回归模型拟合精度分析(1).doc
线性回归精确分析讲课文档
![线性回归精确分析讲课文档](https://img.taocdn.com/s3/m/ee60617d83d049649a66586c.png)
(6)指定作图时各数据点的标志变量(case labels)
11
第十一页,共76页。
一元线性回归分析操作
(二) statistics选项 (1)基本统计量输出
– Estimates:默认.显示回归系数相关统计量.
– confidence intervals:每个非标准化的回归系数95%的置信
起的因变量y的平均变动
(二)多元线性回归分析的主要问题
– 回归方程的检验
– 自变量筛选 – 多重共线性问题
18
第Hale Waihona Puke 八页,共76页。多元线性回归方程的检验
(一)拟和优度检验:
(1)判定系数R2:
– R是y和xi的复相关系数(或观察值与预测值的相关系数),测定了因变量 y与所有自变量全体之间线性相关程度
第二十三页,共76页。
23
多元线性回归分析中的自变量筛选
(二)自变量向前筛选法(forward): • 即:自变量不断进入回归方程的过程. • 首先,选择与因变量具有最高相关系数的自变量进入方程,
并进行各种检验;
• 其次,在剩余的自变量中寻找偏相关系数最高的变量进入回归方 程,并进行检验;
– 默认:回归系数检验的概率值小于PIN(0.05)才可以进入方程.
6
第六页,共76页。
一元线性回归方程的检验
(一)拟和优度检验:
(3)统计量:判定系数
– R2=SSR/SST=1-SSE/SST. – R2体现了回归方程所能解释的因变量变差的比例;1-R2则体现
了因变量总变差中,回归方程所无法解释的比例。
– R2越接近于1,则说明回归平方和占了因变量总变差平方和的绝大
《基本回归模型》课件
![《基本回归模型》课件](https://img.taocdn.com/s3/m/f3d07f4753ea551810a6f524ccbff121dc36c546.png)
多元线性回归模型是一种预测模型,通过多个自变 量来预测因变量的值。
02
它基于最小二乘法原理,通过最小化预测值与实际 值之间的残差平方和来估计参数。
03
多元线性回归模型假设因变量与自变量之间存在线 性关系,且自变量之间不存在多重共线性。
多元线性回归模平方和来估计参 数,使得预测值与实际值之间的 差距最小。
详细描述
在股票市场中,股票价格的波动受到多种因素的影响,如公司财务状况、宏观经济指标、市场情绪等 。通过收集历史股票数据,利用回归分析方法建立模型,可以预测未来股票价格的走势。这种预测可 以帮助投资者制定更合理的投资策略,提高投资收益。
预测房地产价格
总结词
利用回归模型分析房地产市场的相关因 素,如地理位置、建筑年代、周边环境 等,预测未来房地产价格走势,为购房 者和投资者提供决策依据。
调整R方值
考虑到自变量数量的拟合优度指标,用于比 较不同模型之间的优劣。
AIC准则
用于选择最优模型,AIC值越小表示模型越 优。
回归模型的扩展
04
岭回归和套索回归
岭回归(Ridge Regression)
岭回归是一种通过增加一个惩罚项来防止过拟合的线性回归方法。它通过增加一个与系数大小相关的项来调整系 数,以减少模型复杂度并提高预测的稳定性。
1
深度学习与回归模型的结合,旨在利用深度学习 的特征学习和抽象能力,提升回归模型的预测精 度和泛化能力。
2
研究重点在于设计适合回归任务的深度神经网络 结构,以及优化训练算法,以实现更高效和准确 的回归预测。
3
代表性研究包括使用卷积神经网络(CNN)处理 图像数据,循环神经网络(RNN)处理序列数据 等。
02
线性回归模型的经典假定及检验修正
![线性回归模型的经典假定及检验修正](https://img.taocdn.com/s3/m/d884f5015a8102d277a22f11.png)
线性回归模型的经典假定及检验、修正一、线性回归模型的基本假定1、一元线性回归模型一元线性回归模型是最简单的计量经济学模型,在模型中只有一个解释变量,其一般形式是Y =β0+β1X 1+μ其中,Y 为被解释变量,X 为解释变量,β0与β1为待估参数,μ为随机干扰项。
回归分析的主要目的是要通过样本回归函数(模型)尽可能准确地估计总体回归函数(模型)。
为保证函数估计量具有良好的性质,通常对模型提出若干基本假设。
假设1:回归模型是正确设定的。
模型的正确设定主要包括两个方面的内容:(1)模型选择了正确的变量,即未遗漏重要变量,也不含无关变量;(2)模型选择了正确的函数形式,即当被解释变量与解释变量间呈现某种函数形式时,我们所设定的总体回归方程恰为该函数形式。
假设2:解释变量X 是确定性变量,而不是随机变量,在重复抽样中取固定值。
这里假定解释变量为非随机的,可以简化对参数估计性质的讨论。
假设3:解释变量X 在所抽取的样本中具有变异性,而且随着样本容量的无限增加,解释变量X 的样本方差趋于一个非零的有限常数,即∑(X i −X ̅)2n i=1n→Q,n →∞ 在以因果关系为基础的回归分析中,往往就是通过解释变量X 的变化来解释被解释变量Y 的变化的,因此,解释变量X 要有足够的变异性。
对其样本方差的极限为非零有限常数的假设,旨在排除时间序列数据出现持续上升或下降的变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生伪回归问题。
假设4:随机误差项μ具有给定X 条件下的零均值、同方差以及无序列相关性,即E(μi|X i)=0Var(μi|X i)=σ2Cov(μi,μj|X i,X j)=0, i≠j随机误差项μ的条件零均值假设意味着μ的期望不依赖于X的变化而变化,且总为常数零。
该假设表明μ与X不存在任何形式的相关性,因此该假设成立时也往往称X为外生性解释变量随机误差项μ的条件同方差假设意味着μ的方差不依赖于X的变化而变化,且总为常数σ2。
线性回归模型
![线性回归模型](https://img.taocdn.com/s3/m/fa136bab6394dd88d0d233d4b14e852459fb3950.png)
线性回归模型线性回归是统计学中一种常用的预测分析方法,用于建立自变量和因变量之间的线性关系模型。
该模型可以通过拟合一条直线或超平面来预测因变量的值。
在本文中,我们将探讨线性回归模型的基本原理、应用场景以及如何构建和评估模型。
一、基本原理线性回归模型的基本原理是通过最小二乘法来确定自变量与因变量之间的线性关系。
最小二乘法的目标是使模型预测值与真实观测值的残差平方和最小化。
通过最小二乘法,可以获得模型的系数和截距,从而建立线性回归模型。
二、应用场景线性回归模型适用于连续型变量的预测与分析。
以下是一些常见的应用场景:1. 经济学领域:预测GDP增长、通货膨胀率等经济指标;2. 市场营销:分析广告投入与销售额之间的关系;3. 生物医学:研究药物剂量与治疗效果的关联性;4. 地理科学:探索自然地理因素与社会经济发展之间的关系。
三、构建线性回归模型1. 数据收集:收集自变量和因变量的数据,确保数据的可靠性和完整性;2. 数据探索:通过统计分析、可视化等手段对数据进行初步探索,检查是否存在异常值或缺失值;3. 特征选择:选择与因变量相关性较高的自变量,可以使用统计方法或领域知识进行选择;4. 模型建立:使用最小二乘法等方法拟合线性回归模型,并求解模型的系数和截距;5. 模型评估:使用各种指标(如均方误差、决定系数等)来评估模型的性能和拟合度;6. 模型优化:根据模型评估结果,对模型进行进一步优化,可以考虑添加交互项、多项式项等。
四、评估线性回归模型线性回归模型的评估可以通过以下指标进行:1. 均方误差(Mean Squared Error,MSE):衡量模型预测值与真实观测值之间的误差;2. 决定系数(Coefficient of Determination,R-squared):衡量模型对因变量变异的解释程度;3. 残差分析:通过检查预测残差的正态性、独立性和同方差性来评估模型的拟合效果。
五、总结线性回归模型是一种简单而强大的统计学方法,可用于预测和分析连续型变量。
回归分析
![回归分析](https://img.taocdn.com/s3/m/6cd6272cdd36a32d73758172.png)
回归分析1、回归分析的概念在工农业生产和科学研究中,常常需要研究变量之间的关系。
变量之间的关系可以分为两类:确定性关系、非确定性关系。
确定性关系就是指存在某种函数关系。
然而,更常见的变量之间的关系存在着某种不确定性。
例如:商品的销售量与当地人口有关,人口越多,销售量越大,但它们之间并没有确定性的数值关系,同样的人口,可能有不同的销售量。
这种既有关联,又不存在确定性数值关系的相互关系,就称为相关关系。
回归分析就是研究变量之间相关关系的一种数理统计分析方法。
在回归分析中,主要研究以下几个问题: (1)拟合:建立变量之间有效的经验函数关系; (2)变量选择:在一批变量中确定哪些变量对因变量有显著影响,哪些没有实质影响; (3)估计与检验:估计回归模型中的未知参数,并且对模型提出的各种假设进行推断; (4)预测:给定某个自变量,预测因变量的值或范围。
根据自变量个数和经验函数形式的不同,回归分析可以分为许多类别。
2、一元线性回归⏹ 回归系数的最小二乘估计已知(x1, y1),(x2 ,y2),...,(xn, yn),代入回归模型得到: 一元线性回归模型给定一组数据点(x1, y1),(x2 ,y2),...,(xn, yn),如果通过散点图可以观察出变量间大致存在线性函数关系,则可以建立如下模型:其中a,b 称为一元线性回归的回归系数;ε表示回归值与测量值之间的误差。
针对该模型,需要解决以下问题: (1)如何估计参数a,b 以及σ2; (2)模型的假设是否正确?(3)如何应用所求的回归方程对试验指标进行预测。
⏹ 回归系数的最小二乘估计已知(x1, y1),(x2 ,y2),...,(xn, yn),代入回归模型得到: 采用最小二乘法(即使观测值与回归值的离差平方和最小):⎩⎨⎧++=),0(~2σεεN bX a Y 2,~(0,),1,2,...,i i i i y a bx N i n e e s =++=1221111112111(,)2[()]0min (,)[()](,)2[()]011ˆˆˆn i i n n i i i i n i i i i i i n i i n n i i ii i n n n i i i ii i i Q a b y a bx a Q a b y a bx Q a b x y a bx b a y b x y n n na b x y a x b x x y e ==========ì锒ï=--+=ïï¶ï==-+ íï¶ï=--+=ïï¶ïî=-=-ìïï+=ïïï揶íïï+=ïïïîå邋åå邋邋1111221ˆ1n i n n n i i i ixy i i i nn xxbx x y x y L n b L ====ìïïïïïïïïí-ïï==ïïïå邋⏹ 回归系数估计量的性质⏹ 样本相关系数及其显著性检验显然:样本相关系数R 的符号决定于Lxy ,因此与相关系数b 的符号一致。
Logistic回归模型
![Logistic回归模型](https://img.taocdn.com/s3/m/f92ba4c8b90d6c85ed3ac631.png)
回归模型1 回归模型的根本知识 模型简介主要应用在研究某些现象发生的概率p ,比方股票涨还是跌,公司成功或失败的概率,以及讨论概率p 与那些因素有关。
显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。
为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。
于是变换被提出来:〔1〕其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便,解决了上述面临的难题。
另外从函数的变形可得如下等价的公式:XT XT T ee p Xppp Logit βββ+=⇒=-=11ln )( 〔2〕模型(2)的根本要求是,因变量〔y 〕是个二元变量,仅取0或1两个值,而因变量取1的概率)|1(X y P =就是模型要研究的对象。
而T k x x x X ),,,,1(21 =,其中i x 表示影响y 的第i 个因素,它可以是定性变量也可以是定量变量,T k ),,,(10ββββ =。
为此模型(2)可以表述成:kx k x k x k x kk eep x x pp βββββββββ+++++++=⇒+++=- 11011011011ln 〔3〕显然p y E =)(,故上述模型说明是k x x x ,,,21 的线性函数。
此时我们称满足上面条件的回归方程为线性回归。
线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。
不同于多元线性回归的最小二乘估计法那么(残差平方和最小),变换的非线性特征采用极大似然估计的方法寻求最正确的回归系数。
因此评价模型的拟合度的标准变为似然值而非离差平方和。
如何用残差分析的方法判断回归模型的拟合效果
![如何用残差分析的方法判断回归模型的拟合效果](https://img.taocdn.com/s3/m/4b082287be1e650e52ea99d4.png)
如何用残差分析的方法判断回归模型的拟合效果中图分类号:G635.1文献标识码:A文章编号:ISSN1001-2982(2019)04-079-02如何判断回归模型的拟合效果好坏是回归分析的重要内容,在回归分析中通常用残差分析来判断回归模型的拟合效果一:残差分析的方法1.残差图(1)残差:对于样本点,它们的随机误差为,,其估计值,,称为相应于点的残差,即=真实值—预报值(2)残差图:纵坐标为残差,横坐标可以选为样本编号或其他相关数据。
残差点比较均匀地落在水平的带状区域中,说明选用的模型拟合效果好,带状区域宽度越窄,说明拟合精度越高,回归方程的精度越高。
(3)残差平方和:越小拟合效果越好2.相关系数:(1)(2)时线性相关性越强,越弱(3)时认为两个变量有很强的相关关系3相关指数(1)(2)越大,说明残差平方和越小,模型拟合效果越好,,模型拟合效果差(3)与相关系数作用相同(4)实际应用中,应选用大的回归模型二.典例分析例.某运动员训练次数与运动成绩之间的数据关系如下:次数x3033353739444650成绩y3034373942464851试预测该运动员训练47次以及55次的成绩。
解:(1)作出该运动员训练次数x与成绩y之间的散点图,如图所示,由散点图可知,它们之间具有线性相关关系。
图1(2)列表计算:次数成绩30309009009003334108911561122353712251369129537391369152114433942152117641638444619362116202446482116230422085051250026012550由上表可求得,,,所以所以回归直线方程为(3)计算相关系数将上述数据代入得,查表可知,而,故y与x 之间存在显著的相关关系。
(4)残差分析:作残差图如图,由图知,残差点比较均匀地分布在水平带状区域中,说明选用的模型比较合适。
计算残差的方差得,说明预报的精度较高。
回归分析线性回归Logistic回归对数线性模型
![回归分析线性回归Logistic回归对数线性模型](https://img.taocdn.com/s3/m/1051606ddc36a32d7375a417866fb84ae55cc36a.png)
逻辑回归的模型为 (P(Y=1) = frac{1}{1+e^{-z}}),其中 (z = beta_0 + beta_1X_1 + beta_2X_2 + ... + beta_nX_n)。
逻辑斯蒂函数
பைடு நூலகம்
定义
逻辑斯蒂函数是逻辑回归模型中用来描述自变量与因变量之 间关系的函数,其形式为 (f(x) = frac{1}{1+e^{-x}})。
。
在样本量较小的情况下, logistic回归的预测精度可能高 于线性回归。
线性回归的系数解释较为直观 ,而logistic回归的系数解释相 对较为复杂。
对数线性模型与其他模型的比较
对数线性模型假设因变量和自变量之间存在对 数关系,而其他模型的假设条件各不相同。
对数线性模型的解释性较强,可以用于探索自变量之 间的交互作用和效应大小。
THANKS
感谢您的观看
预测市场细分中的消费者行为等。
对数线性模型还可以用于探索性数据分析,以发现数 据中的模式和关联。
Part
04
比较与选择
线性回归与logistic回归的比较
线性回归适用于因变量和自变 量之间存在线性关系的场景, 而logistic回归适用于因变量为
二分类或多分类的场景。
线性回归的假设条件较为严格 ,要求因变量和自变量之间存 在严格的线性关系,而logistic 回归的假设条件相对较为宽松
最小二乘法
最小二乘法是一种数学优化技术,用于最小化预测值与实际观测值之间的平方误差总和。
通过最小二乘法,可以估计回归系数,使得预测值与实际观测值之间的差距最小化。
最小二乘法的数学公式为:最小化 Σ(Yi - (β0 + β1X1i + β2X2i + ...))^2,其中Yi是实际观 测值,X1i, X2i, ...是自变量的观测值。
线性回归方程.附答案docx
![线性回归方程.附答案docx](https://img.taocdn.com/s3/m/2ff269a08e9951e79a892752.png)
线性回归方程一、考点、热点回顾一、相关关系:1、⎩⎨⎧<=1||1||r r 不确定关系:相关关系确定关系:函数关系2、相关系数:∑∑∑===-⋅---=ni ini ini iiy y x x y y x x r 12121)()())((,其中:(1)⎩⎨⎧<>负相关正相关00r r ;(2)相关性很弱;相关性很强;3.0||75.0||<>r r3、散点图:初步判断两个变量的相关关系。
二、线性回归方程:1、回归方程:a x b yˆˆˆ+= 其中2121121)())((ˆxn x yx n yx x x y yx x bn i i ni ii n i i ni ii--=---=∑∑∑∑====,x b y aˆˆ-=(代入样本点的中心) 2、残差:(1)残差图:横坐标为样本编号,纵坐标为每个编号样本对应的残差。
(2)残差图呈带状分布在横轴附近,越窄模型拟合精度越高。
(3)残差平方和∑=-ni i iyy12)ˆ(越小,模型拟合精度越高。
3、相关指数:∑∑==---=n i ini i iy yyyR 12122)()ˆ(1(1)其中:∑=-ni i iyy12)ˆ(为残差平方和;∑=-ni i y y 12)(为总偏差平方和。
(2))1,0(2∈R ,越大模型拟合精度越高。
二、典型例题+拓展训练典型例题1:在一组样本数据),,,2)(,(),,(),,(212211不全相等n n n x x x n y x y x y x ≥的散点图中,若所有样本点),2,1)(,(n i y x i i =都在直线121+-=x y 上,则样本相关系数为( ) 21.21.1.1.--D C B A典型例题2:设某大学的女生体重)(kg y 与身高)(cm x 具有线性相关关系,根据一组样本数据)2,1)(,(n i y x i i =,用最小二乘法建立的回归方程为71.8585.0ˆ-=x y ,则不正确的是( )A.y 与x 具有正的线性相关关系;B.回归直线过样本点的中心),(y xC.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg扩展2.一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速度而变化,下表为抽样试(1)对变量y 与x 进行相关性检验;(2)如果y 与x 有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?典型例题3.为了对x 、Y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+,717y x =+,试比较哪一个模型拟合的效果更好.52211521()155110.8451000()i i i ii y y R yy ==-=-=-=-∑∑,221R =-521521()18010.821000()ii i ii yy y y ==-=-=-∑∑,84.5%>82%,所以甲选用的模型拟合效果较好.扩展1.下列说法正确的是( )(1)残差平方和越小,相关指数2R 越小,模型拟合效果越差; (2)残差平方和越大,相关指数2R 越大,模型拟合效果越好; (3)残差平方和越小,相关指数2R 越大,模型拟合效果越好; (4)残差平方和越大,相关指数2R 越小,模型拟合效果越差;A.(1)(2)B.(3)(4)C.(1)(4)D.(2)(3)扩展2.关于某设备的使用年限x (年)和所支出的维修费用y (万元)有下表所示的资料:若由资料知,y 对x 呈线性相关关系,求:(1)线性回归方程a x b yˆˆˆ+=中的回归系数b a ˆ,ˆ; (2)残差平方和与相关指数2R ,作出残差图,并对该回归模型的拟合精度作出适当判断; (3)使用年限为10年时,维修费用大约是多少?三、典型例题4.非线性回归模型:某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
统计与回归线性回归模型的建立与分析
![统计与回归线性回归模型的建立与分析](https://img.taocdn.com/s3/m/248d598bd4bbfd0a79563c1ec5da50e2524dd1c5.png)
统计与回归线性回归模型的建立与分析一、引言统计是现代科学中广泛应用的一种方法,而回归分析又是统计学中非常重要的一种技术。
在统计学中,线性回归模型被广泛应用于研究和分析,可以帮助我们了解变量之间的关系及其对结果的影响。
本文将介绍线性回归模型的建立和分析方法,以便读者在实际问题中能够充分利用线性回归的优势。
二、线性回归模型的基本原理线性回归模型是一种通过拟合数据来建立因变量与自变量之间线性关系的统计模型。
在线性回归中,因变量和自变量之间的关系被假设为一个线性方程,其数学形式可以表示为:Y = β0 +β1X1 + β2X2 + ... + βnXn + ε,其中Y是因变量,X1至Xn是自变量,β0至βn是回归系数,ε是误差项。
通过最小化误差项和观测值之间的差异,可以得到最佳的回归系数,从而建立线性回归模型。
三、线性回归模型的建立步骤1. 数据收集:首先,需要收集相关的数据集,包括因变量和自变量的观测值。
这些数据可以通过实验、调查或其他途径获得。
2. 数据准备:在建立线性回归模型之前,需要对数据进行清洗和准备。
这包括处理缺失值、异常值以及进行数据变换等。
3. 模型选择:根据研究的目标和数据的特点,选择适当的线性回归模型。
常见的线性回归模型包括一元线性回归、多元线性回归和多重线性回归等。
4. 拟合模型:通过最小二乘法等方法,拟合数据与线性回归模型之间的关系,得到最佳的回归系数。
5. 模型评估:对建立的线性回归模型进行评估,检验模型的拟合程度和显著性。
常见的评估指标包括确定系数(R²)、标准误差(SE)等。
6. 模型应用:利用建立的线性回归模型进行预测和解释。
可以根据模型的系数和显著性检验结果,解释自变量对因变量的影响程度。
四、线性回归模型的分析与解释在分析线性回归模型时,需要综合考虑回归系数的大小、显著性以及模型评估结果,来解释自变量对因变量的影响。
1. 回归系数:回归系数反映了自变量对因变量的影响程度和方向。
(完整word版)matlab回归分析方法
![(完整word版)matlab回归分析方法](https://img.taocdn.com/s3/m/9588fdca0722192e4436f688.png)
第八章回归分析方法当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型.如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。
本章讨论其中用途非常广泛的一类模型——统计回归模型。
回归模型常用来解决预测、控制、生产工艺优化等问题。
变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。
另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来.例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。
回归分析就是处理变量之间的相关关系的一种数学方法。
其解决问题的大致方法、步骤如下:(1)收集一组包含因变量和自变量的数据;(2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数;(3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型;(4)判断得到的模型是否适合于这组数据;(5)利用模型对因变量作出预测或解释。
应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上.运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能.MATLAB等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。
MATLAB统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。
运用MATLAB统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。
本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。
回归分析中的拟合优度检验方法的比较研究论文素材
![回归分析中的拟合优度检验方法的比较研究论文素材](https://img.taocdn.com/s3/m/79453e39eef9aef8941ea76e58fafab069dc44e0.png)
回归分析中的拟合优度检验方法的比较研究论文素材回归分析中拟合优度检验方法的比较研究1. 引言回归分析是分析和建立因变量与自变量之间关系的一种常用统计方法。
在进行回归分析时,评估模型的好坏是非常重要的一步。
拟合优度检验方法旨在衡量回归模型对数据的拟合程度,常用的方法有均方根误差(RMSE)、决定系数(R^2)和调整决定系数(adjusted R^2)等。
2. 均方根误差(RMSE)均方根误差是衡量实际观测值与回归方程预测值之间差距的一种指标。
计算公式如下所示:RMSE = sqrt(Σ(实际观测值 - 预测值)^2 / n)其中n表示样本量。
RMSE的值越小,说明模型对观测值的拟合程度越好。
3. 决定系数(R^2)决定系数是衡量因变量变异性能够被自变量解释的比例。
其取值范围为0到1,越接近1说明模型对数据拟合得越好。
计算公式如下所示:R^2 = 1 - SSR / SST其中SSR表示回归平方和,SST表示总平方和。
R^2值越大,模型的解释效果越好。
4. 调整决定系数(adjusted R^2)调整决定系数是对决定系数进行修正的指标,避免了仅仅根据决定系数大小来选择模型的问题。
调整决定系数考虑了自变量的个数和样本量的影响,因此更具有说服力。
计算公式如下所示:adjusted R^2 = 1 - (1 - R^2) * (n - 1) / (n - p - 1)其中n表示样本量,p表示自变量的数量。
调整决定系数的值越大,模型越优秀。
5. 不同拟合优度检验方法的比较研究根据以上介绍的三种方法,我们可以发现它们对于回归模型的拟合优度均有所衡量,但各有侧重。
均方根误差主要关注实际观测值与预测值之间的误差程度,越小越好;决定系数主要关注自变量对因变量的解释程度,越接近1越好;调整决定系数在决定系数的基础上,进一步考虑了变量个数和样本的量,可以更准确地衡量模型的拟合程度。
在实际应用中,根据具体问题和目标,选择合适的拟合优度检验方法是十分关键的。
计量经济学 第二章 一元线性回归模型
![计量经济学 第二章 一元线性回归模型](https://img.taocdn.com/s3/m/b2ff1c1a10661ed9ad51f3fb.png)
计量经济学第二章一元线性回归模型第二章一元线性回归模型第一节一元线性回归模型及其古典假定第二节参数估计第三节最小二乘估计量的统计特性第四节统计显著性检验第五节预测与控制第一节回归模型的一般描述(1)确定性关系或函数关系:变量之间有唯一确定性的函数关系。
其一般表现形式为:一、回归模型的一般形式变量间的关系经济变量之间的关系,大体可分为两类:(2.1)(2)统计关系或相关关系:变量之间为非确定性依赖关系。
其一般表现形式为:(2.2)例如:函数关系:圆面积S =统计依赖关系/统计相关关系:若x和y之间确有因果关系,则称(2.2)为总体回归模型,x(一个或几个)为自变量(或解释变量或外生变量),y为因变量(或被解释变量或内生变量),u为随机项,是没有包含在模型中的自变量和其他一些随机因素对y的总影响。
一般说来,随机项来自以下几个方面:1、变量的省略。
由于人们认识的局限不能穷尽所有的影响因素或由于受时间、费用、数据质量等制约而没有引入模型之中的对被解释变量有一定影响的自变量。
2、统计误差。
数据搜集中由于计量、计算、记录等导致的登记误差;或由样本信息推断总体信息时产生的代表性误差。
3、模型的设定误差。
如在模型构造时,非线性关系用线性模型描述了;复杂关系用简单模型描述了;此非线性关系用彼非线性模型描述了等等。
4、随机误差。
被解释变量还受一些不可控制的众多的、细小的偶然因素的影响。
若相互依赖的变量间没有因果关系,则称其有相关关系。
对变量间统计关系的分析主要是通过相关分析、方差分析或回归分析(regression analysis)来完成的。
他们各有特点、职责和分析范围。
相关分析和方差分析本身虽然可以独立的进行某些方面的数量分析,但在大多数情况下,则是和回归分析结合在一起,进行综合分析,作为回归分析方法的补充。
回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。
第1章 1.1(一)回归分析
![第1章 1.1(一)回归分析](https://img.taocdn.com/s3/m/3743808de53a580216fcfe6e.png)
^
^
^
研一研·问题探究、课堂更高效
§ 1.1(一)
思考
根据前面得到的回归方程, 能否预测一名美国女大学生
的体重?建立回归模型后能否一劳永逸, 在若干年后还可以
本 课 时 栏 目 开 关
使用,或者适用于多年以前的女大学生体重预测?
答 在使用回归方程进行预报时要注意: (1)回归方程只适用于我们所研究的样本的总体;
x2 i 900 1 089 1 225 1 369 1 521 1 936 2 116 2 500
yi2 900 1 156 1 369 1 521 1 764 2 116 2 304 2 601
8 i=1
xiyi 900 1 122 1 295 1 443 1 638 2 024 2 208 2 550
∑xiyi-8 x y ^ i=1 ∴b = 8 ≈1.041 5, 2 ∑x2 - 8 x i
作残差图如下图所示,由图可知,残差点比较均匀地分布在水 平带状区域中,说明选用的模型比较合适.
研一研·问题探究、课堂更高效
§ 1.1(一)
(4)计算相关指数 R2 计算相关指数 R2≈0.985 5. 说明了该运动员的成绩的差异有
本 课 时 栏 目 开 关
§ 1.1(一)
【学习要求】 1.了解随机误差、残差、残差图的概念. 2.会通过分析残差判断线性回归模型的拟合效果. 3.掌握建立线性回归模型的步骤.
本 课 时 栏 目 开 关
【学法指导】 通过对典型案例的讨论,了解回归分析的基本思路、方法及 其初步应用. 回归分析是对具有相关关系的两个变量进行统 计分析的一种常用方法. 学习中应该通过生活中详实事例理 解回归分析的方法,其步骤为通过散点图,直观地了解两个 变量的关系,然后,通过最小二乘法建立回归模型,最后通 过分析残差、相关指数等,评价模型的好坏.重点是了解回 归分析的思想方法,对其理论基础不做要求,避免单纯记忆 和机械套用公式进行计算.
第十章 统计回归模型
![第十章 统计回归模型](https://img.taocdn.com/s3/m/755a92d6ad02de80d4d84093.png)
改进模型2
考虑x1和x2的交互作用
y 0 1x1 2 x2 3x22 4 x1x2
参数
参数估计值
置信区间
0
29.1133
[13.7013 44.5252]
1
11.1342
[1.9778 20.2906 ]
2
-7.6080
[-12.6932 -2.5228 ]
3
0.6712
[0.2538 1.0887 ]
yˆ
yˆ
9
9
8.5
x2=6.5 8.5
8
8
7.5
-0.2
0
0.2
0.4
yˆ
10
9.5 解释性好
9
8.5
8
7.5
5
6
7
0.6 x1
7.5
-0.2
0
0.2
0.4
yˆ
10.5
x1=0.2
10 精度高
9.5
9
8 x2 没道理
8.5 8 5
6
7
0.6 x1 8 x2
更完整的模型:完全二次多项式 y 0 1x1 2 x2 3 x1x2 4 x12 5 x22
多元线性回归y = x+的方差分析
误差平方和分解: SST=SSE+SSR
SST
||
Y
Y
1 ||2 , SSE
||
Y
Yˆ
||2 , SSR
||
Yˆ
Y
1 ||2
总误差平方和SST: 代表直接用y的均值来估计y时的误差(即i=0时)
残差平方和SSE: 代表用回归模型不能解释的那部分误差
回归分析(1)
![回归分析(1)](https://img.taocdn.com/s3/m/c75648097cd184254b35354d.png)
相关关系
非线性相关 相关关系:对于两个变量,当自变量取值一定时,因 变量的取值带有一定随机性的两个变量之间的关系. 函数关系中的两个变量间是一种确定性关系 相关关系是一种非确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一般的情况
求根据女大学生的身高预报体重的回归方程,并预报 一名身高为172cm的女大学生的体重.
ˆ y 故所求回归方程为: 0 .8 4 9 x 8 5 .7 1 2
r=0.798 表明体重与身高有很强的线性相关性,从 而说明我们建立的回归模型是有意义的.
ˆ y 0 .8 4 9 1 7 2 8 5 .7 1 2 6 0 .3 1 6( k g )
利用残差计算公式:
认为她的平均体重的估计值是60.316kg.
因为所有的样本点不共线,所以线性函数模型只能近 似地刻画身高和体重之间的关系,即:体重不仅受身 高的影响,还受其他因素的影响,把这种影响的结果 用e来表示,从而把线性函数模型修改为线性回归模 型:y=bx+a+e.其中,e包含体重不能由身高的线性 函数解释的所有部分.
如何刻画模型拟合的精度?
相关指数:R 2
1
i1
n
ˆ 2 ( yi yi ) ( yi y )
2
i1
n
在含有一个解释变量的线性模型中,R2恰好等于相关 系数r的平方. R2取值越大,则残差平方和越小,即模型的拟合效果 越好. R2=0.64,表明:“女大学生的身高解释了64%的体 重变化”,或者说“女大学生的体重差异有64%是 由身高引起的”.
(3)观测误差.由于测量工具等原因,得到的y的观 测值一般是有误差的,这样的误差也包含在e中. 以上三项误差越小,则回归模型的拟合效果越好.
数学建模案例分析第十章统计回归模型
![数学建模案例分析第十章统计回归模型](https://img.taocdn.com/s3/m/580b8273590216fc700abb68a98271fe910eaf85.png)
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
一元线性回归
01
02
03
模型建立
一元线性回归模型用于描 述两个变量之间的线性关 系,通常形式为y=ax+b, 其中a和b为待估参数。
参数估计
通过最小二乘法等方法对 参数a和b进行估计,使得 预测值与实际观测值之间 的误差平方和最小。
假设检验
对模型进行假设检验,包 括检验模型的显著性、参 数的显著性等,以判断模 型是否有效。
线性回归模型检验
拟合优度检验
通过计算决定系数R^2等指标, 评估模型对数据的拟合程度。
残差分析
对模型的残差进行分析,包括残 差的分布、异方差性检验等,以
判断模型的合理性。
预测能力评估
通过计算预测误差、均方误差等 指标,评估模型的预测能力。同 时可以使用交叉验证等方法对模
型进行进一步的验证和评估。
线性回归模型检验
逐步回归原理及步骤
01
3. 对模型中已有的自变量进行检 验,如果不显著则将其从模型中 剔除。
02
4. 重复步骤2和3,直到没有新的 自变量可以进入模型,也没有不显 著的自变量可以从模型中剔除。
数据挖掘——回归分析
![数据挖掘——回归分析](https://img.taocdn.com/s3/m/82d62013c381e53a580216fc700abb68a982adc7.png)
数据挖掘——回归分析回归分析(Regerssion Analysis)——研究⾃变量与因变量之间关系形式的分析⽅法,它主要是通过建⽴因变量y 与影响他的⾃变量X i 之间的回归模型,来预测因变量y 的发展趋势。
⼀、回归分析的分类线性回归分析1. 简单线性回归分析2. 多重线性回归分析⾮线性回归分析1. 逻辑回归2. 神经⽹络⼆、回归分析的步骤:根据预测⽬标,确定⾃变量与因变量绘制散点图,确定回归模型类型估计模型参数,建⽴回归模型对回归模型进⾏检验利⽤回归模型进⾏预测简单线性回归模型: y = a + bx + e (e为随机误差,∑e i2为残差,是判断模型拟合好坏的重要指标),使⽤最⼩⼆乘法获得模型参数 回归⽅程的精度就是⽤来表⽰实际观测点和回归⽅程的拟合程度的指标,使⽤判定系数来度量。
判定系数 = 相关系数R2 = ESS/TSS = 1- (RSS/TSS) ,其中TSS 为总离差平⽅和,ESS 为回归平⽅和,RSS 为残差平⽅和#绘制散点图和相关系数plt.scatter(data.⼴告投⼊,data.销售额)data.corr()#估计模型参数,建⽴回归模型lrmodel = LinearRegression()x = data[['⼴告投⼊']]y = data[['销售额']]#训练模型lrmodel.fit(x,y)#对模型进⾏检验,得到模型评分lrmodel.score(x,y)#利⽤模型进⾏预测,⾃变量需要⽤数组进⾏传⼊lrmodel.predict([[50]])#查看参数a = lrmodel.intercept_[0]b = lrmodel.coef_[0][0]多重线性回归模型(Multiple Linear Regression): y = a + b1x1 + b2x2+ b3x3 + ……+ b n x n+ e (e为随机误差,∑e i2为残差,是判断模型拟合好坏的重要指标),使⽤最⼩⼆乘法获得模型参数 回归⽅程的精度就是⽤来表⽰实际观测点和回归⽅程的拟合程度的指标,使⽤判定系数来度量。
线性回归模型的拟合优度检验方法分析PPT(18张)
![线性回归模型的拟合优度检验方法分析PPT(18张)](https://img.taocdn.com/s3/m/10855c86f121dd36a32d82de.png)
•
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。
•
2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。
•
3、命运给你一个比别人低的起点是想告诉你,让你用你的一生去奋斗出一个绝地反击的故事,所以有什么理由不努力!
•
4、心中没有过分的贪求,自然苦就少。口里不说多余的话,自然祸就少。腹内的食物能减少,自然病就少。思绪中没有过分欲,自然忧就少。大悲是无泪的,同样大悟无言。缘来尽量要惜,缘尽就放。人生本来就空,对人家笑笑,对自己笑笑,笑着看天下,看日出日落,花谢花开,岂不自在,哪里来的尘埃!
•
1、想要体面生活,又觉得打拼辛苦;想要健康身体,又无法坚持运动。人最失败的,莫过于对自己不负责任,连答应自己的事都办不到,又何必抱怨这个世界都和你作对?人生的道理很简单,你想要什么,就去付出足够的努力。
•
2、时间是最公平的,活一天就拥有24小时,差别只是珍惜。你若不相信努力和时光,时光一定第一个辜负你。有梦想就的一天。
•
13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发悲心,饶益众生为他人。
•
14、梦想总是跑在我的前面。努力追寻它们,为了那一瞬间的同步,这就是动人的生命奇迹。
•
15、懒惰不会让你一下子跌倒,但会在不知不觉中减少你的收获;勤奋也不会让你一夜成功,但会在不知不觉中积累你的成果。人生需要挑战,更需要坚持和勤奋!
•
15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。
•
16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用回归分析例库封面
一、案例背景
新中国50年来,我国的国民经济迅猛发展,综合国力显著增强。
研究表明:截至2004年50多年来中国经济增长是不均衡的,经济增长模式是不同的,可分为几个阶段。
文章基于对53年来中国财政收入、农业增加值、工业增加值、社会消费总额等因素的研究,
-生产函数,分三个阶段分析了财政消除价格膨胀因素的影响,采用采用Cobb Dauglas
收入与其他因素之间的关系,并且从经济学角度对所建立的模型给出了合理的解释,结论符合中国实际。
二、数据介绍
新中国50年来,我国的国民经济迅猛发展,综合国力显著增强。
研究表明:截至2004年50多年来中国经济增长是不均衡的,经济增长模式是不同的,可分为几个阶段。
文章基于对53年来中国财政收入、农业增加值、工业增加值、社会消费总额等因素的研究,
-生产函数,分三个阶段分析了财政消除价格膨胀因素的影响,采用采用Cobb Dauglas
收入与其他因素之间的关系,并且从经济学角度对所建立的模型给出了合理的解释,结论符合中国实际。
三、分析过程
经过对26个模型中标准残差、复相关系数、PRESS和AIC的对比,发现以下模型最优。
表2 4个最优回归模型比较
F统计量的概率值都为0,说明每个回归方程中的自变量作为一个整体对因变量Y的影响是显著的。
为了确定最优模型,将T统计量的概率值比较如下
从表3可以看出,当显著性水平0.05α=时,只有第一个模型中所有的P 值都满足
Pr(>|t|)<0.05,说明这个模型中的每个自变量对因变量的影响显著。
综合以上因素,我
们认为Y 关于因素123,,X X X 的回归模型是最优的,即1952年—1971年这20年间,影响财政收入的主要因素是农业增加值、工业增加值和建筑业增加值。
4.2.2 1972—2004年最优回归模型
过程同上。
经过对比,发现以下4个模型最优。
表4 4个最优模型比较
F 统计量的概率值都为0,T 统计量的概率值如表5所示。
当显著性水平0.05α=时,表5中第一个模型和第三个模型中所有的P 值都满足
Pr(>|t|)<0.05,说明这两个回归方程中的每个自变量对因变量的影响显著。
结合表4,我
们认为Y 关于因素1245,,,X X X X 的回归模型是最优的,即1972年—2004年这33年间,影响财政收入的主要因素是农业增加值、工业增加值、人口数和社会消费总额。
表6 两个总体最优模型汇总
四、结论
本文根据中国财政收入、农业增加值、工业增加值等因素增长趋势的特点,采用
Cobb Dauglas -生产函数,讨论了中国财政收入与社会各因素之间的关系。
比较表7中三个最优方程,可以看出在我国经济的不同发展阶段,影响财政收入的因素以及各因素的权重有所不同,说明随着时代的发展,社会制度的变迁,影响财政收入的主要因素也会发生变化。
在1952—1961年的回归方程中,农业增加值、工业增加值和建筑业增加值对财政收入的影响较大,其中工业增加值的权重系数较大。
这一时期,正值我国生产资料私有制的社会主义改造基本完成,1957年又完成了发展国民经济的第一个五年计划,开始进入全面建设社会主义的新时期。
在1961—1981年的回归方程中,工业增加值、人口数和社
会消费总额对财政收入的影响较大,其中工业增加值的权重系数仍然较大,由于忽视了“三农”问题,农业增加值没有列入其中。
1966年5月至1976年10月的“文化大革命”,使党、国家和人民遭到建国以来最严重的挫折和损失。
因此,在这一时期,各因素数据不稳定,起伏较大。
在1982—2004年这个阶段,尽管对财政收入的影响因素与前一阶段相同,但是较大的权重系数转移到人口数和社会消费总额。
在这23年里,中国的经济体制由计划经济一步步走向市场经济。
相对于前两个阶段经济发展属于较平稳的时期,这个阶段的成绩是调整改革的成果。
党中央、国务院早已经意识到了“三农问题”,在2004年,温家宝总理在政府工作报告中谈到,解决农业、农村和农民问题,是我们全部工作的重中之重,各级政府要加强对“三农”的投入。
出台了一系列有利于“三农”改革政策,包括农村税费改革,逐步降低农业税税率,五年内取消农业税。
总之,这53年来中国财政收入以及与其有关的各因素的增长趋势分成三个阶段是合理的,即分成1951—1960年,1961—1981年,1982—2004年,由此可以清楚地看出中国经济发展的历程。