图像锐化的方法及比较

合集下载

图像锐化有哪些方法

图像锐化有哪些方法

图像锐化有哪些方法图像锐化是图像处理中常用的一种操作,可以通过增强图像的高频信息,使图像边缘更加清晰。

常用的图像锐化方法主要包括增强算子、滤波操作和边缘检测等。

1. 增强算子方法:增强算子方法是基于对图像进行空间变换,通过改变像素点的灰度值来增强图像的边缘和细节。

常用的增强算子方法包括拉普拉斯算子、索伯算子和普瑞维特算子等。

这些算子可以对图像进行卷积操作,得到锐化后的图像。

例如,拉普拉斯算子可以通过在每个像素点和周围邻域之间进行卷积操作来增强图像的高频信息。

2. 滤波操作方法:滤波操作方法是通过设计一定的滤波器来对图像进行卷积操作,以增强图像的边缘细节。

常用的滤波操作方法包括高通滤波器、边缘增强滤波器和维纳滤波器等。

高通滤波器可以通过减少图像低频分量来增强图像的高频信息,从而使图像边缘更加清晰。

边缘增强滤波器则可以通过增加图像的局部差异来增强图像的边缘细节。

维纳滤波器是一种自适应滤波器,可以根据图像的噪声特性来进行滤波操作,以减少噪声对锐化效果的影响。

3. 边缘检测方法:边缘检测方法是通过寻找图像的局部极值点来确定图像的边缘位置,从而实现图像锐化。

常用的边缘检测方法包括Sobel算子、Canny算子和LoG算子等。

Sobel算子可以通过计算图像梯度的幅值和方向来确定图像边缘的位置和方向。

Canny 算子是一种基于图像梯度的多阈值边缘检测算法,可以通过滤波、非极大值抑制和双阈值检测等步骤来确定图像的强边缘和弱边缘。

LoG算子是一种拉普拉斯高斯算子,可以通过在图像上进行卷积操作来检测图像的边缘信息。

除了以上的方法,图像锐化还可以通过多尺度分析、形态学操作和投影剪切等方法来实现。

多尺度分析可以通过对图像的不同尺度进行分析和合成来增强图像的局部细节和边缘信息。

形态学操作是一种基于图像形状和结构的操作,可以通过腐蚀、膨胀和开闭操作等来增强图像的边缘信息。

投影剪切是一种基于数学变换的图像锐化方法,可以通过对图像的投影进行变换来改变图像的灰度级分布,从而增强图像的边缘和细节。

图像锐化算法实现

图像锐化算法实现
实时性较差
算法原理:通过将图像分解成多个频带,对每个频带进行滤波处理,再合并处理后的频带得到 锐化图像。
算法特点:能够更好地保留图像细节,提高图像清晰度,适用于各种类型的图像。
算法步骤:频带分解、滤波处理、频带合并、锐化图像。
算法应用:广泛应用于图像处理领域,如医学影像、遥感图像、安全监控等。
算法原理:根据图像局部特性自适 应调整滤波器系数,以提高图像边 缘清晰度
优点:对噪声具有较好的鲁棒性, 能够自适应地处理不同场景下的图 像锐化
添加标题
添加标题
常用实现方法:Laplacian、 Unsharp Masking等
添加标题
添加标题
适用场景:适用于各种类型的图像, 尤其适用于存在噪声和模糊的图像
图像锐化的实现步 骤
将彩色图像转换为灰度图像 增强图像对比度 突出图像边缘信息 减少图像数据量,加速处理速度
边缘检测是图像 锐化的重要步骤, 通过检测图像中 的边缘信息,可 以对图像进行清 晰化处理。
常见的边缘检测 算法包括Sobel、 Prewitt、Canny 等,这些算法通 过不同的方式检 测图像中的边缘 信息。
在边缘检测之后, 通常需要进行阈 值处理,将边缘 信息与阈值进行 比较,保留重要 的边缘信息,去 除不必要的噪声。
经过边缘检测和 阈值处理后,可 以对图像进行锐 化处理,使其更 加清晰。
对图像进行滤波处理,去除噪声和干扰 选择合适的滤波器,如高斯滤波器、中值滤波器等 对滤波后的图像进行锐化处理,增强边缘和细节 可根据实际需求选择不同的滤波器和参数,以达到最佳效果
对图像进行滤波处理,去除噪声 对图像进行边缘检测,突出边缘信息 对图像进行对比度增强,提高图像的清晰度 对图像进行细节增强,增强图像的纹理和细节信息

图像增强的方法有哪些

图像增强的方法有哪些

图像增强的方法有哪些图像增强是指对图像进行处理,以改善其视觉质量或提取出更多的有用信息。

在数字图像处理领域,图像增强是一个重要的研究方向,它涉及到许多方法和技术。

本文将介绍几种常见的图像增强方法,包括灰度拉伸、直方图均衡化、滤波和锐化等。

这些方法可以应用于各种领域,如医学图像处理、遥感图像处理和计算机视觉等。

灰度拉伸是一种简单而有效的图像增强方法。

它通过拉伸图像的灰度范围,使得图像的对比度得到增强。

具体而言,灰度拉伸会将图像的最小灰度值映射到0,最大灰度值映射到255,中间的灰度值按比例进行映射。

这样可以使得图像的整体对比度得到提高,从而更容易观察和分析图像中的细节。

另一种常见的图像增强方法是直方图均衡化。

直方图均衡化通过重新分布图像的灰度级别,以使得图像的直方图更加均匀。

这样可以增强图像的对比度,使得图像中的细节更加清晰。

直方图均衡化在医学图像处理中得到了广泛的应用,可以帮助医生更准确地诊断疾病。

滤波是图像处理中常用的一种技术,它可以用来增强图像的特定特征或去除图像中的噪声。

常见的滤波方法包括均值滤波、中值滤波和高斯滤波等。

这些滤波方法可以根据图像的特点和需要进行选择,从而达到增强图像质量的目的。

除了滤波之外,锐化也是一种常见的图像增强方法。

锐化可以使图像中的边缘和细节更加清晰,从而提高图像的视觉质量。

常见的锐化方法包括拉普拉斯算子和Sobel算子等。

这些方法可以通过增强图像中的高频信息来使图像更加清晰。

综上所述,图像增强是图像处理中的一个重要环节,它可以帮助我们改善图像的质量,提取出更多的有用信息。

本文介绍了几种常见的图像增强方法,包括灰度拉伸、直方图均衡化、滤波和锐化等。

这些方法可以根据图像的特点和需求进行选择,从而达到增强图像质量的目的。

在实际应用中,我们可以根据具体的情况选择合适的图像增强方法,从而得到更加优质的图像结果。

图像锐化报告

图像锐化报告

一,实验目的。

1、掌握图像锐化的主要原理和常用方法2、掌握常见的边缘提取算法3、利用C#实现图像的边缘检测二,实验原理。

图像锐化就是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,亦分空域处理和频域处理两类。

图像平滑往往使图像中的边界、轮廓变的模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。

图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。

从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。

在水下图像的增强处理中除了去噪,对比度扩展外,有时候还需要加强图像中景物的边缘和轮廓。

而边缘和轮廓常常位于图像中灰度突变的地方,因而可以直观地想到用灰度的差分对边缘和轮廓进行提取。

图像边缘锐化的基本方法:微分运算,梯度锐化,边缘检测。

微分运算微分运算应用在图像上,可使图像的轮廓清晰。

微分运算有:纵向微分运算,横向微分运算,双方向一次微分运算。

单向微分运算双向微分微分运算作用:相减的结果反映了图像亮度变化率的大小。

像素值保持不变的区域,相减的结果为零,即像素为黑;像素值变化剧烈的区域,相减后得到较大的变化率,像素灰度值差别越大,则得到的像素就越亮,图像的垂直边缘得到增强。

梯度锐化: 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像鋭化技术,使边缘变得清晰。

梯度锐化常用的方法有:直接以梯度值代替;辅以门限判断;给边缘规定一个特定的灰度级;给背景规定灰度级;根据梯度二值化图像。

边缘检测边缘检测算子检查每个像素的邻域并对灰度变化率进行量化,通常也包括方向的确定。

大多数是基于方向导数模板求卷积的方法。

将所有的边缘模板逐一作用于图像中的每一个像素,产生最大输出值的边缘模板方向,表示该点边缘的方向,如果所有方向上的边缘模板接近于零,该点处没有边缘;如果所有方向上的边缘模板输出值都近似相等,没有可靠边缘方向。

《图像的锐化处理》ppt课件

《图像的锐化处理》ppt课件
〔2〕求高斯滤波器的拉普拉斯变换,再求 与图像的卷积,然后再进展过零判别。
这两种方法再数学上是等价的。
LOG滤波方法
图7-10 二维LOG滤波器
LOG滤波方法
(a) 原图
(b) 阈值为0检测结果
(c) 阈值为0.01检测结果
图7-11 采用LOG的边缘检测
Sobel
Robert Canny
LOG
Prewitt
G
f x
2
f y
2 2
arctanfy
f x
• 其中f 为滤波后的图像。
• (3) 对梯度进展“非极大抑制〞。 • 梯度的方向可以定义为属于4个区之一,各
个区用不同的临近像素来进展比较,以决 议部分极大值。这4个区及其相应的比较方 向如以下图所示。
432
1x1
234
• 例如,假设中心像素的梯度方向属于第4 区,那么把的梯度值与它左上和右下相 邻像素的梯度值比较,看的梯度值能否 是部分极大值。假设不是,就把像素的 灰度设为0,这个过程称为“非极大抑制 〞。
LOG滤波方法
一维LOG边缘检测
LOG滤波Байду номын сангаас法
该算法的主要思绪和步骤是: 〔1〕滤波:首先对图像 f (x, y) 进展平滑滤波
G (x,y)212 ex2 p 12 ((x2y2))
将到一G个(x平, y滑) 与的图f 像(x,,y)即图: 像进展卷积,可以得
g (x ,y ) f(x ,y ) G (x ,y ) 〔6.28〕
• 链接边缘的详细步骤如下:
• 1 对图像2进展扫描,当遇到一个非零灰度的像素P时, 跟踪以P为开场点的轮廓线,直到轮廓的终点Q。
• 2 调查图像1中与图像2中Q点位置对应的点Q’的8临 近区域。假设Q’点的8临近区域中有非零像素R’存 在,那么将其包括到图像2中,作为R点。

实验报告-图像锐化

实验报告-图像锐化
{
lWidth=m_BmpInfo.bmiHeader.biWidth;
lHeight=m_BmpInfo.bmiHeader.biHeight;
//分配内存,以保存新DIB
hDIB=GlobalAlloc(GHND,nBytePerLine*lHeight);
//判断是否内存分配失败
if(hDIB==NULL)
3.编写图像锐化的彩色图像灰度化,Sobel算法锐化,图像二值化处理相关的程序代码。
4.对程序进行相关调试,修改程序,去除其中的BUG。
5.利用自己准备的图像的文件和编写的程序,进行图像锐化处理。
6.截屏,保留实验结果,进行实验结果分析,并撰写实验报告。
三、相关背景知识
(写你自己觉得比较重要的与本实验相关的背景知识)
+ 0*val21+ 0*val22+ 0*val32
+ 1.0*val11+ 2.0*val12+ 1.0*val13;
//计算梯度的大小
Sobel=sqrt(gx*gx+gy*gy);
*(pImageDataNew+j*nBytePerLine+i* 3 + 0) =int(Sobel);
*(pImageDataNew+j*nBytePerLine+i* 3 + 1) =int(Sobel);
lHeight=m_BmpInfo.bmiHeader.biHeight;
for(intj= 0 ;j<lHeight;j++)
{
for(inti= 0 ;i<lWidth;i++)
{
//灰度化临时值

浅谈图像平滑滤波和锐化的区别及用途总结

浅谈图像平滑滤波和锐化的区别及用途总结

浅谈图像平滑滤波和锐化的区别及⽤途总结空域滤波技术根据功能主要分为与滤波。

能减弱或消除图像中的⾼频率分量⽽不影响低频分量,⾼频分量对应图像中的区域边缘等值具有较⼤变化的部分,可将这些分量滤去减少局部起伏,使图像变得⽐较平滑。

也可⽤于消除噪声,或在提取较⼤⽬标前去除太⼩的细节或将⽬标的⼩间断连接起来。

滤波正好相反,滤波常⽤于增强被模糊的细节或⽬标的边缘,强化图像的细节。

⼀、基本的灰度变换函数1.1.图像反转适⽤场景:增强嵌⼊在⼀幅图像的暗区域中的⽩⾊或灰⾊细节,特别是当⿊⾊的⾯积在尺⼨上占主导地位的时候。

1.2.对数变换(反对数变换与其相反)过程:将输⼊中范围较窄的低灰度值映射为输出中较宽范围的灰度值。

⽤处:⽤来扩展图像中暗像素的值,同时压缩更⾼灰度级的值。

特征:压缩像素值变化较⼤的图像的动态范围。

举例:处理傅⾥叶频谱,频谱中的低值往往观察不到,对数变换之后细节更加丰富。

1.3.幂律变换(⼜名:伽马变换)过程:将窄范围的暗⾊输⼊值映射为较宽范围的输出值。

⽤处:伽马校正可以校正幂律响应现象,常⽤于在计算机屏幕上精确地显⽰图像,可进⾏对⽐度和可辨细节的加强。

1.4.分段线性变换函数缺点:技术说明需要⽤户输⼊。

优点:形式可以是任意复杂的。

1.4.1.对⽐度拉伸:扩展图像的动态范围。

1.4.2.灰度级分层:可以产⽣⼆值图像,研究造影剂的流动。

1.4.3.⽐特平⾯分层:原图像中任意⼀个像素的值,都可以类似的由这些⽐特平⾯对应的⼆进制像素值来重建,可⽤于压缩图⽚。

1.5.直⽅图处理1.5.1直⽅图均衡:增强对⽐度,补偿图像在视觉上难以区分灰度级的差别。

作为⾃适应对⽐度增强⼯具,功能强⼤。

1.5.2直⽅图匹配(直⽅图规定化):希望处理后的图像具有规定的直⽅图形状。

在直⽅图均衡的基础上规定化,有利于解决像素集中于灰度级暗端的图像。

1.5.3局部直⽅图处理:⽤于增强⼩区域的细节,⽅法是以图像中的每个像素邻域中的灰度分布为基础设计变换函数,可⽤于显⽰全局直⽅图均衡化不⾜以影响的细节的显⽰。

第8章 图像平滑和锐化

第8章 图像平滑和锐化
净点。
因为正态分布的均值为0,所以根据统计数学,均值可以消
除噪声。
精选可编辑ppt
41
在MATLAB图像处理工具箱中,实现中值滤波的函数是
medfilt2,其常用的调用方法如下:
B=medfilt2(A,[m n])
其中A是输入图像,[m,n]是邻域窗口的大小,默认
值为[3,3],B为滤波后图像。

噪声可以理解为“妨碍人们感觉器官对所
接收的信源信息理解的因素”。
精选可编辑ppt
2
噪声来源
数字图像的噪声主要来源于图像的获取和传输过程
图像获取的数字化过程,如图像传感器的质量和
环境条件
图像传输过程中传输信道的噪声干扰,如通过无
线网络传输的图像会受到光或其它大气因素的干扰
精选可编辑ppt
3
图像噪声特点
1. 噪声在图像中的分布和大小不规则
2. 噪声与图像之间具有相关性
3. 噪声具有叠加性
精选可编辑ppt
4
图像噪声分类
一.
按其产生的原因可分为:外部噪声和内部
噪声。
二.
从统计特性可分为:平稳噪声和非平稳噪
声。
三.
按噪声和信号之间的关系可分为:加性噪
声和乘性噪声。
精选可编辑ppt
5
按其产生的原因

外部噪声:指系统外部干扰从电磁波或经电
源传进系统内部而引起的噪声。

内部噪声:

由光和电的基本性质所引起的噪声。

电器的机械运动产生的噪声。

元器件材料本身引起的噪声。

系统内部设备电路所引起的噪声。
精选可编辑ppt
6
按统计特性

锐化和柔化的方法

锐化和柔化的方法

锐化和柔化的方法一张优秀的风光作品,画面中除了各元素的和谐外还包括了各种对比和冲突。

常见的有色彩对比,明暗对比和虚实对比。

继《所有变亮和变暗的方法都全了》的明暗对比的文章之后,今天这篇文章我将对所有锐化和虚化的方法做一个汇总,来教大家如何营造虚实对比。

1、锐化1.1基础锐化基础锐化是在lr中针对raw格式文件的锐化。

目的是为了在无损的条件下压榨出图片更多的细节,为后续在ps中的操作打下一个良好的基础。

首先在lr界面右侧找到“细节”面板。

我们可以看到lr针对raw文件的照片会自动给一个基础的锐化量。

基础锐化我通常的做法是半径拉到最小(0.5),细节拉到最大(100),数量根据图片情况进行调整,甚至可以保持lr原有的锐化数量不变。

如果图片中存在你不想锐化的区域,比如平静的水面,万里无云的天空。

那么按住alt键的同时滑动蒙版选项条,此时图片变成如上图的灰度图。

白色代表锐化完全作用的区域,黑色代表无锐化的区域。

我会通过滑动选项条来控制锐化的阈值,避免锐化过度作用于无细节的区域。

总结:这个基础锐化是我在处理每张照片时都一定会用到的锐化。

1. 2 清晰度锐化Lr以及ps的camera raw中都有“清晰度”这个功能。

这个功能主要影响的是图像的中间调的对比度,而对高光和阴影的影响很小。

这就可以避免锐化作用于天空,背阴处这类高亮以及很暗的区域。

但是清晰度数值越大,图像就会越生硬,噪点也会越明显,在明暗交界处会产生让人讨厌的光晕。

图一和图二分别是原图以及清晰度加到最大以后的对比。

可以发现清晰度数值过大以后,图片质量下降严重。

所以清晰度锐化我通常最多加到30,经常用于加强云层的细节,它能够保证高光的天空不受影响而增强中间调云层的对比。

总结:通常的用法是用lr的调整画笔对画面的局部增强清晰度,切不可全图使用,而且数值不宜开到过大,这个功能的过度使用会让画面变的很脏,慎用!1.3 去朦胧锐化(dehaze)这个效果是lightroom更新到CC版本后新增的功能当滑块向右移动时,画面的清晰度和对比度以及饱和度都会加强。

图像锐化处理算法及其软硬件实现

图像锐化处理算法及其软硬件实现

图像锐化处理算法及其软硬件实现摘要:图像锐化处理的主要目的在于使模糊的图像变清晰。

本文使用了一种基于拉普拉斯算法的图像锐化方法。

首先研究拉普拉斯算子锐化图像的基本原理,并推导出图像锐化的拉普拉斯算子,其次,根据拉普拉斯算子,运用C语言编写主函数和读取图像数据的子函数,初始化图像的子函数和对图像锐化的计算子函数等子函数来实现基于拉普拉斯算法的图像锐化程序。

关键词:图像锐化拉普拉斯算法一、图像锐化的算法原理图像在经过平滑处理后,往往会造成图像的边缘和轮廓模糊,对此可以采用锐化处理来使图像清晰化。

锐化处理是为了突出感兴趣的细节信息,并不一定在实际观察效果上逼近原始图像。

锐化处理算法分为两大类,即微分法和高通滤波。

其中微分法属于空域处理算法,适宜于在硬件上实现,常用的有梯度算法和拉普拉斯算法。

1.1梯度锐化:图像为f ( x,y),定义f ( x,y)在点( x ,y)处的梯度矢量G[ f(x,y)]为:梯度有两个重要的性质:梯度的方向在函数 f ( x,y)最大变化率方向上;梯度的幅度用G[ f(x,y)]表示,其值为:由此式可以得出这样的结论,梯度的数值就是f(x,y)在其最大变化率方向上的单位距离所增加的量。

由上面的公式可见:在图像变化缓慢的地方其值很小,对应于图像较暗;而在线条轮廓的变化较快的地方的值很大。

这就是图像在经过梯度运算后使其清晰从而达到锐化的依据。

由于图像在变化缓慢的地方梯度很小,所以图像会显得很暗,通常的做法是给一个阈值Δ,如果G[f(x,y)]小于该阈值Δ,则保持原灰度值不变;如果大于或等于阈值Δ,则赋值为G[f(x,y)]。

1.2拉普拉斯锐化:拉氏算子是一个刻画图像灰度的二阶商算子,它是点、线、边界提取算子,,亦成为边界提取算子。

通常图像和对他实施拉氏算子后的结果组合后产生一个锐化图像。

拉氏算子(1.3)为了更适合于数字图像处理,将其表示为离散形式:(1.4)对于扩散现象引起的图像模糊,可以用下式来进行锐化:(1.5)这里k 是与扩散效应有关的系数,该系数要取值合理,如果k过大,图像轮廓边缘会产生过冲;反之,如果k过小,锐化效果就不明显。

数字图像处理图像锐化

数字图像处理图像锐化
高斯-拉普拉斯算子将平滑运算和锐化 运算结合在一起,非常适合被噪声污染的图 像进行锐化增强
第32页/共68页
一阶与二阶微分的边缘提取效果比 较
• 以Sobel及Laplacian算法为例进行比较。 • Sobel算子获得的边界是比较粗略的边界,反映的边界信息较少,但是所反映
的边界比较清晰; • Laplacian算子获得的边界是比较细致的边界。反映的边界信息包括了许多的
第14页/共68页
无方向一阶锐化
—— 设计思想
• 为了解决上面的问题,就希望提出对任何方向上的边缘信息均敏感的锐化 算法。
• 因为这类锐化方法要求对边缘的方向没有选择,所有称为无方向的锐化算 法。
第15页/共68页
无方向一阶锐化
法)
—— 交叉微分(Roberts算
交叉微分算法(Roberts算法)计算公式如下:
离散化之后的差分方程:
f (i, j) [ f (i 1, j) f (i, j)] [ f (i, j 1) f (i, j)]
考虑到图像边界的拓扑结构性,根据 这个原理派生出许多相关的方法。
第4页/共68页
一阶微分锐化
单方向一阶微分锐化 无方向一阶微分锐化
• 交叉微分锐化(Roberts算子) • Sobel锐化 • Priwitt锐化
—— 景物细节对应关 系
3)对于渐变的细节,一般情况下很难检测,但二阶微分的信息比一阶微分的信息 略多。
第24页/共68页
二阶微分锐化
—— 算法推导
2 f
2 f x 2
2 f y 2
2 f x 2
[ f x (i, j) f x (i 1, j)]
[ f (i, j) f (i 1, j)] [ f (i 1, j) f (i, j)]

第6章 图像锐化处理及边缘

第6章 图像锐化处理及边缘

6.3.2辅以门限判断 辅以门限判断
1理论基础 理论基础 G[f(i,j)]={[ f(i,j) - f(i-1,j)]2+ [ f(i,j) - f(i,j-1)]2 }1/2 G[f(i,j)]+100; G[f(i,j)]≥T g(i,j)= f(i,j); 其它
2. 实现步骤
(1)获得原图像的首地址,及图像的宽和高; (2)开辟一块内存缓冲区,并初始化为255; (3)计算图像的像素的梯度,将结果保存在内存缓冲 区; (4)比较像素的梯度是否大于30,是则将梯度值加 100,不是则将该像素点的灰度值恢复,如果梯度加 100大于255,将其置为255; (5)将内存中的数据复制到图像数据区。
1 理论基础 以下8个卷积核组成了Kirsch边缘检测算子。 图像中的每个点都用8个掩模进行卷积, 所有8个方向中的最大值作为边缘幅度图像 输出。
Kirsch边缘检测算子 边缘检测算子
5 5 5 −3 0 −3 −3 −3 −3
-3 −3 −3 −3 0 −3 5 5 5 -3 5 5 −3 0 5 −3 −3 −3 - 3 −3 5 −3 0 5 −3 −3 5 -3 −3 −3 −3 0 5 −3 5 5
G ( i, j ) = - f ( i, j-1 ) + f ( i , j )
2. 双向微分
∂f ∂ g[f(i,j)]= ∂fi ∂j
3. 微分运算作用
相减的结果反映了图像亮度变化率的大小。 像素值保持不变的区域,相减的结果为零, 即像素为黑; 像素值变化剧烈的区域,相减后得到较大 的变化率,像素灰度值差别越大,则得到的 像素就越亮,图像的垂直边缘得到增强。

第五章 图像锐化处理

第五章 图像锐化处理

图像锐化处理图像锐化的概念补偿图像轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰。

⏹图像锐化的目的是加强图像中景物的细节边缘和轮廓。

⏹锐化的作用是使灰度反差增强。

⏹因为边缘和轮廓都位于灰度突变的地方。

所以锐化算法的实现是基于微分作用。

图像锐化方法⏹图像的景物细节特征;⏹一阶微分锐化方法;⏹二阶锐化微分方法;⏹一阶、二阶微分锐化方法效果比较。

图像细节的灰度变化特性扫描线灰度跃变平坦段灰度渐变孤立点细线1、一阶微分锐化 —— 基本原理⏹ 一阶微分的计算公式非常简单:⏹ 离散化之后的差分方程:考虑到图像边界的拓扑结构性,根据这个原理派生出许多相关的方法。

⏹ 单方向一阶微分锐化⏹ 无方向一阶微分锐化• 交叉微分锐化• Sobel 锐化• Priwitt 锐化'(,)f f f x y x y ∂∂=+∂∂(,)[(1,)(,)][(,1)(,)]f i j f i j f i j f i j f i j ∆=+-++-(1)单方向的一阶锐化——基本原理⏹单方向的一阶锐化是指对某个特定方向上的边缘信息进行增强。

⏹因为图像为水平、垂直两个方向组成,所以,所谓的单方向锐化实际上是包括水平方向与垂直方向上的锐化。

水平方向的一阶锐化---基本方法⏹水平方向的锐化非常简单,通过一个可以检测出水平方向上的像素值的变化模板来实现。

问题:计算结果中出现了小于零的像素值?(2)垂直方向的一阶锐化——基本方法⏹垂直锐化算法的设计思想与水平锐化算法相同,通过一个可以检测出垂直方向上的像素值的变化模板来实现。

单方向锐化的后处理⏹这种锐化算法需要进行后处理,以解决像素值为负的问题。

⏹后处理的方法不同,则所得到的效果也就不同。

方法1:整体加一个正整数,以保证所有的像⏹素值均为正。

(比如+128,还有<0的则视为0,若有>255的则视为255处理)⏹这样做的结果是:可以获得类似浮雕的效果。

下例是+20后的效果void CDynSplitView::OnHsharpen(){// TODO: 在此添加命令处理程序代码int i,j,buf;int w[3][3]={{1,2,1},{0,0,0},{-1,-2,-1}};clearmem();int ysize=m_imagey,xsize=m_imagex;for(j=1;j<ysize-1;j++)for (i=1;i<xsize-1;i++){buf=(int)(*(image_in+(j-1)*xsize+i-1)*w[0][0]+ *(image_in+(j-1)*xsize+i)*w[0][1]+*(image_in+(j-1)*xsize+i+1)*w[0][2]+*(image_in+j*xsize+i-1)*w[1][0]+*(image_in+j*xsize+i)*w[1][1]+*(image_in+j*xsize+i+1)*w[1][2]+*(image_in+(j+1)*xsize+i-1)*w[2][0]+ *(image_in+(j+1)*xsize+i)*w[2][1]+*(image_in+(j+1)*xsize+i+1)*w[2][2] );buf+=128;if (buf<0) buf=0; if (buf>255) buf=255;*(image_out+j*xsize+i)=buf;}Invalidate();}添加菜单,设置其ID 属性:ID_HSHARPEN, ID_VSHARPEN为菜单添加事件处理程序。

图像的锐化名词解释

图像的锐化名词解释

图像的锐化名词解释图像的锐化是指通过一定的处理方法,提高图像的清晰度和边缘的明确程度,使得图像能够更好地展示出细节和纹理。

一、图像的锐化方法在图像处理中,有多种方法可以用于实现图像的锐化。

以下是几种常用的方法:1. 锐化滤波:锐化滤波是通过增强图像中的高频部分,使得图像的边缘更加清晰。

常用的滤波器包括拉普拉斯滤波器和Sobel滤波器等。

2. 高通滤波:高通滤波是通过去除图像中的低频部分,突出图像中的边缘和细节。

高斯高通滤波器和Butterworth高通滤波器是常用的高通滤波器。

3. 锐化增强:锐化增强是通过对图像进行局部对比度增强,突出图像的边缘和细节。

常见的方法包括直方图均衡化、雷达变换和增强式卷积等。

二、图像的锐化效果图像的锐化可以使得图像更加清晰,呈现出更多的细节和纹理。

通过图像的锐化可以提高图像的视觉质量,使得图像更加逼真。

1. 边缘增强:图像的锐化可以使得边缘更加明确,提高图像的辨别度。

例如,在人脸图像中,通过锐化可以突出眼睛、鼻子、嘴巴等面部特征,使得人脸更加生动。

2. 细节恢复:在某些情况下,图像可能因为拍摄条件或传输过程中的噪声而导致丢失细节。

通过图像的锐化可以恢复这些丢失的细节,使得图像更加真实。

3. 纹理增强:锐化可以使图像中的纹理更加清晰和明显。

例如,在自然景观图像中,通过锐化可以突出树木的纹理、水面的波纹等,增强图像的自然感。

三、图像的锐化应用图像的锐化在许多领域都有广泛的应用。

以下是几个典型的应用场景:1. 医学影像:在医学影像中,图像的清晰度对于医生的诊断非常重要。

通过图像的锐化可以增强医学影像中的细节,提供更准确的诊断结果。

2. 视频处理:在视频处理中,图像的锐化可以改善视频的视觉质量。

通过对视频帧进行锐化处理,可以使得视频更加清晰,提高用户的观看体验。

3. 图像识别:在图像识别中,锐化可以增强图像中的特征,提高识别算法的准确度。

例如,通过图像的锐化可以使得人脸识别算法更好地捕捉到人脸的特征,从而提高人脸识别的准确率。

图像的拉普拉斯锐化方法及讨论

图像的拉普拉斯锐化方法及讨论

图像的拉普拉斯锐化方法及讨论摘要:本文讲述了空域锐化中常用的二阶微分算法——拉普拉斯算子法。

全文首先对拉普拉斯运算做了简单的描述,并简明地分析了其原理:通常是将原图像和对他实施拉式算子后的结果组合后产生一个锐化图像。

然后对其在数字图像处理方面进行举例分析,并编程实现锐化效果。

最后对实验结果进行分析与讨论,说明其在图像处理应用方面,特别是用来改善因扩散效应的模糊方面特别有效。

关键字:图像处理二阶微分锐化拉普拉斯锐化1.引言图象在传输和转换过程中,一般情况下质量都要降低,除了加入了噪声的因素之外,图象还要变得模糊一些。

这主要因为图象的传输或转换系统的传递函数对高频成分的衰减作用,造成图象的细节和轮廓不清晰。

图象锐化就是加强图象中景物的细节和轮廓,使图象变得较清晰。

在数字图象中,细节和轮廓就是灰度突变的地方。

我们知道,灰度突变在频城中代表了一种高频分量,如果使图象信号经历一个使高频分量得以加强的滤波器,就可以达到减少图象中的模糊,加强图象的细节和轮廓的目的。

可以看出,锐化恰好是一个与平滑相反的过程。

我们使用对象素及其邻域进行加权平均,也就是用积分的方法实现了图象的平滑;反过来,应当可以利用微分来锐化一个图象。

2.理论和方法拉式算子是一个刻画图像灰度的二阶商算子,它是点、线、边界提取算子,亦称为边界提取算子。

通常图像和对他实施拉式算子后的结果组合后产生一个锐化图像。

拉式算子用来改善因扩散效应的模糊特别有效,因为它符合降制模型。

扩散效应是成像过程中经常发生的现象。

拉普拉斯算子也是最简单的各向同性微分算子,具有旋转不变性。

一个二维图像函数的拉普拉斯变换是各向同性的二阶导数,定义为:[),(4,()1,(),1(),1(),(2)1,()1,(),(),(2),1(),1(),(2222222222y x f y x f y x f y x f y x f f y x f y x f y x f yy x f y x f y x f y x f xy x f y f x f f --+++-++=∇--++=∂∂--++=∂∂∂∂+∂∂=∇为了更适合于数字图像处理,将拉式算子表示为离散形式:另外,拉普拉斯算子还可以表示成模板的形式,如下图(1)所示,为离散拉普拉斯算子的模板,图(2)表示其扩展模板。

实验三图像的平滑与锐化

实验三图像的平滑与锐化

实验三 图像的平滑与锐化一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。

二.实验基本原理图像噪声从统计特性可分为平稳噪声和非平稳噪声两种。

统计特性不随时间变化的噪声称为平稳噪声;统计特性随时间变化的噪声称为非平稳噪声。

另外,按噪声和信号之间的关系可分为加性噪声和乘性噪声。

假定信号为S (t ),噪声为n (t ),如果混合叠加波形是S (t )+n (t )形式,则称其为加性噪声;如果叠加波形为S (t )[1+n (t )]形式, 则称其为乘性噪声。

为了分析处理方便,往往将乘性噪声近似认为加性噪声,而且总是假定信号和噪声是互相独立的。

1.均值滤波均值滤波是在空间域对图像进行平滑处理的一种方法,易于实现,效果也挺好。

设噪声η(m,n)是加性噪声,其均值为0,方差(噪声功率)为2σ,而且噪声与图像f(m,n)不相关。

除了对噪声有上述假定之外,该算法还基于这样一种假设:图像是由许多灰度值相近的小块组成。

这个假设大体上反映了许多图像的结构特征。

∑∈=s j i j i f M y x g ),(),(1),( (3-1)式(2-1)表达的算法是由某像素领域内各点灰度值的平均值来代替该像素原来的灰度值。

可用模块反映领域平均算法的特征。

对模板沿水平和垂直两个方向逐点移动,相当于用这样一个模块与图像进行卷积运算,从而平滑了整幅图像。

模版内各系数和为1,用这样的模板处理常数图像时,图像没有变化;对一般图像处理后,整幅图像灰度的平均值可不变。

(a) 原始图像 (b) 邻域平均后的结果图3-1 图像的领域平均法2.中值滤波中值滤波是一种非线性处理技术,能抑制图像中的噪声。

它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的象素很少,而图像则是由像素数较多、面积较大的小块构成。

在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。

大学毕业论文-—图像锐化处理说明书

大学毕业论文-—图像锐化处理说明书

图像锐化处理目录第一章前言 (3)第二章绪论 (4)2.1 研究的目的及意义 (6)2.2 国内外研究现状 (7)2.2.1 国外研究现状 (7)2.2.2 国内研究现状 (10)2.3 本文主要研究内容与结构安排 (11)第三章算法分析与描述 (13)3.1 数字图像处理简介 (14)3.1.1 数字图像处理的特点 (14)3.1.2 数字图像处理的目的和主要内容 (16)3.2 VC++简介 (18)3.2.1 Visual C++开发语言的特点 (20)3.2.2 Visual C++ 6.0 的特点 (21)3.2.3 Visual C++ 6.0 及其开发环境 (23)3.3 本章小结 (25)第四章算法分析与描述 (26)4.1 空域微分锐化方法 (26)4.1.1拉普拉斯微分算子函数 (28)4.1.2 Roberts交叉微分算子函数 (30)4.1.3 Prewitt微分算子函数(平均差分法) (31)4.1.4 Sobel微分算子函数(加权平均差分法) (31)4.2 频域高通滤波锐化方法 (34)4.2.1理想高通滤波器 (34)4.2.2巴特沃思高通滤波器 (35)4.2.3指数高通滤波器 (35)第五章详细设计过程 (36)5.1微分算子图像锐化编程实现说明 (36)5.2理想高通滤波图像锐化编程实现说明 (42)5.3 Butterworth 高通滤波图像锐化编程实现说明 (49)5.4 程序运行中的图像 (56)设计总结 (59)参考文献 (60)致谢 (62)第一章前言图像是人类获取和交换信息的主要来源, 因此, 图像处理的应用领域必然涉及到人类生活和工作的方方面面。

随着人类活动范围的不断扩大, 图像处理的应用领域也将随之不断扩大。

数字图像处理(Digital Image Processing)又称为计算机图像处理, 它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

Photoshop 照片处理基础教学PPT课件第5章 照片模糊与锐化处理

Photoshop 照片处理基础教学PPT课件第5章 照片模糊与锐化处理

Photoshop 基础教学
表面模糊:“表面模糊”滤镜可以在不修改边缘的情况下进行模糊图像,经常用该滤镜消除画面中细 微的杂点。 动感模糊:“动感模糊”滤镜可以沿指定的方向,产生类似于运动的效果,该滤镜常用来制作带有动 感的画面。 方框模糊:“方框模糊”滤镜可以基于相邻像素的平均颜色值来模糊图像,生成的模糊效果类似于方 块模糊。 高斯模糊:“高斯模糊”效果可以均匀柔和的将画面进行模糊,使画面看起来具有朦胧感。 进一步模糊:“进一步模糊”滤镜没有任何参数可以设置,使用该滤镜只会让画面产生轻微的、均匀 的模糊效果。 径向模糊:“径向模糊”是指以指定点的中心点为起始点创建的旋转或缩放的模糊效果。 镜头模糊:“镜头模糊”滤镜通常用来制作景深效果。如果图像中存在Alpha通道或图层蒙版,则可 以将其指定“源”,从而产生景深模糊效果。 模糊:“模糊”滤镜用于在图像中有显著颜色变化的地方消除杂色,它可以通过平衡已定义的线条和 遮蔽区域的清晰边缘旁边的像素来使图像变得柔和(该滤镜没有参数设置窗口)。 平均:“平均”滤镜可以查找图像或选区的平均颜色,再用该颜色填充图像或选区,以创建平滑的外 观效果。 特殊模糊:“特殊模糊”可以将图像的细节颜色呈现更加平滑的模糊效果。 形状模糊:“形状模糊”滤镜可以形状来创建特殊的模糊效果。
Photoshop 基础教学
模糊滤镜组中集合多种模糊滤镜,为图像应用模糊滤镜能够使图像内 容变得柔和,淡化边界的颜色。使用模糊滤拍效果。执行“滤镜>模糊”命令, 可以在子菜单中看到多种用于模糊图像的滤镜,如图所示。这些滤镜适合 应用的场合不同:高斯模糊是最常用的图像模糊滤镜。模糊、进一步模糊 属于“无参数”滤镜,无参数可供调整,适合于轻微模糊的情况。表面模 糊、特殊模糊常用于图像降噪。动感模糊、径向模糊会沿一定方向进行模 糊。方块模糊、形状模糊是以特定的形状进行模糊。镜头模糊常用于模拟 大光圈摄影效果。平均滤镜用于获取整个图像的平均颜色值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像的锐化
摘要:图像平滑往往使图像中的轮廓变得模糊,为了减少这类不利影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。

本文分析了图像锐化方法中的梯度算子法和二阶导数算子法的各自特点,其中梯度算子法主要是Roberts 梯度算子法、Prewitt 梯度算子法、Sobel 算子法;二阶导数算子法为Laplacian 算子法,并通过编程对一张实际图片进行了试验对比,结果证明Laplacian 算子法锐化效果最好。

引言 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。

图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。

从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。

图像锐化处理的主要技术体现在空域和频域的高通滤波,而空域高通滤波主要用模版卷积来实现。

1、梯度算子法
在图像处理中,一阶导数通过梯度来实现,因此利用一阶导数检测边缘点的方法就称为梯度算子法。

梯度值正比于像素之差。

对于一幅图像中突出的边缘区,其梯度值较大;在平滑区域梯度值小;对于灰度级为常数的区域,梯度为零。

1.1、Roberts 梯度算子法
Roberts 梯度就是采用对角方向相邻两像素之差,故也称为四点差分法。

对应的水平和垂直方向的模板为:
标注
的是当前像素的位置(i,j)为当前像素的位置,其计算公式如下:
⎥⎦⎤⎢⎣⎡-=∙
1001x G ⎥⎦⎤⎢⎣⎡-=∙0110y G ∙
特点:用4点进行差分,以求得梯度,方法简单。

其缺点是对噪声较敏感,常用于不含噪声的图像边缘点检测。

梯度算子类边缘检测方法的效果类似于高通滤波,有增强高频分量,抑制低频分量的作用。

这类算子对噪声较敏感,而我们希望检测算法同时具有噪声抑制作用。

所以,下面给出的平滑梯度算子法具有噪声抑制作用。

利用Roberts 梯度算子法对灰度数字图像lena.bmp 进行边缘检测程序代码如下:
I=imread('C:\Documents and Settings\Administrator\桌面\数字图象处理实验\mape_file\lena.bmp');
[H,W]=size(I);
M=double(I);
J=M;
for i=1:H-1
for j=1:W-1
J(i,j)=abs(M(i,j)-M(i+1,j+1))+abs(M(i+1,j)-M(i,j+1));
end;
end;
subplot(1,2,1);imshow(I);title('原图');
subplot(1,2,2);imshow(uint8(J));title('Roberts 处理后');
)
1,(),1()1,1(),(),(+-++++-=j i f j i f j i f j i f j i G
1.2、Prewitt 梯度算子法(平均差分法)
因为平均能减少或消除噪声,Prewitt 梯度算子法就是先求平均,再求差分来求梯度。

水平和垂直梯度模板分别为:
利用检测模板可求得水平和垂直方向的梯度,再通过梯度合成和边缘点判定,就可得到平均差分法的检测结果。

利用Prewitt 算子对灰度数字图像lena.bmp 进行边缘检测,程序代码如下: I=imread('C:\Documents and Settings\Administrator\桌面\数字图象处理实验\mape_file\lena.bmp');
[H,W]=size(I);
M=double(I);
J=M;
for i=2:H-1
for j=2:W-1
J(i,j)=abs(M(i-1,j+1)-M(i-1,j-1)+M(i,j+1)-M(i,j-1)+M(i+1,j+1)-M(i+1,j -1))+abs(M(i+1,j-1)-M(i-1,j-1)+M(i+1,j)-M(i-1,j)+M(i+1,j+1)-M(i-1,j+1));
end;
end;
subplot(1,2,1);imshow(I);title('原图');
subplot(1,2,2);imshow(uint8(J));title('Prewitt 处理后');
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∙
101101101x d ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---=∙111000111y d
1.3、Sobel 算子法(加权平均差分法)
Sobel 算子就是对当前行或列对应的值加权后,再进行平均和差分,也称为加权平均差分。

水平和垂直梯度模板分别为:
Sobel 算子和Prewitt 算子一样,都在检测边缘点的同时具有抑制噪声的能力,检测出的边缘宽度至少为二像素。

由于它们都是先平均后差分,平均时会丢失一些细节信息,使边缘有一定的模糊。

但由于Sobel 算子的加权作用,其使边缘的模糊程度要稍低于程度要稍低于Prewitt 算子。

利用Sobel 边缘检测算子法对灰度数字图像lena.bmp 进行边缘检测,程序代码如下:
I=imread('C:\Documents and Settings\Administrator\桌面\数字图象处理实验\mape_file\lena.bmp');
[H,W]=size(I);
M=double(I);
J=M;
for i=2:H-1 for j=2:W-1
y
x S S j i G +=),(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∙
10120210
1x S ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∙121000121y S
J(i,j)=abs(M(i-1,j+1)-M(i-1,j-1)+2*M(i,j+1)-2*M(i,j-1)+M(i+1,j+1)-M(i +1,j-1))+abs(M(i-1,j-1)-M(i+1,j-1)+2*M(i-1,j)-2*M(i+1,j)+M(i-1,j+1)-M (i+1,j+1));
end;
end;
subplot(1,2,1);imshow(I);title('原图');
subplot(1,2,2);imshow(uint8(J));title('Sobel 处理后
');
2、二阶导数算子法
对于阶跃状边缘,其二阶导数在边缘点处出现过零交叉,即边缘点两旁的二阶导数取异号,据此可以通过二阶导数来检测边缘点。

2.1、Laplacian 算子法
对数字图像 f (m ,n ),用差分代替二阶偏导,则Laplacian 算子为:
写成检测模板为:
)1,()1,(),1(),1(),(4),(--+---+-=j i f j i f j i f j i f j i f j i G
Laplacian检测模板的特点是各向同性,对孤立点及线端的检测效果好,但边缘方向信息丢失,对噪声敏感,整体检测效果不如梯度算子。

按下面要求编写程序并运行结果。

用Laplacian 锐化算子对灰度数字图像lena.bmp进行锐化处理,显示处理前、后图像。

程序代码如下:
I=imread('C:\Documents and Settings\Administrator\桌面\数字图象处理实验\mape_file\lena.bmp');
[H,W]=size(I);
M=double(I);
J=M;
for i=2:H-1
for j=2:W-1
J(i,j)=4*M(i,j)-[M(i+1,j)+M(i-1,j)+M(i,j+1)+M(i,j-1)];
end;
end;
subplot(1,2,1);imshow(I);title('原图');
subplot(1,2,2);imshow(uint8(J));title('锐化处理后的图');
运行结果如下:
3、结语
锐化的实质是:锐化图像g(m,n) = 原图像f(m,n) + 加重的边缘(α*微分)由实验效果对比图可以看出Sobel算子处理图像后使边缘有一定的模糊。

但其边缘的模糊程度要稍低于程度要稍低于Prewitt算子。

Laplacian检测模板的特点是各向同性,对孤立点及线端的检测效果好,但边缘方向信息丢失,对噪声敏感,整体检测效果不如梯度算子。

参考文献:
[1] MATLAB7.X图像处理M.何兴华,周媛媛.人民邮电出版社:北京,2006,72-73.
[2] 数字图像处理M.阮秋琦.电子工业出版社:北京,2005,12-14.
[3] MATLAB函数速查手册M.邓微.人民邮电出版社:北京,2008,23-24.。

相关文档
最新文档