从换元法,数形结合思想到函数的值域00
求函数值域的十种常用方法
![求函数值域的十种常用方法](https://img.taocdn.com/s3/m/981b2ebf6f1aff00bed51e68.png)
•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月下午 3时12 分20.12. 1215:1 2December 12, 2020
•
8、业余生活要有意义,不要越轨。20 20年12 月12日 星期六 3时12 分31秒1 5:12:31 12 December 2020
•
9、一个人即使已登上顶峰,也仍要自 强不息 。下午 3时12 分31秒 下午3时 12分15 :12:312 0.12.12
logo
求函数值域的十 种常用方法
一:定义域法
二:函数单调性法
三:反函数法
四:换元法
五:分离常数法
六:判别式法
七:三角换元法
九:数形结合法
十导数法:
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1220. 12.12Sa turday, Dec者明。胜人者有力 ,自胜 者强。 20.12.1 220.12. 1215:1 2:3115: 12:31D ecembe r 12, 2020
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月12 日星期 六下午 3时12 分31秒1 5:12:31 20.12.1 2
•
2、阅读一切好书如同和过去最杰出的 人谈话 。15:1 2:3115: 12:3115 :1212/ 12/2020 3:12:31 PM
•
3、越是没有本领的就越加自命不凡。 20.12.1 215:12: 3115:1 2Dec-20 12-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 15:12:3 115:12: 3115:1 2Saturday, December 12, 2020
求函数的值域方法种种
![求函数的值域方法种种](https://img.taocdn.com/s3/m/d4ff9f13be1e650e53ea9954.png)
求函数的值域方法种种作者:李宝贤来源:《新教育时代·教师版》2019年第02期摘要:函数的值域在函数的应用中占有非常重要的地位.因此,准确选择恰当的方法显得十分重要.本文结合具体的例题说明了求函数值域的方法.关键词:函数值域方法函数的值域在函数的应用中占有非常重要的地位.近年来的高考题中,一般不直接考查函数的值域,往往作为综合题的一部分来考查.而求函数的值域是一个比较复杂的问题.因此,准确选择恰当的方法显得十分重要.下面举例说明求函数值域的方法,供参考.一、直接法有点函数结构并不复杂,可以通过基本初等函数的值域及不等式性质直接观察得出函数的值域.例1:求函数的值域解:∵∴∴,即∴函数的值域为二、中间变量法对于一些特殊的函数,通过一定的变换,借助于中间变量的范围来达到求原函数的值域.例2:求函数的值域解:∵∴又∵,∴且∴,∴∴函数的值域为三、换元法运用代数或者三角代换,将所给函数转化成值域容易确定的另一函数,从而求得原函数的值域.形如(a,b,c,d均为常数,且ac≠0)的函数常用此法求值域例3:求函数的值域解:令,则,∵,∴函数在[0,+ ∝)上是增函数∴当即时,,无最大值.∴所求函数的值域为[1,+ ∝)例4:求函数的值域解:∵函数的定义域为∴令x= ,则∵,∴∴,即∴所求函数的值域为 .四、配方法对于二次函数或可化为形如的函数值域问题,均可用配方法.用此法求函数值域一定要注意定义域.例5:已知,求函数的值域解:∵,∴ .∴===∵ . ∴当时,,当时,∴所求函数的值域为五、不等式法求值域:利用均值不等式例6:求函数的值域解:∵函数的定义域为∴当时,当时,∴原函数的值域为六、判别式法求值域把函数转化成关于的二次方程,通过方程有实根,判别式△≥0,从而求得原函数的值域。
形如不同时为0)的函数的值域常用此法。
例7:求函数的值域解:此函数的定义域为R,由得①当时,,符合题意②当时,△=∴综上所述,原函数的值域为七、利用函数的单调性求值域确定函数在定义域(或某个定义域的子集上)的单调性求出函数的值域的方法称为单调性法.常见的有二次函数在某个区间上求值域,对号函数[ ]在某个区间上求值域,在利用重要不等式求值域失效(符号不满足)的情况下,可采用单调性求值域.例8:求函数的值域错解:∵ >0∴有均值不等式∴,∴函数的值域为错因:利用均值不等式时,一定要注意条件“一正二定三相等”,而此题不满足均值不等式的条件,等号不能成立(∵当时. ,)正解:令,则,由在上单调递增∴当即时,∴函数的值域为八、数形结合法求值域数形结合法就是利用函数所表示的几何意义,借助于几何方法或图像来求函数的值域。
数学-值域的10种求法(学生版)
![数学-值域的10种求法(学生版)](https://img.taocdn.com/s3/m/ea8abb6059fb770bf78a6529647d27284a733759.png)
函数值域1基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.;当a<0时,值域为(2)y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为y y≥4ac−b24a.y y≤4ac−b24a.(3)y=k x(k≠0)的值域是y y≠0(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.2函数值域的求解方法方法归纳观察法根据最基本函数值域(如x2≥0,a x>0及函数的图像、性质、简单的计算、推理,凭观察能直接得到些简单的复合函数的值域.方法归纳配方法对于形如y=ax2+bx+c a≠0的值域问题可充分利用二次函数可配方的特点,结合二次函数的定义城求出函数的值域.方法归纳图像法(数形结合)根据所给数学式子的特征,构造合适的几何模型.方法归纳基本不等式法注意使用基本不等式的条件,即一正、二定、三相等.方法归纳换元法(代数换元与三角换元)分为三角换元法与代数换元法,对于形y=ax+b+cx+d的值城,可通过换元将原函数转化为二次型函数.方法归纳分离常数法对某些齐次分式型的函数进行常数化处理,使函数解析式简化内便于分析.方法归纳判别式法把函数解析式化为关于x的-元二次方程,利用一元二次方程的判别式求值域,一般地,形如y=Ax+博观而约取 厚积而薄发B ,ax 2+bx +c 或y =ax 2+bx +cd x 2+ex +f的函数值域问题可运用判别式法(注意x 的取值范围必须为实数集R ).方法归纳单调性法先确定函数在定义域(或它的子集)内的单调性,再求出值域.对于形如y =ax +b +cx +d 或y =ax +b +cx +d 的函数,当ac >0时可利用单调性法.方法归纳有界性法充分利用三角函数或一些代数表达式的有界性,求出值域.因为常出现反解出y 的表达式的过程,故又常称此为反解有界性法.方法归纳导数法先利用导数求出函数的极大值和极小值,再确定最大(小)值,从而求出函数的值域.1.例题精讲题型一:观察法1函数y =1x +1-1的值域是( )A.-∞,-1B.+1,+∞C.-∞,-1 ∪-1,+∞D.-∞,+∞2下列函数中,值域为0,+∞ 的是( )A.y =x 2B.y =2xC.y =2xD.y =log 2x3下列函数中,函数值域为(0,+∞)的是( )A.y =(x +1)2,x ∈(0,+∞) B.y =log 2x ,x ∈(1,+∞)C.y =2x -1D.y =2x -1题型二:配方法1函数的y =-x 2-6x -5值域为()A.0,+∞B.0,2C.2,+∞D.2,+∞2函数y =f x 的图象是如图所示的折线段OAB ,其中A 1,2 ,B 3,0 ,函数g x =x ⋅f x ,那么函数g x 的值域为()Ox y 213ABA.0,2B.0,94C.0,32D.0,43已知正实数a ,b ,c 满足2a +b =1,abc +1=2c ,则c 的最大值为()A.12B.23C.815D.2题型三:图像法(数形结合)数形结合:即作出函数的图像,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域。
高中数学复习专题-函数值域的求法
![高中数学复习专题-函数值域的求法](https://img.taocdn.com/s3/m/0b3bd7cfed630b1c58eeb5b6.png)
学习必备 欢迎下载专题四、函数及其性质(二)函数值域的求法1.求函数值域的数学思想:( 1)利用函数单调性求函数值域:( 2)利用函数图像求函数值域;注意: 求函数值域时要先关注函数定义域,时刻体现“定义域优先” 原则。
2.求函数值域的方法: 观察法、判别式法、双勾函数法、换元法、平方法、分离常数法、数形结合法、单调性法、构造法。
( 1)观察法:适合于常见的基本函数。
例 1.已知函数 f (x)e x1,g( x)x 24x3 ,若 a 、bR ,且存在有f (a)g(b) ,则b 的取值范围为()A. [22, 22]B. (22, 22)C.[1,3]D.(1,3)kx bdx 2exf的分式函数, 适用条件须函( 2)判别式法:适合于形如y或 yax2bx cax 2 bx c数的定义域应为 R ,即 ax 2bx c0 ,所以b 2 4ac0 。
例 2. 求函数 y2x 2 x3x 2的值域。
x 1( 3)双勾函数法:适合于高中阶段所有的分式函数,比判别式法具有更广泛的应用。
2例 3. 求函数 y2x11x7(0 x 1) 的值域。
x 3( 4)换元法:适合于含有根式的函数。
例 4.求函数 y2x 4 1 x 的值域。
( 5)平方法:适合于平方变形后具有简化效果的函数。
例 5.求函数 yx 3 5 x 的值域。
学习必备欢迎下载( 6)数形结合法:利用数形结合的方法,根据函数图像求得函数值域。
例 6.(2014 湖北 )已知函数 f( x)是定义在 R 上的奇函数,当 x ≥ 0 时, f(x)= 1(|x - a 2|+ |x - 2a 2|- 3a 2),若对于任意 x ∈ R , f( x -1)≤ f(x)恒成立,2则实数 a 的取值范围为( ) A. -1,1 B.- 6, 6 C. -1,1 D.-3, 36 6 6 6 3 3 3 3( 7)单调性法:确定函数在定义域上的单调性,求出函数的值域。
函数的值域
![函数的值域](https://img.taocdn.com/s3/m/d3f0da8e8762caaedd33d484.png)
奎屯 新疆
题型精讲 例4 求函数
5x 2 y x
5 5x 2
的最大值;
解法2: (不等式方法)
y 5x 2 1 [(5 x 2) 2] 5
2 当x 时, 5
2 5x 2 5 2 4 2 2 5
4 4 当且仅当 x 时等号成立 , 且x 适合题意 。 5 5
1 1 7 (x ) (x ) 5 5x 1 7 5 =5 2 10 5 解(1):由y 1 4 x 2 (x 1 ) 4 (x 1 ) 4 4 8 x 2 2 2 由此知y f ( x)在[3, 1] 上为增函数
f ( 3) y f (1)
2
王新敞
奎屯
新疆
四、巩固与提高
3.y 2 x 2 4 x的值域是 C ( A)[2, 2];( B)[1, 2];(C )[0, 2);( D)[ 2, 2]. 2 x 3, 4.函数y x 3, x 5, x0 0 x 1的最大值为 4 x 1
王新敞
奎屯
新疆
五、小结 求函数的值域和最值常用方法: 配方法、判别式法、不等式法、换元法、 反函数法、利用函数的单调性和有界性、数形 结合、导数法等. 求函数最大、最小值问题历来是高考热点, 这类问题的出现率很高,应用很广. 因此应注意 总结最大、最小值问题的解题方法与技巧,以提 高高考应变能力. 因为函数的最大、最小值求出 来了,值域也就知道了,反之,若求出的函数的 值域为非开区间,函数的最大或最小值也等于求 出来了 .
题型精讲
1 5 5 x x 1 x ,0 (0, ) 2 4 4
高中数学-函数值域的求法及应用
![高中数学-函数值域的求法及应用](https://img.taocdn.com/s3/m/d454ebf25ff7ba0d4a7302768e9951e79b8969b5.png)
高中数学-函数值域的求法及应用高考要求函数的值域及其求法是近几年高考考查的重点内容之一本文主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题1.重难点归纳(1)求函数的值域此类问题主要利用求函数值域的常用方法配方法、分离变量法、单调性法、图像法、换元法、不等式法等无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强(3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力2.值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域.常见基本函数的值域:一次函数的值域为R.二次函数,当时的值域为,当时的值域为.,反比例函数的值域为.指数函数的值域为.对数函数的值域为R.正,余弦函数的值域为,正,余切函数的值域为R.3.求函数值域(最值)的常用方法3.1.基本函数法对于基本函数的值域可通过它的图像性质直接求解.3.2配方法对于形如或类的函数的值域问题,均可用配方法求解.例1:求函数的值域:3.3换元法利用代数或三角换元,将所给函数转换成易求值域的函数:(1)形如的函数,令;(2)形如的函数,令;(3)形如含的结构的函数,可利用三角代换,令,或令.例2:求函数的值域:.分析:设则.所以原函数可化为进行求解3.4不等式法利用基本不等式,用此法求函数值域时,要注意条件“一正,二定,三相等”.如利用求某些函数值域(或最值)时应满足三个条件①;②为定值;③取等号成立的条件.三个条件缺一不可.例3:求函数的值域:.分析:一次比二次或者二次比一次的分式函数的通用方法是先换元再利用基本不等式求值域3.5函数的单调性法确定函数在定义域(或某个定义域的子集)上的单调性求出函数的值域,例如,.当利用不等式法等号不能成立时,可考虑利用函数的单调性解题.例4:f(x)=x+在区间[1,3]上的值域3.6数形结合法如果所给函数有较明显的几何意义,可借助几何法求函数的值域,如由可联想到两点与连线的斜率.例5:求函数的值域:分析:画出图像便能一目了然3.7函数的有界性法形如,可用表示出,再根据,解关于的不等式,可求的取值范围.3.8导数法设的导数为,由可求得极值点坐标,若函数定义域为,则最值必定为极值点或区间端点中函数值的最大值和最小值.例6:设f(x)=x3--2x+5,求f(x)在[-2,3]上的值域3.9判别式法例7:求函数的值域典型题例示范讲解例1设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8 cm的空白,左右各留5 cm空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?如果要求λ∈[],那么λ为何值时,能使宣传画所用纸张面积最小?命题意图本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力知识依托主要依据函数概念、奇偶性和最小值等基础知识错解分析证明S(λ)在区间[]上的单调性容易出错,其次不易把应用问题转化为函数的最值问题来解决技巧与方法本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决例2已知函数f(x)=,x∈[1,+∞(1)当a=时,求函数f(x)的最小值(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围命题意图本题主要考查函数的最小值以及单调性问题,着重于学生的综合分析能力以及运算能力知识依托本题主要通过求f(x)的最值问题来求a的取值范围,体现了转化的思想与分类讨论的思想错解分析考生不易考虑把求a的取值范围的问题转化为函数的最值问题来解决技巧与方法解法一运用转化思想把f(x)>0转化为关于x的二次不等式;解法二运用分类讨论思想解得例3设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+)(1)证明当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M(2)当m∈M时,求函数f(x)的最小值(3)求证对每个m∈M,函数f(x)的最小值都不小于1学生巩固练习1 函数y=x2+ (x≤-)的值域是( )A(-∞,- B[-,+∞C[,+∞D(-∞,-]2 函数y=x+的值域是( )A (-∞,1B (-∞,-1C RD [1,+∞3 一批货物随17列货车从A市以V千米/小时匀速直达B市,已知两地铁路线长400千米,为了安全,两列货车间距离不得小于()2千米,那么这批物资全部运到B市,最快需要_________小时(不计货车的车身长)4 设x1、x2为方程4x2-4mx+m+2=0的两个实根,当m=_________时,x12+x22有最小值_________5 某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5x-x2(万元)(0≤x≤5),其中x是产品售出的数量(单位百台)(1)把利润表示为年产量的函数;(2)年产量多少时,企业所得的利润最大?(3)年产量多少时,企业才不亏本?6 已知函数f(x)=lg[(a2-1)x2+(a+1)x+1](1)若f(x)的定义域为(-∞,+∞),求实数a的取值范围;(2)若f(x)的值域为(-∞,+∞),求实数a的取值范围7 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台已知生产家电产品每台所需工时和每台产值如下表器电箱问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)8 在Rt△ABC中,∠C=90°,以斜边AB所在直线为轴将△ABC旋转一周生成两个圆锥,设这两个圆锥的侧面积之积为S1,△ABC的内切圆面积为S2,记=x(1)求函数f(x)=的解析式并求f(x)的定义域(2)求函数f(x)的最小值。
求函数值域的几种方法
![求函数值域的几种方法](https://img.taocdn.com/s3/m/7ba9c21bc281e53a5802fffa.png)
求函数值域的几种方法函数是中学数学中最重要概念之一, 是中心数学的核心内容, 它不仅与方程和不等式有着本质的内在联系, 而且作为一种重要的思想方法, 在很多内容当中都能够看到它的作用, 这就决定了它在高考当中的重要地位. 函数的值域就是函数值的取值集合, 它虽然由函数的定义域和对应法则完全确定, 但是确定值域仍是较为困难的. 函数的值域经常穿插于高考的大小试题中, 它所涉及的知识面宽, 用到的数学思想方法多, 从而可供选择的方法也丰富多彩. 研究函数值域, 必须仔细观察函数表达式的结构特征, 采取相应的解法, 灵活机动地变通. 现归纳以下十二种方法: 1、观察法通过对函数定义域、性质的观察, 结合函数的解析式,求得函数的值域. 例1 求下列函数的值域:2(1)y x =; (2)y =(3)y x =; 1(4)y x=.第(1)(3)题,虽然定义域都是R ,但第(1)题是自变量取平方,第(3)题是取绝对值,因此他们的值域都是[0, ∞),观察第(2)题易知定义域为[0, ∞),值域为[0, ∞),而第(4)题定义域是(,0)(0,)-∞⋃+∞,从而该函数的值域为(,0)(0,)-∞⋃+∞。
求下列函数(5)2(21)y x =-;(6)y =(7)35y x =-;(8)123y x =-的值域。
此4小题是上4个小题的演变,观察易知其括号内、根号下、绝对值里和分式的分母都用一次式取代了原来的x,但都没有影响其值域。
第(5)(6)(7)题的值域依然是[0,)+∞,第(4)题的值域是(,0)(0,)-∞⋃+∞。
2不等式性质法函数由基本初等函数简单变形而来,可以通过基本函数的值域及不等式的性质逐步求出函数的值域。
例2 求下列函数的值域:(1)22(21)5y x =-+;(2)6y =;(3)352y x =-+;(4)3223y x =--解:(1)中因2(21)0x -≥,由不等式的性质,得22(21)0x -≥,从而22(21)55x -+≥,即得到所求函数的值域为[5,)+∞。
函数求值域15种方法
![函数求值域15种方法](https://img.taocdn.com/s3/m/9412b404cfc789eb172dc845.png)
函数求值域15种方法在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
基本知识1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。
2.函数值域常见的求解思路:⑴划归为几类常见函数,利用这些函数的图象和性质求解。
⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。
⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。
特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。
⑷可以用函数的单调性求值域。
⑸其他。
1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。
解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。
例2. 求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。
解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
求函数值域的12种方法
![求函数值域的12种方法](https://img.taocdn.com/s3/m/8a52696f3c1ec5da50e27094.png)
求函数值域的12种方法函数是中学数学的重要的基本概念之一,它与代数式、方程、不等式、三角函数、微积分等内容有着密切的联系,应用十分广泛。
函数的基础性强、概念多,其中函数的定义域、值域、奇偶性等是难点之一,是高考的常见的题型。
下面就函数的值域的求法,举例说如下。
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
高中数学函数值域的求法(9种)
![高中数学函数值域的求法(9种)](https://img.taocdn.com/s3/m/3293779fa98271fe900ef994.png)
函数值域的求法求函数的值域时,要明确两点:一是函数值域的概念,二是函数的定义域和对应关系。
常用的方法有:观察法、换元法、配方法、判别式法、数形结合法、分离常数法、反表示法、中间变量值域法等。
(1)观察法:有的函数结构并不复杂,可以通过对解析式的简单变形和观察,利用熟知的函数的值域求出函数的值域。
如函数211xy +=的值域{}10|≤<y y 。
(2)换元法:运用换元,将已知的函数转化为值域容易确定的另一函数,从而求得原函数的值域。
例如:形如d cx b ax y +±+=(d c b a ,,,均为常数,0≠ac )的函数常用此法。
(3)配方法:若函数是二次函数的形式,即可化为()02≠++=a c bx ax y 型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间上二次函数最值得求法。
如求函数32+-=x x y 的值域,因为()2212≥+-=x y ,所以所求函数的值域为[)∞+,2。
(4)判别式法:求形如fex dx c bx ax y ++++=22(f e d c b a ,,,,,不同时为0)的值域,常利用去分母的形式,把函数转化为关于x 的一元二次方程,通过方程有实根,判别式0≥∆,求出y 的取值范围,即得到函数的值域。
(5)数形结合法:有些函数的图像比较容易画出,可以通过函数的图像得出函数的值域;或者分段函数也常用画出函数图像的方法判断出函数的值域。
例如:12--+=x x y 。
(6)分离常数法:形如()0≠++=a b ax d cx y 的函数,经常采用分离常数法,将bax d cx ++变形为()b ax a bc d a c b ax a bcd b ax ac +-+=+-++,再结合x 的取值范围确定b ax a bcd +-的取值范围,从而确定函数的值域。
如求函数112+-=x x y 的值域时,因为132+-=x y ,且013≠+x ,所以2≠y ,所以函数的值域为{}2,|≠∈y R y y 且。
专题06 函数的定义域、值域--《2023年高考数学命题热点聚焦与扩展》【解析版】
![专题06 函数的定义域、值域--《2023年高考数学命题热点聚焦与扩展》【解析版】](https://img.taocdn.com/s3/m/7bb9c4d3760bf78a6529647d27284b73f2423697.png)
【热点聚焦】函数的定义域作为函数的要素之一,是研究函数的基础,函数的定义域问题也是高考的热点.函数的值域(最值)也是高考中的一个重要考点,并且值域(最值)问题通常会渗透在各类题目之中,成为解题过程的一部分.【重点知识回眸】1.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f(x)=|x|,x ∈[0,2]与函数f(x)=|x|,x∈[-2,0].2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.3.常见函数定义域的求法类型x满足的条件n f x(n∈N*)f(x)≥02()(n∈N*)f(x)有意义21()n f x1与[f(x)]0f(x)≠0f x()log a f(x)(a>0且a≠1)f(x)>0a f(x)(a>0且a≠1)f(x)有意义tan[f (x )]f (x )≠π2+k π,k ∈Z四则运算组成的函数 各个函数定义域的交集实际问题使实际问题有意义4.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.5.常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域.(2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内).(3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:,x a x a ==③ 极值点坐标:(,2,,2a a a a --④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),22,a a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 6.函数值域问题处理策略 (1)换元法:① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin x a y f a y f x y f x ===:此类函数可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b cx d =++(2)均值不等式法:特别注意“一正、二定、三相等”.(3)判别式法:若原函数的定义域不是实数集时,应结合函数的定义域,将扩大的部分剔除.(4)分离常数法:一般地, ① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx c y dx e ++=+:换元→分离常数→ay x x=±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型 ④ 22ax bx cy dx ex f++=++:分离常数→③的模型(5)单调性性质法:利用函数的单调性(6)导数法:利用导数与函数的连续性求图复杂函数的极值和最值, 然后求出值域 (7)数形结合法【典型考题解析】热点一已知函数解析式求定义域【典例1】(广东·高考真题(文))函数f (x )=11x-+lg(1+x )的定义域是( ) A .(-∞,-1) B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)【答案】C 【解析】根据函数解析式建立不等关系即可求出函数定义域. 【详解】 因为f (x )=11x-+lg(1+x ), 所以需满足1010x x -≠⎧⎨+>⎩,解得1x >-且1x ≠,所以函数的定义域为(-1,1)∪(1,+∞), 故选:C【典例2】(山东·高考真题(文))函数21()4ln(1)f x x x =-+( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]【答案】B 【解析】 【详解】x 满足2101140x x x +>⎧⎪+≠⎨⎪-≥⎩,即1022x x x >-⎧⎪≠⎨⎪-≤≤⎩. 解得-1<x <0或0<x ≤,选B.【典例3】(2019·江苏·高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】 【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域. 【详解】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例4】(2022·北京·高考真题)函数1()1f x x x=-_________. 【答案】()(],00,1-∞⋃ 【解析】 【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可; 【详解】 解:因为()11f x x x =-100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃ 【总结提升】已知函数的具体解析式求定义域的方法(1)简单函数的定义域:若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 热点二 求抽象函数的定义域【典例5】(全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B 【解析】 【详解】试题分析:因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .【典例6】(2023·全国·高三专题练习)已知函数()31f x +的定义域为[]1,7,求函数()f x 的定义域. 【答案】[]4,22 【解析】 【分析】根据复合函数定义域的性质进行求解即可.因为()31f x +的定义域为[]1,7,所以17x ≤≤,所以43122x ≤+≤.令31x t +=,则422t ≤≤. 即()f t 中,[]4,22t ∈. 故()f x 的定义域为[]4,22.【典例7】(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( )A .(0,)+∞B .(0,1)C .222⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【答案】D 【解析】 【分析】根据(1)y f x +=的定义域可知1122x ≤+≤,故21log 22x ≤≤,即可求出答案. 【详解】解:∵函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦, ∴112x -≤≤,1122x ≤+≤∴函数2(log )y f x =中,21log 22x ≤≤ 24x ≤≤所以函数2(log )y f x =的定义域为2,]. 故选:D 【总结提升】(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 热点三 求函数的值域(最值)【典例8】(江西·高考真题(理))若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]3【答案】B【详解】试题分析:设()f x =t,则1,32t ⎡⎤∈⎢⎥⎣⎦,从而()F x 的值域就是函数11,,32y t t t ⎡⎤=+∈⎢⎥⎣⎦的值域,由“勾函数”的图象可知,102()3F x ≤≤,故选B .【典例9】(2023·全国·高三专题练习)已知函数()y f x =的定义域是R ,值域为[]1,2,则下列四个函数①()21y f x =-;①()21y f x =-;①()12f x y -=;①()2log 11y f x =++,其中值域也为[]1,2的函数个数是( ) A .4 B .3 C .2 D .1【答案】B 【解析】 【分析】求出①②③④中各函数的值域,即可得出合适的选项. 【详解】对于①,因为()12f x ≤≤,则()[]211,3y f x =-∈,①不满足条件;对于②,对于函数()21y f x =-,21x -∈R ,则函数()21y f x =-的值域为[]1,2,②满足条件;对于③,因为()12f x ≤≤,则()[]1,221f x y -∈=,③满足条件; 对于④,因为()12f x ≤≤,()[]11,2f x +∈,则()[]2log 111,2y f x =++∈,④满足条件. 故选:B.【典例10】(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( )A .1B .2C .3D .4【答案】B 【解析】 【分析】令1x t -=,()f x 转化为()21sin sin 1g t t t t t =+-+,令()21sin sin h t t t t t=+-,根据奇偶性的定义,可判断()h t 的奇偶性,根据奇偶性,可得()h t 在(][2,0)0,2-⋃最大值与最小值之和为0,分析即可得答案. 【详解】由21()[(1)1]sin(1)11f x x x x =---++- 令1x t -=,因为[1,1)(1,3]x ∈-⋃,所以(][2,0)0,2t ∈-⋃;那么()f x 转化为()21sin sin 1g t t t t t =+-+,(][2,0)0,2t ∈-⋃,令()21sin sin h t t t t t=+-,(][2,0)0,2t ∈-⋃,则()()()()()()2211sin sin sin sin h t t t t t t t h t t t ⎛⎫-=--+--=-+-=- ⎪-⎝⎭,所以()h t 是奇函数可得()h t 的最大值与最小值之和为0, 那么()g t 的最大值与最小值之和为2. 故选:B .【典例11】(2022·河南·郑州四中高三阶段练习(文))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[]1.32-=-,[]3.43=,已知()11313x f x =-+,则函数()y f x ⎡⎤=⎣⎦的值域为______. 【答案】{}1,0- 【解析】 【分析】根据指数函数的性质分析()f x 的值域,进而得到()y f x ⎡⎤=⎣⎦的值域即可 【详解】 ∵()11313xf x =-+,()30,x ∈+∞, ∴令30x t =>,则()()1112,1333f x g t t ⎛⎫==-∈- ⎪+⎝⎭故函数()()y f x g t ==⎡⎤⎡⎤⎣⎦⎣⎦的值域为{}1,0-, 故答案为:{}1,0-【典例12】(2023·全国·高三专题练习)函数()21f x x x =+-________;函数24y x x =-________.【答案】 2 22,2⎡⎤-⎣⎦【解析】 【分析】()f x 1x t -换元后化为二次函数可得最大值,函数24y x x =-2cos ([0,])x θθπ=∈,然后利用两角和的余弦公式化函数为一个角的一个三角函数形式,再由余弦函数的性质得取值范围. 【详解】(1)1x -t (t ≥0),所以x =1-t 2.所以y =f (x )=x 1x --t 2+2t =-t 2+2t +1=-(t -1)2+2.所以当t =1即x =0时,y max =f (x )max =2. (2)由4-x 2≥0,得-2≤x ≤2, 所以设x =2cos θ(θ∈[0,π]),则y =2cos θ244cos θ-θ-2sin θ2()4πθ+,因为5[,]444πππθ+∈, 所以cos ()4πθ+∈22⎡-⎢⎣⎦,所以y ∈[-22].故答案为:2;[2,2]-.【典例13】(2023·河南·洛宁县第一高级中学一模(文))已知函数()211122f x x x =++. (1)求()f x 的图像在点()()22f ,处的切线方程; (2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域.【答案】(1) 7420x y --=; (2)[]2,3. 【解析】 【分析】对于第一小问,把点()()22f ,代入函数解析式,得切点坐标,通过函数求导,得到过切点的切线的斜率,根据直线的点斜式方程,求切线方程.对于第二小问,解不等式()0f x '>,得函数增区间,解不等式()0f x '<,得函数减区间,结合1,22x ⎡∈⎤⎢⎥⎣⎦,确定函数单调性,求得最值,进而得值域.(1) 因为()211122f x x x =++,所以()21f x x x '=-,所以()23f =,()724f '=, 故所求切线方程为()7324y x -=-,即7420x y --=. (2)由(1)知()()()2322111x x x x f x x x -++-'==,1,22x ⎡∈⎤⎢⎥⎣⎦. 令()0f x '>,得12x <≤;令()0f x '<,得112x ≤<.所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,2上单调递增,所以()()min 12f x f ==. 又12128f ⎛⎫= ⎪⎝⎭,()23f =,所以()23f x ≤≤,即()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为[]2,3.热点四 求参数的值或取值范围【典例14】(2023·全国·高三专题练习)设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2 B .[]1,3 C .[]0,2 D .[]2,3【答案】A 【解析】 【分析】当1x >时,结合不等式求得其最小值为123a -,当1x ≤时,()()229f x x a a =-+-,根据函数()f x 的最小值为()1f ,列出不等式组,即可求解. 【详解】 当1x >时,22231688883333123x a x a x a a x x x x x+-=++-≥⨯⨯=-, 当且仅当28x x=时,等号成立; 即当1x >时,函数()f x 的最小值为123a -,当1x ≤时,()()222299f x x ax x a a =-+=-+-,要使得函数()f x 的最小值为()1f ,则满足()11102123a f a a ≥⎧⎨=-≤-⎩,解得12a ≤≤,即实数a 的取值范围是[]1,2. 故选:A.【典例15】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__. 【答案】[1,+∞) 【解析】 【分析】等价于ax 2+2x +1≥0恒成立,再对a 分类讨论得解. 【详解】解:函数()221f x ax x ++R , 即为ax 2+2x +1≥0恒成立, 若a =0,则2x +1≥0不恒成立; 当a >0,∆=4﹣4a ≤0, 解得a ≥1;当a <0,ax 2+2x +1≥0不恒成立. 综上可得,a 的取值范围是[1,+∞). 故答案为:[1,+∞).【典例16】(2016·北京·高考真题(理))设函数33,(){2,x x x af x x x a -≤=->. ①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________. 【答案】2 (,1)-∞- 【解析】 【分析】试题分析:如图,作出函数3()3g x x x =-与直线 2y x =-的图象,它们的交点是(1,2),(0,0),(1,2)A O B --,由 2'()33g x x =-,知1x =是函数 ()g x 的极小值点,①当0a =时, 33,0(){2,0x x x f x x x -≤=->,由图象可知()f x 的最大值是 (1)2f -=;②由图象知当1a ≥-时, ()f x 有最大值(1)2f -=;只有当 1a <-时,332a a a -<-,()f x 无最大值,所以所求 a 的取值范围是(,1)-∞-.【精选精练】1.(2023·全国·高三专题练习)若集合-1|2M x y x ==⎧⎨⎩,{}2|N y y x -==,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M =N【答案】B 【解析】 【分析】利用集合间的基本关系来进行运算即可. 【详解】集合M 表示函数21y x =-2x -1>0,解得12x >.集合N 表示函数2y x 的值域,值域为()0,∞+,故选:B.2.(2022·全国·高三专题练习)下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( ) A .y =x B .y =lg xC .y =2xD .y x【答案】D 【解析】 【分析】求出函数lg 10x y =的定义域和值域,对选项逐一判断即可. 【详解】因函数lg 10x y =的定义域和值域均为()0,∞+, 对于A ,y x =的定义域和值域均为R ,故A 错误;对于B ,lg y x =的定义域和值域分别为()0,,R +∞,故B 错误; 对于C ,2y x =的定义域和值域均为R ,故C 错误;对于D ,y x=定义域和值域均为()0,∞+,故D 正确; 故选:D .3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4 D .[]0,4【答案】D 【解析】 【分析】分0a =、0a >、0a <讨论即可求解. 【详解】若()f x 的定义域为R ,则当0a =时,()1f x =满足题意;当0a ≠时,20Δ40a a a >⎧⎨=-≤⎩,解得:04a <≤; 当0a <时,无法满足定义域为R . 综上所述:04a ≤≤,D 正确. 故选:D4.(2023·全国·高三专题练习)已知函数()f x 的定义域为[]0,1,值域为[]1,2,那么函数()2f x +的定义域和值域分别是( )A .[]0,1,[]1,2B .[]2,3,[]3,4C .[]2,1--,[]1,2D .[]1,2-,[]3,4【答案】C 【解析】 【分析】由[]20,1x +∈可求出函数的定义域,由于()2y f x =+的图象是由()y f x =的图象向左平移2个单位得到,所以其值域不变,从而可得答案 【详解】令[]20,1x +∈得[]2,1x ∈--,即为函数()2y f x =+的定义域, 而将函数()y f x =的图象向左平移2个单位即得()2y f x =+的图象, 故其值域不变. 故选:C .5.(2022·江西·高三阶段练习(文))函数()s 2π2inxf x x =+在[0,1]上的值域为( ) A .[1,2] B .[1,3] C .[2,3] D .[2,4]【答案】B 【解析】 【分析】根据指数函数与正弦函数的单调性可得函数()f x 在上单调递增,从而可求()f x 的值域. 【详解】解:易知函数()s 2π2inxf x x =+在[0,1]上单调递增,且(0)1f =,(1)3f =, 所以()f x 在[0,1]上的值域为[1,3]. 故选:B .6.(2022·全国·高三专题练习)已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是( ) A .(﹣∞,﹣1] B .(﹣1,12)C .[﹣1,12)D .(0,1)【答案】C 【解析】 【分析】先求出ln ,1y x x =≥的值域,然后确定(12)3,1y a x a x =-+<的值域所包含的集合,利用一次函数性质可得. 【详解】当x ≥1时,f (x )=ln x ,其值域为[0,+∞),那么当x <1时,f (x )=(1﹣2a )x +3a 的值域包括(﹣∞,0), ∴1﹣2a >0,且f (1)=(1﹣2a )+3a ≥0, 解得:12a <,且a ≥﹣1. 故选:C.7.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦ (k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )【答案】B 【解析】 【分析】由题意可得2sin 102x π-≥,然后利用正弦函数的性质求解即可【详解】 由题意,得2sin 102x π-≥,1sin22x π≥, 所以522,Z 626k x k k πππππ≤+≤≤+∈, 解得1544,Z 33k x k k +≤≤+∈,所以函数的定义域为()154,4Z 33k k k ⎡⎤++∈⎢⎥⎣⎦,故选:B8.(2023·山西大同·高三阶段练习)函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3 B .4C .6D .与m 值有关【答案】C 【解析】 【分析】利用分离常数法对函数的式子变形,结合函数奇函数的定义及奇函数最值的性质即可求解. 【详解】由题意可知,()3e 16()3e 1||1e 1||1x x x mx mxf x x x =+=--+++++, 设()()3e 1e 1||1x x mxg x x =--+++,则()g x 的定义域为(),-∞+∞, 所以()()()()()3e 13e 1e 1||1e 1||1x x xx m x mx g x g x x x --⎡⎤-⎢⎥-=-+=--+=-+-+++⎢⎥⎣⎦--, 所以()g x 为奇函数, 所以()()max min 0g x g x +=,所以()()()()max min max min 336f x f x M N g x g x +=+=+++=, 故选:C.9.(2022·江苏南京·高三开学考试)已知函数()()()()5sin sin ,99f x x x g x f f x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,则()g x 的最大值为( )A 2B 3C .32D .2【答案】B 【解析】 【分析】 记9t x π=+,()()33sin 2f x h t t t ==+,由三角函数的性质即可求出()g x 的最大值. 【详解】 记9t x π=+,则()()33sin sin sin 32f x h t t t t t π⎛⎫==++= ⎪⎝⎭, 所以()3sin 3,36h t t π⎛⎫⎡=+∈- ⎪⎣⎝⎭, 33π>,所以()()f f x 3故选:B.10.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππ B .22ππC .-1D .0【答案】C 【解析】 【分析】根据题意得到()f x 为偶函数,由0x ≥时,()12cos f x x x x =+-,利用导数求得函数的的单调区间,进而求得函数的最小值. 【详解】由题意,函数()12cos f x x x x =+-的定义域为R ,关于原点对称,且满足()()()1122cos cos f x x x x x x x f x -=-+---=+-=,所以()f x 为偶函数,当0x ≥时,()12cos f x x x x =+-, 可得()1sin 11022f x x xx=≥'+>,()f x 在单调递增,又由()f x 为偶函数,所以()f x 在(),0∞-单调递减,[)0,∞+单调递增, 所以()()min 01f x f ==-. 故选:C. 二、多选题11.(2023·全国·高三专题练习)已知函数122()log (2)log (4)f x x x =--+,则下列结论中正确的是( )A .函数()f x 的定义域是[4,2]-B .函数(1)=-y f x 是偶函数C .函数()f x 在区间[1,2)-上是减函数D .函数()f x 的图象关于直线1x =-对称 【答案】BD 【解析】 【分析】求出函数定义域为(4,2)-,A 选项错误;利用定义证明函数(1)=-y f x 是偶函数,B 选项正确;函数()f x 在区间[)1,2-上是增函数,故C 选项错误;可以证明f (x )的图象关于直线1x =-对称,故D 选项正确. 【详解】解:函数()()()()()1222log 2log 4log 24f x x x x x ⎡⎤=--+=--+⎣⎦, 由20,40x x ->+>可得42x -<<,故函数定义域为(4,2)-,A 选项错误;()()()21log 33y f x x x ⎡⎤=-=--+⎣⎦的定义域为()3,3-,设()()()2log 33,g x x x ⎡⎤=--+⎣⎦所以()()()()2log 33,g x x x g x ⎡⎤-=-+-+=⎣⎦即()1y f x =-是偶函数,B 选项正确;()()()()222log 24log 28f x x x x x ⎡⎤=--+=---+⎣⎦()22log 19x ⎡⎤=--++⎣⎦()212log 19x ⎡⎤=-++⎣⎦,当[)1,2x ∈-时,()219t x =-++是减函数,外层12log y t =也是减函数,所以函数()f x 在区间[)1,2-上是增函数,故C 选项错误;由()()()()22log 42=f x x x f x ⎡⎤--=-+-⎣⎦,可得f (x )的图象关于直线1x =-对称,故D 选项正确. 故选:BD 三、双空题12.(2023·全国·高三专题练习)已知函数()ln ,1e 2,1xx b x f x x +>⎧=⎨-≤⎩,若(e)3(0)f f =-,则b =_____,函数()f x 的值域为____. 【答案】 2 (][)2,e 22,--+∞【解析】【分析】根据(e)3(0)f f =-可解得b 的值,代入分段函数,结合对数函数及指数函数的值域求解分段函数的值域即可. 【详解】由(e)3(0)f f =-得13(1)b +=-⨯-,即2b =,即函数()ln 2,1e 2,1xx x f x x +>⎧=⎨-≤⎩, 当1x >时,ln 22y x =+>;当1x ≤时,(]e 22,e 2xy =-∈--.故函数()f x 的值域为(][)2,e 22,--+∞.故答案为:2;(][)2,e 22,--+∞.13.(2023·全国·高三专题练习)已知函数()121x f x a =+-为奇函数,则实数a =__,函数f (x )在[1,3]上的值域为__. 【答案】 1293,142⎡⎤⎢⎥⎣⎦【解析】 【分析】由()f x 是定义在(﹣∞,0)∪(0,+∞)上的奇函数可得f (﹣x )=﹣f (x ),代入可求出实数a ;再判断数f (x )在[1,3]上单调性,即可求出答案. 【详解】解:∵f (x )是(﹣∞,0)∪(0,+∞)上是奇函数, ∴f (﹣x )=﹣f (x ), 即121x -+-a121x =---a , 即212xx+-a 121x=---a , 则2a 121221121212x x xx x x=--=-=----1, 则a 12=, 则f (x )11212x =+-在[1,3]为减函数, 则f (3)≤f (x )≤f (1), 即914≤f (x )32≤, 即函数的值域为[914,32],故答案为:12;[914,32] 四、填空题14.(2022·全国·高三专题练习)函数()02lg 2112x y x x x -=++-的定义域是________.【答案】(3,1)(1,2)--⋃- 【解析】 【分析】要使该函数表达式有意义,只需20x ->,2120x x +->,10x +≠同时成立,解不等式即可求出结果. 【详解】 函数()02lg 2112x y x x x -=++-的解析式有意义,由22012010x x x x ->⎧⎪+->⎨⎪+≠⎩,即2341x x x <⎧⎪-<<⎨⎪≠-⎩,所以31x -<<-或12x -<<, 故该函数的定义域为(3,1)(1,2)--⋃-. 故答案为:(3,1)(1,2)--⋃-15.(2022·上海闵行·二模)已知函数()()41log 42x f x m x =+-的定义域为R ,且对任意实数a ,都满足()()f a f a ≥-,则实数m =___________;【答案】1 【解析】 【分析】根据条件得到()()f a f a =-,即()()41log 42xf x m x =+-为偶函数,根据()()f x f x -=列出方程,求出实数m 的值. 【详解】因为()()41log 42xf x m x =+-的定义域为R ,所以40x m +>恒成立, 故0m ≥,又因为对任意实数a ,都满足()()f a f a ≥-, 则对于实数a -,都满足()()f a f a -≥, 所以()()f a f a =-,所以()()41log 42x f x m x =+-为偶函数, 从而()()4411log 4log 422x x m x m x -++=+-, 化简得:()()4110x m --=,要想对任意x ,上式均成立,则10m -=,解得:1m =故答案为:116.(2022·上海市嘉定区第二中学模拟预测)已知函数()y f x =是定义域为R 的奇函数,且当0x <时,()1a f x x x=++.若函数()y f x =在[)3,+∞上的最小值为3,则实数a 的值为________.【答案】3【解析】【分析】根据已知条件及奇函数的定义求出当0x <时函数的解析式,再利用函数的单调性对a 进行分类讨论,确定单调性即可求解.【详解】由题意可知,因为0x >,所以0x -<,所以()1a f x x x -=--+, 因为函数()f x 是定义域为R 的奇函数,所以()()1a f x f x x x=--=+-. 因为函数()y f x =在[)3,+∞上的最小值为3当0a ≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =(舍), 当09a <≤时,由函数的性质知,函数()f x 在[)3,+∞上单调递增;当3x =时,()f x 取得最小值为(3)23a f =+, 因为函数()y f x =在[)3,+∞上的最小值为3,所以233a +=,解得3a =, 当9a >时,由对勾函数的性质知,函数()f x 在),a ⎡+∞⎣上单调递增;在(a 上单调递减; 当x a =()f x 取得最小值为(11f a a a a ==,因为函数()y f x =在[)3,+∞上的最小值为3,所以213a =,解得1a =(舍), 综上,实数a 的值为3.故答案为:3.17.(2022·北京·清华附中模拟预测)已知函数()()2ln ,1,1x a x f x x a x +≥⎧⎪=⎨+<⎪⎩,下列说法正确的是___________.①当0a ≥时,()f x 的值域为[0,)+∞;②a ∀∈R ,()f x 有最小值;③R a ∃∈,()f x 在(0,)+∞上单调递增:④若方程1f x有唯一解,则a 的取值范围是(,2)-∞-.【答案】①②【解析】【分析】由分段函数解析式,讨论参数a ,结合二次函数、对数函数的性质研究()f x 的单调性、最值及对应值域,利用函数()f x 与1y =的交点情况判断参数范围.【详解】由2()y x a =+的对称轴x a =-,当1a >-时,则1x a =-<,且(,)a -∞-上递减,(,1)a -上递增,值域为[0,)+∞, 当1a =-时,则(,1)-∞上递减,值域为[0,)+∞,当1a <-时,则1x a =->,(,1)-∞上递减,值域为2((1),)a ++∞,对于ln y x a =+在[1,)+∞上递增,且值域为[,)a +∞,综上,0a ≥时()f x 的值域为[0,)+∞,①正确;当0a ≥时()f x 最小值为0,当0a <时()f x 最小值为a ,②正确;由211|(1)|ln1x x y a y a a ===+>=+=恒成立,故在(0,)+∞上不可能递增,③错误; 要使1f x 有唯一解,当1a <-时,在[1,)+∞上必有一个解,此时只需2(1)1a +≥,即2a ≤-;当1a =-时,在R 上有两个解,不合题设;当1a >-时,在(,)a -∞-上必有一个解,此时()211{1a a +≤>,无解.所以④错误.故答案为:①② 18.(2022·全国·高三专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__. 【答案】230⎡⎢⎣⎦, 【解析】【分析】将m 分为000m m m =><,, 三种情况讨论:当0m =时,()210f x x - 满足条件;当0m <时,由二次函数知开口向下,不满足条件;当0m >时,只需二次函数的0∆≥即可,解出m 的取值范围,综上得m 的取值范围.【详解】解:当0m =时,()()22121f x mx m x m x =--+--[0,+∞),满足条件;令()()221g x mx m x m =--+- ,()()0g x ≥当m <0时,()g x 的图象开口向下,故f (x )的值域不会是[0,+∞),不满足条件;当m >0时,()g x 的图象开口向上,只需()2210mx m x m --+-=的0∆≥,即(m ﹣2)2﹣4m (m ﹣1)≥0, ∴2323m ≤≤,又0m > ,所以230m <≤ 综上,230m ≤≤∴实数m 的取值范围是:230⎡⎢⎣⎦,, 故答案为:230⎡⎢⎣⎦,.。
求值域常用的七种方法
![求值域常用的七种方法](https://img.taocdn.com/s3/m/3c1d4cd650e2524de5187e0a.png)
2、换元法
• 此法特点:函数的解析式含有根式或者三角函数 模型的.
• 求下列函数的值域
x 1 (1) y 2 (2) y x x 1 x 1 (3) y cos 2 x cos x 1
2
(4) y 9 3 2( x [0,1])
x x
3、基本不等式法
( x [0,3])
求值域常用的七种方法
1、二次函数配方法(图像法) 2、换元法 3、基本不等式法 4、利用函数的单调性法 5、分离常数法 6、数形结合法 7、导数法
1、配方法
• 求下列函数的值域
(1) y x 2 x
2
( 2) y x 2 x ( x [0,3])
2
(3) y x 4 x 1( x [ 4,4])
2
(2) y | x 2 | | x 8 | (3) y | x 1 | | x 3 | (4) y | x 3 | | x 1 |
(5) y x 6 x 13 x 4 x 5
2 2
(6) y x 6 x 13 x 4 x 5
2 2
注:求两距离之和时,要函数式变 形,使A、B在x轴的两侧,而求两 距离之差时,则使A、B两点在x轴 的同侧。
sin x (7 ) y cos x 2
7、导数法
• 求下列函数的值域
x (1) y x ( x [0,4]) e
3 2
(2) f ( x) 2 x 3 x 12 x 5
• 求下列函数的值域
1 (1) y x 1 x 2 x 2x 2 (2) y ( x 1) x 1 (3) y log 3 x log x 3 1
高中数学:求函数值域的10种常见方法
![高中数学:求函数值域的10种常见方法](https://img.taocdn.com/s3/m/8e11a2db25c52cc58ad6be1b.png)
求函数的值域(常用)一、用非负数的性质例1:求下列函数的值域:(1)y=-3x 2+2;(2)≥-1).练1:函数2()1f x x x =+-的最小值是_________________.练2:求函数y =练3:求函数的值域。
练4:(1)232+-=x x y (2)]8,5[,452∈+-=x x x y(3)2234x x y -+-=]2,1[x ,5x 2x y 2-∈+-=二、分离常数法对某些分式函数,可通过分离常数法,化成部分分式来求值域.例1:求下列函数的值域:(1)y=21x x ++(2)y=2211x x -+.练1:求下列函数的值域:(1)13222++=x x y (2)3214222++++=x x x x y三、利用函数单调性已知函数在某区间上具有单调性,那么利用单调性求值域是一种简单的方法. 例1:求函数y=3x+x 3的值域.练1:求函数122+-=xx y ()0>x 的值域.练2:求函数x x y 213--=的值域.四、利用判别式特殊地,对于可以化为关于x 的二次方程a(y)x 2+b(y)x+c(y)=0的函数y=f(x),可利用0()0,a y y x ∆≥≠且求出的最值后,要检验这个最值在定义域是否具有相应的值. 例1:求函数y =234x x +的最值.练1:利用判别式方法求函数222231x x y x x -+=-+的值域.五、利用换元法求值域有时直接求函数值域有困难,我们可通过换元法转化为容易求值域的问题考虑. 例1:求函数的值域。
练1:求()6log 62log 2222++=x x y 的值域.1x x y -+=练2:设02x ≤≤,求函数1()4321x x f x +=-+的值域.练3:求函数的值域.练4:求函数x x y 213--=的值域.六:判别式法例1:求函数的值域。
七、利用数形结合数形结合是解数学问题的重要思想方法之一,求函数值域时其运用也不例外. 例1:若62--=x x y ,求y 的最大、最小值.练1:求函数342+-=x x y 的值域.22x 1x x 1y +++=练2:求函数186122+-++=x x x y 的值域.练3:若(求x-y 的最大、最小值.八、利用已知函数的有界性. 例1:求函数y=25243x x -+的值域.练1:求函数的值域。
高一数学函数知识点总结(五篇)
![高一数学函数知识点总结(五篇)](https://img.taocdn.com/s3/m/18c58158eef9aef8941ea76e58fafab068dc4401.png)
高一数学函数知识点总结函数的图象函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(四)函数的单调性1、单调函数对于函数f(____)定义在某区间[a,b]上任意两点____1,____2,当____1>____2时,都有不等式f(____1)>(或<)f(____2)成立,称f(____)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的____1,____具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设____1、____2∈[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(____1,f(____1))、(____2,f(____2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(____)是增(减)函数,且(或____1>____2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.5、复合函数y=f[g(____)]的单调性若u=g(____)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(____)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。
函数值域与最值
![函数值域与最值](https://img.taocdn.com/s3/m/5fc2f83067ec102de2bd89a1.png)
函数的值域与最值函数y =f (x ),x ∈D 的值域就是函数图像上点的纵坐标的集合,或说是函数解析式中变量y 的取值范围,故集合{y |y =f (x ) ,x ∈D }就是函数y = f (x )的值域.研究函数的值域或最值主要有四种方法:数形结合法(针对可用图象处理的函数)、换元法(针对复合函数y =f [g (x )])、方程法(把函数看成是x , y 的方程,思考y 如何取值,关于x 方程有解),不等式法.研究函数的图象的变化规律,中学最好的工具是导数,有了导数知识,我们可很方便地解决相当一部分的值域或最值问题。
在最值的研究中,应关注一些重要的不等式(如均值不等式,柯西不等式)的应用。
解析法思想也是研究函数的值域或最值一种重要工具。
也应加以关注。
研究函数的值域和最值所需要的数学知识有:集合、函数、重要不等式、解析几何、导数。
本讲暂不涉及解析几何与导数知识。
一、函数值域或最值知识归纳1. 若函数f (x )是奇函数,且有最大值和最小值,则f max (x )+ f min (x )=0 .2. 若函数在闭区间[a ,b ]上单调,则函数f (x )在区间两端取得最值.由于一次函数,指数函数,对数函数都是单调函数,所以这些函数在某一闭区间上的最值必在端点发生。
3. 研究二次函数段f (x )=ax 2+bx +c , x ∈ [m ,n ](a >0)的最值,一般要分类讨论.① 求最大值需要分两种情况:二次函数的对称轴2b x a =-与2m n +大小。
② 求最小值需要分三种情况:二次函数的对称轴2b x a =-≤m , 2bx a=-∈ (m ,n ),2b x a=-≥n .4.对形如222111122222(0)a x b x c y a a a x b x c ++=+≠++,其中分子与分母是不可约,一般我们用方程法研究其值域或最值。
具体思维过程是:把函数式21112222a xb xc y a x b x c ++=++等价化为关于x 的方程22121210()()()ya a x yb b x yc c -+-+-=思考系数如何取值,此方程有实数解,这需要分21ya a -=0和21ya a - ≠ 0讨论。
2012高考数学一轮复习--函数的值域 ppt
![2012高考数学一轮复习--函数的值域 ppt](https://img.taocdn.com/s3/m/4aba69eb102de2bd96058893.png)
课堂练习题
1.求下列函数的值域: (1) y= 3x+1; x-2 (2) y=2x+4 1-x ;
(1)(-∞, 3)∪(3, +∞) (2)(-∞, 4]
(3)[-1, 2 ] (4)[3, +∞)
(3) y=x+ 1-x2 ;
(4) y=|x+1|+ (x-2)2 ;
课堂练习题
1.求下列函数的值域:
三、方程法
利用已知函数的值域求给定函数的值域. 例3 求下列函数的值域: 2x (1)y= x ; (0, 1) 2 +1 sinx+2 (2)y= ; [- 3 , - 1 ] 2 4 sinx-3 (3)y=3+ 2+x + 2-x ; [5, 3+2 2 ] (4)若f(x)的值域为[ 3 , 4 ], 求 y=f(x)+ 1-2f(x) 的值域. 8 9 [7, 7] 9 8
四、分离常数法
主要适用于具有分式形式的函数解析式, 通过变形, 将函 数化成 y=a+ b 的形式. g(x) 2x sinx+2 (1)y= x ; (2)y= . 例4 求下列函数的值域: 2 +1 sinx-3 3 1 [- 2 , - 4 ] (0, 1)
五、判别式法
能转化为 A(y)x2+B(y)x+C(y)=0 的函数常用判别式法求函 数的值域. dx2+ex+f 主要适用于形如 y = 2 (a, d不同时为零)的函数 ax +bx+c (最好是满足分母恒不为零). x2-x 例5 求函数 y = 2 的值域. [1- 2 3 , 1+ 2 3 ] x +x+1 3 3
函数的值域(最值)的常见求法带解析
![函数的值域(最值)的常见求法带解析](https://img.taocdn.com/s3/m/a19478c7a48da0116c175f0e7cd184254b351b88.png)
【知识要点】一、函数值域的定义函数值的集合叫做函数的值域.二、函数的值域取决于定义域和对应法则,不论采用什么方法求函数的值域,都要考虑定义域,函数的问题必须遵循“定义域优先”的原则.三、常见函数的值域1、一次函数的值域为.2、二次函数,当时的值域为,时的值域为.3、反比例函数的值域为.4、指数函数的值域为.5、对数函数的值域为.6、幂函数的值域为,幂函数的值域为.7、正弦函数、余弦函数的值域为,正切函数的值域为.四、求函数的值域常用的方法求函数的值域常用的方法有观察法、分离常数法、配方法、反函数法、换元法、判别式法、基本不等式法、单调性法、数形结合法、导数法、绝对值不等式法和柯西不等式法等.其中最常用的有“三数(函数、数形结合、导数)”和“三不(基本不等式、绝对值不等式、柯西不等式)”.五、函数的值域一定要用集合或区间来表示.六、函数的值域、取值范围和函数的最值实际上是同一范畴的问题,所以求函数值域的方法适用于求函数的最值和取值范围等.【方法讲评】方法六判别式法使用情景形如的函数.解题步骤一般先将函数化成二次方程,再利用判别式来求函数的值域.【例1】求函数的值域.【点评】(1)分子、分母中含有二次项的函数类型,此函数经过变形后可以化为的形式,再利用判别式加以判断.(2)函数经过变形后可以化为的形式后,要注意对是否为零进行分类讨论,因为它不一定是一元二次方程.(3)判别式法解出值域后一定要将端点值(本题是)代回方程检验,把不满足题意的舍去.【反馈检测1】求函数的值域.方法七基本不等式法使用情景一般变量是正数,变量的和或积是定值.解题步骤一般先进行配凑,再利用基本不等式求函数的最值,从而得到函数的值域.【例2】已知,求函数的最小值.【解析】.=当且仅当,即时,上式等号成立.因为在定义域内,所以最小值为.【点评】(1)本题不能直接使用基本不等式,本题在利用基本不等式前,要对函数化简,要用到分离函数的方法对函数进行化简,再使用基本不等式.(2)很多函数在使用基本不等式之前都要进行化简和配凑,所以要注意观察函数的结构,再进行变形,再使用基本不等式.(3)利用基本不等式求最值时,要注意“一正二定三相等”,三个条件缺一不可.【例3】已知,求函数的最大值.【点评】(1)基本不等式有二元基本不等式(和三元不等式.(2)基本不等式不仅适用于一般函数,也适用三角函数和其它所有函数,只要满足条件,就可以利用“一正二定三相等”来分析解答.【反馈检测2 】已知,,且,则的最小值为.【反馈检测3】【2017浙江,17】已知αR,函数在区间[1,4]上的最大值是5,则的取值范围是___________.方法八单调性法使用情景函数的单调性容易判断.解题步骤先判断函数的单调性,再利用函数的单调性得到函数的值域.【例 4】求函数的值域.【点评】(1)本题先利用复合函数的单调性确定了函数的单调区间,从而得到函数的最大值和最小值,得到函数的值域.(2)判定函数的单调性常用的有定义法、图像法、复合函数分析法和导数法,注意灵活使用.【例5】求函数的值域.【解析】令,则在上都是增函数,所以在上是增函数当时,当时,故所求函数的值域为。
第六讲: 函数的值域Microsoft Word 文档
![第六讲: 函数的值域Microsoft Word 文档](https://img.taocdn.com/s3/m/ee194ac458f5f61fb73666f2.png)
第六讲:函数的值域函数的值域、最值或取值范围,是中学数学及高考中的常见问题,热点问题一.建构知识网络1、确定函数的值域的原则①当函数y=f(x)用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f(x)用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合;③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定;④当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。
2、常见函数的值域:一次、二次函数,反比例函数,指数、对数函数,正、余弦函数,“对钩函数,(0)ax a x+>”等; 3、求函数值域的几种常用方法;配方法、换元法、不等式法、判别式法、反解法、单调性法、数形结合法、利用已知函数的值域等。
二、双基题目练练手1、函数y =2211xx +-的值域是 ( ) A.[-1,1] B.(-1,1] C.[-1,1) D.(-1,1) 2、函数y=1x +-1-x 的值域为 ( ) A.(-∞,2) B.(0,2] C.[2,+∞]D.[0,+∞] 3、若x 2+y 2=1,则3x -4y 的最大值为 ( ) A.3 B.4 C.5 D.64、对函数2()2f x x x m =++作代换x =g(t),则总不改变f (x )值域的代换是A .212()log (23)g t t t =-+ B .tt g )21()(= ( )C .g(t)=(t -1)2D .g(t)=cost5、函数y =的值域 .6、函数4522++=x x y 的值域是简答精讲:1-3、BBCA ;1、反解法,不等式法;2、解:分子有理化,分母递增;定义域1x ≥。
3、换元x =cos α,y =sin α;5值域)+∞6、用x x y 1+=的单调性:),25[+∞。
三、经典例题做一做【例1】求下列函数的值域:(1)y =; (2)y x =+(3)y x =+ (4)1sin 2cos xy x-=-解:(1)求复合函数的值域:设265x x μ=---(0μ≥),则原函数可化为y =又∵2265(3)44x x x μ=---=-++≤,∴04μ≤≤[0,2],∴y =的值域为[0,2](2)三角换元法:21011x x -≥⇒-≤≤,设cos ,[0,]x ααπ=∈,则cos sin )4y πααα=+=+∵[0,]απ∈,∴5[,]444πππα+∈,∴sin()[4πα+∈,)[4πα+∈-,∴原函数的值域为[1-。
函数值域求法十五种
![函数值域求法十五种](https://img.taocdn.com/s3/m/25e0e9b5e43a580216fc700abb68a98270feac63.png)
函数值域求法十五种在函数中,定义域和值域都起着重要的决定作用。
值域是由定义域和对应法则共同确定的。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位。
本文就函数值域求法归纳如下,供参考。
基本知识1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。
2.常见的函数值域求解思路包括:⑴划归为几类常见函数,利用这些函数的图象和性质求解。
⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。
⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。
特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。
⑷可以用函数的单调性求值域。
⑸其他方法。
1.直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,可以求得函数的值域。
例1.求函数的值域。
解:显然函数的值域是:2.配方法配方法是求二次函数值域最基本的方法之一。
例2.求函数解:将函数配方得:当x=-1时。
的值域。
由二次函数的性质可知:当x=1时。
故函数的值域是:[4,8]3.判别式法例3.求函数解:两边平方整理得:解得:但此时的函数的定义域由由,仅保证关于x的方程:在实数集R有实根,而不能确定此函数的值域的范围。
可以采取如下方法进一步确定原函数的值域。
代入方程(1)解得:原函数的值域为:即当时,注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4.反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例4.求函数值域。
解:由原函数式可得:则其反函数为。
其定义域为:故所求函数的值域为:函数有界性法:当求函数的值域困难时,可以利用已知的函数有界性来确定函数的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从换元法,数形结合思想到函数的值域
【基础内容与方法】
1.换元法:就是将函数解析式中的部分代数式视为整体,换成新元,从而简化函数结构来求值域的方法.形如(0)y ax b cx d ac =+±+≠的函数,常用换元法求解.
2.数形结合思想:画出函数的图形,找图形的最高点和最低点,对应的函数值即为函数的最值.
类型一:换元法求形如(0)y ax b cx d ac =+±+≠的函数的值域
例1:求函数212y x x =+-的值域.
考点练习一
1.求函数y =2x -x -1的值域.
类型二:数形结合思想求值域
例2:作出下列函数的大致图像,并写出函数的单调区间和值域.
(1)
12x y x -=-;(2)
24||y x x =-.
考点练习二
2.作出下列函数的大致图像,并写出函数的单调区间和值域. (1)13(1)2y x =-+;(2)2
x y x =+;(3)|(1)|y x x =-;(4)12||y x =-. [来源:学_科_网]
课后作业:
1. 函数的值域是( )
A .
B .
C .
D .R
2.函数y =x
+的值域是( ) A .(-∞,1 B .(-∞,-1 C .R
D .[1,+∞ 3.已知f (x -1
x )=x 2+1
x 2,则f (3)=______.
4.求函数32
54x y x +=-的定义域与值域.
5.已知31
()2x f x x +=+的定义域与值域.
6.求下列函数的值域.
(1)y x = (2) y =2x -1
x +1,x ∈[3,5] .
()3452x
f x x -+=-()()+∞⋃∞-,22,()()
+∞-⋃-∞-,22,⎪⎭⎫
⎝⎛+∞⋃⎪⎭⎫
⎝⎛∞-,2525,x 21-]])。