e-+1(x>0) (C) y=1x e +-1(x ∈R) (D )y=1x e-+1 (x ∈R)【解析】D(5)若变量x,y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩则z=2x+y 的最大值为(A )1 (B)2 (C)3 (D)4 【解析】C :本题考查了线性规划的知识。
当1,1x y ==时max 3z =(6)如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +•…+7a = (A )14 (B) 21 (C) 28 (D) 35 【解析】C :本题考查了数列的基础知识。
(7)若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则(A )1,1a b == (B) 1,1a b =-=(C) 1,1a b ==- (D) 1,1a b =-=- 【解析】A :本题考查了导数的几何意思即求曲线上一点处的切线方程(8)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为(A )(B) (C)(D) 34【解析】D :本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角。
2010年全国统一高考数学试卷(文科)(大纲版ⅰ)(含解析版)(附详细答案)
门,若要求两类课程中各至少选一门,则不同的选法共有
种.(用
数字作答)
16.( 5 分)已知 F 是椭圆 C 的一个焦点, B 是短轴的一个端点,线段 BF 的延长
线交 C 于点 D,且
,则 C 的离心率为
.
三、解答题(共 6 小题,满分 70 分) 17.( 10 分)记等差数列 { an} 的前 n 项和为 Sn,设 S3=12,且 2a1,a2,a3+1 成等
)
A.
B.
C.
D.
10.( 5 分)设 a=log32,b=ln2,c= ,则(
)
A.a<b<c
B.b<c< a
C.c<a<b
D.c<b<a
11.( 5 分)已知圆 O 的半径为 1,PA、PB为该圆的两条切线, A、B 为两切点,
那么
的最小值为(
)
A.
B.
C.
D.
12.( 5 分)已知在半径为 2 的球面上有 A、B、C、D 四点,若 AB=CD=2,则四面
值.
【解答】 解:∵
.
故选: C. 【点评】 本小题主要考查诱导公式、特殊三角函数值等三角函数知识.
第 5 页(共 23 页)
3.( 5 分)若变量 x,y 满足约束条件
,则 z=x﹣2y 的最大值为(
)
A.4
B.3
C.2
D.1
【考点】 7C:简单线性规划. 【专题】 11:计算题; 31:数形结合. 【分析】 先根据约束条件画出可行域,再利用几何意义求最值, z=x﹣2y 表示直
C.6
D.
5.(5 分)(1﹣x)4( 1﹣ ) 3 的展开式 x2 的系数是(
)
2010年高考数学文科试题上海卷(word)
2010年普通高等学校招生全国统一考试(上海卷)数学(文科)考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码2.本试卷共有23道试题,满分150分,考试时间120分钟。
一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知集合{}1,3,A m =,{}3,4B =,{}1,2,3,4A B = 则m = 。
2.不等式204xx ->+的解集是 。
3.行列式cossin 66sincos66ππππ的值是 。
4.若复数12z i =-(i 为虚数单位),则z z z ⋅+= 。
5.将一个总数为A 、B 、C 三层,其个体数之比为5:3:2。
若用分层抽样方法抽取容量为100的样本,则应从C 中抽取 个个体。
6.已知四棱椎P ABCD -的底面是边长为6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =, 则该四棱椎的体积是 。
7.圆22:2440C x y x y +--+=的圆心到直线3440x y ++=的距离d = 。
8.动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则P 的轨迹方程为 。
9.函数3()log (3)f x x =+的反函数的图像与y 轴的交点坐标是 。
10. 从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为 (结果用最简分数表示)。
11. 2010年上海世博会园区每天9:00开园,20:00停止入园。
在右边的框图中,S 表示上海世博会官方网站在每个整点报道的入园总人数,a 表示整点报道前1个小时内入园人数,则空白的执行框内应填入 。
12.在n 行m 列矩阵12321234113*********n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪⎪⋅⋅⋅ ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭中,记位于第i 行第j 列的数为(,1,2,)ij a i j n =⋅⋅⋅。
2010年全国统一高考数学试卷(文科)(新课标)(带答案)
2010年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2 5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x >6}D.{x|x<﹣2或x>2}10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别男女是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【考点】9S:数量积表示两个向量的夹角.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)已知复数Z=,则|z|=()A.B.C.1D.2【考点】A5:复数的运算.【专题】11:计算题.【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,=4πR2=6πa2.所以S球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x >6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【考点】7C:简单线性规划.【专题】11:计算题;16:压轴题.【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc 的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【考点】CE:模拟方法估计概率;CF:几何概型.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】L7:简单空间图形的三视图.【专题】15:综合题;16:压轴题.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BDcos135°AC2=CD2+AD2﹣2AD•CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【考点】84:等差数列的通项公式;85:等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题;35:转化思想.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【考点】K4:椭圆的性质.【专题】15:综合题.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B 两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】15:综合题;53:导数的综合应用.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x ﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
2010年高考试题——数学文科(全国新课标卷)(解析版)真题
2010年普通高等学校招生全国统一考试文科数学参考公式: 样本数据12,n x x x 的标准差 锥体体积公式s ==13V sh其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2334,4S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合2,,|4,|A x x x R B x x Z =≤∈=≤∈,则A B =(A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2|(1)D 【解析】[2,2]A =-,{}0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16B =,所以{}0,1,2A B ⋂=,选D.【方法指导】由所求A B ⋂可知,应分别求出集合A 和集合B ,在求集合B 时要注意x Z ∈这个条件,否则容易出错.(2)a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于 (A )865 (B )865- (C )1665 (D )1665- (2)C【解析】(2)2(3,18)2(4,3)(5,12)b a b a =+-=-=-,所以216cos ,65||||4a b a b a b ⋅〈〉===+,选C.【方法小结】根据向量a =(4,3),2a +b =(3,18)的关系及向量的代数运算求向量b ,然后利用公式cos ,||||a ba b a b ⋅〈〉=求两向量夹角余弦.(3)已知复数z =z = (A)14 (B )12(C )1 (D )2(3) B 【解析】z ==21844i i ===-+-,14z i =-,所以1||2z ==,选B. 【方法技巧】先利用平方运算,然后分子、分母同时乘以分母的共轭复数,化复数z a bi =+形式,然后利用||z =.(4)曲线3y 21x x =-+在点(1,0)处的切线方程为(A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+ (4) A 【解析】32y x '=-,所以1|1x y ='=,即切线斜率为1,由直线点斜式得直线方程为01y x -=-,整理得1y x =-,选A.【规律总结】求曲线上某一点处的切线方程,通常利用导数求曲线在该点处的导数值,即切线斜率,然后利用点斜式求直线方程.(5)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A (B (C )2 (D )2(5) D 【解析】设双曲线方程为22221x y a b -=,则其一条渐近线b y x a =过点(4,2),所以24ba=⋅,12b a =,12a =,2222114c a e a -=-=,所以e = D. 【方法技巧】根据已知条件建立双曲线中两个参量,a b 之间的关系,然后利用222b c a =-,把式子转化为,a c 的关系,得ca的大小,即斜率的大小.(6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,),角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为(6)C 【解析】由题意知,当0t =时,P 在0P 位置,2d =,质点P 在圆上按逆时针方向旋转,d 逐渐变小,当4t π=时,min 0d =,结合图像可知选C.【方法技巧】解决这类问题通常利用数形结合的方法,本题借助单位圆,把动点P 由0P 位置开始逆时针方向旋转,由图形可以看出点P 到x 轴距离d 在[0,]4t π∈变化时由2减少到0,结合图像可知结论.(7) 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为 (A )3πa 2 (B )6πa 2 (C )12πa 2 (D ) 24πa 2(7) B 【解析】由题意值长方体的对角线长等于球的直径.所以22222(2)(2)6r a a a a =++=,所以2232r a =,球的表面积为2246S r a ππ==,选B. 【方法小结】要求球的表面积需要求球的半径或半径的平方,又根据长方体的顶点都在一个球面上可知球的直径即为长方体对角线长,球的直径的平方为长方体同一顶点出发的三条棱长的平方和.(8)如果执行右面的框图,输入N=5,则输出的数等于(A )54 (B )45(C )65(D )56(8) D 【解析】由框图中的判断条件可知k 的最大值为5,根据框图中的运算公式可知111111223344556S =++++⨯⨯⨯⨯⨯ 111111111151122334455666=-+-+-+-+-=-=,选D.【技巧点拨】有5N =,结合框图中的限制条件k N ≥时,输出S ,知k 的最大值为5,再根据框图知k 每次增加1,1(1)S S s k =++,得111111223344556S =++++⨯⨯⨯⨯⨯,然后利用裂项法111(1)1n n n n =-++得出结论.(9)设偶函数f (x )满足f (x )=2x -4 (x ≥0),则(){}20x f x ->= (A ){}24x x x <->或 (B ){}04 x x x <>或 (C ){}06 x x x <>或 (D ){}22 x x x <->或 (9) B 【解析】若20x -≥,2(2)240x f x --=->,得4x >;若20x -<,因()f x 为偶函数,(2)(2)f x f x -=-,2(2)240x f x --=->,得0x <.所以{|(2)0}x f x ->={|04}x x x <>或.选B.【方法小结】根据偶函数()f x 满足()24(0)xf x x =-≥,在求解不等式(2)0f x ->时要分20x -≥和20x -<两种情况来解.(10)若sin a =-45,a 是第三象限的角,则sin()4a π+=(A )-10 (B )10 (C ) -10 (D )10(10) A 【解析】因为sin a =-45,a 是第三象限的角,所以3cos 5α==-,所以7sin()(sin cos )()422510a παα+=+=-=-,选A. 【解题小结】要求sin()4a π+的值,需要求cos α的值,根据sin a =-45,a 是第三象限的角,及22sin cos 1αα+=,求cos α的值,然后利用两角和的正弦公式把sin()4a π+展开,代入,即可得结论.(11)已知ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 ABCD 的内部,则z=2x-5y 的取值范围是 (A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20) (11)B 【解析】ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),根据中点坐标公式得D (0,-4),当目标函数过点B (3,4)时,min 14z =-,当目标函数过点D (0,-4)时,max 20z =,所以z=2x-5y 的取值范围是(-14,20).【规律总结】根据题意必须求D点的坐标,根据平行四边形对角线互相平分,得D点坐标,然后把平行四边形四个顶点坐标代入z=2x-5y,得目标函数的最大值与最小值,得范围.(12)已知函数|lg|,010, ()16,10.2x xf xx x<≤⎧⎪=⎨-+>⎪⎩若,,a b c互不相等,且()()(),f a f b f c==则abc 的取值范围是(A) (1,10)(B) (5,6)(C) (10,12)(D) (20,24)(12)C 【解析】如图,根据题意()f x m=有三个解,则01m<<,若lg a m=,则10ma=,若lg b m=-,则10mb-=,若162b m-+=,则122b m=-,由01m<<,得1012212m<-<,即1012b<<,所以1010m mabc b b-=⋅⋅=,所以1012abc<<,选C.【方法技巧】数形结合可知,若,,a b c互不相等,且()()(),f a f b f c==则()f x m=有三个解,则有01m<<,若令()()()f a f b f c m===,则有10ma=,10mb-=,162b m-+=,分别求出,,a b c,用m表示abc,根据m的范围,得abc的范围.第Ⅱ卷本卷包括必考题和选考题两部分。
2010年全国统一高考数学试卷(文科)(全国卷一)及答案
2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)cos300°=()A.B.﹣ C.D.2.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}3.(5分)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.14.(5分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.5.(5分)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6 B.﹣3 C.0 D.36.(5分)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°7.(5分)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)8.(5分)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.89.(5分)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.(5分)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a11.(5分)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A. B. C.D.12.(5分)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)不等式的解集是.14.(5分)已知α为第二象限的角,,则tan2α=.15.(5分)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)16.(5分)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.18.(12分)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.19.(12分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(12分)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.21.(12分)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.22.(12分)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C 相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•大纲版Ⅰ)cos300°=()A.B.﹣ C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选C.2.(5分)(2010•大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【分析】根据补集意义先求C U M,再根据交集的意义求N∩(C U M).【解答】解:(C U M)={2,3,5},N={1,3,5},则N∩(C U M)={1,3,5}∩{2,3,5}={3,5}.故选C3.(5分)(2010•大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.1【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.4.(5分)(2010•大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.5.(5分)(2010•大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6 B.﹣3 C.0 D.3【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选A6.(5分)(2010•大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选C.7.(5分)(2010•大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f (b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0∴lg(ab)=0∴ab=1,又a>0,b>0,且a≠b∴(a+b)2>4ab=4∴a+b>2故选:C.(方法二)由对数的定义域,设0<a<b,且f(a)=f(b),得:,整理得线性规划表达式为:,因此问题转化为求z=x+y的取值范围问题,则z=x+y⇒y=﹣x+z,即求函数的截距最值.根据导数定义,函数图象过点(1,1)时z有最小为2(因为是开区域,所以取不到2),∴a+b的取值范围是(2,+∞).故选:C.8.(5分)(2010•大纲版Ⅰ)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.8【分析】解法1,利用余弦定理及双曲线的定义,解方程求|PF1|•|PF2|的值.解法2,由焦点三角形面积公式和另一种方法求得的三角形面积相等,解出|PF1|•|PF2|的值.【解答】解:法1.由双曲线方程得a=1,b=1,c=,由余弦定理得cos∠F1PF2=∴|PF1|•|PF2|=4.法2;由焦点三角形面积公式得:∴|PF1|•|PF2|=4;故选B.9.(5分)(2010•大纲版Ⅰ)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.【分析】正方体上下底面中心的连线平行于BB1,上下底面中心的连线与平面ACD1所成角,即为BB1与平面ACD1所成角,直角三角形中,利用边角关系求出此角的余弦值.【解答】解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O与平面ACD1所成角就是BB1与平面ACD1所成角,即∠O1OD1,直角三角形OO1D1中,cos∠O1OD1===,故选D.10.(5分)(2010•大纲版Ⅰ)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【分析】根据a的真数与b的真数相等可取倒数,使底数相同,找中间量1与之比较大小,便值a、b、c的大小关系.【解答】解:a=log32=,b=ln2=,而log23>log2e>1,所以a<b,c==,而,所以c<a,综上c<a<b,故选C.11.(5分)(2010•大纲版Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A. B. C.D.【分析】要求的最小值,我们可以根据已知中,圆O的半径为1,PA、PB 为该圆的两条切线,A、B为两切点,结合切线长定理,设出PA,PB的长度和夹角,并将表示成一个关于x的函数,然后根据求函数最值的办法,进行解答.【解答】解:如图所示:设OP=x(x>0),则PA=PB=,∠APO=α,则∠APB=2α,sinα=,==×(1﹣2sin2α)=(x2﹣1)(1﹣)==x2+﹣3≥2﹣3,∴当且仅当x2=时取“=”,故的最小值为2﹣3.故选D.12.(5分)(2010•大纲版Ⅰ)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.【分析】四面体ABCD的体积的最大值,AB与CD是对棱,必须垂直,确定球心的位置,即可求出体积的最大值.【解答】解:过CD作平面PCD,使AB⊥平面PCD,交AB于P,设点P到CD的距离为h,则有,当直径通过AB与CD的中点时,,故.故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•大纲版Ⅰ)不等式的解集是{x|﹣2<x<﹣1,或x>2} .【分析】本题是解分式不等式,先将分母分解因式,再利用穿根法求解.【解答】解::,数轴标根得:{x|﹣2<x<﹣1,或x>2}故答案为:{x|﹣2<x<﹣1,或x>2}14.(5分)(2010•大纲版Ⅰ)已知α为第二象限的角,,则tan2α=.【分析】先求出tanα的值,再由正切函数的二倍角公式可得答案.【解答】解:因为α为第二象限的角,又,所以,,∴故答案为:﹣15.(5分)(2010•大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有30种.(用数字作答)【分析】由题意分类:(1)A类选修课选1门,B类选修课选2门,确定选法;(2)A类选修课选2门,B类选修课选1门,确定选法;然后求和即可.【解答】解:分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;(2)A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.所以不同的选法共有C31C42+C32C41=18+12=30种.故答案为:3016.(5分)(2010•大纲版Ⅰ)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.【分析】由椭圆的性质求出|BF|的值,利用已知的向量间的关系、三角形相似求出D的横坐标,再由椭圆的第二定义求出|FD|的值,又由|BF|=2|FD|建立关于a、c的方程,解方程求出的值.【解答】解:如图,,作DD1⊥y轴于点D1,则由,得,所以,,即,由椭圆的第二定义得又由|BF|=2|FD|,得,a2=3c2,解得e==,故答案为:.三、解答题(共6小题,满分70分)17.(10分)(2010•大纲版Ⅰ)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.【分析】由2a1,a2,a3+1成等比数列,可得a22=2a1(a3+1),结合s3=12,可列出关于a1,d的方程组,求出a1,d,进而求出前n项和s n.【解答】解:设等差数列{a n}的公差为d,由题意得,解得或,∴s n=n(3n﹣1)或s n=2n(5﹣n).18.(12分)(2010•大纲版Ⅰ)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.【分析】先利用正弦定理题设等式中的边转化角的正弦,化简整理求得sin(A ﹣)=sin(B+),进而根据A,B的范围,求得A﹣和B+的关系,进而求得A+B=,则C的值可求.【解答】解:由已知及正弦定理,有sinA+sinB=sinA•+sinB•=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB∴sin(A﹣)=sin(B+),∵0<A<π,0<B<π∴﹣<A﹣<<B+<∴A﹣+B+=π,∴A+B=,C=π﹣(A+B)=19.(12分)(2010•大纲版Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.【分析】(1)投到该杂志的1篇稿件被录用包括稿件能通过两位初审专家的评审或稿件恰能通过一位初审专家的评审又能通过复审专家的评审两种情况,这两种情况是互斥的,且每种情况中包含的事情有时相互独立的,列出算式.(2)投到该杂志的4篇稿件中,至少有2篇被录用的对立事件是0篇被录用,1篇被录用两种结果,从对立事件来考虑比较简单.【解答】解:(Ⅰ)记A表示事件:稿件能通过两位初审专家的评审;B表示事件:稿件恰能通过一位初审专家的评审;C表示事件:稿件能通过复审专家的评审;D表示事件:稿件被录用.则D=A+B•C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B•C)=P(A)+P(B•C)=P(A)+P(B)P(C)=0.25+0.5×0.3=0.40.(2)记4篇稿件有1篇或0篇被录用为事件E,则P(E)=(1﹣0.4)4+C41×0.4×(1﹣0.4)3=0.1296+0.3456=0.4752,∴=1﹣0.4752=0.5248,即投到该杂志的4篇稿件中,至少有2篇被录用的概率是0.5248.20.(12分)(2010•大纲版Ⅰ)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB ∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.【分析】(Ⅰ)连接BD,取DC的中点G,连接BG,作BK⊥EC,K为垂足,根据线面垂直的判定定理可知DE⊥平面SBC,然后分别求出SE与EB的长,从而得到结论;(Ⅱ)根据边长的关系可知△ADE为等腰三角形,取ED中点F,连接AF,连接FG,根据二面角平面角的定义可知∠AFG是二面角A﹣DE﹣C的平面角,然后在三角形AGF中求出二面角A﹣DE﹣C的大小.【解答】解:(Ⅰ)连接BD,取DC的中点G,连接BG,由此知DG=GC=BG=1,即△DBC为直角三角形,故BC⊥BD.又SD⊥平面ABCD,故BC⊥SD,所以,BC⊥平面BDS,BC⊥DE.作BK⊥EC,K为垂足,因平面EDC⊥平面SBC,故BK⊥平面EDC,BK⊥DE,DE与平面SBC内的两条相交直线BK、BC都垂直,DE⊥平面SBC,DE⊥EC,DE⊥SB.SB=,DE=EB=所以SE=2EB(Ⅱ)由SA=,AB=1,SE=2EB,AB⊥SA,知AE==1,又AD=1.故△ADE为等腰三角形.取ED中点F,连接AF,则AF⊥DE,AF=.连接FG,则FG∥EC,FG⊥DE.所以,∠AFG是二面角A﹣DE﹣C的平面角.连接AG,AG=,FG=,cos∠AFG=,所以,二面角A﹣DE﹣C的大小为120°.21.(12分)(2010•大纲版Ⅰ)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.【分析】先求函数的极值,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.【解答】解:f′(x)=3x2﹣3=3(x+1)(x﹣1),令f′(x)=0,则x=﹣1或x=1,经验证x=﹣1和x=1为极值点,即f(1)=﹣2为极小值,f(﹣1)=2为极大值.又因为f(﹣3)=﹣18,f(3)=18,所以函数f(x)的最大值为18,最小值为﹣18.22.(12分)(2010•大纲版Ⅰ)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.【分析】(Ⅰ)先根据抛物线方程求得焦点坐标,设出过点K的直线L方程代入抛物线方程消去x,设L与C 的交点A(x1,y1),B(x2,y2),根据韦达定理求得y1+y2和y1y2的表达式,进而根据点A求得点D的坐标,进而表示出直线BD 和BF的斜率,进而问题转化两斜率相等,进而转化为4x2=y22,依题意可知等式成立进而推断出k1=k2原式得证.(Ⅱ)首先表示出结果为求得m,进而求得y2﹣y1的值,推知BD的斜率,则BD方程可知,设M为(a,0),M到x=y﹣1和到BD的距离相等,进而求得a和圆的半径,则圆的方程可得.【解答】解:(Ⅰ)抛物线C:y2=4x①的焦点为F(1,0),设过点K(﹣1,0)的直线L:x=my﹣1,代入①,整理得y2﹣4my+4=0,设L与C 的交点A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=4,点A关于X轴的对称点D为(x1,﹣y1).BD的斜率k1===,BF的斜率k2=.要使点F在直线BD上需k1=k2需4(x2﹣1)=y2(y2﹣y1),需4x2=y22,上式成立,∴k1=k2,∴点F在直线BD上.(Ⅱ)=(x1﹣1,y1)(x2﹣1,y2)=(x1﹣1)(x2﹣1)+y1y2=(my1﹣2)(my2﹣2)+y1y2=4(m2+1)﹣8m2+4=8﹣4m2=,∴m2=,m=±.y2﹣y1==4=,∴k1=,BD:y=(x﹣1).易知圆心M在x轴上,设为(a,0),M到x=y﹣1和到BD的距离相等,即|a+1|×=|((a﹣1)|×,∴4|a+1|=5|a﹣1|,﹣1<a<1,解得a=.∴半径r=,∴△BDK的内切圆M的方程为(x﹣)2+y2=.。
[高考数学] 2010年全国统一高考数学试卷(文科)(大纲版ⅱ)(含解析版)
2010年全国统一高考数学试卷(文科)(大纲版Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设全集U={x∈N+|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=()A.{1,4}B.{1,5}C.{2,4}D.{2,5}2.(5分)不等式<0的解集为()A.{x|﹣2<x<3}B.{x|x<﹣2}C.{x|x<﹣2或x>3}D.{x|x>3}3.(5分)已知sinα=,则cos(π﹣2α)=()A.﹣B.﹣C.D.4.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)5.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.46.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.357.(5分)若曲线y=x2+ax+b在点(1,b)处的切线方程是x﹣y+1=0,则()A.a=1,b=2B.a=﹣1,b=2C.a=1,b=﹣2D.a=﹣1,b=﹣2 8.(5分)已知三棱锥S﹣ABC中,底面ABC为边长等于2的等边三角形,SA 垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为()A.B.C.D.9.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种10.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,| |=1,||=2,则=()A.+B.+C.+D.+11.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知α是第二象限的角,tanα=﹣,则cosα=.14.(5分)(x+)9展开式中x3的系数是.(用数字作答)15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.18.(12分)已知{a n}是各项均为正数的等比数列a1+a2=2(),a3+a4+a5=64++)(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=(a n+)2,求数列{b n}的前n项和T n.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.21.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.22.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.2010年全国统一高考数学试卷(文科)(大纲版Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设全集U={x∈N+|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=()A.{1,4}B.{1,5}C.{2,4}D.{2,5}【考点】1H:交、并、补集的混合运算.【专题】11:计算题.【分析】由全集U={x∈N|x<6},可得U={1,2,3,4,5},然后根据集合混+合运算的法则即可求解.【解答】解:∵A={1,3},B={3,5},∴A∪B={1,3,5},∵U={x∈N|x<6}={1,2,3,4,5},+∴∁U(A∪B)={2,4},故选:C.【点评】本题考查了集合的基本运算,属于基础知识,注意细心运算.2.(5分)不等式<0的解集为()A.{x|﹣2<x<3}B.{x|x<﹣2}C.{x|x<﹣2或x>3}D.{x|x>3}【考点】73:一元二次不等式及其应用.【专题】11:计算题.【分析】本题的方法是:要使不等式小于0即要分子与分母异号,得到一个一元二次不等式,讨论x的值即可得到解集.【解答】解:∵,得到(x﹣3)(x+2)<0即x﹣3>0且x+2<0解得:x>3且x<﹣2所以无解;或x﹣3<0且x+2>0,解得﹣2<x<3,所以不等式的解集为﹣2<x<3故选:A.【点评】本题主要考查学生求不等式解集的能力,是一道基础题.3.(5分)已知sinα=,则cos(π﹣2α)=()A.﹣B.﹣C.D.【考点】GO:运用诱导公式化简求值;GS:二倍角的三角函数.【专题】11:计算题.【分析】先根据诱导公式求得cos(π﹣2a)=﹣cos2a进而根据二倍角公式把sinα的值代入即可求得答案.【解答】解:∵sina=,∴cos(π﹣2a)=﹣cos2a=﹣(1﹣2sin2a)=﹣.故选:B.【点评】本题考查了二倍角公式及诱导公式.考查了学生对三角函数基础公式的记忆.4.(5分)函数的反函数是()A.y=e2x﹣1﹣1(x>0)B.y=e2x﹣1+1(x>0)C.y=e2x﹣1﹣1(x∈R)D.y=e2x﹣1+1(x∈R)【考点】4H:对数的运算性质;4R:反函数.【专题】11:计算题;16:压轴题.【分析】从条件中中反解出x,再将x,y互换即得.解答本题首先熟悉反函数的概念,然后根据反函数求解三步骤:1、换:x、y换位,2、解:解出y,3、标:标出定义域,据此即可求得反函数.【解答】解:由原函数解得x=e 2y﹣1+1,∴f﹣1(x)=e 2x﹣1+1,又x>1,∴x﹣1>0;∴ln(x﹣1)∈R∴在反函数中x∈R,故选:D.【点评】求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).5.(5分)若变量x,y满足约束条件,则z=2x+y的最大值为()A.1B.2C.3D.4【考点】7C:简单线性规划.【专题】31:数形结合.【分析】先根据约束条件画出可行域,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y过可行域内的点B时,从而得到m值即可.【解答】解:作出可行域,作出目标函数线,可得直线与y=x与3x+2y=5的交点为最优解点,∴即为B(1,1),当x=1,y=1时z max=3.故选:C.【点评】本题考查了线性规划的知识,以及利用几何意义求最值,属于基础题.6.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14B.21C.28D.35【考点】83:等差数列的性质;85:等差数列的前n项和.【分析】由等差数列的性质求解.【解答】解:a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7==7a4=28故选:C.【点评】本题主要考查等差数列的性质.7.(5分)若曲线y=x2+ax+b在点(1,b)处的切线方程是x﹣y+1=0,则()A.a=1,b=2B.a=﹣1,b=2C.a=1,b=﹣2D.a=﹣1,b=﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;52:导数的概念及应用.【分析】由y=x2+ax+b,知y′=2x+a,再由曲线y=x2+ax+b在点(1,b)处的切线方程为x﹣y+1=0,求出a和b.【解答】解:∵y=x2+ax+b,∴y′=2x+a,∵y′|x=1=2+a,∴曲线y=x2+ax+b在点(1,b)处的切线方程为y﹣b=(2+a)(x﹣1),∵曲线y=x2+ax+b在点(1,b)处的切线方程为x﹣y+1=0,∴a=﹣1,b=2.故选:B.【点评】本题考查利用导数求曲线上某点切线方程的应用,解题时要认真审题,仔细解答.8.(5分)已知三棱锥S﹣ABC中,底面ABC为边长等于2的等边三角形,SA 垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为()A.B.C.D.【考点】MI:直线与平面所成的角.【专题】11:计算题.【分析】由图,过A作AE垂直于BC交BC于E,连接SE,过A作AF垂直于SE交SE于F,连BF,由题设条件证出∠ABF即所求线面角.由数据求出其正弦值.【解答】解:过A作AE垂直于BC交BC于E,连接SE,过A作AF垂直于SE 交SE于F,连BF,∵正三角形ABC,∴E为BC中点,∵BC⊥AE,SA⊥BC,∴BC⊥面SAE,∴BC⊥AF,AF⊥SE,∴AF⊥面SBC,∵∠ABF为直线AB与面SBC所成角,由正三角形边长2,∴AE=,AS=3,∴SE=2,AF=,∴sin∠ABF=.故选:D.【点评】本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角.9.(5分)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】本题是一个分步计数问题,首先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有C42,余下放入最后一个信封,根据分步计数原理得到结果.【解答】解:由题意知,本题是一个分步计数问题,∵先从3个信封中选一个放1,2,有=3种不同的选法;根据分组公式,其他四封信放入两个信封,每个信封两个有=6种放法,∴共有3×6×1=18.故选:B.【点评】本题考查分步计数原理,考查平均分组问题,是一个易错题,解题的关键是注意到第二步从剩下的4个数中选两个放到一个信封中,这里包含两个步骤,先平均分组,再排列.10.(5分)△ABC中,点D在边AB上,CD平分∠ACB,若=,=,| |=1,||=2,则=()A.+B.+C.+D.+【考点】9B:向量加减混合运算.【分析】由△ABC中,点D在边AB上,CD平分∠ACB,根据三角形内角平分线定理,我们易得到,我们将后,将各向量用,表示,即可得到答案.【解答】解:∵CD为角平分线,∴,∵,∴,∴故选:B.【点评】本题考查了平面向量的基础知识,解答的核心是三角形内角平分线定理,即若AD为三角形ABC的内角A的角平分线,则AB:AC=BD:CD11.(5分)与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【考点】LO:空间中直线与直线之间的位置关系.【专题】16:压轴题.【分析】由于点D、B1显然满足要求,猜想B1D上任一点都满足要求,然后想办法证明结论.【解答】解:在正方体ABCD﹣A1B1C1D1上建立如图所示空间直角坐标系,并设该正方体的棱长为1,连接B1D,并在B1D上任取一点P,因为=(1,1,1),所以设P(a,a,a),其中0≤a≤1.作PE⊥平面A1D,垂足为E,再作EF⊥A1D1,垂足为F,则PF是点P到直线A1D1的距离.所以PF=;同理点P到直线AB、CC1的距离也是.所以B1D上任一点与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离都相等,所以与正方体ABCD﹣A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点有无数个.故选:D.【点评】本题主要考查合情推理的能力及空间中点到线的距离的求法.12.(5分)已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1B.C.D.2【考点】KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设A(x1,y1),B(x2,y2),根据求得y1和y2关系根据离心率设,b=t,代入椭圆方程与直线方程联立,消去x,根据韦达定理表示出y1+y2和y1y2,进而根据y1和y2关系求得k.【解答】解:A(x1,y1),B(x2,y2),∵,∴y1=﹣3y2,∵,设,b=t,∴x2+4y2﹣4t2=0①,设直线AB方程为,代入①中消去x,可得,∴,,解得,故选:B.【点评】本题主要考查了直线与圆锥曲线的综合问题.此类题问题综合性强,要求考生有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知α是第二象限的角,tanα=﹣,则cosα=.【考点】GG:同角三角函数间的基本关系.【分析】根据,以及sin2α+cos2α=1可求出答案.【解答】解:∵=,∴2sinα=﹣cosα又∵sin2α+cos2α=1,α是第二象限的角∴故答案为:【点评】本题考查了同角三角函数的基础知识.14.(5分)(x+)9展开式中x3的系数是84.(用数字作答)【考点】DA:二项式定理.【分析】本题考查二项式定理的展开式,解题时需要先写出二项式定理的通项T r+1,因为题目要求展开式中x3的系数,所以只要使x的指数等于3就可以,用通项可以解决二项式定理的一大部分题目.【解答】解:写出(x+)9通项,∵要求展开式中x3的系数∴令9﹣2r=3得r=3,∴C93=84故答案为:84.【点评】本题是一个二项展开式的特定项的求法.解本题时容易公式记不清楚导致计算错误,所以牢记公式.它是经常出现的一个客观题.15.(5分)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=2.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】设直线AB的方程与抛物线方程联立消去y得3x2+(﹣6﹣2p)x+3=0,进而根据,可知M为A、B的中点,可得p的关系式,解方程即可求得p.【解答】解:设直线AB:,代入y2=2px得3x2+(﹣6﹣2p)x+3=0,又∵,即M为A、B的中点,∴x B+(﹣)=2,即x B=2+,得p2+4P﹣12=0,解得p=2,p=﹣6(舍去)故答案为:2【点评】本题考查了抛物线的几何性质.属基础题.16.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M 与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=3.【考点】JE:直线和圆的方程的应用;ND:球的性质.【专题】11:计算题;16:压轴题.【分析】根据题意画出图形,欲求两圆圆心的距离,将它放在与球心组成的三角形MNO中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得.【解答】解法一:∵ON=3,球半径为4,∴小圆N的半径为,∵小圆N中弦长AB=4,作NE垂直于AB,∴NE=,同理可得,在直角三角形ONE中,∵NE=,ON=3,∴,∴,∴MN=3.故填:3.解法二:如下图:设AB的中点为C,则OC与MN必相交于MN中点为E,因为OM=ON=3,故小圆半径NB为C为AB中点,故CB=2;所以NC=,∵△ONC为直角三角形,NE为△ONC斜边上的高,OC=∴MN=2EN=2•CN•=2××=3故填:3.【点评】本题主要考查了点、线、面间的距离计算,还考查球、直线与圆的基础知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【分析】先由cos∠ADC=确定角ADC的范围,因为∠BAD=∠ADC﹣B所以可求其正弦值,最后由正弦定理可得答案.【解答】解:由cos∠ADC=>0,则∠ADC<,又由知B<∠ADC可得B<,由sinB=,可得cosB=,又由cos∠ADC=,可得sin∠ADC=.从而sin∠BAD=sin(∠ADC﹣B)=sin∠ADCcosB﹣cos∠ADCsinB==.由正弦定理得,所以AD==.【点评】三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现.这类题型难度比较低,一般出现在17或18题,属于送分题,估计以后这类题型仍会保留,不会有太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化.18.(12分)已知{a n}是各项均为正数的等比数列a1+a2=2(),a3+a4+a5=64++)(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=(a n+)2,求数列{b n}的前n项和T n.【考点】88:等比数列的通项公式;8E:数列的求和.【专题】11:计算题.【分析】(1)由题意利用等比数列的通项公式建立首项a1与公比q的方程,然后求解即可(2)由b n的定义求出通项公式,在由通项公式,利用分组求和法即可求解【解答】解:(1)设正等比数列{a n}首项为a1,公比为q,由题意得:∴a n=2n﹣1(6分)(2)∴b n的前n项和T n=(12分)【点评】(1)此问重基础及学生的基本运算技能(2)此处重点考查了高考常考的数列求和方法之一的分组求和,及指数的基本运算性质19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1﹣AC1﹣B1的大小.【考点】LM:异面直线及其所成的角;LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)欲证DE为异面直线AB1与CD的公垂线,即证DE与异面直线AB1与CD垂直相交即可;(2)将AB1平移到DG,故∠CDG为异面直线AB1与CD的夹角,作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1﹣AC1﹣B1的平面角,在三角形B1KH中求出此角即可.【解答】解:(1)连接A1B,记A1B与AB1的交点为F.因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D为BB1的中点,故DE∥BF,DE⊥AB1.作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.所以DE为异面直线AB1与CD的公垂线.(2)因为DG∥AB1,故∠CDG为异面直线AB1与CD的夹角,∠CDG=45°设AB=2,则AB1=,DG=,CG=,AC=.作B1H⊥A1C1,H为垂足,因为底面A1B1C1⊥面AA1CC1,故B1H⊥面AA1C1C.又作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1﹣AC1﹣B1的平面角.B1H=,C1H=,AC1=,HK=tan∠B1KH=,∴二面角A1﹣AC1﹣B1的大小为arctan.【点评】本试题主要考查空间的线面关系与空间角的求解,考查考生的空间想象与推理计算的能力.三垂线定理是立体几何的最重要定理之一,是高考的热点,它是处理线线垂直问题的有效方法,同时它也是确定二面角的平面角的主要手段.通过引入空间向量,用向量代数形式来处理立体几何问题,淡化了传统几何中的“形”到“形”的推理方法,从而降低了思维难度,使解题变得程序化,这是用向量解立体几何问题的独到之处.20.(12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是P,电流能通过T4的概率是0.9,电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.(Ⅰ)求P;(Ⅱ)求电流能在M与N之间通过的概率.【考点】C5:互斥事件的概率加法公式;C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题.【分析】(1)设出基本事件,将要求事件用基本事件的来表示,将T1,T2,T3至少有一个能通过电流用基本事件表示并求出概率即可求得p.(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,根据电路图,可得B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,由互斥事件的概率公式,代入数据计算可得答案.【解答】解:(Ⅰ)根据题意,记电流能通过T i为事件A i,i=1、2、3、4,A表示事件:T1,T2,T3,中至少有一个能通过电流,易得A1,A2,A3相互独立,且,P()=(1﹣p)3=1﹣0.999=0.001,计算可得,p=0.9;(Ⅱ)根据题意,B表示事件:电流能在M与N之间通过,有B=A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3,则P(B)=P(A4+(1﹣A4)A1A3+(1﹣A4)(1﹣A1)A2A3)=0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9=0.9891.【点评】本题考查了概率中的互斥事件、对立事件及独立事件的概率,注意先明确事件之间的关系,进而选择对应的公式来计算.21.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.22.(12分)已知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,|DF|•|BF|=17,证明:过A、B、D三点的圆与x轴相切.【考点】J9:直线与圆的位置关系;KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题;14:证明题;16:压轴题.【分析】(Ⅰ)由直线过点(1,3)及斜率可得直线方程,直线与双曲线交于BD两点的中点为(1,3),可利用直线与双曲线消元后根据中点坐标公式找出a,b的关系式即求得离心率.(Ⅱ)利用离心率将条件|FA||FB|=17,用含a的代数式表示,即可求得a,则A点坐标可得(1,0),由于A在x轴上所以,只要证明2AM=BD即证得.【解答】解:(Ⅰ)由题设知,l的方程为:y=x+2,代入C的方程,并化简,得(b2﹣a2)x2﹣4a2x﹣a2b2﹣4a2=0,设B(x1,y1),D(x2,y2),则,,①由M(1,3)为BD的中点知.故,即b2=3a2,②故,∴C的离心率.(Ⅱ)由①②知,C的方程为:3x2﹣y2=3a2,A(a,0),F(2a,0),.故不妨设x1≤﹣a,x2≥a,,,|BF|•|FD|=(a﹣2x1)(2x2﹣a)=﹣4x1x2+2a(x1+x2)﹣a2=5a2+4a+8.又|BF|•|FD|=17,故5a2+4a+8=17.解得a=1,或(舍去),故=6,连接MA,则由A(1,0),M(1,3)知|MA|=3,从而MA=MB=MD,且MA⊥x轴,因此以M为圆心,MA为半径的圆经过A、B、D三点,且在点A处与x轴相切,所以过A、B、D三点的圆与x轴相切.【点评】本题考查了圆锥曲线、直线与圆的知识,考查学生运用所学知识解决问题的能力.。
2010年全国II高考数学文科试卷(带答案)
2010年普通高等学校招生全国统一考试(全国卷Ⅱ)数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 1. 设全集{}*|<6U x x =∈N ,集合{}=1,3A ,{}3,5B =,则()U AB =ð ( ).A.{}1,4B.{}1,5C.{}2,4D.{}2,5 【测量目标】集合的基本运算、集合间的关系. 【考查方式】由集合算出并集,取其在全集中的补集. 【参考答案】C【试题解析】∵{}1,3A =,{}3,5B =,∴{1,3,5}AB =,∴(){2,4}U AB =ð, 故选C .2. 不等式32x x -+<0的解集为 ( ). A.{}23x x -<< B.{}2x x <- C.{}2x x <-或{}3x > D.{}3x x > 【测量目标】解一元二次不等式.【考查方式】解不等式,直接算出其结果即可. 【参考答案】A 【试题解析】302x x -<+()()32<0x x ⇒-+ 23x ∴-<<,故选A.3. 已知2sin 3α=,则cos(2)x α-= ( ).A.3-B.19-C.19【测量目标】三角函数间的互化.【考查方式】二倍角公式及诱导公式,求得结果. 【参考答案】B【试题解析】 ∵ 2sin 3α=∴21cos(π2)cos 2(12sin )9ααα-=-=--=-4. 函数()()1ln 1>1y x x =+-的反函数是 ( ).A. ()1e 1>0x y x +=-B. 1e1(>0)x y x -=+C. ()1e 1x y x +=-∈RD. ()1e 1x y x -=+∈R 【测量目标】反函数与对数函数间的互化. 【考查方式】将原函数化简,直接求得反函数. 【参考答案】D【试题解析】∵函数()()1ln 1>1y x x =+-,∴ 11ln(1)1,1e,e 1y x x y x y ---=--==+ 故选D.5. 若变量,x y 满足约束条件1325x y x x y -⎧⎪⎨⎪+⎩……… ,则2z x y =+的最大值为 ( ).A.1B.2C.3D.4 【测量目标】二元线性规划求目标函数的最值. 【考查方式】由约束条件作出可行域,找出最优解. 【参考答案】C【试题解析】画出可行域,作出目标函数线, 可得直线与y x = 与325x y +=的交点为最优解点,∴即为(1,1),当1,1x y ==时max 3z =,故选C.6. 如果等差数列{}n a 中,3a +4a +5a =12,那么127a a a ++⋅⋅⋅+= ( ). A.14 B. 21 C. 28 D. 35 【测量目标】等差数列的性质和前n 项和. 【考查方式】运用等差中项,简单的数列求和. 【参考答案】C 【试题解析】34512,a a a ++=44,a =()127174177282a a a a a a ∴++⋅⋅⋅+=⨯⨯+==.故选C.7. 若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则 ( ).A.1,1a b ==B.1,1a b =-=C.1,1a b ==-D. 1,1a b =-=- 【测量目标】函数导数的几何性质. 【考查方式】利用切线方程求解曲线方程. 【参考答案】A 【试题解析】∵2x y x aa='=+=,∴1a =,(0,)b 在切线10x y -+=,∴1b =8. 已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为 ( ).D. 34【测量目标】三棱锥的概念、线面、面面位置关系. 【考查方式】找出线面角,求出正弦值,数形结合的思想. 【参考答案】D【试题解析】过A 作AE BC ⊥交BC 于E ,连结SE ,过A 作AF 垂直于交SE 于F ,连接BF ,∵正三角形ABC ,∴E 为BC 中点,(步骤1)∵BC AE ⊥,SA BC ⊥,∴BC ⊥面,SAE ∴BC AF ⊥,又AF SE ⊥,∴AF ⊥面SBC ,(步骤2) ∵ABF ∠为直线AB 与面SBC 所成角,由正三角形边长3, ∴AE =3AS =,∴SE = 32AF =,∴ 3sin 4ABF ∠=.(步骤3)9. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 ( ).A. 12种B.18种C. 36种D.54种 【测量目标】排列组合的典型应用.【考查方式】特殊元素先考虑,算出总的种类. 【参考答案】B【试题解析】∵先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有24C 6=,余下放入最后一个信封,∴共有243C 18=.10. ABC △中,点D 在边AB 上,CD 平分ACB ∠,若CB =a , CA =b , a =1,b =2,则CD = ( ). A.13a +23b B.23a +13b C.35a +45b D.45a +35b 【测量目标】向量的线性运算. 【考查方式】向量之间的相加减. 【参考答案】B【试题解析】∵CD 为角平分线,∴ 12BD BC AD AC ==,(步骤1)∵ AB CB CA =-=-a b ,∴ 222333AD AB ==-a b ,(步骤2) ∴ 22213333CD CA AD =+=+-=+b a b a b .(步骤3)11. 与正方体ABCD -1111A B C D 的三条棱111AB CC A D 、、所在直线的距离相等的点 ( ). (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个 【测量目标】空间立体几何的基本性质. 【考查方式】作图,利用观察法求解. 【参考答案】D【试题解析】∵到三条互相垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点,故选D.12. 已知椭圆C :()22221>>0x y a b a b+=的离心率为2,过右焦点F 且斜率为()>0k k 的直线于C 相交于A B 、两点,若3AF FB =,则k = ( ). A.1D.2 【测量目标】直线与椭圆的位置关系.【考查方式】由向量关系,间接进行求解参数k . 【参考答案】B 【试题解析】设1122(,),(,)A x yB x y ,∵ 3AF FB =,∴ 123y y =-,(步骤1)∵2e =,设2,a t c ==,b t =,∴ 222440x y t +-=,(步骤2)设直线AB方程为x sy =+.代入消去x ,∴222(4)0s y t ++-=, ∴2121224t y y y y s +==-+,(步骤3)22222234t y y s -=-=-+,解得 212s =,k = B.(步骤4)(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13. 已知α是第二象限的角,1tan 2=-α,则cos α=__________. 【测量目标】同角三角函数间的相互转化.【考查方式】由三角函数的等式关系进行转化,直接求解余弦值.【参考答案】 【试题解析】1tan 2=-α, sin 1cos 2⇒=-αα,即1sin cos 2=-αα,(步骤1) 又22sin cos 1+=αα,cos ∴=α,(步骤2) 又α为第二象限角,cos ∴=α(步骤3) 14. 91x x +⎛⎫ ⎪⎝⎭的展开式中,3x 的系数是_________.【测量目标】二项式定理.【考查方式】二项式展开式中的系数求解. 【参考答案】84.【试题解析】∵ 9191C ()r rr r T xx-+=, ∴ 923,3r r -==, ∴ 39C 84=. 15. 已知抛物线()2:2>0C y px p =的准线1,过()1,0M的直线与l 相交于A ,与C 的一个交点为B ,若AM MB =,则p =_________【测量目标】抛物线的标准方程和简单的几何性质. 【考查方式】直线方程与抛物线方程联立求解p . 【参考答案】2【试题解析】设直线AB:y =(步骤1)代入22y px =得23(62)30x p x +--+=, 又∵ AM MB =,∴122x p =+,(步骤2)解得24120p p +-=,解得2,6p p ==-或(舍去),故2p =.(步骤3)16. 已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,AB 为圆M 与圆N 的公共弦,4AB =,若3OM ON ==,则两圆圆心的距离MN = .【测量目标】球、直线与圆的概念及基础知识. 【考查方式】解三角形求两圆半径,进而计算圆心距. 【参考答案】3 【试题解析】∵3ON =,球半径为4,∴小圆N,(步骤1) ∵小圆N 中弦长4AB =,作NE 垂直于AB ,∴NE =,(步骤2)同理可得ME =ONE 中,∵NE =,3ON =,∴ π6EON ∠=,(步骤4) ∴ π3MON ∠=,∴ 3.MN =(步骤5)三、解答题;本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)ABC △中,D 为边BC 上的一点,33BD =,5sin 13B =,3cos 5ADC ∠=,求AD . 【测量目标】同角三角函数的基本关系、正弦定理.【考查方式】利用同角三角函数关系、差角公式及正弦定理求解边长. 【试题解析】ADC B BAD ∠=∠+∠ >A D C B∴∠∠,(步骤1) 又3cos >05ADC ∠=cos >0B ∴,(步骤2) 12cos 13B =,4sin 5ADC ∠=,()sin sin BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B =∠-∠3365=.(步骤3) sin sin B BAD AD BD ∠=533sin 132533sin 65BD BAD BAD⨯⋅⇒===∠. AD ∴的长为25.18.(本小题满分12分)已知{}n a 是各项均为正数的等比数列,且1212112()a a a a +=+,34534511164()a a a a a a ++=++(Ⅰ)求{}n a 的通项公式; (Ⅱ)设21()n n nb a a =+,求数列{}n b 的前n 项和n T . 【测量目标】等比数列通项公式、前n 项和、方程组解法. 【考查方式】由题设等式关系求解通项公式和前n 项和.【试题解析】(Ⅰ)设公比为q ,则11n n a a q -=.由已知有111123411123411111211164a a q a a q a q a q a q a q a q a q ⎧⎛⎫+=+⎪ ⎪⎪⎝⎭⎨⎛⎫⎪++=++ ⎪⎪⎝⎭⎩,(步骤1) 化简得21261264a q a q ⎧=⎨=⎩(步骤2)又10a >,故12,1q a == 所以12n n a -=.(步骤3)(Ⅱ)由(Ⅰ)知221211112424n n n n n n n b a a a a --⎛⎫=+=++=++ ⎪⎝⎭,因此 ()11111441244n n n T n --⎛⎫=++++++++ ⎪⎝⎭,(步骤4) ()111411424421141314nn n n n n ---=++=-++--.(步骤5)19.(本小题满分12分)如图,直三棱柱111ABC A B C -中,A C B C =,111AA A B =,D 为1BB 的中点,E 为1AB 上的一点,13AE EB =,(Ⅰ)证明:DE 为异面直线1AB 与CD 的公垂线; (Ⅱ)设异面直线1AB 与CD 的夹角为45°, 求二面角111A AC B --的大小.【测量目标】空间立体几何中直线与平面、平面与平面及异面直线所成角与二面角的基础知识.【考查方式】线面垂直定理的应用,找出异面直线所成角,由边长解三角形. 【试题解析】(Ⅰ)证明:连接1A B ,记1A B 与1AB 的交点为F , 平面11A ABB 为正方形11A B AB ∴⊥,且1AF FB =,(步骤1)又13AE EB = , 1F E E B ∴=,(步骤2)又D 为1BB 的中点 , 1//,DE BF DE AB ∴⊥.(步骤3)作,CG AB G ⊥为垂足,由AC BC =知,G 为AB 中点, 又由底面ABC ⊥平面11A ABB ,得11CG AA B B ⊥平面,(步骤4) 连接DG ,则DG ∥1AB ,故DE DG ⊥.由三垂线定理得,DE CD ⊥,DE ∴为异面直线1AB 与CD 的公垂线. (步骤5)(Ⅱ)DG ∥1AB ,故CDG ∠为异面直线1AB 与CD 的夹角,=45CDG ∠,(步骤6)设2AB =,则1AB DG CG AC == 作111,B H A C H ⊥为垂足,(步骤7) 底面111A B C ⊥平面11AAC C故111,B H AAC C ⊥平面又作1,HK AC K ⊥为垂足,连接1B K ,(步骤8) 由三垂线定理得,11,B K AC ⊥1B KH ∴∠为二面角111A AC B --的平面角.(步骤9)1HK AC ⊥,平面11A ABB 为正方形,111π2C KH AAC ∴∠=∠=, 又111AC A HC K ∠=∠,111C KH C AA ∴∠=∠,1C KH ∴△∽11C A A △.111B H ∴==1HC ==111221AA C HKH AC ⋅===, 11tan B H B KH KH ∴∠===∴二面角111A ACB --的平面角的大小为(步骤10)20.(本小题满分12分)如图,由M 到N 的电路中有4个元件,分别标为1234T T T T 、、、,电源能通过123,T T T 、、的概率都是P ,电源能通过4T 的概率是0.9,电源能否通过各元件相互独立.已知123T T T 、、中至少有一个能通过电流的概率为0.999. (Ⅰ)求P ;(Ⅱ)求电流能在M 与N 之间通过的概率.【测量目标】互斥事件、对立事件及独立事件的概率.【考查方式】由互斥事件与独立事件的概率,设出基本事件,并求出概率.【试题解析】(Ⅰ)根据题意得,记电流能通过i T 为事件i A ,i=1,2,3,4.A 表示事件:123,T T T 、、中至少有一个能通过电流.易得123A A A 、、相互独立,且123A A A A =⋅⋅,(步骤1)()()31109990001P A P ..,=-=-=计算得,0.9.P =(步骤2)(Ⅱ)根据题意,记B 表示事件:电流能在M 与N 之间通过,有 ()()()44134123111B A A A A A A A A =+-+--,则()()()()44134123(111)P B P A A A A A A A A =+-+--=0.90.10.90.90.10.10.90.90.09891+⨯⨯+⨯⨯⨯=.(步骤3)21.(本小题满分12分)已知函数32()33 1.f x x ax x =-++(Ⅰ)设2a =,求()f x 的单调区间;(Ⅱ)设()f x 在区间()2,3内至少有一个极值点,求a 的取值范围.【测量目标】利用导数研究函数的单调区间、极值.【考查方式】利用函数导数、单调性,求解的a 取值范围.【试题解析】(Ⅰ)当2a =时,32()631f x x x x =-++,(()322f x x x '=--,(步骤1)当(,2x ∈-∞-时,()0,()f x f x '>在(,2-∞-单调递增;当(2x ∈时,()0,()f x f x '<在(2-单调递减;当()2x ∈+∞时,()0,()f x f x '>在()2+∞单调递增;综上,()f x 的单调递减区间是(2+;()f x 的单调递增区间是((),223,-∞++∞. (Ⅱ)()22()31f x x a a ⎡⎤'=-+-⎣⎦,当210a -…时,()0,()f x f x '…为增函数,故()f x 无极值点;当210a -<时,()0f x '=有两个根1x a =2x a =由题意知,23a < ①,或23a << ②, ①式无解,②式的解为5543a <<,因此a 的取值范围是55,43⎛⎫ ⎪⎝⎭.22.(本小题满分12分) 已知斜率为1的直线l 与双曲线C :22221(0,0)x y a b a b-=>>相交于B D 、两点,且BD 的中点为()1,3M .(Ⅰ)求C 的离心率;(Ⅱ)设C 的右顶点为A ,右焦点为F ,17DF BF ⋅=证明:过A B D 、、三点的圆与x 轴相切.【测量目标】双曲线的简单几何性质、圆锥曲线的中的定点问题.【考查方式】直线与双曲线消元后,根据中点坐标公式,解离心率;由离心率条件及点坐标证明等式,得出相关结论.【试题解析】(Ⅰ)由题意知,l 的方程为:2y x =+,代入C 的方程,并化简,得()2222222440b ax a x a a b ----=,(步骤1) 设11(,)B x y 、()22,D x y , 则212224a x x b a +=-,22212224a a b x x b a +=-- ①(步骤2) 由(1,3)M 为BD 的中点知1212x x +=,故2221412a b a ⨯=- 即223b a =, ②(步骤3)故2c a = 所以C 的离心率2c e a==.(步骤4)(Ⅱ)由①②知,C 的方程为:22233x y a -=, 2121243(,0),(2,0),2,02a A a F a x x x x ++==-<, 故不妨设12,x a x a -剠,(步骤5)12BF a x ===-,22FD x a ===-,()()1222BF FD a x x a ⨯=--()2121242x x a x x a =-++- 2548a a =++.(步骤6)又17BF FD ⋅=,故254817a a ++=,解得1a =,或95a =-(舍去),故126BD x =-==.(步骤7)连结MA ,则由(1,0),(1,3)A M 知3MA =,从而MA MB MD ==,且MA x ⊥轴,因此以M 为圆心,MA 为半径的圆经过A 、B 、D 三点,且在点A 处与x 轴相切,所以过A 、B 、D 三点的圆与x 轴相切.(步骤8)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
记位于第 i 行第 j 列的数为 aij(i,j1,2,···,n).
当 n9 时,a11a22a33···a99_______________.
13.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为 ( 5, 0) ,e1 (2,1) 、
e2 (2, 1) 分别是两条渐近线的方向向量.任取双曲线Γ上的点 P,若 OP ae1 be2 (a、
cos
6
4.若复数 z12i(i 为虚数单位),则 z z z _______________.
5.将一个总体分为 A、B、C 三层,其个体数之比为 5:3:2.若用分层抽样方法抽取容量为
100 的样本,则应从 C 中抽取_______________个个体.
6.已知四棱锥 P—ABCD 的底面是边长为 6 的正方体,侧棱 PA底面 ABCD,且 PA8,则
(1) 当圆柱底面半径 r 取何值时,S 取得最大值?并求出 该最大值(结果精确到 0.01 平方米);
(2) 若要制作一个如图放置的、底面半径为 0.3 米的灯 笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架 等因素).
21.(本题满分 14 分)第 1 小题满分 6 分,第 2 小题满分 8 分.
已知 0 x ,化简: lg(cos x tan x 1 2sin2 x ) lg[ 2 cos(x )] lg(1 sin 2x) .
2
2
4
20.(本题满分 14 分)第 1 小题满分 7 分,第 2 小题满分 7 分.
如图所示,为了制作一个圆柱形灯笼,先要制作 4 个全 等的矩形骨架,总计耗用 9.6 米铁丝.再用 S 平方米塑料片 制成圆柱的侧面和下底面(不安装上底面).
一、填空题(本大题满分 56 分,每小题 4 分) 1.已知集合 A{1,3,m},B{3,4},A⋃B{1,2,3,4},则 m_______________.
2.不等式
2 x
x 40Biblioteka 的解集是_______________.
cos
3.行列式
6
sin
6
sin
6
的值是_______________.
调性(结论不要求证明)
23.(本题满分 18 分)第 1 小题满分 4 分,第 2 小题满分 6 分,第 3 小题满分 8 分.
10.从一副混合后的扑克牌(52 张)中随机抽取 2 张,则“抽出的 2 张
输出 T,S
均为红桃”的概率为____________(结果用最简分数表示).
11.2010 年上海世博会园区每天 9:00 开园,20:00 停止入园.在右边
否
的框图中,S 表示上海世博会官方网站在每个整点报道的入园总
T≤19
绝密★启用前
2010 年普通高等学校招生全国统一考试(上海卷)
数学试卷(文史类)
(满分 150 分,考试时间 120 分钟) 考生注意 1.本场考试时间 120 分钟,试卷共 4 页,满分 150 分,答题纸共 2 页. 2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答 题纸指定位置. 3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一 律不得分. 4.用 2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.
人数,a 表示整点报道前 1 个小时内入园人数,则空白的执行框
是
内应填入_______________.
T←T1
输入 a
结束
1 2 3 n 2 n 1 n
2
3
4 n 1
n
1
12.在 n 行 n 列矩阵 3 4 5 n 1 2 中,
n 1 2 n 3 n 2 n 1
(2) 对任意两个不相等的正数 a、b,证明:a2bab2 比 a3b3 接近 2ab ab ;
(3) 已知函数 f(x)的定义域 D{x|x≠k,kZ,xR}.任取 xD,f(x)等于 1sinx 和 1sinx
中接近 0 的那个值.写出函数 f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单
bR),则 a、b 满足的一个等式是_______________. 14.将直线 l1:xy10、l2:nxyn0、l3:xnyn0(nN*,n≥2)围成的三角形面积记为 Sn,
则
lim
n
Sn
_______________.
二、选择题(本大题满分 20 分,每小题 5 分)
2x y 3,
15.满足线性约束条件
x x
2y 0,
3,
的目标函数
zxy
的最大值是
y 0
()
A.1
B. 3 2
16.“ x 2k (kZ)”是“tanx1”成立的 4
C.2
D.3
()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
17.若 x0 是方程 lgxx2 的解,则 x0 属于区间
()
A.(0,1)
B.(1,1.25)
C.(1.25,1.75)
D.(1.75,2)
18.若ABC 的三个内角满足 sinA:sinB:sinC5:11:13,则ABC
()
A.一定是锐角三角形
B.一定是直角三角形
C.一定是钝角三角形
D.可能是锐角三角形,也可能是钝角三
角形
三、解答题(本大题满分 74 分)
19.(本题满分 12 分)
该四棱锥的体积是_______________.
7.圆 C:x2y22x4y40 的圆心到直线 3x4y40 的距离
开始
d_______________.
8.动点 P 到点 F(2,0)的距离与它到直线 x20 的距离相等,
T←9,S←0
则点 P 的轨迹方程为_________.
9.函数 f(x)log3(x3)的反函数的图像与 y 轴的交点坐标是_____.
已知数列{an}的前 n 项和为 Sn,且 Snn5an85,nN*. (1) 证明:{an1}是等比数列; (2) 求数列{Sn}的通项公式,并求出使得 Sn1>Sn 成立的最小正整数 n. 22.(本题满分 16 分)第 1 小题满分 3 分,第 2 小题满分 5 分,第 3 小题满分 8 分. 若实数 x、y、m 满足|xm|<|ym|,则称 x 比 y 接近 m. (1) 若 x21 比 3 接近 0,求 x 的取值范围;