氧氮分析仪测量原理

合集下载

氧氮分析仪测定钢铁中氧氮含量

 氧氮分析仪测定钢铁中氧氮含量

氧氮分析仪测定钢铁中氧氮含量摘要:钢中的氧主要来源于炼钢过程中转炉顶部吹氧,氮主要来源于炼钢过程中转炉底吹氮和从空气中吸入并溶解的氮。

对于氧、氮、氢的含量多少对钢铁材料性能影响较大,因此材料中氧氮氢含量的测定分析技术对钢铁行业的发展意义重大。

关键词:钢铁;氧氮氢含量;测定分析钢中氧氮对钢的性能和质量有着明显的影响。

由于氧化物残留在钢中分布在晶界上 ,从而隔离基体 ,降低钢材抗拉和冲击等机械性能 ,高温下还会发生热脆现象。

过量的氮降低钢的韧性和导磁率 ,而适量的氮在钢中能促进晶粒细化,起到提高钢的强度和硬度的作用。

为了更加精确地掌握冶炼过程中氧氮元素含量的变化情况,控制产品质量,钢铁生产企业普遍在钢铁冶炼过程中开展氧氮含量分析和监控工作。

一、慨述1、红外吸收热导法。

红外吸收热导法是目前使用较为广泛的钢铁材料测定氧氮氢含量的方法,该方法采用脉冲电极将钢铁材料快速溶解于石墨坩埚中,在测定中,将氧元素转化为二氧化碳,然后在氦气作为载气的条件下,使用红外吸收法测定二氧化碳的含量;将氮元素转化为氮气,采用热导法测定氮气的含量;将氢元素转化为氢气,然后在氩气作为载气的条件下,使用热导法测定氢气的含量,通过计算分别得到氧氮氢三元素的含量。

此方法不易实现氧氮氢三种元素的联测,但在氧氮联测、氧氢联测方面的技术较为成熟。

2、质谱法。

质谱法测定钢铁材料中的氧氮氢含量是目前界内较热的研究方向,该方法与其他测定方法不同,质谱法是先将钢铁材料高温熔融后,对液态钢铁材料进行氧氮氢含量测定[1]。

我国钢铁采用飞行时间质谱作为检测突破口,在研发脉冲熔融 -飞行时间质谱氧氮氢联测仪方面已经取得初步进展,采用这种仪器,理论上可以在一分钟内实现氧氮氢三种元素含量的联测分析。

二、红外吸收热导法测定钢铁材料中氧氮氢含量1、实验方法光谱级石墨坩埚;套坩埚;锡片,规格为 0.5g 每片;高纯氮气,含量大于99.999% ;高纯氦气,含量大于 99.999% ;工业级氮气。

氧氮氢分析仪

氧氮氢分析仪

氧氮氢分析仪氧氮氢分析仪是一种用于测量氧氮氢含量的仪器。

它在环境监测、工业生产等领域有着广泛的应用。

本文将从氧氮氢分析仪的原理、功能、应用以及未来发展等方面进行阐述。

首先,我们来了解一下氧氮氢分析仪的原理。

氧氮氢分析仪是利用化学反应原理进行测量的仪器。

它通过引入样品气体到仪器中,使其与试剂发生反应,并测量反应过程中产生的质谱信号。

根据质谱信号的大小,可以推算出样品中氧氮氢的含量。

这种分析方法准确性高,灵敏度好,广泛应用于各个领域。

氧氮氢分析仪具有多种功能。

首先,它可以实时监测环境中的氧氮氢含量。

在大气环境监测中,氧氮氢分析仪可以帮助我们了解大气中的污染物含量,监测空气质量。

其次,它可以用于工业生产过程中的气体监测。

在一些工业生产中,需要对氧氮氢含量进行严格控制,以确保产品的质量和安全性。

最后,氧氮氢分析仪还可以用于科学研究中的气体分析。

比如,在化学实验中,研究人员需要分析反应产生的气体的组成和含量,以便进一步研究反应机理。

除了以上功能,氧氮氢分析仪还有着广泛的应用领域。

首先,它在环境监测中的应用十分重要。

随着人们对环境污染问题的关注度提高,氧氮氢分析仪成为了环境监测的重要工具之一。

其次,它在工业领域也有着广泛的应用。

比如,在电子制造中,氧氮氢分析仪可以用于监测气体的纯度,以保证产品的质量。

此外,氧氮氢分析仪还可以应用于科学研究、医学诊断等领域。

未来,随着科学技术的不断发展,氧氮氢分析仪还有很大的发展空间。

首先,我们可以期待它在测量精度上的提高。

随着仪器制造技术的不断进步,氧氮氢分析仪的测量精度将会更加准确。

其次,我们可以期待它在应用领域的拓展。

目前,氧氮氢分析仪在环境监测、工业生产等方面已经有了广泛的应用,但还有许多其他领域可以发掘。

比如,在生命科学研究中,氧氮氢分析仪可以用于监测细胞培养过程中的气体变化,以便更好地了解细胞的生理活动。

总结起来,氧氮氢分析仪是一种用于测量氧氮氢含量的仪器,它通过化学反应原理进行测量,具有准确性高、灵敏度好等特点。

氧氮氢分析仪的特点与原理介绍

氧氮氢分析仪的特点与原理介绍

氧氮氢分析仪的特点与原理介绍氧氮氢分析仪是一种应用广泛的分析仪器,它能够精确地测量样品中的氧气、氮气以及氢气含量。

它的主要应用领域包括化工、制药、能源、冶金等领域。

本文将介绍氧氮氢分析仪的特点与原理。

氧氮氢分析仪的特点氧氮氢分析仪具有以下特点:1. 高精度氧氮氢分析仪能够通过精准的电子技术,快速、准确地检测样品中的气体成分。

其精度高达0.1% ~ 0.5%。

2. 安全可靠氧氮氢分析仪采用了多层防护措施,具有良好的避免气体泄漏的能力。

同时,在分析氧氮氢时,其对环境没有任何污染,使用过程非常安全可靠。

3. 易于操作氧氮氢分析仪采用了可视化的操作界面,使用者可以轻松地进行使用。

并且,其内置了多种数据分析功能,使得数据分析变得更加方便快捷。

氧氮氢分析仪的原理氧氮氢分析仪的原理基于电化学分析技术,主要包括以下三个方面:1. 氧气的检测氧气的检测基于电化学方法。

氧气会在阳极处发生氧化反应,并引起电流变化。

通过测量电流的变化,便可以得到样品中氧气的含量。

2. 氮气的检测氮气的检测基于红外线吸收光谱法。

氮气会在样品中吸收特定波长的红外线,从而形成光谱。

通过分析光谱,便可以得到样品中氮气的含量。

3. 氢气的检测氢气的检测同样基于电化学方法。

氢气会在阴极处发生还原反应,并引起电流变化。

通过测量电流的变化,便可以得到样品中氢气的含量。

总结氧氮氢分析仪具有高精度、安全可靠、易于操作等特点,其原理是基于电化学分析技术和红外线吸收光谱法。

氧氮氢分析仪在化工、制药、能源、冶金等领域具有广泛的应用前景。

氧分析仪测量原理

氧分析仪测量原理

氧分析仪测量原理氧分析仪是一种用于测量空气中氧气浓度的仪器,它在许多领域都有着重要的应用,比如环境监测、医疗设备、工业生产等。

那么,氧分析仪是如何进行氧气浓度的测量呢?接下来,我们将详细介绍氧分析仪的测量原理。

首先,氧分析仪的测量原理基于电化学传感器。

电化学传感器是一种利用电化学原理来测量气体浓度的传感器。

在氧分析仪中,常用的电化学传感器是氧气传感器。

氧气传感器内部含有一个氧化还原电极和一个参比电极。

当氧气通过传感器时,氧气分子会在氧化还原电极上发生氧化还原反应,产生电流。

通过测量这个电流的大小,就可以确定氧气的浓度。

其次,氧分析仪的测量原理还涉及到温度和压力的补偿。

由于氧气传感器的工作性能受到温度和压力的影响,因此在测量氧气浓度时需要对温度和压力进行补偿。

通常情况下,氧分析仪会配备温度和压力传感器,用于实时监测环境温度和压力,并对氧气浓度进行相应的修正。

另外,氧分析仪的测量原理还包括校准和线性化。

在使用氧分析仪之前,需要对仪器进行校准,以确保其测量结果的准确性。

校准的过程包括零点校准和量程校准,通过这些校准可以使氧分析仪的测量结果更加可靠。

此外,还需要进行线性化处理,以消除传感器非线性带来的误差,提高测量的精度。

最后,氧分析仪的测量原理还需要考虑氧气浓度的显示和输出。

测量到的氧气浓度需要以数字或者图形的形式显示出来,以便操作人员进行实时监测。

同时,还需要将测量结果输出到控制系统或者数据记录设备中,以便进行进一步的处理和分析。

综上所述,氧分析仪的测量原理涉及到电化学传感器、温度和压力补偿、校准和线性化以及浓度显示和输出等多个方面。

通过对这些原理的理解,可以更好地使用和维护氧分析仪,确保其测量结果的准确性和可靠性。

氧氮氢分析仪原理

氧氮氢分析仪原理

氧氮氢分析仪原理
氧氮氢分析仪是一种用于测量气体中氧氮氢含量的仪器,它可
以广泛应用于化工、环保、医药等领域。

其原理主要基于气体的化
学反应和物理性质进行分析,下面将详细介绍氧氮氢分析仪的原理。

首先,氧氮氢分析仪的原理是基于气体的化学反应。

在氧氮氢
分析仪中,氧气通常是通过化学方法进行分析的,通常使用的是电
化学法和化学发光法。

电化学法是利用电化学传感器,通过气体的
氧化还原反应来测定气体中氧气的含量。

而化学发光法则是利用气
体中氧气与化学试剂发生化学反应产生光信号,通过测量光信号的
强度来确定氧气的含量。

对于氮气和氢气的分析,通常采用热导法
和热导法结合化学反应法来进行测定。

热导法是利用气体的导热性
质来测定氮气和氢气的含量,而热导法结合化学反应法则是在热导
法的基础上,通过与化学试剂的反应来测定氮气和氢气的含量。

其次,氧氮氢分析仪的原理还基于气体的物理性质进行分析。

在氧氮氢分析仪中,气体的物理性质主要包括密度、导热性和热容等。

通过测量气体的密度、导热性和热容等物理性质,可以间接推
算氧氮氢的含量。

例如,氧气的密度和导热性与氧气的含量呈正相
关关系,因此可以通过测量氧气的密度和导热性来确定氧气的含量。

而氮气和氢气的含量则可以通过类似的方法来进行测定。

综上所述,氧氮氢分析仪的原理主要基于气体的化学反应和物理性质进行分析。

通过测量气体中氧氮氢的含量,可以为化工、环保、医药等领域的生产和研究提供重要的数据支持。

希望本文的介绍能够帮助大家更好地理解氧氮氢分析仪的原理,为相关领域的工作提供帮助。

几种氧分析仪原理及应用

几种氧分析仪原理及应用

1、电化学氧分析仪:相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。

利用这些反应,可以分辨气体成份、检测气体浓度。

电化学气体传感器分很多子类:(1)原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。

以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。

电流的大小与氧气的浓度直接相关。

这种传感器可以有效地检测氧气、二氧化硫、氯气等。

(2)恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。

这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。

(3)浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。

(4)极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。

目前这种传感器的主要供应商遍布全世界,主要在德国、日本、美国,最近新加入几个欧洲供应商:英国、瑞士等。

2、顺磁式氧分析仪:顺磁式氧分析仪:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。

顺磁式氧分析仪,也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。

它一般分为热磁对流式、压力机械式和磁压力式氧分析仪三种。

物质的磁特性:任何物质在外界磁场的作用下都会被磁化,呈现出一定的磁特性。

物质在外加磁场中被磁化,其本身就会产生一个附加磁场,附加磁场与外磁场方向相同时,该物质就被外磁场吸引;附加磁场与外磁场方向相反时,则被外磁场排斥。

氧氮氢分析仪ONH2000操作说明书

氧氮氢分析仪ONH2000操作说明书

ONH2000操作手册1 安装1.1 安装1.2 前面板说明1.3 主电源连接1.4 数据接口1.5 气路连接1.6 冷却水1.7 填充冷却水1.8 调节水流量2 分析2.1 工作过程2.2 工作间隙2.3 分段分析2.4 应用2.5 省气模式3 维护3.1 概述3.2 安装和取下试剂管3.3 填充试剂管3.4 更换O形环3.5 清理灰尘陷阱3.6 清理炉子3.7 更换电极4 功能描述4.1 测量原理4.2 气流系统4.3 红外池4.4 热导池5 其他5.1 订购序号5.2 包装5.3 故障排除5.4 软件5.5 ONH-2000 预安装指南1 概述1.1 安装由于分析器大约有130kg ,应该放置在合适的平台上。

天平要放置在无振动的平台上。

天平可以放置在任何位置,为方便起见,一般放置在分析器的右边比较合适。

打印机和计算机的放置没有特殊要求。

可以放置在一般台子上。

下面是一个安装示意图 :尽管分析器的操作环境不需要空调,但zui适宜的室温应该保持在18°C到 30°C之间。

水泵里没有水千万不要运转,否则会使水泵损坏!开关扳到2位置时水泵就启动。

按照1.6 和1.7注入冷却水.切勿将仪器放在阳光直射的地方!将仪器放在空调或者风吹不到的地方!1.2 前面板说明1 电流表 11 灰尘陷阱2 炉子输入流量 12 载气压力表3 分析流量(电子控制) 13 动力气压力表4 冲洗流量调节器 14 舒茨试剂管5 分析流量调节器 15 催化炉6 进样器 16 主开关7 坩埚底座 17 载气净化8 汽缸 18 CO2/H2O –陷阱9 炉子上部 19 红外池前气体净化10 炉子下部1.3 电源连接由于红外池需要大约1小时才能达到稳定的工作温度,因此在安装之前首先要接通主电源开关。

只有在安装仪器的时候才必需稳定一小时,因为日常分析不需要关机。

1 分析器2 计算机3 显示器4 打印机5 天平6 三相插头7 仪器的主插头首先连接仪器的主电源,并且接通开关,将仪器侧面板上的开关扳到1。

氮氧分析

氮氧分析

一、实验目的由于钢中的氧主要是以非金属夹杂物的形式存在于钢中,因此,分析全氧量就能反映钢中非金属夹杂物的总量;通过对冶炼各个环节氮含量的变化,可以判断冶炼过程中的吸气量和钢液二次氧化的程度。

钢中的氧氮分析既能提供钢产品质量的信息,又能提供冶炼工艺改进的依据。

它已经成为评价产品质量的重要指标。

本实验的目的主要是通过掌握先进的氧氮分析设备的基本操作,分析钢中氧氮含量,以评价钢坯质量。

二、实验原理熔融法在冶金过程和冶金产品氧氮分析中得到了较好的运用,主要是通过对钢样熔化时释放出的气体进行收集、检测来完成的。

其实验原理如下:将加工好的金属试样投入脉冲加热炉中,试样在高温条件下瞬间融化,熔化过程中试样内的非金属夹杂物中的氧将会与石墨坩埚中的碳发生氧化反应生成一氧化碳,试样中的但则以氮气的形式提取出来。

碳和氧形成的一氧化碳和氮气由惰性气体带走,在此情况下,因为气相中一氧化碳的分压很低,所以下列反应可以继续进行。

[C] + [O] = [CO] ↑在载气(纯度为99.99999%的氦气)作用下,将气体完全排出脉冲炉。

气体经过过滤处理后,进入装有催化剂(氧化铜)的反应室,在催化剂的作用下将一氧化碳气体全部转化为二氧化碳气体,然后将这部分气体送入红外线检测池。

二氧化碳在混合气体中的含量可以用红外线直接吸收法测定,通过传感器可以间接测出钢中氧含量,并将检测信号传送到处理器。

剩余的气体通过碱石棉和无水高氯酸镁除去其中的二氧化碳,送入导热池中,利用氦气和氮气之间导热率的不同,对氦气进行检测,同样将检测信号传送到处理器。

整个检测过程中,将采集到的信号经过模数信号进行转换后,将数字信号传入计算机,采用软件对信号进行积分处理,分别分析出钢中的氧、氮含量值。

由于氧氮分析试样小,包含大型夹杂物的几率也小,因此在实际测量过程中若遇到波动较大的数据,应将其省略。

所以氧氮分析是对钢中小型夹杂物含量的一个描述。

同时,为保证实验的准确度和可比性,实验前应用标样进行校验。

氮氧化物分析仪是如何标定的呢?

氮氧化物分析仪是如何标定的呢?

氮氧化物分析仪是如何标定的呢?氮氧化物是一类紧要的环境污染物,它们是大气中的臭氧、酸雨和大气细颗粒物等的重要成分之一、为了监测和掌控这些污染物的排放量,氮氧化物分析仪被广泛应用于环境监测和工业过程中。

然而,由于氮氧化物的多而杂性质和化学反应动力学,氮氧化物分析仪的标定是一项特别紧要的任务,它直接影响着仪器的精度和牢靠性。

本文将介绍氮氧化物分析仪的标定方法。

一、氮氧化物分析仪的工作原理氮氧化物分析仪是一种基于化学反应的仪器,重要用于测定氮氧化物的浓度。

通常情况下,氮氧化物分析仪可以分为两种类型:光度法和电化学法。

光度法是利用化学反应中产生光汲取的特性来测定氮氧化物的浓度。

通常使用光谱仪来测量光汲取的强度,进而计算出氮氧化物的浓度。

电化学法则是通过化学反应中的电流变化来测定氮氧化物浓度。

在典型的电化学法中,氮氧化物通过电解或化学反应与电极反应来生成电流信号,然后通过订立的计算公式计算浓度。

二、氮氧化物分析仪的标定方法标定是氮氧化物分析仪的关键环节,它不仅可以帮忙检测到仪器的误差,而且还可以明确测试参数,提高检测结果的精准性和牢靠性。

下面我们将简要介绍氮氧化物分析仪的标定步骤和实在方法。

1. 准备标准气体在进行氮氧化物分析仪的标定前,首先需要准备标准气体,以便用于仪器的校准。

标准气体是一种已知浓度的气体,通常可以从国家化学品供应商或试验室购买。

2. 调整仪器参数为了确保氮氧化物分析仪能够精准测量标准气体的浓度,必需设置仪器参数。

通常,这些参数包括仪器的零点,放大倍数和灵敏度等。

零点是仪器的输出在没有任何测量气体时的基本值。

可以通过检测零浓度气体并自动调零仪器来校准零点。

放大倍数是仪器输出和输入之间的比率。

灵敏度是在输入信号变化时仪器的反应程度。

3. 进行零点校准将仪器与标准气体相连,然后将仪器调零。

测量零浓度气体,调整仪器,使输出值为零。

仪器的零点应当在每次测试前进行校准。

4. 进行标准值校准将仪器与标准气体连接并测量气体浓度。

氧氮氢分析仪原理

氧氮氢分析仪原理

氧氮氢分析仪原理
氧氮氢分析仪是一种用于测量气体中氧氮和氢含量的仪器。

其工作原理基于气体的化学反应和电化学原理。

对于氧氮氢分析仪中的氧气分析部分,常用的原理是通过气体与固体氧化剂(如固体电解质燃料电池中的Y2O3稳态型传感器)发生反应来测量氧气的浓度。

典型的传感器结构包括一个氧离子导体和两个气体电接触电极。

气体中的氧气可以通过传感器的气体分子扩散到电极表面,然后氧离子可以通过氧传递过程逃逸到气体中。

基于传感器的测量原理,可以通过测量氧离子电流来计算出氧气的浓度。

对于氮气分析部分,一种常用的原理是使用热导性传感器测量氮气的浓度。

热导性传感器利用气体的导热性质来测量氮气浓度。

当氮气通过传感器时,传感器受热元件会被氮气带走一部分热量,从而使得传感器温度下降。

测量系统通过测量传感器温度的变化来计算氮气的浓度。

对于氢气分析部分,一种常用的原理是使用热膨胀传感器来测量氢气浓度。

热膨胀传感器利用氢气在加热下引起的膨胀效应来测量氢气浓度。

传感器包含一个由氢气填充的膨胀腔室和一个用于测量膨胀腔室体积变化的传感器。

当氢气与传感器相互作用时,传感器的体积会随着氢气浓度的变化而发生变化。

测量系统通过测量传感器的体积变化来计算氢气的浓度。

综上所述,氧氮氢分析仪利用不同的原理来测量气体中氧气、氮气和氢气的浓度。

这些原理包括氧离子传感器、热导性传感
器和热膨胀传感器。

通过测量不同传感器的电流、温度变化或体积变化,可以计算出气体中的氧气、氮气和氢气含量。

各种氧分析仪原理及应用

各种氧分析仪原理及应用

注:西安绿能升华仪器仪表有限责任公司原创,转载请注明!电化学氧分析仪:相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。

利用这些反应,可以分辨气体成份、检测气体浓度。

电化学气体传感器分很多子类:(1)原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。

以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。

电流的大小与氧气的浓度直接相关。

这种传感器可以有效地检测氧气、二氧化硫、氯气等。

(2)恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。

这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。

(3)浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。

(4)极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。

目前这种传感器的主要供应商遍布全世界,主要在德国、日本、美国,最近新加入几个欧洲供应商:英国、瑞士等。

顺磁式氧分析仪:顺磁式氧分析仪:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。

顺磁式氧分析仪,也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。

它一般分为热磁对流式、压力机械式和磁压力式氧分析仪三种。

物质的磁特性:任何物质在外界磁场的作用下都会被磁化,呈现出一定的磁特性。

氧氮氢分析仪原理

氧氮氢分析仪原理

氧氮氢分析仪原理
氧氮氢分析仪是一种用于测定气体样品中氧氮氢含量的仪器。

它主要由样品进样系统、分析系统、检测系统和数据处理系统等部分组成。

在使用氧氮氢分析仪进行分析时,首先需要将待测样品引入仪器内,然后通过一系列的分析和检测过程,最终得到氧氮氢的含量数据。

氧氮氢分析仪的原理是基于化学分析和物理检测的原理。

首先,样品进样系统将气体样品引入仪器内,然后在分析系统中,氧氮氢分子会与特定的试剂或催化剂发生化学反应,生成特定的化合物。

这些化合物会通过检测系统进行检测,根据检测结果可以计算出氧氮氢的含量。

在氧氮氢分析仪的分析系统中,常用的方法包括气相色谱法、光谱分析法和化学分析法等。

气相色谱法是利用气相色谱柱对气体样品进行分离和检测,通过不同组分在柱上的保留时间来确定氧氮氢的含量。

光谱分析法则是利用氧氮氢分子在特定波长下的吸收或发射特性进行分析。

而化学分析法则是利用化学反应来确定氧氮氢的含量。

在检测系统中,常用的检测方法包括红外吸收检测、荧光检测和化学发光检测等。

这些方法能够对生成的化合物进行高灵敏度、高精度的检测,从而得到准确的氧氮氢含量数据。

最后,在数据处理系统中,氧氮氢分析仪会对检测到的数据进行处理和分析,得出最终的氧氮氢含量结果。

数据处理系统通常采用计算机软件进行数据处理,能够实现数据的存储、分析和报告生成等功能。

总的来说,氧氮氢分析仪的原理是基于化学分析和物理检测的原理,通过样品进样系统、分析系统、检测系统和数据处理系统等部分的协同作用,实现对氧氮氢含量的准确测定。

这种仪器在环境监测、工业生产和科研实验等领域具有重要的应用价值。

各种氧分析仪原理及应用

各种氧分析仪原理及应用

注:西安绿能升华仪器仪表有限责任公司,转载请注明!电化学氧分析仪:相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。

利用这些反应,可以分辨气体成份、检测气体浓度。

电化学气体传感器分很多子类:(1)原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。

以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。

电流的大小与氧气的浓度直接相关。

这种传感器可以有效地检测氧气、二氧化硫、氯气等。

(2)恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。

这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。

(3)浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。

(4)极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。

目前这种传感器的主要供应商遍布全世界,主要在德国、日本、美国,最近新加入几个欧洲供应商:英国、瑞士等。

顺磁式氧分析仪:顺磁式氧分析仪:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。

顺磁式氧分析仪,也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。

它一般分为热磁对流式、压力机械式和磁压力式氧分析仪三种。

物质的磁特性:任何物质在外界磁场的作用下都会被磁化,呈现出一定的磁特性。

氧氮氢分析仪的特点与原理介绍

氧氮氢分析仪的特点与原理介绍

氧氮氢分析仪的特点与原理介绍氧氮氢分析仪是一种常见的分析仪器,主要用于测定各种材料中的氧、氮、氢等元素的含量。

在化工、制药、材料科学、食品安全等领域都有广泛的应用。

本文将介绍氧氮氢分析仪的特点与原理。

特点精度高氧氮氢分析仪的精度很高,可以达到很高的检测精度和测量范围。

该仪器可以在不同的温度、压力条件下测量样品中的氧、氮、氢元素含量,并且测量结果准确可靠。

高灵敏度氧氮氢分析仪的高灵敏度使其可以检测到很小的含量变化。

对于需要在很小的含量范围内进行测量的样品,这种分析仪是理想的选择。

易于操作氧氮氢分析仪的操作简单,不需要繁琐的前期准备或特殊的技能。

通过简单地设置参数,输入样品数据和处理结果,就可以得到非常准确的结果。

多功能性氧氮氢分析仪除了可以测量样品中的氧、氮、氢含量外,还可以根据需要测量其他元素的含量。

因此,氧氮氢分析仪是一种非常多功能的分析仪器。

原理氧氮氢分析仪通过热导效应来测量样品中的氢含量。

当样品加热到一定温度时,氢会从样品中被释放出来,并在热导管中探测到热损失信号。

因此,热导管的信号量取决于样品中氢的含量。

对于样品中的氧和氮,氧氮氢分析仪采用化学计量学原理进行测量。

在燃烧器中将样品加热,并将样品中的氧氮元素与焰火中的氧进行化学反应,生成氧化物和氮氧化物。

然后通过化学计量学方法计算出样品中氧、氮的含量。

需要注意的是,不同的氧氮氢分析仪在原理上可能会有差异,其测量精度和范围也会有所不同。

因此,在选择氧氮氢分析仪时,需要根据具体的实验需求选择适合自己的仪器。

结论综上所述,氧氮氢分析仪具有精度高、高灵敏度、易于操作和多功能性等特点,并且通过热导效应和化学计量学原理来测量样品中的氧、氮、氢的含量。

在化工、制药、材料科学、食品安全等领域有广泛的应用。

氧氮氢分析仪原理

氧氮氢分析仪原理

氧氮氢分析仪原理氧氮氢分析仪是一种用于测量样品中氧氮氢含量的仪器,它在化工、环保、食品、制药等领域具有广泛的应用。

氧氮氢分析仪的原理是基于样品中氧氮氢元素的化学性质和物理性质进行测定的。

下面将对氧氮氢分析仪的原理进行详细介绍。

首先,氧氮氢分析仪通过化学反应将样品中的氧氮氢元素转化为可测量的化合物。

例如,氧氮氢分析仪可以利用还原剂将样品中的氧气还原为水,然后通过测定水的含量来确定样品中的氧气含量。

类似地,氧氮氢分析仪也可以利用氧化剂将样品中的氢气氧化为水,再测定水的含量来确定样品中的氢气含量。

通过这种化学反应,氧氮氢分析仪可以准确地测定样品中的氧氮氢含量。

其次,氧氮氢分析仪还可以利用物理性质来测定样品中的氧氮氢含量。

例如,氧氮氢分析仪可以利用气相色谱法来分离和测定样品中的氧氮氢元素。

在气相色谱法中,样品先被蒸发成气体,然后通过填充在色谱柱中的吸附剂将氧氮氢元素分离出来,最后通过检测器来测定各个元素的含量。

通过这种物理性质的测定方法,氧氮氢分析仪可以快速、准确地测定样品中的氧氮氢含量。

最后,氧氮氢分析仪还可以利用光谱法来测定样品中的氧氮氢含量。

光谱法是一种利用样品对光的吸收、发射、散射等光学性质来测定样品成分和含量的方法。

例如,氧氮氢分析仪可以利用紫外-可见光谱法来测定样品中的氧氮氢元素。

通过测定样品对不同波长光的吸收情况,氧氮氢分析仪可以确定样品中氧氮氢元素的含量。

光谱法具有快速、准确的特点,适用于各种类型的样品。

综上所述,氧氮氢分析仪的原理是基于化学反应、物理性质和光谱法来测定样品中的氧氮氢含量。

通过这些原理,氧氮氢分析仪可以快速、准确地测定样品中的氧氮氢含量,为各行业的生产和检测提供了重要的技术支持。

希望本文对氧氮氢分析仪的原理有所帮助,谢谢阅读。

氮氧化物检测分析仪检测原理

氮氧化物检测分析仪检测原理

氮氧化物检测分析仪检测原理氮氧化物指的是只由氮、氧两种元素组成的化合物,包括多种化合物,如一氧化二氮(N2O)、一氧化氮(NO)、二氧化氮(NO2)、三氧化二氮(N2O3)、四氧化二dan(N2O4)和五氧化二氮(N2O5)等。

氮氧化物对人体有不同程度的危害,长期吸入会导致脑部麻痹、手脚wei缩等,大量吸入会引起中枢神经麻痹,还会造成记忆丧失、四肢瘫痪甚至死亡等后果。

氮氧化合物检测仪是一种用于检测氮氧化合物气体泄漏或浓度的仪器仪表工具,它可以根据同环境选择匹配不同的参数,目前市面上有物理方法或电化学方法两种,其电化学原理是利用气体传感器来检测环境中存在的氮氧化合物气体,通过电流信号转化成可读数据并可进行输出或编辑。

像在一些水体污染检测过程中,都不少了氮氧化物分析仪的应用。

因为氮氧化物监测是污染预警、污染物监测和治理效果评定等工作的重要方式,因此,我们通过使用氮氧化物分析仪进行检测,能更有效地保证检测后的效果,真正实现对氮氧化物排放的有效监控,降低事故发生,从而在污染预警、污染物监测和治理效果评定等工作发挥出真正的作用。

氮氧化物检测分析仪检测原理:氮氧化物检测分析仪的关键部件是气体传感器。

气体传感器从原理上可以分为三大类:1、利用物理化学性质的气体传感器:如半导体式(表面控制型、体积控制型、表面电位型)、催化燃烧式、固体热导式等。

2、利用物理性质的气体传感器:如热传导式、光干涉式、红外吸收式等。

3、利用电化学性质的气体传感器:如定电位电解式、迦伐尼电池式、隔膜离子电极式、固定电解质式等。

氮氧化物监测是污染预警、污染物监测和治理效果评定等工作的重要方式,需要氮氧化物监测分析仪提供精确和实时的监测数据。

因此,目前在石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、自来水厂、医药车间、烟草公司、大气环境监测、科研院校、楼宇建设、消防报警、污水处理、工业过程化控制、锅炉房、垃圾处理厂、地下隧道、输油管道、加气站、地下管网检修、室内空气质量检测、食品加工、杀菌消毒、冷冻仓库、农药化肥、杀虫剂生产等领域,均需要应用到氮氧化物监测分析仪。

氧氮氢分析仪的测量介绍

氧氮氢分析仪的测量介绍

氧氮氢分析仪的测量介绍氧氮氢分析仪是一种用于测定气态样品中氧、氢和氮含量的仪器。

在许多应用领域,如冶金、化学、环境科学和汽车工业中,对这些元素的测量具有重要意义。

本文将介绍氧氮氢分析仪的主要测量原理和使用方法。

测量原理氧氮氢分析仪使用热导气体分析 (TCD) 技术来测量样品氦气和氮气的比例,以及吸收氧气所产生的氢气的量。

TCD 是一种广泛使用的气体分析技术,可以对多种气体进行测量。

在氧氮氢分析仪中,TCD 的检测器通常被放置在样品气体通过的一个小管道中。

当样品气体通过检测器时,它们会与其中的热导体产生热交换。

不同的气体对热交换的影响不同。

一般来说,氦气对热的传递相对不敏感,而氮气可以带走更多的热量。

因此,在一个氦和氮的混合气体中,氮气将导致热导器温度的下降。

而当氧气存在时,它会与氢发生反应并产生水。

这将导致更多的热量被带走,因此检测器的温度降低更多。

检测器上的温度变化可以通过一个电子电路来测量。

由于不同种类的气体会导致不同的温度变化,因此可以通过测量检测器的信号来确定样品中各种气体的含量。

使用方法使用氧氮氢分析仪的流程通常如下:1.准备样品气体。

将待测样品气体通过一个恒定的流量计送入氧氮氢分析仪的进样口。

为了减少气体在进样管道和检测器中的停留时间,较高的流量通常是更好的选择。

2.校准仪器。

对于没有自动校准功能的氧氮氢分析仪,需要定期进行手动校准。

这通常是通过使用已知氧、氮和氢浓度的标准气体来完成的。

在进行校准时,需要根据不同的使用方法来调整仪器的各项参数。

3.进行测量。

在样品气体通过检测器之前,需要使用一个流量计来调节样品的流量。

对于不同的气体零件,要根据需要进行调整。

如果需要多次测量同一样品气体,可以通过重新校准仪器来提高结果的准确性。

4.记录测量结果。

将测量得到的含氧、氮和氢气体分别记录下来。

如果需要多次测量,则将这些结果的平均值作为最终结果。

氧氮氢分析仪的使用方法相对简单,但需要对仪器的使用细节有所了解。

氧氮氢分析仪的测量介绍

氧氮氢分析仪的测量介绍

氧氮氢分析仪的测量介绍氧氮氢分析仪是一种用于测量样品中氧、氮、氢元素含量的仪器设备。

它的应用范围涵盖了许多领域,比如材料科学、化学工业、能源研究等。

本文将就氧氮氢分析仪的测量方法以及注意事项等进行详细介绍。

氧氮氢分析仪的原理氧氮氢分析仪通过氧化还原反应对样品中的氧、氮、氢元素进行测量。

它通常使用的是元素分析法,配合燃烧分析或者蓝紫外分析等技术,通过样品的燃烧或者化学反应来实现元素含量的分析。

氧氮氢分析仪的测量方法氧浓度的测量方法氧浓度的测量方法通常使用燃烧分析,燃烧分析中,样品进行燃烧,产生二氧化碳和水,经过分析装置的处理后,计算出样品中氧的含量。

这个过程中需要注意控制燃烧的温度和氧气的流量,以保证测试结果的准确性。

氮浓度的测量方法氮浓度的测量方法主要有两种,一种是氮化学反应,另一种是燃烧分析。

氮化学反应中,氮化还原反应的产物与已知浓度的标准液进行比色分析,根据反应液的吸光度值计算出样品中氮的含量。

燃烧分析中,则要先将样品进行燃烧,然后将产生的氮氧化为硝酸根离子,最后根据硝酸根离子的浓度进行计算得出样品中的氮含量。

氢浓度的测量方法氢浓度的测量方法也有两种,一种是电导法,另一种是蓝紫外法。

电导法基于样品的离子含量和电导率的关系来测量样品中的氢含量,蓝紫外法则是先将样品与钼酸溶液进行反应,形成五氧化二钒络合物,然后通过紫外吸收光谱来分析并计算出样品中氢的含量。

注意事项在进行氧氮氢分析仪的测量前,需要注意以下几点:•样品需要彻底通风干燥或是高温烘干,以避免带入大量的氧、氮、氢。

•在使用燃烧分析时需要注意必须先进行前燃法,以排除样品中吸附在碳元素上的氮。

•测量样品的质量必须保持一致,避免质量不同对分析结果的影响。

结语本文主要介绍了氧氮氢分析仪的测量方法,了解这些测量方法有助于我们更好地使用这种仪器,得出更准确的实验结果。

当然,在实际操作中还需要根据不同的实验需求和样品特性,选择合适的测量方法和注意事项,以及进行相应的实验控制。

一氧化氮分析仪的原理

一氧化氮分析仪的原理

一氧化氮分析仪的原理一氧化氮(NO)分析仪是一种用于测量环境中一氧化氮浓度的仪器。

它的原理基于化学反应和光学测量技术。

一氧化氮分析仪的常用原理包括化学法和光学法。

化学法是指利用一氧化氮与其他化学物质发生特定的化学反应,并通过测量反应产物的浓度来间接测量一氧化氮浓度。

例如,常用的化学法原理之一是Griess试剂法。

该方法利用Griess试剂与一氧化氮在酸性条件下反应生成具有颜色的物质。

通过测量生成物的吸光度,可以间接测量一氧化氮浓度。

这种方法适用于液体和气体样品的分析。

另一种化学法原理是化学吸收法。

该方法利用一氧化氮与其他化学试剂(例如臭氧)在溶液中反应生成特定产物,然后通过测量产物的浓度来测量一氧化氮的浓度。

这种方法常用于液体样品的分析。

除了化学法,光学法也是一种常用的一氧化氮分析原理。

光学法利用一氧化氮对特定波长的光的吸收特性进行测量,从而直接测量一氧化氮的浓度。

其中,一种常用的光学法是基于紫外分光光度法的原理。

在这种方法中,一氧化氮吸收紫外光(通常是在200-400纳米的波长范围内)的特定波长,而其他气体和物质则吸收不同波长的光。

通过测量样品中特定波长的光的吸光度,可以直接测量一氧化氮的浓度。

此外,激光吸收光谱法也是一种常用的光学法原理。

这种方法利用一氧化氮对特定激光波长的吸收,并测量吸收光强从而确定一氧化氮的浓度。

激光光源可以选择不同的波长和强度以适应不同的应用需求。

无论是化学法还是光学法,一氧化氮分析仪通常还包括一种样品获取装置(例如进样器或采样器)、一种气体流动系统(用于传送样品)以及一个检测系统(用于测量样品的特定性质)。

检测系统可以是光学传感器、色谱柱或其他类型的测量装置,其目的是捕获和测量一氧化氮的浓度。

综上所述,一氧化氮分析仪的原理基于化学反应和光学测量技术。

化学法通过测量反应产物的浓度来间接测量一氧化氮浓度,而光学法通过测量一氧化氮对特定波长光的吸收特性直接测量一氧化氮的浓度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仪器名称:脉冲红外热导氧氮分析仪
仪器型号:ON-3000
制造商:北京纳克分析仪器有限公司
原产地:中国
仪器简介:适用于冶金、机械、科研、化工及商检质检等各行业黑色、有色、陶瓷、稀土及磁性材料中的氧氮元素含量的准确测定。

测定范围:氧0.1-2000ppm;氮0.1-5000ppm,分析时间:每样3min。

仪器具有大功率(8kw)惰性气体保护电极炉,炉温高达3500℃强劲的4步脱气功能,分析精度O、N均为0.2ppm。

纳克ON3000氧氮分析仪是为快速、准确测定铜、钢、铸铁、合金、锆、钛、钼、镍、陶瓷和其它无机材料中氧、氮的含量而专门设计制造的。

氧氮分析仪工作原理
氧氮分析仪能够在惰性气氛下,通过脉冲加热分解试样,由分非分解红外检测器和热导检测器分别测定各种钢铁、有色金属和新型材料中氧、氮的含量。

该仪器配置有两个独立的分别检测高氧和低氧的红外检测池。

氮则是通过双重范围的热导池测量。

样品在高功率脉冲炉的石墨坩埚中加热可达3000℃以上高温,脉冲炉采用循环冷却水。

ON-3000氧氮分析仪具有灵敏度高、性能好、测量范围宽和分析结果准确可靠等优点。

分析过程是采用脉冲加热预先放入石墨坩祸中的试样,本法用脉冲炉作热源,试样在助熔剂的作用下,使其于高温下熔融,释放出的CO、N2及H2等混合气体经400℃的稀土氧化铜
生成CO2、N2及H2O,由高纯氦载人红外吸收池中,测出氧的百分含量后(也就是说O和石墨反应生成了CO),CO2和H2O分别被碱石棉及过氯酸镁吸收,再经色谱分离,导人电
导池加以检测,氮用热导法测定。

金属中氧的测定一般采用脉冲加热-库仑滴定法和脉冲加热气相色谱法
氮的测定则采用凯氏滴定法或脉冲加热气相色谱法
氮氧的分析原理系统高温抽取试样中的氮和氧,氧转化为一氧化碳,用红外光谱测定,氮气用热导池检测。

当大电流加在试样后,采焦耳热后快速加温,在OUT—GAS阶段对坩锅和助熔剂进行除气处理,然后再加大电流升温,进行试样中氮氧的抽取。

氧气以一氧化碳的形式抽取出来,经过红外光谱检测(NDIR)得到氧浓度,然后再用氧化铜除去一氧化碳和氢气,最后用热导池检测得到氮的含量。

两个工作过程:脱气过程和熔融释放过程。

热传导法测量气体浓度原理:
热传导式气敏材料依据不同可燃性气体的导热系数与空气的差异来测定气体的浓度,通常利用电路将导热系数的差异转化为电阻的变化。

传统的检测方法是将待测气体送人气室,气室中央是热敏元件如热敏电阻、铂丝或钨丝(如图1 所示),对热敏元件加热到一定温度,
图1 热导气体检测装置示意图
当待测气体的导热系数较高时,将使热量更容易从热敏元件上散发,使其电阻减小,变化的电阻经过信号调理与转换电路(能把传感元件输出的电信号转换为便于显示、记录和控制的有用信号的电路),这里由惠斯登电桥来转换成不平衡电压输出,输出电压的变化反映了被测气体导热系数的变化,从而就实现了对气体浓度的检测。

传统的检测方法中采用恒定的电流源给传感器热丝供电,就无法保持传感器温度恒定。

要保持温度恒定就必须在传感器的温度随气体浓度(即气体热导系数)变化时,改变传感器的工作电流(采用可变电流源),利用电流的热效应确保传感器的温度不变。

只要做到这一点,热导式气体传感器在气体检测应用中的缺陷可以从根本上得以克服。

就可以利用传感器工作电流的变化与被测气体导热系数的关系实现对气体浓度的检测。

相关文档
最新文档