2013年中考数学专题二 分类讨论思想复习题及答案
中考数学复习专题-开放性问题(含详细参考答案)
中考数学复习专题-开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。
810360专题:开放型。
分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。
2013年浙江省宁波地区中考数学复习专题讲座六:数学思想方法(二)(含详细参考答案)
2013年中考数学复习专题讲座六:数学思想方法(二)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点四:方程思想从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
这种思想在代数、几何及生活实际中有着广泛的应用。
例1 (2012•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?考点:一元二次方程的应用。
专题:增长率问题。
分析:(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为 5000(1+x)万人次,2011年公民出境旅游总人数 5000(1+x)2 万人次.根据题意得方程求解;(2)2012年我国公民出境旅游总人数约7200(1+x)万人次.解答:解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000(1+x)2 =7200.解得 x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为 7200(1+x)=7200×120%=8640万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。
中考数学专题复习《圆中的分类讨论、存在性问题》测试卷(附带答案)
中考数学专题复习《圆中的分类讨论 存在性问题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 点A B C 是O 上的三个点 若76AOB ∠=︒ 则C ∠的度数是( )A .76︒B .38︒C .24︒D .33︒2.如图 ⊙O 是ABC 的内切圆 点D E 分别为边AB AC 、上的点 且DE 为⊙O 的切线 若ABC 的周长为25 BC 的长是9 则ADE 的周长是( )A .7B .8C .9D .163.如图 若O 是ABC 的内切圆 且50A ∠=︒ 则BOC ∠的度数为( )A .100︒B .105︒C .115︒D .130︒4.同一个圆的内角正三角形 正方形 正六边形的边心距的比为( )A .23B 32C .1:2:3D .3:2:15.如图 四边形ABCD 内接于O 若它的一个外角6568DCE ABC ∠=︒∠=︒, 则A ∠的度数为( )A .112︒B .68︒C .65︒D .52︒6.如图 线段AB 为O 的直径 点C 在AB 的延长线上 4AB = 2BC = 点P 是O 上一动点 连接CP 以CP 为斜边在PC 的上方作Rt PCD 且使60DCP ∠=︒ 连接OD 则OD 长的最大值为( )A B .C .1 D .4二 填空题7.已知O 的半径为3 且A B 是O 上不同的两点 则弦AB 的范围是 . 8.一个圆锥的轴截面平行于投影面 圆锥的正投影是边长为2的等边三角形 那这个圆锥的表面积是 .9.如图 四边形ABCD 内接于O AB 是O 的直径 过C 点的切线与AB 的延长线交于P 点.若40CPA ∠︒= 则ADC ∠的度数为 .10.如图 已知ABC 内接于O BC 是O 的直径 AD 平分BAC ∠ 交O 于D 若4BC = 则CD 的长为 .11.如图 在等腰直角三角形ABC 中 90BAC ∠=︒ 4AB AC == 点D 是AC 边上一动点 连结BD 以AD 为直径的圆交BD 于点E 则CE 长度的最小值是 .12.如图 在ABC 中 90C ∠=︒ 3AC = 4BC = 则ABC 的内切圆半径r = .三 解答题13.如图 在O 中 AB AC = 120A ∠=︒ 求ABC ∠的度数.14.如图 在O 中 D E 分别为半径OA OB 、上的点 且AD BE =.C 为弧AB 上一点 连接CD CE CO 、、 且CD CE =.求证:C 为 AB 的中点.15.如图 O 的半径OD ⊥弦AB 于点C 连接AO 并延长交O 于点E 连接EC .若82AB CD ==,,求EC 的长.16.如图 AB 是O 的直径 点C 是劣弧BD 中点 AC 与BD 相交于点E .连接BC BCF BAC ∠=∠ CF 与AB 的延长线相交于点F .(1)求证:CF 是O 的切线(2)求证:ACD F ∠=∠(3)若10AB = 6BC = 请直接写出AD =_____. 17.如图 AB 是O 的直径 AC 是O 的弦 2AB = 30BAC ∠=︒.在图中作弦AD 使1AD = 并求CAD ∠的度数.18.如图 在平面直角坐标系中 O 为坐标原点 点A B 的坐标分别为()()8006,、,.动点Q 从点O 动点P 从点A 同时出发 分别沿着OA 方向 AB 方向均以1个单位长度/秒的速度匀速运动 运动时间为()()s 05t t <≤.以点P 为圆心 PA 长为半径的P 与AB OA的另一个交点分别为C D 连接CD QC 、.(1)求t 为何值时 点Q 与点D 重合(2)若P 与线段QC 只有一个公共点 请直接写出t 的取值范围. 参考答案: 1.B2.A3.C4.A5.C6.C7.06AB <≤8.3π9.115︒/115度10.211.252/225-+12.113.30︒15.1316.(3)145.17.CAD ∠的度数为30︒或90︒18.(1)4013t =时 点Q 与点D 重合 (2)0167t <≤或40513t <≤。
中考数学复习题方法技巧专题二分类讨论思想训练(含答案)
方法技巧专题 ( 二) 分类议论思想训练【方法解读】 当数学识题中的某一条件模糊而不确准时 , 需要对这一条件进行分类议论, 而后逐个解决 . 常有的分类议论有观点的分类、解题方法的分类和图形地点关系的分类等.1. 点 A , B , C 在☉ O 上 , ∠ AOB=100°, 点 C 不与 A , B 重合 , 则∠ ACB 的度数为 ( )A . 50°B . 80°或 50°C . 130°D . 50°或 130°2 [2018 ·山西威望展望 ] 已知一等腰三角形的两边长 , y 知足方程则此等腰三角形的周长为().xA .5B .4C .3D .5或 43. [2018 ·枣庄 ] 如图 F2- 1 是由 8 个全等的矩形构成的大正方形 , 线段 AB 的端点都在小矩形的极点上 , 假如点 P 是某个小矩形的极点 , 连接 PA , PB , 那么使△ ABP 为等腰直角三角形的点 P 有 ()图 F2-1A .2个B .3个C .4个D .5个4 [2018 ·鄂州 ] 如图 F2 2, 已知矩形 中 ,4 cm,8 cm, 动点P 在边上从点B 向点C 运动 , 速度为 1 cm/s,.-ABCD AB= BC=BC同时动点从点C 出发 , 沿折线→ →A 运动 , 速度为 2 cm/s 当一个点抵达终点时 , 另一个点随之停止运动.设点P 运动QC D.时间为t (s), △的面积为(cm 2), 则描绘 (cm 2) 与时间 t (s) 的函数关系的图象大概是()BPQ SS图 F2-2图 F2-35. [2018 ·聊城 ]假如一个正方形被截掉一个角后, 获得一个多边形, 那么这个多边形的内角和是.6. [2018 ·安徽 ]矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,知足△ PBE∽△ DBC,若△ APD是等腰三角形 , 则PE的长为.7.如图 F2- 4, 已知点A(1,2)是反比率函数y= 图象上的一点,连接 AO并延伸交双曲线的另一分支于点B,点 P 是 x 轴上一动点 , 若△是等腰三角形 , 则点P 的坐标是.PAB图 F2-48. [2017 ·齐齐哈尔 ]如图F2-5,在等腰三角形纸片ABC中, AB=AC=10, BC=12,沿底边 BC上的高 AD剪成两个三角形, 用这两个三角形拼成平行四边形, 则这个平行四边形较长的对角线的长是.图 F2-59 [2017 ·义乌 ] 如图 F2 6, ∠45°, 点,在边上 ,,4, 点P 是边上的点 , 若使, , 构成等腰三角.-AOB=M N OA OM=xON=x+OB P M N 形的点 P 恰巧有3个 , 则x的值是.图 F2-6参照答案1. D2. A [ 分析 ]解方程组得当2作为腰长时,等腰三角形的周长为5; 当 1 作为腰长时 , 由于 1+1=2, 不知足三角形的三边关系 . 故等腰三角形的周长为5.3. B [ 分析 ]以下列图,设每个小矩形的长与宽分别为x, y,则有2x=x+2y,进而 x=2y. 由于线段 AB是长与宽为2∶1的矩形对角线 , 所以依据网格作垂线可知, 过点B与AB垂直且相等的线段有BP1和 BP2,过点 A 与 AB垂直且相等的线段有AP3,且 P1, P2, P3都在极点上,所以知足题意的点P 共有3个 . 应选B.4. A [ 分析 ]由题意可知,0≤ t≤4,当0≤ t<2时,以下列图,S= BP· CQ=t· 2t=t2;当 t= 2时,以下列图,点 Q与点 D重合,则 BP=2, CQ=4,故 S= BP· CQ=×2×4=4;当 2<t≤ 6 时 , 以下列图 , 点Q在AD上运动 , S= BP·CD=t· 4=2t.应选 A.5. 180°或 360°或 540°[ 分析 ]如图,一个正方形被截掉一个角后, 可能获得以下的多边形:∴这个多边形的内角和是180°或 360°或 540°.6. 3 或[ 分析 ]由题意知,点P在线段BD上.(1)如图,若PD=PA,则点P在AD的垂直均分线上, 故点P为BD 的中点 , PE⊥BC,故 PE∥ CD,故 PE=DC=3.(2) 如图 , 若DA=DP,则DP=8, 在 Rt△BCD中 , BD==10,∴ BP=BD-DP=2.∵△ PBE∽△ DBC,∴ == ,∴ PE=CD=.综上所述 , PE的长为 3 或.7(-5,0) 或 (-3,0) 或 (3,0)或 (5,0).8.10或4或2[ 分析]在△ABC中,∵AB=AC=10,BC=12,底边BC 上的高是AD,∴∠ADB=∠90°,12 6,∴AD=8ADC=BD=CD=BC=×== .∴用这两个三角形拼成平行四边形, 能够分三种状况 :(1)依据如图的方法拼成平行四边形, 则这个平行四边形较长的对角线的长是10.(2)依据如图的方法拼成平行四边形, 则这个平行四边形较长的对角线的长是=4.(3) 依据如图的方法拼成平行四边形, 则这个平行四边形较长的对角线的长是=2.综上所述 , 这个平行四边形较长的对角线的长是10或4或 2.9.x= 0 或x=4- 4或4<x<4[ 分析 ]依据OM=x,ON=x+4,可知MN=4.作MN的垂直均分线, 该线与射线OB一直有一个公共点 , 分别以点M, N为圆心 ,4 为半径画圆 , 察看两圆与射线OB的交点状况:(1) 当☉N与射线OB没有公共点 , ☉M与射线OB有两个公共点时, 知足题意 , 如图① , 此时 4<x<4.(2) 当☉N与射线OB相切 , 只有一个公共点时, ☉M与射线OB也只有一个公共点时, 也知足题意 , 如图② , 此时x=4- 4;(3)当☉ N与射线 OB有两个公共点时,此时☉ M与射线 OB只有一个公共点,所以当☉ N与射线 OB有两个公共点时,一定出现不可以与点 M, N构成三角形的一个点,也能知足题意,如图③,此时 x=0.。
2013年杭州市中考数学试题及答案(解析版)
2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP 逐年增长.解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C.2010年杭州市的GDP超过到5500亿元,故此选项错误;D.2008~2012年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于() A.B.C.D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④ B.错误的命题是②③④C.正确的命题是①② D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2013杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低考点:算术平均数.分析:先算出2011年的平均最低录取分数线和2012年的平均最低录取分数线,再进行相减即可.解答:解:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(2013杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x ﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(2013杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(2013杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,22.已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(2013杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。
中考数学专题复习教学案--分类讨论题(附答案)
分类讨论题类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.例1.(·沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50° B.80° C.65°或50°D.50°或80°【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。
故顶角可能是50°或80°.答案:D .同步测试:1.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm2. (·江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A 落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.例2.(•湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心, r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __.【解析】圆与斜边AB只有一个公共点有两种情况,1、圆与AB相切,此时r=2.4;2、圆与线段相交,点A在圆的内部,点B在圆的外部或在圆上,此时3<r≤4。
2013年中考数学二轮专题复习(专题六 运动问题)
专 题 解 读
专 题 突 破
课 时 跟 踪 检 测
4 3 -1, 时,△MCK 3
为等腰三角形.
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
课 时 跟 踪 检 测
课 时 跟 踪 检 测
专 题 突 破
上 页
下 页
返 回
课 时 跟 踪 检 测
专 题 突 破
2,∠CKD=30°,易知△KDC 为等腰 三角形.
上 页
下 页
返 回
步步高中考简易通
∴当 l2 过抛物线顶点 D 时, 符合题意, 4 3 . 此时点 M2 坐标为-1, 3
(iii)当点 M 在抛物线对称轴右边时, 只有点 M 与点 A 重合时,满足 CM=CK, 但点 A、C、K 在同一直线上,不能构成三角 形.
课 时 跟 踪 检 测
专 题 突 破
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
如图3,若PQ⊥AC,过Q点作
QG∥AC,
则QG⊥PG,即∠GQP=90°. ∴∠QPB>90°,这与△QPB的内
课 时 跟 踪 检 测
专 题 突 破
角和为180°矛盾, 此时PQ不与AC垂直. 4 综上所述,当 t= 时,有 PQ⊥AC. 3
下 页
返 回
步步高中考简易通
专 题 解 读
一、点的运动问题
这类问题就是在三角形、特殊的四边形等一些图形 上,设计一个动点或几个动点,探究这些点在运动
课 时 跟 踪 检 测
专 题 突 破
变化过程中伴随着的变化规律,如等量关系、变量
浙教版数学2013年中考第二轮专题复习针对性强化训练--开放性问题答案
浙教版数学2013年中考第二轮专题复习针对性强化训练——开放性问题答案1.解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.2.证明:∵AB∥CD,∴∠A=∠D,∵在△ABF和△DCE中,∴△ABF≌△DCE,∴CE=BF,∠AFB=∠DEC,∴CE∥BF,即CE和BF的数量关系是CE=BF,位置关系是CE∥BF.点评:本题考查了全等三角形的性质和判定,平行线的性质和判定,主要考查学生运用性质进行推理的能力.3.解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD.点评:此题考查了全等三角形的判定与性质,平行线的性质,利用了转化的数学思想,熟练掌握全等三角形的判定与性质是解本题的关键.4.解:本题答案不唯一,下列解法供参考.①该函数图象表示小明骑车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系.②小明以400m/min的速度匀速骑了5min,在原地休息了6min,然后以500m/min的速度匀速骑车回出发地.点评:对于此类编制开放型问题,是一类新型的开放型问题,它要求学生的思维较发散,写出符合题意的正确答案即可,难度要求不大,但学生容易犯想当然的错误,叙述不够准确,如单位的问题、符合实际等要求,在解题中应该注意防范..5.解:“上加下减”的原则可知该函数的解析式可以是:y=﹣6x+1(答案不唯一).故答案为:y=﹣6x+1(答案不唯一).点评:本题考查了一次函数的性质,只要比例系数k相同,则直线平行,保证k不变的条件下,b的正负决定平移的方向.6.解:答案不唯一,如x2﹣3=x2﹣()2=(x+)(x﹣).故可填x2﹣3.点评:此题考查在实数范围内分解因式,属开放型试题,比较简单.7.解:此题答案不唯一,如:,,①+②得:2x=4,解得:x=2,将x=2代入①得:y=﹣1,∴一个二元一次方程组的解为:.故答案为:此题答案不唯一,如:.点评:本题主要考查了二元一次方程组的解的定义.此题属于开放题,注意正确理解定义是解题的关键.8.解:∵反比例函数y=的图象在每一个象限内,y随x的增大而增大,∴k﹣2<0,解得k<2.∴k可以为:1(答案不唯一).故答案为:1(答案不唯一).点评:本题考查的是反比例函数的性质,根据题意得出关于k的不等式,求出k的取值范围是解答此题的关键.9.解:设反比例函数的解析式为:y=,∵一次函数y=﹣2x+6与反比例函数y=图象无公共点,则,∴﹣2x2﹣6x﹣k=0,即△=(﹣6)2﹣8k<0解得k>,则这个反比例函数的表达式是y=;故答案为:y=.点评:此题考查了反比例函数与一次函数的交点问题.解题的关键是:两个函数在同一直角坐标系中的图象无公共点,其k要满足﹣2x2﹣6x﹣k=0,△<0.10.解:设此函数的解析式为y=(k>0),∵此函数经过点(1,1),∴k=1,∴答案可以为:y=(答案不唯一).故答案为:y=(答案不唯一).点评:本题考查的是反比例函数的性质,此题属开放性题目,答案不唯一.11.解:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD,或∠AED=∠AFD等;理由是:①∵AB=AC,∴∠B=∠C,根据ASA证出△BED≌△CFD,即可得出DE=DF;②由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;③由∠BED=∠CFD,∠BDE=∠CDF,BD=DC,根据AAS证出△BED≌△CFD,即可得出DE=DF;④∵∠AED=∠AFD,∠AED=∠B+∠BDE,∠AFD=∠C+∠CDF,又∵∠BDE=∠CDF,∴∠B=∠C,即由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;故答案为:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD.点评:本题考查了全等三角形的判定,题目具有一定的代表性,是一道比较好的题目.12.解:添加的条件是∠A=90°,理由是:∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°.点评:本题考查了平行四边形的判定和矩形的判定的应用,能熟练地运用判定定理进行推理是解此题的关键,此题是一道比较好的题目.13.解:原式=×+1=+1∵a≠0,a≠±2,∴a可以等于1,当a=1时,原式=1+1=2.点评:本题考查的是分式的化简求值,在解答此题时要注意a不能取0、2、﹣2.14.解:(1)∵情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,此时只有③返回,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,∴只有①符合,故答案为:③,①.(2)情境是小芳离开家不久,休息了一会儿,又走回了家.点评:主要考查学生的观察图象的能力,同时也考查了学生的叙述能力,用了数形结合思想,题型比较好,但是一道比较容易出错的题目.15.解:猜想:AE=CF.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.点评:此题考查了平行四边形的性质与全等三角形的判定与性质.此题比较简单,注意掌握平行四边形的对边平行且相等,注意数形结合思想的应用.16.证明:(1)∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∵E是线段AC的中点,∴∠CBE=∠ABC=30°,AE=CE,∵AE=CF,∴CE=CF,∴∠F=∠CEF,∵∠F+∠CEF=∠ACB=60°,∴∠F=30°,∴∠CBE=∠F,∴BE=EF;(2)图2:BE=EF.图3:BE=EF.图2证明如下:过点E作EG∥BC,交AB于点G,∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE,∴BG=CE,又∵CF=AE,∴GE=CF,又∵∠BGE=∠ECF=120°,∴△BGE≌△ECF(SAS),∴BE=EF;图3证明如下:过点E作EG∥BC交AB延长线于点G,∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE,∴BG=CE,又∵CF=AE,∴GE=CF,又∵∠BGE=∠ECF=60°,∴△BGE≌△ECF(SAS),∴BE=EF.点评:本题考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定与性质,作出辅助线,利用等边三角形的性质找出全等的条件是解题的关键.17.解:(1)AB=AC;∠AED=∠ADC;△ADE∽△ACD;(2)①∵∠B=∠C,∠B=45°,∴△ACB为等腰直角三角形,∴AC=BC=×2=,∵∠1=∠C,∠DAE=∠CAD,∴△ADE∽△ACD,∴AD:AC=AE:AD,即AD2=AE•AC,∴AE===•AD2,当AD最小时,AE最小,此时AD⊥BC,AD=BC=1,∴AE的最小值为×12=,∴CE的最大值=﹣=;②当AD=AE时,∴∠1=∠AED=45°,∴∠DAE=90°,∴点D与B重合,不合题意舍去;当EA=ED时,如图1,∴∠EAD=∠1=45°,∴AD平分∠BAC,∴AD垂直平分BC,∴BD=1;当DA=DE时,如图2,∵△ADE∽△ACD,∴DA:AC=DE:DC,∴DC=CA=,∴BD=BC﹣DC=2﹣,∴当△ADE是等腰三角形时,BD的长的长为1或2﹣.点评:本题考查了相似形综合题:运用相似比进行线段的计算;熟练掌握等腰直角三角形的性质;学会运用分类讨论的思想解决数学问题.。
课标版数学中考第二轮专题复习-分类讨论型试题(含答案
分类讨论型问题探究分类思想是解题的一种常用思想方法,它有利于培养和发展学生思维的条理性、缜密性、灵活性,使学生学会完整地考虑问题、化整为零地解决问题,学生只有掌握了分类的思想方法,在解题中才不会出现漏解的情况.例1(2005年黑龙江) 王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计),请你计算这块等腰三角形菜地的面积.分析:本题是无附图的几何试题,在此情况下一般要考虑多种情况的出现,需要对题目进行分情况讨论。
分类思想在中考解题中有着广泛的应用,我们在解题中应仔细分析题意,挖掘题目的题设,结论中可能出现的不同的情况,然后采用分类的思想加以解决. 解:(1)当等腰三角形为锐角三角形时(如图1),由勾股定理得AE =25(m )由DE ∥FC 得,FCEDAC AE =,得FC =24(m ) S △ABC =12 ³40³24=480(m 2)(2)当等腰三角形为钝角三角形时(如图2)同理可得,S △ABC =1264³24=768(m 2)说明:本题主要考查勾股定理、相似三角形的判定及性质等内容。
练习一 1、(2005年资阳市)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( )A.2a b + B.2a b - C.2a b +或2a b - D. a+b 或a-b2.(2005年杭州)在右图的几何体中, 上下底面都是平行四边形, 各个侧面都是梯形, 那么图中和下底面平行的直线有( )(A) 1条 (B) 2条 (C) 4条 (D) 8条3(2005年潍坊市)已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径是( ).A .5cmB .11cmC .3cmD .5cm 或11cm图1图2A4.(2005年北京)在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ²,则∠BCA的度数为____________。
浙教版数学2013年中考第二轮专题复习针对性强化训练--数学思想方法答案
浙教版数学2013年中考第二轮专题复习针对性强化训练——数学思想方法答案1.解:,∵①+②得:4a+4b=12,∴a+b=3.故选A.点评:本题考查了解二元一次方程组的应用,关键是检查学生能否运用整体思想求出答案,题目比较典型,是一道比较好的题目.2.解:∵x2﹣8x+15=0,∴(x﹣3)(x﹣5)=0,∴x﹣3=0或x﹣5=0,即x1=3,x2=5,∵一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,∴当底边长和腰长分别为3和5时,3+3>5,∴△ABC的周长为:3+3+5=11;∴当底边长和腰长分别为5和3时,3+5>5,∴△ABC的周长为:3+5+5=13;∴△ABC的周长为:11或13.故选B.点评:此题考查了因式分解法解一元二次方程、等腰三角形的性质以及三角形三边关系.此题难度不大,注意分类讨论思想的应用.3.解:∵m、n是方程x2+2x+1=0的两根,∴m+n=﹣2,mn=1,∴====3.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了二次根式的化简求值.4.解:∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1)2+b×(﹣1)﹣2=0,∴b=﹣,∴抛物线的解析式为y=x2﹣x﹣2,∴顶点D的坐标为(,﹣),作出点C关于x轴的对称点C′,则C′(0,2),OC′=2 连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.设抛物线的对称轴交x轴于点E.∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴=,即=,∴m=.故选B.点评:本题着重考查了待定系数法求二次函数解析式,轴对称性质以及相似三角形的性质,关键在于求出函数表达式,作出辅助线,找对相似三角形.5.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,∵∠DAB=120°,∴∠HAA′=60°,∴∠AA′M+∠A″=∠HAA′=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选:B.点评:此题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.6.解:如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B.则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.∵B′是B(3,﹣1)关于x轴的对称点,∴B′(3,1).设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:,解得,∴直线AB′解析式为y=﹣2x+7.令y=0,解得x=,∴M点坐标为(,0).故答案为:(,0).点评:本题可能感觉无从下手,主要原因是平时习惯了线段之和最小的问题,突然碰到线段之差最大的问题感觉一筹莫展.其实两类问题本质上是相通的,前者是通过对称转化为“两点之间线段最短”问题,而后者(本题)是通过对称转化为“三角形两边之差小于第三边”问题.可见学习知识要活学活用,灵活变通.7.解:10﹣2a+3b2=10﹣(2a﹣3b2),又∵2a﹣3b2=5,∴10﹣2a+3b2=10﹣(2a﹣3b2)=10﹣5=5.故答案为:5.点评:此题考查了代数式求值的知识,属于基础题,解答本题的关键是掌握整体思想的运用.8.解:∵x=y+4,∴x﹣y=4,∴x2﹣2xy+y2﹣25=(x﹣y)2﹣25=16﹣25=﹣9,故答案是:﹣9.点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.9.解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.点评:此题考查了完全平方公式的知识,掌握完全平方公式的展开式的形式是解答此题的关键,属于基础题.10.解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC,则CE即为CM+MN 的最小值,∵BC=,∠ABC=45°,BD平分∠ABC,∴△BCE是等腰直角三角形,∴CE=BC•cos45°=4×=4.故答案为:4.点评:本题考查的是轴对称﹣最短路线问题,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.11.解:设总人数是x,当x≤35时,选择两个,宾馆是一样的;当35<x≤45时,选择甲宾馆比较便宜;当x>45时,甲宾馆的收费是:y甲=35×120+0.9×120×(x﹣35),即y甲=108x+420;y乙=45×120+0.8×120(x﹣45)=96x+1080,当y甲=y乙时,108x+420=96x+1080,解得:x=55;当y甲>y乙时,即108x+420>96x+1080,解得:x>55;当y甲<y乙时,即108x+420<96x+1080,解得:x<55;总之,当x≤35或x=55时,选择两个,宾馆是一样的;当35<x<55时,选择甲宾馆比较便宜;当x>55时,选乙宾馆比较便宜.点评:此题的关键是用代数式列出在甲、乙两宾馆的费用,用了分类讨论的方法,是解决此类问题常用的方法.12.解:(1)在Rt△OCE中,OE=OCtan∠OCE==,∴点E(0,2).设直线AC的函数解析式为y=kx+,有,解得:k=.∴直线AC的函数解析式为y=.(2)在Rt△OGE中,tan∠EOG=tan∠OCE==,设EG=3t,OG=5t,OE==t,∴,得t=2,故EG=6,OG=10,∴S△OEG=.(3)存在.①当点Q在AC上时,点Q即为点G,如图1,作∠FOQ的角平分线交CE于点P1,由△OP1F≌△OP1Q,则有P1F⊥x轴,由于点P1在直线AC上,当x=10时,y=﹣=,∴点P1(10,).②当点Q在AB上时,如图2,有OQ=OF,作∠FOQ的角平分线交CE于点P2,过点Q作QH⊥OB于点H,设OH=a,则BH=QH=14﹣a,在Rt△OQH中,a2+(14﹣a)2=100,解得:a1=6,a2=8,∴Q(﹣6,8)或Q(﹣8,6).连接QF交OP2于点M.当Q(﹣6,8)时,则点M(2,4).当Q(﹣8,6)时,则点M(1,3).设直线OP2的解析式为y=kx,则2k=4,k=2.∴y=2x.解方程组,得.∴P2();当Q(﹣8,6)时,则点M(1,3),同理可求P2′(),P3();如图,有QP4∥OF,QP4=OF=10,点P4在E点,设P4的横坐标为x,则点Q的横坐标为x﹣10,∵y Q=y P,直线AB的函数解析式为y=x+14,∴(x﹣10)+14=﹣x+2,解得:x=,可得:y=,∴点P4(,),当Q在BC边上时,如图,OQ=OF=10,点P5在E点,∴P5(0,2),综上所述,满足条件的P点坐标为(10,)或()或()或(,)或(0,2).点评:此题考查一次函数的综合应用,运用了分类讨论的数学思想方法,综合性强,难度大.13.解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000(1+x)2 =7200.解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1+x)=7200×120%=8640万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。
2013中考数学专题复习:分类讨论 课件
AD=21。动点P从点D出发,沿射线DA的方向以每秒2个单位 长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单 位长的速度向点B运动,点P,Q分别从点D,C同时出发,当 点Q运动到点B时,点P随之停止运动。设运动的时间为(秒)。 (1)设△BPQ的面积为S,求S与t之间的函数关系式; (2)当线段PQ与线段AB相交于点O,且BO=2AO时,求 B Q P 的正切值; (3)当t为何值时,以B、P、Q三点为顶点的三角形是等 腰三角形? (4)是否存在时刻t,使得PQ⊥BD?若存 在,求出 t的值;若不存在,请说明理由。
OBQ
P
A O
图1 E
D
AP 2 t 21, BQ 16 t 2 ( 2 t 21 ) 16 t , t 58 5
B Q 图2
C
过点 Q 作 QE AD ,垂足为 E , PD 2 t , ED QC t , PE t , 在 Rt PEQ 中,tan QPE tan BQP 30 29 QE PE 12 t 30 29 , BQP QPE ,
2
2
③ 若 PB PQ ,由 PB
整理得: 3 t
2
PQ 得: t
2
2
12 16 3
2
(16 2 t ) 12 ,
2 2
64 t 256 0 , 解得, t 1 当t 7 2
, t 2 16 ( 不符合题意,舍去) 16 3 秒时,以 B 、 P 、 Q 三点为顶点的
1 3
3
3
当a=0时,为一次函数y=3x+1,交点为(1 3
历年初三数学中考思想方法-分类讨论思想方法指导及例题解析及答案
中考中的数学思想方法----分类讨论思想一、概述:当我们面对一大堆杂乱的人民币时,我们一般会先分10元,5元,2元,1元,5角,…… 等不同面值把人民币整理成一叠叠的,再分别数出各叠钱数,最后把各叠的钱数加起来得出这一堆人民币的总值。
这样做,比随意一张张地数的方法要快且准确的多,因为这种方法里渗透了分类讨论的思想。
在数学中,分类思想是根据数学本质属性的相同点和不同点,把数学的研究对象区分为不同种类的一种数学思想,正确应用分类思想,是完整解题的基础。
而在中考中,分类讨论思想也贯穿其中,几乎在全国各地的重考试卷中都会有这类试题,命题者经常利用分类讨论题来加大试卷的区分度,很多压轴题也都涉及分类讨论,由此可见分类思想的重要性,下面精选了几道有代表性的试题予以说明。
二、例题导解:1、直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于 .③ 解:①当6、8是直角三角形的两条直角边时,斜边长为10,此时这个三角形的外接圆半径等于21╳ 10 =5 ②当6是这个三角形的直角边,8是斜边时,此时这个三角形的外接圆半径等于21╳ 8=4 2、在△ABC 中,∠B =25°,AD 是BC 边上的高,并且AD BD DC 2=·,则∠BCA 的度数为____________。
解:①如图1,当△ABC 是锐角三角形时,∠BCA=90°-25°=65°①如图2,当△ABC 是钝角三角形时,∠BCA=90°+25°=115°图1 图23、如图1,已知Rt ABC △中,30CAB ∠=o,5BC =.过点A 作AE AB ⊥,且15AE =,连接BE 交AC 于点P .(1)求PA 的长;(2)以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由;(3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .若r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相.切.,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围.(1)Q 在Rt ABC △中,305CAB BC ∠==o ,, 210AC BC ∴==.AE BC Q ∥,APE CPB ∴△∽△.::3:1PA PC AE BC ∴==.:3:4PA AC ∴=,3101542PA ⨯==. (2)BE 与⊙A 相切.Q 在Rt ABE △中,AB =15AE =,tan AE ABE AB ∴∠===60ABE ∴∠=o . 又30PAB ∠=o Q ,9090ABE PAB APB ∴∠+∠=∴∠=o o ,, BE ∴与⊙A 相切.(3)因为5AD AB ==,,所以r的变化范围为5r <<.当⊙A 与⊙C 外切时,10R r +=,所以R的变化范围为105R -<<; 当⊙A 与⊙C 内切时,10R r -=,所以R的变化范围为1510R <<+4、直角坐标系中,已知点P (-2,-1),点T (t ,0)是x 轴上的一个动点.(1) 求点P 关于原点的对称点P '的坐标;C D 图1 图2(2) 当t 取何值时,△P 'TO 是等腰三角形?解:(1)点P 关于原点的对称点P '的坐标为(2,1).(2)5='P O .(a )动点T 在原点左侧. 当51='=O P O T 时,△TO P '是等腰三角形.∴点)0,5(1-T .(b )动点T 在原点右侧.①当P T O T '=22时,△TO P '是等腰三角形.得:)0,45(2T . ② 当O P O T '=3时,△TO P '是等腰三角形.得:点)0,5(3T .③ 当O P P T '='4时,△TO P '是等腰三角形.得:点)0,4(4T .综上所述,符合条件的t 的值为4,5,45,5-. 5、如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D . (1)求直线AB 的解析式;(2)若S 梯形OBCD =433,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P ,O,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.解:(1)直线AB 解析式为:y=33-x+3.(2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x (舍去) ∴ C(2,33) 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD×AD =223CD =63.可得CD =33. ∴ AD=1,OD =2.∴C (2,33). (3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,33). ②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1. ∴2P (1,3).当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23. ∵ 在Rt △P MO 中,∠OPM =30°,∴ OM =21OP =43;PM =3OM =433.∴3P (43,433).。
中考总复习数学专题优化训练:分类讨论思想
热点专题二 常用的数学思想和方法专题训练四 分类讨论思想一、选择题1.一等腰三角形的两边长分别为5和10,则此等腰三角形的周长为A.20或25B.20C.25D.以上都不对 2.设a 、b 为实数,则下列四个命题中正确的有______________个.①若a+b=0,则|a|=|b| ②若|a|+|b|=0,则a=b=0 ③若a 2+b 2=0,则a=b=0 ④若|a+b|=0,则a=b=0A.1B.2C.3D.43.直线y=x-1与坐标轴交于A 、B 两点,点C 在x 轴上,且△ABC 为等腰三角形,则满足条件的点C 最多有_____________个.A.4B.3C.2D.1 4.⊙O 中,∠AOB=84°,则弦AB 所对的圆周角是A.42°B.138°C.84°D.42°或138° .5.如图2-1,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论: ①AE=AF ;②△EPF 是等腰直角三角形;③S 四边形AEPF =21S △ABC ;④EF=AP. 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有图2-1A.1个B.2个C.3个D.4个 二、填空题6.已知|x|=3,|y|=2,且x ²y<0,则x+y 的值等于_________________.7.当式子545||2---x x x 的值为零时,x 的值是________________. 8.已知两圆的半径分别是5 cm 和6 cm ,且两圆相切,则圆心距是________________.9.已知⊙O 的直径为14 cm ,弦AB=10 cm ,点P 为AB 上一点,OP=5 cm ,则AP 的长为_______________ cm.10.用16 cm 长的铁丝弯成一个矩形,用18 cm 长的铁丝弯成一个有一条边长为5 cm 的等腰三角形,如果矩形的面积与等腰三角形的面积相等,则矩形的边长为___________________. 三、解答题11.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图(如图2-2).图2-2(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.12.某水果品公司急需汽车,但又无力购买.公司经理想租一辆,一出租公司的出租条件为:每百千米租费110元;一个体出租司机的条件为:每月租800元工资,另外每百千米付10元油费.那么该水果品公司租哪家合算?13.某农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为该农机租赁公司提出一条合理建议.14.在一次国际象棋比赛中,每个选手都要与其他选手比赛一局.评分规则是:每局赢者记2分,输者记0分,如果平局,每个选手每人各记1分.现在恰好有四个同学统计了比赛中全部选手得分总和,他们的结果分别是:1 979、1 980、1 984、1 985,经核实确定有一位同学统计无误.通过以上数据,你能计算出这次比赛中共有多少名选手参加吗?请试试看!一、选择题1答案:C提示:腰可能是5,也可能为10,但又要考虑三角形的构成条件.2答案:C提示:根据绝对值的性质. 3答案:A提示:分四种情况.如下图.4答案:D提示:弦所对的圆周角有两种情况 5答案:B提示:由旋转可知. 二、填空题 6答案:1或-1提示:|x|=3,|y|=2,所以x=±3,y=±2,再由x ²y<0确定x+y. 7答案:-5 提示:545||2---x x x 的值为零时,分子为0,所以x=±5,但分母不能为0. 8答案:11 cm 或1 cm提示:两圆相切,包括外切和内切. 9答案:4或6提示:点P 为AB 上一点,P 可能靠近A ,也可能靠近B. 10答案:3,5或2,6提示:若以5 cm 的边为底边时,则等腰三角形的面积为15 cm 2.若以5 cm 的边为腰时,则等腰三角形的面积为12 cm 2. 设矩形的一边长为x cm , 则另一边为(8-x) cm,根据题意,得x(8-x)=15或x(8-x)=12, 解方程x(8-x)=15,得x 1=3,x 2=5. 解方程x(8-x)=12,得x 3=2,x 4=6.∴当矩形面积为15 cm 2时,一边为3 cm ,另一边为5 cm ; 当矩形面积为12 cm 2时,一边为2 cm ,另一边为6 cm. 11解:(1)左视图有以下5种情形(只要画出一种即可).(2)n=8,9,10,11. 12答案:(1)当行驶里程为8百千米时,两家公司一样合算; (2)当行驶里程大于8百千米时,个体公司合算; (3)当行驶里程小于8百千米时,出租公司合算.提示:根据题意,列出两家公司的费用与行驶里程之间的函数关系式,然后再根据不等关系比较两家公司的费用大小.13答案:(1)y=200x+74 000(10≤x≤30,x为正整数);(2)三种方案:一、A地区甲型2台,乙型28台;B地区甲型18台,乙型2台.二、A地区甲型1台,乙型29台;B地区甲型19台,乙型1台.三、A地区甲型0台,乙型30台;B地区甲型20台,乙型0台.(3)派往A地区乙型30台;B地区甲型20台.提示:设派往A地区x台乙型联合收割机,根据题意列出y与x间的函数关系式,并写出x 的取值范围,然后再根据x的取值范围,确定方案.14答案:有45名选手.提示:设有n名选手,则得分总数必为偶数.2²2)1(-nn=1 984无整数解.由2²2)1(-nn=1 980,解得n1=45,n2=-44(舍去).。
2013年武汉市中考数学试卷及答案(Word解析版二)
湖北省武汉市2013年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)下列各题中均有四个备选答案中,其中有且只有一个是正确的。
1.(3分)(2013•武汉)下列各数中,最大的是()A.﹣3 B.0C.1D.2考点:有理数大小比较.分析:先在数轴上标出各选项中的数,再根据数轴上表示的数,越在右边的数越大,得出结果.解答:解:表示﹣3、0、1、2的数在数轴上的位置如图所示:,由图示知,这四个数中,最大的是2.故选D.点评:本题考查了有理数大小比较.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(3分)(2013•武汉)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>1考点:二次根式有意义的条件分析:根据二次根式的性质,被开方数大于等于0,解不等式即可.解答:解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选B.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.(3分)(2013•武汉)不等式组的解集是()A.﹣2≤x≤1 B.﹣2<x<1 C.x≤﹣1 D.x≥2考点:解一元一次不等式组.专题:计算题.分析:分别解出每个不等式的解集,再求其公共部分.解答:解:,由①得,x≥﹣2;由②得,x≤1;故不等式组的解集为﹣2≤x≤1.故选A.点评:本题考查了解一元一次不等式,会找其公共部分是解题的关键.4.(3分)(2013•武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球考点:随机事件.分析:必然事件就是一定发生的事件,依据定义即可作出判断.解答:解:A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)(2013•武汉)若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1•x2的值是()A.3B.﹣3 C.2D.﹣2考点:根与系数的关系专题:计算题.分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系即可求出两根之积.解答:解:∵x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,∴x1•x2==﹣3.故选B点评:此题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时,设方程的两根分别为x1,x2,则有x1+x2=﹣,x1x2=.6.(3分)(2013•武汉)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°考点:等腰三角形的性质分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=7,2°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故选A.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.7.(3分)(2013•武汉)如图是由四个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解答:解:从正面看,下面一行是横放3个正方体,上面一行最右边是一个正方体.故选:C.点评:本题考查了三种视图中的主视图,培养了学生空间想象能力.8.(3分)(2013•武汉)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最A.21个交点B.18个交点C.15个交点D.10个交点考点:规律型:图形的变化类.分析:通过画图和观察图形得到2条直线最多的交点个数为1,3条直线最多的交点个数为1+2=3,4条直线最多的交点个数为1+2+3=6,5条直线最多的交点个数为1+2+3+4=10,…,则n条直线最多的交点个数为1+2+3+4+…+n﹣1,然后把n=6代入计算.解答:解:∵两条直线最多有1个交点,三条直线最多有3个交点,1+2=3,四条直线最多有6个交点,1+2+3=6,∴n条直线最多的交点个数为1+2+3+4+…+n﹣1,∴当n=6时,6条直线最多的交点个数为1+2+3+4+5=15.故选C.点评:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.(3分)(2013•武汉)为了了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜好的书籍,如果没有喜好的书籍,则作“其它”类统计.图(1)与图(2)是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是()A.由这两个统计图可知喜好“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.这两个统计图不能确定喜好“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°考点:条形统计图;扇形统计图.专题:压轴题.分析:首先根据“其它”类所占比例以及人数,进而求出总人数,即可得出喜好“科普常识”的学生人数,再利用样本估计总体得出该年级喜爱“科普常识”的学生总数,进而得出喜好“小说”的人数,以及“漫画”所在扇形的圆心角.解答:解:A、∵喜欢“其它”类的人数为:30人,扇形图中所占比例为:10%,∴样本总数为:30÷10%=300(人),∴喜好“科普常识”的学生有:300×30%=90(人),故此选项不符合题意;B、若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有:×90=360(人),故此选项不符合题意;C、喜好“小说”的人数为:300﹣90﹣60﹣30=120(人),故此选项错误符合题意;D、“漫画”所在扇形的圆心角为:×360°=72°,故此选项不符合题意.故选:C.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.10.(3分)(2013•武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是()A.B.C.D.考点:弧长的计算;多边形内角与外角;圆周角定理;切线的性质;切线长定理.专题:压轴题.分析:点C、D、E都在⊙P上,由圆周角定理可得:∠DPE=2y;然后在四边形BDPE中,求出∠B;最后利用弧长公式计算出结果.解答:解:根据题意,由切线长定理可知:PC=PD=PE,即点C、D、E在以P为圆心,PC长为半径的⊙P上,由圆周角定理得:∠DPE=2∠ECD=2y.如图,连接BD、BE,则∠BDP=∠BEP=90°,在四边形BDPE中,∠B+∠BDP+∠DPE+∠BEP=360°,即:∠B+90°+2y+90°=360°,解得:∠B=180°﹣2y.∴的长度是:=.故选B.点评:本题考查圆的相关性质.解题关键是确定点C、D、E在⊙P上,从而由圆周角定理得到∠DPE=2∠ECD=2y.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2013•武汉)计算:cos45°=.考点:特殊角的三角函数值分析:根据特殊角的三角函数值计算即可.解答:解:根据特殊角的三角函数值可知:cos45°=.故答案为.点评:本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.12.(3分)(2013•武汉)在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28,这组数据的众数是28.考点:众数分析:一组数据中出现次数最多的数据叫做众数,结合所给数据即可得出答案.解答:解:27、28、29、28、26、28中,28出现的次数最多,故这组数据的众数是28.故答案为:28.点评:本题考查了众数的知识,属于基础题,掌握众数的定义是解题的关键.13.(3分)(2013•武汉)太阳的半径约为696 000千米,用科学记数法表示数696 000为6.96×105.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:696 000=6.96×105,故答案为:6.96×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)(2013•武汉)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是20米/秒.考点:一次函数的应用分析:设甲车的速度是x米/秒,乙车的速度为y米/秒,根据函数图象反应的数量关系建立方程组求出其解即可.解答:解:设甲车的速度是x米/秒,乙车的速度为y米/秒,由题意,得,解得:.故答案为20.点评:本题是一道运用函数图象表示出来的行程问题,考查了追击问题的运用,路程=速度×时间的运用,解答时认真分析函数图象的含义是关键,根据条件建立方程组是难点.15.(3分)(2013•武汉)如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于﹣12.考点:反比例函数综合题.专题:压轴题.分析:设点C坐标为(a,),根据AC与BD的中点坐标相同,可得出点D的坐标,将点D的坐标代入函数解析式可得出k关于a的表达式,再由BC=2AB=2,可求出a 的值,继而得出k的值.解答:解:设点C坐标为(a,),(a<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(a﹣1,+0)=(x+0,y+2),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2 ①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(a﹣0)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.点评:本题考查了反比例函数的综合题,涉及了平行四边形的性质、中点的坐标及解方程的知识,解答本题有两个点需要注意:①设出点C坐标,表示出点D坐标,代入反比例函数解析式;②根据BC=2AB=2,得出方程,难度较大,注意仔细运算.16.(3分)(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.考点:正方形的性质.专题:压轴题.分析:根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“边角边”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.解答:解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.故答案为:﹣1.点评:本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.三、解答题(共9小题,共72分)17.(6分)(2013•武汉)解方程:.考点:解分式方程分析:观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.18.(6分)(2013•武汉)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.考点:一次函数与一元一次不等式专题:探究型.分析:先把点(3,5)代入直线y=2x+b,求出b的值,再根据2x+b≥0即可得出x的取值范围.解答:解:∵直线y=2x+b经过点(3,5),∴5=2×3+b,解得b=﹣1,∵2x+b≥0,∴2x﹣1≥0,解得x≥.点评:本题考查的是一次函数与一元一次不等式,先根据题意得出关于x的一元一次不等式是解答此题的关键.19.(6分)(2013•武汉)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:可通过证△ABF≌△DCE,来得出∠A=∠D的结论.解答:证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.点评:此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.(7分)(2013•武汉)把两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述实验所有可能的结果;(2)求一次打开锁的概率.考点:列表法与树状图法分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图,可求得一次打开锁的情况,再利用概率公式求解即可求得答案.解答:解:(1)分别用A与B表示锁,用A、B、C、D表示钥匙,画树状图得:则可得共有8种等可能的结果;(2)∵一次打开锁的有2种情况,∴一次打开锁的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.(7分)(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.考点:作图-旋转变换;轴对称-最短路线问题分析:(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,利用点A的对应点A2的坐标为(0,﹣4),得出图象平移单位,即可得出△A2B2C2;(2)根据△△A1B1C1绕某一点旋转可以得到△A2B2C2进而得出,旋转中心即可;(3)根据B点关于x轴对称点为A2,连接AC2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.解答:解:(1)如图所示:(2)如图所示:旋转中心的坐标为:(,﹣1);(3)∵PO∥AC,∴=,∴=,∴OP=2,∴点P的坐标为(﹣2,0).点评:此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.22.(8分)(2013•武汉)如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°.求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.考点:垂径定理;勾股定理;圆周角定理;解直角三角形专题:探究型.分析:(1)根据圆周角定理得∠BPC=∠BAC=60°,可判断△ABC为等边三角形,∠ACB=∠ABC=60°,再利用圆周角定理得到∠APC=∠ABC=60°,而点P是的中点,则∠ACP=∠ACB=30°,于是∠PAC=90°,然后根据30度的正切可计算出AC=AP;(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,根据垂径的推论得到点O 在AD上,连结OB,根据圆周角定理得∠BOD=∠BAC,∠BPC=∠BAC,所以sin∠BOD=sin∠BPC==,设OB=25x,则BD=24x,在Rt△OBD中可计算出OD=7x,再在Rt△ABD计算出AB=40x,由于点P是的中点,根据垂径定理的推论OP垂直平分AB,则AE=AB=20x,在Rt△AEO中,根据勾股定理计算出OE=4x,所以PE=(25﹣4)x,最后在Rt△APE中,利用正切的定义求解.解答:解:(1)∵∠BPC=60°,∴∠BAC=60°,∵AB=AC,∴△ABC为等边三角形,∴∠ACB=∠ABC=60°,∴∠APC=∠ABC=60°,而点P是的中点,∴∠ACP=∠ACB=30°,∴∠PAC=90°,∴tan∠PCA==tan30°=,∴AC=PA;(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,如图,∵AB=AC,∴AD平分BC,∴点O在AD上,连结OB,则∠BOD=∠BAC,∵∠BPC=∠BAC,∴sin∠BOD=sin∠BPC==,设OB=25x,则BD=24x,∴OD==7x,在Rt△ABD中,AD=25x+7x=32x,BD=24x,∴AB==40x,∵点P是的中点,∴OP垂直平分AB,∴AE=AB=20x,∠AEP=∠AEO=90°,在Rt△AEO中,OE==15x,∴PE=OP﹣OD=25x﹣15x=10x,在Rt△APE中,tan∠PAE===,即tan∠PAB的值为.点评:本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理、圆周角定理和解直角三角形.23.(10分)(2013•武汉)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如温度x/℃…﹣4 ﹣2 0 2 4 4.5 ……41 49 49 41 25 19.75 …植物每天高度增长量y/mm数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.考点:二次函数的应用分析:(1)选择二次函数,设y=ax2+bx+c(a≠0),然后选择x=﹣2、0、2三组数据,利用待定系数法求二次函数解析式即可,再根据反比例函数的自变量x不能为0,一次函数的特点排除另两种函数;(2)把二次函数解析式整理成顶点式形式,再根据二次函数的最值问题解答;(3)求出平均每天的高度增长量为25mm,然后根据y=25求出x的值,再根据二次函数的性质写出x的取值范围.解答:解:(1)选择二次函数,设y=ax2+bx+c(a≠0),∵x=﹣2时,y=49,x=0时,y=49,x=2时,y=41,∴,解得,所以,y关于x的函数关系式为y=﹣x2﹣2x+49;不选另外两个函数的理由:∵点(0,49)不可能在反比例函数图象上,∴y不是x的反比例函数;∵点(﹣4,41),(﹣2,49),(2,41)不在同一直线上,∴y不是x的一次函数;(2)由(1)得,y=﹣x2﹣2x+49=﹣(x+1)2+50,∵a=﹣1<0,∴当x=﹣1时,y有最大值为50,即当温度为﹣1℃时,这种作物每天高度增长量最大;(3)∵10天内要使该植物高度增长量的总和超过250mm,∴平均每天该植物高度增长量超过25mm,当y=25时,﹣x2﹣2x+49=25,整理得,x2+2x﹣24=0,解得x1=﹣6,x2=4,∴在10天内要使该植物高度增长量的总和超过250mm,实验室的温度应保持在﹣6<x<4℃.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,以及利用二次函数求不等式,仔细分析图表数据并熟练掌握二次函数的性质是解题的关键.24.(10分)(2013•武汉)已知四边形ABCD在,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF.求证:;(2)如图②,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;(3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF.请直接写出的值.考点:相似形综合题专题:压轴题.分析:(1)根据矩形性质得出∠A=∠FDC=90°,求出∠CFD=∠AED,证出△AED∽△DFC 即可;(2)当∠B+∠EGC=180°时,=成立,证△DFG∽△DEA,得出=,证△CGD∽△CDF,得出=,即可得出答案;(3)过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,证△BCM∽△DCN,求出CM=x,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,代入得出方程(x﹣6)2+(x)2=62,求出CN=,证出△AED∽△NFC,即可得出答案.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴=;(2)当∠B+∠EGC=180°时,=成立.证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∵∠FDG=∠EDA,∴△DFG∽△DEA,∴=,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴=,∴=,∴=,即当∠B+∠EGC=180°时,=成立.(3)解:=.理由是:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,∵在△BAD和△BCD中∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠CBM=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴=,∴=,∴CM=x,在Rt△CMB中,CM=x,BM=AM﹣AB=x﹣6,由勾股定理得:BM2+CM2=BC2,∴(x﹣6)2+(x)2=62,x=0(舍去),x=,CN=,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴===.点评:本题考查了矩形性质和判定,勾股定理,平行四边形的性质和判定,全等三角形的性质和判定,相似三角形的性质和判定的应用,主要考查学生综合运用性质和定理进行推理的能力,题目比较好.25.(12分)(2013•武汉)如图,点P是直线l:y=﹣2x﹣2上的点,过点P的另一条直线m交抛物线y=x2于A、B两点.(1)若直线m的解析式为y=﹣x+,求A,B两点的坐标;(2)①若点P的坐标为(﹣2,t).当PA=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上能找到点A,使得PA=AB成立.(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.考点:二次函数综合题.专题:压轴题.分析:(1)联立抛物线y=x2与直线y=﹣x+的解析式,求出点A、B的坐标.(2)①如答图1所示,求出点P坐标(﹣2,2),设A(m,m2).作辅助线,构造直角梯形PGFB,AE为中位线,求出点B的坐标(用含m的代数式表示),然后代入抛物线的解析式求出m的值;②与①解题思路一致.设P(a,﹣2a﹣2),A(m,m2).作辅助线,构造直角梯形PGFB,AE为中位线,求出点B的坐标(用含a、m的代数式表示),然后代入抛物线的解析式得到关于m的一元二次方程,根据其判别式大于0,可证明题中结论成立.(3)△AOB的外心在边AB上,则AB为△AOB外接圆的直径,∠AOB=90°.设A (m,m2),B(n,n2).作辅助线,证明△AEO∽△OFB,得到mn=﹣1.再联立直线m:y=kx+b与抛物线y=x2的解析式,由根与系数关系得到:mn=﹣b,所以b=1;由此得到OD、CD的长度,从而得到PD的长度;作辅助线,构造Rt△PDG,由勾股定理求出点P的坐标.解答:解:(1)∵点A、B是抛物线y=x2与直线y=﹣x+的交点,∴x2=﹣x+,解得x=1或x=﹣.当x=1时,y=1;当x=﹣时,y=,∴A(1,1),B(﹣,).(2)①∵点P(﹣2,t)在直线y=﹣2x﹣2上,∴t=2,∴P(﹣2,2).设A(m,m2),如答图1所示,分别过点P、A、B作x轴的垂线,垂足分别为点G、E、F.∵PA=AB,∴AE是梯形PGFB的中位线,∴GE=EF,AE=(PG+BF).∵GE=EF=OE+OF,∴OF=GE﹣OE=2﹣2m.∵AE=(PG+BF),∴BF=2AE﹣PG=2m2﹣2.∴B(2﹣2m,2m2﹣2).∵点B在抛物线y=x2上,∴2m2﹣2=(2﹣2m)2解得:m=﹣1或﹣3,当m=﹣1时,m2=1;当m=﹣3时,m2=9∴点A的坐标为(﹣1,1)或(﹣3,9).②设P(a,﹣2a﹣2),A(m,m2).如答图1所示,分别过点P、A、B作x轴的垂线,垂足分别为点G、E、F.与①同理可求得:B(2m﹣a,2m2+2a+2).∵点B在抛物线y=x2上,∴2m2+2a+2=(2m﹣a)2整理得:2m2﹣4am+a2﹣2a﹣2=0.△=16a2﹣8(a2﹣2a﹣2)=8a2+16a+16=8(a+1)2+8>0,∴无论a为何值时,关于m的方程总有两个不相等的实数根.即对于任意给定的点P,抛物线上总能找到两个满足条件的点A,使得PA=AB成立.(3)∵△AOB的外心在边AB上,∴AB为△AOB外接圆的直径,∴∠AOB=90°.设A(m,m2),B(n,n2),如答图2所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.∴,即,整理得:mn(mn+1)=0,∵mn≠0,∴mn+1=0,即mn=﹣1.设直线m的解析式为y=kx+b,联立,得:x2﹣kx﹣b=0.∵m,n是方程的两个根,∴mn=﹣b.∴b=1.设直线m与y轴交于点D,则OD=1.易知C(0,﹣2),OC=2,∴CD=OC+OD=3.∵∠BPC=∠OCP,∴PD=CD=3.设P(a,﹣2a﹣2),过点P作PG⊥y轴于点G,则PG=﹣a,GD=OG﹣OD=﹣2a﹣3.在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,解得a=0(舍去)或a=﹣,当a=﹣时,﹣2a﹣2=,∴P(﹣,).点评:本题是二次函数综合题型,考查了二次函数与一次函数的图象与性质、梯形及梯形中位线、勾股定理、相似三角形、一元二次方程等知识点,有一定的难度.第(2)问中,注意根的判别式的应用,第(3)问中,注意根与系数关系的应用.。
中考数学专题训练 分类讨论及答案
第三节 分类讨论【回顾与思考】数字间→确定分类的原则或标准→分类【例题经典】会根据字母的大小或取值范围分类例1 (天津市)已知│x │=4,│y │=,且xy<0,则=_______. 【点评】由xy<0知x ,y 异与应分x>0,y<0,及x<0,y>0两类.会根据条件指待不明分类例2 (黑龙江省)为了美化环境,计划在某小区内用30m 2•的草皮铺设一块边长为10m 的等腰三角形绿地,请你求出等腰三角形绿地的另两边.【点评】因已知边为10指待不明,故应将已知边为10分底边或腰,当为腰时还要按三角形形状分类共三种.会根据图形的相对位置不同分类例3 ①(乌鲁木齐市)若半径为1cm 和2cm 的两圆相外切,•那么与这两个圆相切、且半径为3cm 的圆的个数为( )A .5个B .4个C .3个D .2个【点评】两圆相切,有内切,外切,故应分都外切,都内切,一内一外,一外一内共有五种.②⊙O 1与⊙O 2相交于AB ,且AB=24,两圆的半径分别为r 1=15,r 2=13,求两圆的圆心距.【点评】根据两圆圆心与公共弦的相对位置分O 1、O 2在AB 的同一侧和在AB•两侧进行分类.【考点精练】 1.(山西省)现有长度分别为2cm ,3cm ,4cm ,5cm 的木棒,从中任取三根,•能组成三角形的个数是( )A .1B .2C .3D .4 2.(哈尔滨市)直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,•△ABC 为等腰三角形,则满足条件的点C 最多有( )A .4个B .5个C .7个D .8个 3.(山西省)已知⊙O 的半径为5,AB 是弦,P 是直线AB 上的一点,PB=3,AB=8,则tan ∠OPA 的值为( ) A .3 B .C .或D .3或 4.(河南省)三角形两边的长分别是8和6,•第三边的长是一元二次方程x 2-16x+60=0的一个实数根,则该三角形的面积是( )⎧⎨⎩不重不漏12xy37133737A .24B .24或C .48D .5.(山西省)如图,AB ,AC 与⊙O 相切于B,C ,∠A=50°,点P 是圆上异于B 、•C 的一动点,则∠BPC 的度数是( )A .65°B .115°C .65°和115°D .130°和50° 6.(陕西省)要做甲、乙两个形状相同(相似)的三角形框架,•已有三角形框架甲,它的三边长分别为50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,•那么符合条件的三角形框架乙共有( )A .1种B .2种C .3种D .4种 7.(甘肃省)若半径为3,5的两个圆相切,则它们的圆心距为( ) A .2 B .8 C .2或8 D .1或48,则斜边上的高为________.9.已知⊙O 是△ABC 的外接圆,OD ⊥BC 于D ,∠BOD=42°,则∠BAC=______度. 10.在△ABC 中,AB=AC ,AB 的中垂线与直线AC 相交所得的锐角为50°,•则底角∠B 的大小为__________. 11.⊙O 1和⊙O 2交于A ,B ,且⊙O 1经过点O 2,∠AO 1B=90°,则∠AO 2B 的度数为____. 12.若一次函数当自变量x 的取值范围是-1≤x ≤3时,函数y 的范围为-2≤y ≤6,•则此函数的解析式为________. 13.(天津市)已知正方形ABCD 的边长是1,E•为CD•边的中点,•P•为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A →B →C →E 运动,到达点E .若点P 经过的路程为自变量x ,△APE 的面积为函数y ,则当y=时,x 的值等于_______. 14.(日照市)在“五·一”黄金周期间,某超市推出如下购物优惠方案:(1)一次性购物在100元(不含100元)以内时,不享受优惠;(2)一次性购物在100元(含100元)以上,300元(不含300元)以内时,一律享受九折优惠;(3)一次性购物在300元(含300元)以上时,一律享受八折的优惠.王茜在本超市两次购物分别付款80元,•252元.如果王茜改成在本超市一次性购买与上两次完全相同的商品,则应付款( ) A .332元 B .316元或332元 C .288元 D .288元或316元 15.(杭州市)在图所示的平面直角坐标系内,已知点A (2,1),O 为坐标原点.请你在坐标轴上确定点P ,使得△AOP 成为等腰三角形,•在给出的坐标系中把所有这样的点P 都找出来,画上实心点,并在旁边标上P 1,P 2,……,P k (有k 个就标到P k 为止,•不必写出画法).1316.(河北省)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=•12,AD=21.动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q•从点C 出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C•同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;(4)是否存在时刻t,使得PO⊥BD?若存在,求出t的值;若不存在,请说明理由.17.(荆州市)已知:如图,在直角梯形COAB中,CB∥OA,以点O为原点建立平面直角坐标系,A,B,C的坐标分别为A(10,0),B(4,8),C(0,8),D为OA的中点,动点P•自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒.(1)动点P在从A到B的移动过程中,设△APD的面积为S,试写出S与t的函数关系式,指出自变量的取值范围,并求出S的最大值;(2)动点P从A出发,几秒钟后线段PD将梯形COAB的面积分成1:3两部分?求出此时P点的坐标.18.(泉州市)如图,在△ABC 中,∠ACB=90°,AC=BC=6cm ,正方形DEFC•的边长为2cm ,其一边EF 在BC 所在的直线L 上,开始时点F 与点C 重合,让正方形DEFG•沿直线L 向右以每秒1cm 的速度作匀速运动,最后点E 与点B 重合.(1)请直接写出该正方形运动6秒时与△ABC 重叠部分面积的大小; (2)设运动时间为2).①在该正方形运动6秒后至运动停止前这段时间内,求y 与x 之间的函数关系式;• ②在该正方形整个运动过程中,求当x 为何值时,y=.答案:12例题经典 例1:-8例2:①当AB 为底边时,AD=DB=5,②当AB•为腰且三角形为锐角三角形时,AB=AC=10,=8,BD=2,③当AB为腰且三角形为钝角三角形时, AB=BC=10,BD=8,例3:①A ②14或4考点精练1.C 2.C3.D 4.B 5.C6.C 7.C 8 9.42°或138° 10.20°或70° 11.45°或135° 12.y=2x 或y=-2x+4 13.或 14.D15.P 1(4,0),P 2(0,2),P 30),P 4(0),P 5(0,,P 6(0,,P 7(,0),P 8(0,)16.(1)S=96-6t (2)•①若PQ=BQ ,t=②若BP=BQ 得3t 2-32t+144=0,△<0,无解,∴PB ≠BQ ③若PB=PQ 得t 2+122=(16-2t )2+122,解得t 1=,t 2=16(舍去), ∴当t=秒或秒时以B 、P 、Q•为顶点的△是等腰三角形 (3)由△OAP ∽△OBQ 得 (4)当t=9秒时,PQ ⊥BD .17.(1)S=2t (0<t ≤10)当t=10时,S 最大值=20 (2)可得经过7秒或秒后,线段PD 将梯形COAB 的面积分成1:3两部分, 此时符合题意的点坐标为(23535452721637216315830,,tan 2529AP AO t QPE BQ OB ==∴=∴∠=825292828,),(0,)55518.(1)重叠部分面积为×22=2(cm 2) •(2)①当正方形停止运动时,点E 与点B 重合,此时EB=90°,ME=EB=CB-CE=6-(x-2)=8-EB =(8-x )2 • ②在正方形运动过程中分四种情况:Ⅰ.当0<x<2时,y=2x 且0<y<4令y=得x=. Ⅱ.•当2≤x ≤4时,重叠部分面积为4,此时y ≠.Ⅲ.当4<x ≤6时,y 随x 增大而减小,2≤y<4,此时y ≠. Ⅳ.当6<x<8时,由(2)①得y=(8-x )2, ∵y 随x 增大而减小,当x=6时,y=2,当x=•8时,y=0,∴0<y<2,令(x-8)2=,且x 1=7,x 2=9(舍去), ∴x=7,综上所述:x=或x=7时y=.1212121412121212121412。
推荐-2013届中考数学第二轮复习专题(分类讨论)
2013届中考数学第二轮复习专题 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.Ⅱ、典型例题剖析【例1】(2005,南充,11分)如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0).设一次函数解析式为y =kx +b .点A ,B 在一次函数图象上,∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k 则一次函数解析式是 .121--=x y点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为m y x=. 点C 在反比例函数图象上,则41-=m ,m =-4. 故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。
【例2】(2005,武汉实验,12分)如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。
以点O 2(13,5)为圆心的圆与x 轴相切于点D.(1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度;(3)将⊙O 2沿x 轴向右平移,在平移的过程中与x 轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。
(完整)专题二中考数学转化思想(含答案)-,推荐文档
第2讲转化思想概述:在解数学题时,所给条件往往不能直接应用,•此时需要将所给条件进行转化,这种数学思想叫转化思想,在解题中经常用到.典型例题精析例1.(2002,上海)如图,直线y=12x+2分别交x,y轴于点A、C、P•是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,S△ABP=9.(1)求P点坐标;(2)设点R与点P在同一反比例函数的图象上,且点R在直线PB右侧.作RT⊥x轴,•T为垂足,当△BRT与△AOC相似时,求点R的坐标.分析:(1)求P点坐标,进而转化为求PB、OB的长度,P(m,n)•再转为方程或方程组解,因此是求未知数m,n值.∵S△ABP=9,∴涉及AO长,应先求AO长,由于A是直线y=12x+2与x轴的交点,∴令y=0,得0=12x+2,∴x=-4,∴AO=4.∴(4)2m n=9…①又∵点P(m,n)在直线y=12x+2上,∴n=12m+2…②联解①、②得m=2,n=3,∴P(2,3).(2)令x=0,代入y=12x+2中有y=2,∴OC=2,∴△AOC∽△BRT,设BT=a,RT=b.分类讨论:①当24ba =…①又由P点求出可确定反比例函数y=6 x又∵R(m+a,b)在反比例函数y=6x上∴b=6m a+……②联解①、②可求a,b值,进而求到R点坐标.②当24ab=时,方法类同于上.例2.(2002,南京)已知:抛物线y1=a(x-t-1)2+t2(a,t是常数,a≠0,t≠0)•的顶点是A,抛物线y2=x2-2x+1的顶点是B.(1)判断点A是否在抛物线y2=x2-2x+1上,为什么?(2)如果抛物线y1=a(x-t-1)2+t2经过点B,①求a的值;②这条抛物线与x轴的两个交点和它的顶点A能否构成直角三角形?•若能,求出t的值;若不能,请说明理由.分析:(1)∵y1的顶点为(t+1,t2),代入y2检验x2-2x+1=(t+1)2-2(t+1)+1=t2+2t+1-2t-2+1=t2,∴点A在y2=x2-2x+1的抛物线上.(2)①由y2=x2-2x+1=(x-1)2+0,∴y2顶点B(1,0),因为y1过B点,∴0=a(1-t-1)2+t 2⇒at2+t2=0.∵t≠0,∴t2≠0,∴a=-1.①当a=-1时,y=-(x-t-1)2+t2,它与x轴的两个交点纵坐标为零,即y1=0,有0=-(x-t-1)2+t2⇒x-t-1=±t∴x1=t+t+1=2t+1, x2=-t+t+1=1.情况一:两交点为E(2t+1,0),F(1,0).而A(t+1,t2)由对称性有AF=AE(如图)∴只能是∠FAE=90°,AF2=AD2+DF2.而FD=OD-OF=t+1-1=t,A D=t2,∴AF2=t2+t2=AE2,FE=OE-OF=2t+1-1=2t.令EF2=AF2+AE2,则有(2t)2=2(t2+t2),4t2=2t4+2t2,∵t≠0,∴t2-1=0,∴t=±1.情况二:E(1,0),F(2t+1,0)用分析法若△FAE为直角三角形,由抛物线对称性有AF=AE即△AFE为等腰直角三角形.且D为FE中点,∵A(t+1,t2),∴AD=t2,OD=t+1,∴AD=DE,∴t2=OE-OD=1-(t+1),t2=-t,∴t1=0(不合题意,舍去),t2=-1.故这条抛物线与x轴两交点和它们的顶点A能够成直角三角形,这时t=±1.中考样题看台1.(2003,海南)已知抛物线y=ax2+bx+c开口向下,并且经过A(0,1)和M(2,-3)两点.(1)若抛物线的对称轴为x=-1,求此抛物线的解析式;(2)如果抛物线的对称轴在y轴的左侧,试求a的取值范围;(3)如果抛物线与x轴交于B、C两点,且∠BAC=90°,求此时a的值.2.(2003,南宁)如图,已知E是△ABC的内心,∠A的平分线交BC于点F,•且与△ABC 的外接圆相交于点D.(1)求证:∠DBE=∠DEB;(2)若AD=8cm,DF:FA=1:3,求DE的长.3.(2003,山东)如图是由五个边长都是1的正方形纸片拼接而成的,过点A 1的直线分别与BC 1、BE 交于M 、N ,且被直线MN 分成面积相等的上、下两部分. (1)求1MB +1NB的值; (2)求MB 、NB 的长;(3)将图沿虚线折成一个无盖的正方形纸盒后,求点MN 间的距离.D 2C 2B 1A 1D 1C 1BC AE D NM F4.(2004,云南)如图,MN 表示某引水工程的一段设计路线,从M 到N•的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,以A 为圆心,500•米为半径的圆形区域为居民区,取MN 上另一点B ,测得BA 的方向为南偏东75°,已知MB=400米,通过计算,如果不改变方向,输水线路是否会穿过居民区?东北ABNM5.(2004,丽水市)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P•从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动,如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t ≤6),那么 (1)设△POQ 的面积为y ,求y 关于t 的函数解析式;(2)当△POQ 的面积最大时,将△POQ 沿直线PQ 翻折后得到△PCQ ,试判断点C•是否落在直线AB 上,并说明理由;(3)当t 为何值时,△POQ 与△AOB 相似.B Ay xQ PO考前热身训练1.已知抛物线y=(x-2)2-m 2(常数m>0)的顶点为P . (1)写出抛物线的开口方向和P 点的坐标;(2)若此抛物线与x 轴的两个交点从左到右分别为A 、B ,并且∠APB=90°,试求△ABP 的周长.2.已知m ,n 是关于x 方程x 2+(x+2t=0的两个根,且m 2过点Q (m ,n )的直线L 1与直线L 2交于点A (0,t ),直线L 1,L 2分别与x 轴的负半轴交于点B 、C ,如图,△ABC 为等腰三角形. (1)求m ,n ,t 的值; (2)求直线L 1,L 2的解析式;(3)若P 为L 2上一点,且△ABO ∽△ABP ,求P 点坐标.l 2Al 1BCy xQO3.如图,正方形ABCD 中,AB=1,BC 为⊙O 的直径,设AD 边上有一动点P (不运动至A 、D ),BP 交⊙O 于点F ,CF 的延长线交AB 于点E ,连结PE .(1)设BP=x ,CF=y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当CF=2EF 时,求BP 的长;(3)是否存在点P ,使△AEP ∽△BEC (其对应关系只能是A ↔B ,E ↔E ,P ↔C )?如果存在,•试求出AP 的长;如果不存在,请说明理由.BCE答案:中考样题看台1.(1)抛物线解析式是y=-12x2-x+1(2)由题意得:1423ca b c=⎧⎨++=-⎩消去c,得b=-2a-2,•又∵抛物线开口向下,对称轴在y轴左侧,∴2aba<⎧⎪⎨-<⎪⎩∴b<0,∴b=-2a-2<0,解得a>-1,∴a的取值范围是-1<a<0(3)由抛物线开口向下,且经过点A(0,1)知:它与x轴的两个交点B、C分别在原点的两旁,此时B、C两点的横坐标异号OA=c=1,又∠BAC=90°,∴点A必在以BC为直径的圆上;又∵OA⊥BC于O,∴OA2=OB·OC,又∵b=-2a-2,c=1,∴抛物线方程变为:y=ax2-2(a+1)x+1,设此抛物线与x轴的两个交点分别为B(x1,0),C(x2,0),则x1、x2是方程ax2-2(a+1)x+1=0的两根,∴x1·x2=1a,∴OB·OC=│x1│·│x2│=│x1x2│=-x1x2,(∵x1·x2<0),•∴OB·OC=-1a,又∵OA2=OB·OD,OA=1,∴1=-1a,解得a=-1,经检验知:当a=-1时,所确定的抛物线符合题意,故a的值为-1.2.(1)证明,由已知∴∠1=∠2,∠3=∠4,∵∠BED=∠3+∠1,∠5=∠2,∴∠4+∠5=∠3+∠1,即∠EBD=∠BED.(2)△BFD∽△ABD,∴BD2=AD·FD.∵DF:FA=1:3,AD=8,∴DF:AD=1:4,∴184DF =,DF=2cm ,∴BD 2=16,∴DE=BD=4cm . 3.(1)∵111NB MB A B MB =,即11NB MBMB =-, 得MB+NB=MB ·NB ,两边同除以MB ·NB 得1MB +1NB=1. (2)12MB ·NB=52,即MB ·NB=5, 又由(1)可知MB+NB=MB ·NB=5,∴MB 、NB•分别是方程x 2-5x+5=0的两个实数根,x 1=52+,x 2=52-, ∵MB<NB ,∴(3)B 1MN=1.4.解:过A 作AC ⊥MN 于C ,设AC 长为x 米,由题意可知,∠AMC=30°,∠ABC=45°, •∴MC=AC ·cot30°=3x ,BC=AC=x ,∵MC-BC=MB=400.解得x=200(3+1)(米).• ∴x>500,∴不改变方向,输水线路不会穿过居民区.5.解:(1)∵OA=12,OB=6,由题意,得BQ=1×t=t ,OP=1×t=t . ∴OQ=6-t ,∴y=12וOP ×OQ=12×t (6-t )=-12t 2+3t (0≤t ≤6) (2)∵y=-12t 2+3t ,∴当y 有最大值时,t=3, ∴OQ=3,OP=3,即△POQ 是等腰三角形.•把△POQ 沿PQ 翻折后,可得四边形OPCQ 是正方形, ∴点C 的坐标是(3,3),∵A (12,0),B (0,6), ∴直线AB 的解析式为y=-12x+6, 当x=3时,y=92≠3,∴点C不落在直线AB上.(3)△POQ∽△AOB时,①若OQ OPOB OA=,即6612t t-=,12-2t=t,∴t=4.②若OQ OPOA OB=,即6126t t-=,6-t=2t,∴t=2,•∴当t=4或t=2时,△POQ与△AOB相似.考前热身训练1.(1)开口向上,P(2,-m2).(2)设对称轴与x轴交于点C,令(x-2)2-m2=0,得x1=-m+2,x2=m+2,∴A(-m+2,0),B(•m+2,0),∴AC=│2-(-m+2)│=m,(∵m>0)由抛物线对称性得PA2=AC2+PC2=m2+(-m2)2.∵∠APB=90°,∴易证AC=PC,即│m│=│-m2│,∴m1=0,m2=±1.∵m>0,∴m=1,∴△ABC的周长为.2.(1)m=-2,,(2)L1:y2L2:y=3(3)过B作BP1⊥AC于P1,则P1(32,2),过B作BP2⊥AB于P2,则P2(-2,2).3.(1)y=1x().(2)(3)若△AEP∽△BEC,则AE APBE BC=,易知Rt△BAP≌Rt△CBE,BE=AP.BCAyxPO设AP=t (0<t<1),则AE=AB-EB=1-t ,∴11t t t -=,∴,又∵0<t<1,∴t=12,即P 点存在,且AP=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二 分类讨论思想
1.(2012年辽宁营口)圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半
径为( )
A .1
B .3
C .1或2
D .1或3
2.已知线段AB =8 cm ,在直线AB 上画线段BC ,使BC =5 cm ,则线段AC 的长度为( )
A .3 cm 或13 cm
B .3 cm
C .13 cm
D .18 cm
3.(2011年贵州贵阳)如图Z2-3,反比例函数y 1=k 1x
和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x
>k 2x ,则x 的取值范围是( )
图Z2-3
A .-1<x <0
B .-1<x <1
C .x <-1或0<x <1
D .-1<x <0或x >1 4.(2012年湖南张家界)当a ≠0时,函数y =ax +1与函数y =a x
在同一坐标系中的图象可能是( )
A B C D
5.(2011年山东济宁)如果一个等腰三角形的两边长分别是5 cm 和6 cm ,那么此三角形的周长是( )
A .15 cm
B .16 cm
C .17 cm
D .16 cm 或17 cm
6.(2012年四川泸州)为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:
(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;
(2)若每户居民每月用电量超过100度,则超过部份按0.80元/度计算(未超过部份仍按每度电0.50元计算).
现假设某户居民某月用电量是x (单位:度),电费为y (单位:元),则y 与x 的函数关系用图象表示正确的是( )
A B C D
7.等腰三角形ABC 的两边长分别为4和8,则第三边长为________.
8.(2011年四川南充)过反比例函数y =k x
(k ≠0)图象上的一点A ,分别作x 轴、y 轴的垂线,垂足分别为B ,C .若△ABC 的面积为3,则k 的值为________.
9.在实数范围内,比较代数式a 与1a
的大小关系.
10.已知实数a ,b 分别满足a 2+2a =2,b 2+2b =2,求1a +1b
的值.
11.(2011年浙江绍兴)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则这个点叫做和谐点.例如,图Z2-4中过点P 分别作x 轴、y 轴的垂线,与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点.
(1)判断点M (1,2),N (4,4)是否为和谐点,并说明理由;
(2)若和谐点P (a,3)在直线y =-x +b (b 为常数)上,求点a ,b 的值.
图Z2-4
12.(2012年江苏扬州)如图Z2-5,已知抛物线y =ax 2+bx +c 经过点A (-1,0),B (3,0),C (0,3)三点,直线l 是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;
(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.
图Z2-5
专题二 分类讨论思想
【专题演练】
1.D 2.A 3.C 4.C 5.D 6.C
7.8 8.±6
9.解:(1)当a =±1时,a =1a
; (2)当a <-1时,a <1a
; (3)当-1<a <0时,a >1a
; (4)当0<a <1时,a <1a
; (5)当a >1时,a >1a
. 10.解:若a ≠b ,可知a ,b 为方程x 2+2x -2=0的两实数根,由韦达定理,得a +b =
-2,ab =-2,∴1a +1b =a +b ab =-2-2
=1. 若a =b ,则解关于a ,b 的方程分别,得a =b =-1+3或a =b =-1-3,1a +1b =3+1或1- 3.
11.解:(1)∵1×2≠2×(1+2),4×4=2×(4+4),
∴点M 不是和谐点,点N 是和谐点.
(2)由题意,得
当a >0时,(a +3)×2=3a ,
∴a =6.
∴点P (a,3)在直线y =-x +b 上,代入,得b =9;
当a <0时,(-a +3)×2=-3a ,
∴a =-6.
∴点P (a,3)在直线y =-x +b 上,代入,得b =-3.
∴a =6,b =9或a =-6,b =-3.
12.解:(1)将A (-1,0),B (3,0),C (0,3)代入抛物线y =ax 2+bx +c 中,得
⎩⎪⎨⎪⎧ a -b +c =0,9a +3b +c =0,c =3,解得⎩⎪⎨⎪⎧ a =-1,b =2,
c =3.
∴抛物线的解析式为y =-x 2+2x +3.
(2)如图D59,连接BC ,直线BC 与直线l 的交点为P ,
此时,△P AC 的周长最短(点A 与点B 关于l 对称).
设直线BC 的解析式为y =kx +b ,将B (3,0),c (0,3)代入上式,得
⎩⎪⎨⎪⎧ 3k +b =0,b =3,解得:⎩
⎪⎨⎪⎧
k =-1,b =3. ∴直线BC 的函数关系式y =x +3.
当x =1时,y =2,即点P 的坐标(1,2).
图D59
(3)抛物线的对称轴为x =-
b 2a
=1,设M (1,m ),已知A (-1,0),C (0,3), 则MA 2=m 2+4,MC 2=m 2-6m +10,AC 2=10.
①若MA =MC ,则MA 2=MC 2,得
m2+4=m2-6m+10,解得m=1;
②若MA=AC,则MA2=AC2,得
m2+4=10,解得m=±6;
③若MC=AC,则MC2=AC2,得
m2-6m+10=10,解得m1=0,m2=6.
当m=6时,M,A,C三点共线,构不成三角形,不合题意,故舍去.综上可知,符合条件的点M的坐标为(1,6)或(1,-6)或(1,1)或(1,0).。